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The BPS Skyrme model has been demonstrated already to provide a physically intriguing and quantita-
tively reliable description of nuclear matter. Indeed, the model has both the symmetries and the energy–
momentum tensor of a perfect fluid, and thus represents a field theoretic realization of the “liquid 
droplet” model of nuclear matter. In addition, the classical soliton solutions together with some obvious 
corrections (spin–isospin quantization, Coulomb energy, proton–neutron mass difference) provide an 
accurate modeling of nuclear binding energies for heavier nuclei. These results lead to the rather natural 
proposal to try to describe also neutron stars by the BPS Skyrme model coupled to gravity. We find that 
the resulting self-gravitating BPS Skyrmions provide excellent results as well as some new perspectives 
for the description of bulk properties of neutron stars when the parameter values of the model are 
extracted from nuclear physics. Specifically, the maximum possible mass of a neutron star before black-
hole formation sets in is a few solar masses, the precise value of which depends on the precise values of 
the model parameters, and the resulting neutron star radius is of the order of 10 km.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The calculation of physical observables of strongly interacting 
matter at low energies – relevant, e.g., to nuclear physics – directly 
from QCD is a notoriously difficult problem, which led to the in-
troduction of low-energy effective field theories (EFTs) as a more 
tractable alternative. The Skyrme model is a well-known example 
of such a low-energy EFT. It was introduced originally by Skyrme 
[1] as a purely mesonic nonlinear field theory for the description 
of nuclei. Skyrme’s idea was that nucleons should be described as 
a kind of “vorticity” in a mesonic “fluid” or, in a more modern 
language, as topological solitons of the underlying mesonic non-
linear field theory. And, indeed, the Skyrme model is known to 
possess topological solitons (“Skyrmions”) whose topological in-
dex is identified with the baryon number. The original idea of 
Skyrme gained further support when it was observed that QCD 
in the limit of a large number of colors (large Nc ) becomes a the-
ory of weakly interacting mesons (interaction strength ∼ N−1

c ) [2]. 
Such weakly interacting nonlinear field theories frequently possess 
solitonic solutions with soliton masses proportional to the inverse 
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of the (weak) coupling, which in the present case of the large Nc

mesonic model of QCD are identified with baryons and nuclei, re-
covering thereby the proposal of Skyrme.

The Skyrme model has been applied to the description of nuclei 
with notable success, e.g., in the description of rotational excitation 
bands of some light nuclei [3,4]. The version of the model orig-
inally proposed by Skyrme, however, has some drawbacks in the 
description of physical nuclei. First of all, Skyrmions with higher 
baryon number B have rather high binding energies (i.e., masses 
significantly below B times the B = 1 Skyrmion mass, see, e.g., 
[5]), which is in striking contrast to the low binding energies of 
physical nuclei. Also, Skyrmions for large baryon number tend to 
form crystals of lower B substructures [6,7], which is at odds with 
the liquid-type behavior of physical heavy nuclei. These problems 
recently led to propose several “near BPS” Skyrme models, that is, 
generalizations of the original Skyrme model which are close to 
BPS models [8,9]. Here by a BPS model we understand a field the-
ory which has both an energy bound for static field configurations 
which is exactly linear in the baryon charge B and solutions sat-
urating the bound for all values of B (we shall assume B ≥ 0 in 
the sequel, i.e., consider only matter not antimatter). The original 
Skyrme model is not BPS. It has a lower topological energy bound, 
but it may be shown easily that this bound cannot be saturated. 
Specifically, we consider the following near BPS Skyrme model [8]
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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(for the moment in flat Minkowski space; we use the “mostly mi-
nus” metric sign convention diag(gμν) = (+, −, −, −)),

L = L0 +L6 + ε(L2 +L4), (1)

where

L2 = −λ2 tr LμLμ, L4 = λ4 tr
([Lμ, Lν ])2

(2)

and

L0 = −λ0U(tr U ),

L6 = −λ6
(
εμνρσ tr Lν Lρ Lσ

)2 ≡ −(
24π2)2

λ6BμBμ. (3)

Here U : R3 × R → SU(2) is the Skyrme field, Lμ = U †∂μU is the 
left-invariant Maurer–Cartan current and U is a potential. The λn

are dimensionful, non-negative coupling constants, and Bμ is the 
topological or baryon number current giving rise to the topological 
degree (baryon number) B ∈ Z,

Bμ = 1

24π2
εμνρσ tr Lν Lρ Lσ , B =

∫
d3xB0. (4)

L2 + L4 is the model originally considered by Skyrme, and the 
above generalization is essentially the most general model which 
is both Poincaré invariant and no more than quadratic in first time 
derivatives, such that a standard hamiltonian can be found. This 
generalized Skyrme model is near BPS for sufficiently small values 
of the dimensionless parameter ε , because the submodel

L06 = L0 +L6 (5)

is BPS. That is to say, the static energy functional E06[U ] has an 
energy bound linear in B and (in fact, infinitely many) minimizing 
field configurations saturating the bound for each B , [8]. Further, 
this energy functional is invariant under volume-preserving diffeo-
morphisms (VPDs) on physical space, which are the symmetries 
of a perfect fluid. The energy–momentum tensor of the model 
L06 is, in fact, the energy–momentum tensor of a perfect fluid, 
as we shall see below. These findings lead to the intriguing hy-
pothesis that the near-BPS Skyrme model (1) might be the correct 
low-energy EFT for the description of nuclear matter, as the BPS 
submodel L06 already provides a rather good description of some 
of its static properties. Indeed, the BPS Skyrme model allows for a 
very accurate description of nuclear binding energies [10,11], es-
pecially for heavy nuclei. It is the purpose of the present letter to 
couple the BPS Skyrme model to gravity and to use the resulting 
self-gravitating BPS Skyrmions for the description of neutron stars.

We remark that there already exist several attempts to describe 
neutron stars using the original Skyrme model. In [12] the hedge-
hog ansatz for higher B was coupled to gravity but it turned out 
that – as in the non-gravitating case – higher B hedgehogs are 
not stable. In [13,14] approximate Skyrmion configurations based 
on rational maps were used. Probably the most promising attempt 
within this context is using Skyrmion crystals [15,16] because 
Skyrmion crystals are the true minimizers of the original Skyrme 
model for large B . The crystal structure is, however, at odds with 
the fact that, most likely, the core of neutron stars is in a super-
fluid phase. Also, full numerical calculations are not possible in 
this case such that certain assumptions about the right equation of 
state of Skyrme crystals under strong gravitational fields must be 
made. An accessible review can be found in [17].

2. BPS Skyrme model and parameter values

Conveniently redefining the coupling constants λ6 = λ2/(24)2

and λ0 = μ2, the static energy functional of the theory is
E06 =
∫

d3x
(
π4λ2B2

0 + μ2U(tr U )
)
. (6)

Its BPS bound

E06 ≥ 2π2λμ|B|〈√U 〉S3 , 〈√U 〉S3 ≡ 1

2π2

∫

S3

dΩ
√
U (7)

(where 〈√U 〉S3 is the average value of 
√
U on the target space 

SU(2) ∼ S
3) is saturated by infinitely many BPS solutions [8,18,19], 

and the corresponding BPS equation is

π2λB0 ± μ
√
U = 0. (8)

We now have to determine the values of the parameters λ and 
μ to be used in our calculations. The product m ≡ λμ has the 
dimensions of mass (energy; we use units where the speed of 
light c = 1). Further, l ≡ (λ/μ)1/3 has the dimensions of length. 
We fit m by requiring that the BPS Skyrmion mass is B times 
one-fourth of the mass of the helium nucleus, E06 = Bm̄N where 
m̄N = mHe/4 = 931.75 MeV. We use m̄N instead of the nucleon 
mass mN ∼ 940 MeV because the latter will receive contributions 
from (iso)spin excitations in a Skyrme model description, but these 
are absent for helium. Even helium receives small (e.g., coulombic) 
contributions in addition to the Skyrmion mass, but the uncer-
tainty will be at most a few MeV. To fix l, we use the fact that 
BPS Skyrmions for many potentials (in particular, for the poten-
tials considered in this letter) are compactons with a strictly finite 
volume V , and this volume is the same for all solutions with a 
given baryon number B and is exactly linear in B . This permits 
to define a Skyrmion radius R via V = (4π/3)R3. We now require 
that this radius coincides with the nucleon radius rN = 1.25 fm for 
B = 1, i.e., R = rN B1/3. We think that the fit for the mass param-
eter m is quite accurate, because by far the biggest contribution 
to the nuclear masses must always come from the Skyrmion mass. 
On the other hand, the fit for the length parameter l is probably 
less precise. Firstly, although the compacton radius is quite natu-
ral, there are additional definitions for radii (diverse charge radii) 
which could be used. For compactons these charge radii are al-
ways smaller than the compacton radius, indicating that the latter 
could be slightly bigger than the nucleon radius. Secondly, going 
beyond the BPS submodel by including, e.g., the Dirichlet term L2, 
the effects of the pion cloud will tend to increase the radius, in-
dicating that the compacton radius R without pion cloud could 
be somewhat smaller. To summarize, although our simple fit for l
certainly provides a reasonable value, the true best fit value could 
easily deviate about 20% or 30% in either direction. Determining 
this true value, however, requires the knowledge of the complete 
low-energy EFT with all terms (also the non-BPS ones) included, 
which is beyond the scope of this letter.

Concretely, we shall consider the pion mass potential Uπ = 1 −
cos ξ and the pion mass potential squared U4 = U2

π with a quartic 
behavior near the vacuum (here U = exp(ξ �n · �τ ), �n2 = 1 and �τ are 
the Pauli matrices) with energies, compacton radii and fit values

Uπ : E06 = 64
√

2π

15
Bλμ,

R = √
2

(
λB

μ

) 1
3

⇒ m = 49.15 MeV,

l = 0.884 fm (9)

U2
π : E06 = 2π2 Bλμ,

R =
(

3π B

2

) 1
3
(

λ

μ

) 1
3

⇒ m = 47.20 MeV,

l = 0.746 fm (10)
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These expressions for the energies and compacton radii may be 
calculated directly from the potentials, see [20] (knowledge of the 
Skyrmion solutions is not required).

3. BPS Skyrmions coupled to gravity

The action of the BPS Skyrme model in a general metric gρσ

(here g = det gρσ ),

S06 =
∫

d4x|g| 1
2
(−λ2π4|g|−1 gρσBρBσ − μ2U

)
, (11)

leads to the energy–momentum tensor (Bρ is defined in Eq. (4))

T ρσ = −2|g|− 1
2

δ

δgρσ
S06 = 2λ2π4|g|−1BρBσ

− (
λ2π4|g|−1 gπωBπBω − μ2U

)
gρσ , (12)

which is the energy–momentum tensor of a perfect fluid (the 
perfect-fluid property of the term L6 alone, as well as its coupling 
to gravity, have already been discussed in [21]),

T ρσ = (p + ρ)uρuσ − pgρσ (13)

where the four-velocity uρ , energy density ρ and pressure p are

uρ = Bρ/
√

gσπBσBπ (14)

ρ = λ2π4|g|−1 gρσBρBσ + μ2U
p = λ2π4|g|−1 gρσBρBσ − μ2U . (15)

In the static case, and for a diagonal metric (which is sufficient for 
our purposes) we have uρ = (

√
g00, 0, 0, 0) and

T 00 = ρg00, T ij = −pgij . (16)

In the flat space case, e.g., this implies that the pressure must be 
constant (zero for BPS solutions, nonzero for non-BPS static solu-
tions [20]), as a consequence of energy–momentum conservation,

Dρ T ρσ → ∂i T
i j = δi j∂i p = 0, (17)

whereas ρ will be a nontrivial function of the space coordinates. 
In general, ρ and p will be quite arbitrary functions of the space–
time coordinates, so there does not exist a universal equation of 
state (EoS) p = p(ρ) which would be valid for all solutions.

We now want to couple the BPS Skyrme model to gravity and 
solve the resulting Einstein equations for a static, spherically sym-
metric metric which in standard Schwarzschild coordinates reads

ds2 = A(r)dt2 − B(r)dr2 − r2(dθ2 + sin2 θdφ2). (18)

For us the following observation is crucial. The above ansatz for the 
metric together with the axially symmetric ansatz for the Skyrme 
field with baryon number B

ξ = ξ(r), �n = (sin θ cos Bφ, sin θ sin Bφ, cos θ) (19)

leads to a baryon density B0, energy density ρ and pressure p
which are functions of r only. The ansatz is, thus, compatible with 
the Einstein equations

Gρσ = κ2

2
Tρσ (20)

(here Gρσ is the Einstein tensor and κ2 = 16πG = 6.654 ·
10−41 fm MeV−1) and the static Euler–Lagrange equations for the 
Skyrme field, and reduces these equations to a system of ordinary 
differential equations (ODEs) in the variable r for the three un-
known functions A(r), B(r) and ξ(r). Before presenting this system 
of ODEs and the results of a numerical integration, we want to 
make some comments.

Firstly, in flat Minkowski space the same axially symmetric 
ansatz (19) (but referring to spherical polar coordinates in that 
case) was used in the calculations of nuclear binding energies 
in [10]. As said, the resulting binding energies are very accu-
rate for heavier nuclei, but, nevertheless, once additional terms 
(like, e.g., the Dirichlet term εE2) are taken into account, there 
are strong arguments indicating that the axially symmetric BPS 
Skyrmions are not the adequate ones (they do not minimize E2
among all BPS Skyrmions) [22]. An improved calculation using the 
true minimizers of E2 and taking the contribution of E2 into ac-
count should lead to even better results for the binding energies. 
Here we just want to emphasize that in the case of self-gravitating 
BPS Skyrmions the axially symmetric ansatz leading to a spheri-
cally symmetric metric, energy density and pressure is the correct 
one, essentially because gravity straightens out all deviations from 
spherical symmetry. Secondly, in the subspace of spherically sym-
metric solutions we may define a kind of EoS p = p(ρ), because 
both ρ and p are functions of r. We find numerically that a simple 
power law

p = aρb (21)

reproduces this EoS with a high precision. Here, however, a and 
b are not universal constants. Instead, they depend on the baryon 
number B . In particular, for “small” baryon number (small com-
pared, e.g., to the solar baryon number B
), where the effect of 
gravity may be neglected, the constant a vanishes, limB→0 a = 0
(the pressure is zero like in the case without gravity). If we 
treated the gravitational coupling κ as a parameter which may 
vary then, of course, it would also hold that limκ→0 a = 0. (Here 
we define B
 as B
 = M
/m̄N = 1.116 · 1060 MeV/931.75 MeV =
1.198 · 1057, so strictly speaking B
 is not the number of baryons 
in the sun, but the number of baryons (neutrons) in a neutron star 
with the same non-gravitational mass as the sun.)

4. Numerical results

We find it convenient to introduce the new target space vari-
able h = (1/2)(1 − cos ξ) = sin2 ξ

2 in what follows, with h ∈ [0, 1]
and Uπ = 2h. The system of ODEs resulting from the Einstein equa-
tions may be brought into the form of a system of two equations 
for h and B, plus a third equation which determines A in terms of 
h and B. Explicitly, these equations read (′ ≡ ∂r )

1

r

B′

B
= − 1

r2
(B − 1) + κ2

2
Bρ (22)

r(Bp)′ = 1

2
(1 − B)B(ρ + 3p) + κ2

4
r2B2(ρ − p)p (23)

A′

A
= 1

r
(B − 1) + κ2

2
rBp (24)

where ρ and p for the axially symmetric ansatz (hr ≡ ∂rh) read

ρ = 4B2λ2

Br4
h(1 − h)h2

r + μ2U(h), p = ρ − 2μ2U(h). (25)

We integrate the system (22), (23) numerically via a shooting from 
the center. That is to say, we impose the boundary conditions 
h(r = 0) = 1 (anti-vacuum value) and B(r = 0) = 1 (the amount 
of matter enclosed at r = 0 is zero ⇒ flat space metric). We are 
left with one free parameter, h2, in the expansion about r = 0, 
h(r) ∼ 1 − (1/2)h2r2 + . . . or, equivalently, with ρ0 ≡ ρ(r = 0) =
B2λ2h3

2 +μ2U(1). We then integrate from r = 0 up to a point r = R
(compacton radius) where h(R) = 0 (the vacuum). It follows easily 
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Fig. 1. a) Neutron star mass as a function of baryon number, both in solar units. Symbol dot (red online): potential Uπ . Symbol square (blue online): potential U2
π . b) Neutron 

star mass as a function of the neutron star radius. Potential Uπ : symbol dot (red online). Potential U2
π : symbol square (blue online). Maximum mass values are indicated by 

circles. The straight line is the Schwarzschild mass.
from Eq. (23) that, for a non-singular metric function B, p at r = R
must obey p′(R) = 0 which leads to a condition on hr(R), con-
cretely

4B2λ2

B(R)R4
h2

r (R) − μ2Uh(0) = 0. (26)

In the numerical integration, the free parameter value ρ0 is varied 
until this condition is met. Formal solutions which do not obey this 
condition produce metric functions B which are singular at r = R . 
In particular, such a metric function cannot be joined smoothly 
to the Schwarzschild solution in empty space (for r ≥ R) and is, 
therefore, physically unacceptable.

We find the following behavior in the numerical integrations. 
For sufficiently small baryon number B , there exists precisely one 
“initial value” ρ0 which obeys (26), i.e., one unique neutron star 
solution. For larger values of B in a certain interval B ∈ [B∗, Bmax], 
there exist two values for ρ0 leading to solutions fulfilling con-
dition (26). Interestingly, this is exactly like in the case of the 
Tolman–Oppenheimer–Volkoff (TOV) calculation where the neu-
trons are described by a free relativistic fermi gas (see e.g. [23], 
Chapter 11.4, p. 321). As in the TOV case, we assume that the lower 
value ρ0 corresponds to the stable solution. Finally, for B > Bmax
solutions obeying condition (26) no longer exist. In other words, 
physically acceptable static solutions (neutron stars) with B > Bmax
do not exist. Instead, field configurations with such a large B are 
unstable, indicating the collapse to a black hole.

The neutron star solution found in the interval r ∈ [0, R] is then 
smoothly joined to the vacuum solution for r ≥ R . That is to say, 
h(r) = 0 for r ≥ R , and B(r) = (1 − 2GM

r )−1, from which the phys-
ical mass M of the neutron star (with the gravitational mass loss 
taken into account) may be read off.

One of the most important results is, of course, the value Bmax
and the corresponding maximal neutron star masses M and radii R
for the two potentials Uπ and U2

π we consider. It is convenient to 
measure B in solar units n ≡ (B/B
) (equivalently, n = (Bm̄N/M
), 
i.e., the non-gravitational mass of the baryon number B Skyrmion
in solar mass units). Then, using the fit values (9) and (10), respec-
tively, we find for the maximum values

Uπ : nmax = 5.005, Mmax = 3.734M
,

Rmax = 18.458 km, (27)

U2
π : nmax = 3.271, Mmax = 2.4388M
,
Rmax = 16.801 km. (28)

We remark that neutron star masses up to about M ∼ 2M
 are 
firmly established, whereas there are indications for masses up to 
about 2.5M
 , see e.g. [24,25] for an overview of recent measure-
ments. The results of our calculations are, therefore, in excellent 
agreement with these observations, indicating that our model pro-
vides a very good description of the bulk properties of nuclear 
matter also in the presence of the gravitational interaction. Con-
cerning the radii, we remark that the observational results are less 
precise. Besides, R is the geometric radius which leads to a neutron 
star surface area of 4π R2, whereas when comparing to measure-
ments sometimes other radii are more appropriate, like the proper 
distance from the origin to the surface, R̄ = ∫ R

0 dr
√

B(r), or the ra-
diation radius R∗ = R

√
B(R). Both R̄ and R∗ are somewhat bigger 

than R because B(r) ≥ 1. In any case, also our values for the radii 
are in the expected range of about R ∼ 10–20 km. As said already, 
our fit for the unit of mass m is quite precise (determined by the 
nuclear mass m̄N), but the unit of length l is less so, therefore it is 
interesting to study the sensitivity of both Mmax and Rmax under 
a change of the length scale, l → l′ = αl. We find numerically that 
both Mmax and Rmax approximately change by a factor of α(3/2)

under this rescaling.
Finally, we show our main numerical results in Figs. 1–4. Con-

cretely, in Fig. 1a we plot the neutron star mass as a function of the 
non-gravitational Skyrmion mass, both in solar units. We find that 
for the extremal case Mmax the gravitational mass loss is about 
25%. In Fig. 1b we plot M against the (geometric) neutron star ra-
dius R . We find that even in the extremal case the neutron star 
radius is about a factor of two above the Schwarzschild radius. In 
Fig. 2 we show the equation of state for different values of B (con-
cretely for n = 1 in Fig. 2a, and for nmax in Fig. 2b) together with 
the fit function p = aρb for appropriate values of a, b.

In Fig. 3, we plot the metric function B(r) for several values of 
the baryon number n = B/B
 close to its maximum value nmax. 
We find for both potentials that the maximum value which B
takes for n = nmax is about Bmax ∼ 2.7. It is interesting to com-
pare this finding with the analogous result for the Skyrmion crystal 
of Ref. [16]. There the authors calculated the minimum value of 
B−1 (which was called S in that paper) for different solutions and 
always found that Smin > 0.4, which translates into Bmax < 2.5. 
So the Bmax we find for the maximum mass case is slightly big-
ger (i.e., the induced self-gravitation slightly stronger), but still 
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Fig. 2. Symbol plus (+, red online): potential Uπ . Symbol cross (×, green online): potential U2
π . Dotted lines: corresponding fit functions.

Fig. 3. The metric function B(r), for different solutions close to the maximum mass solution.
quite similar to the result of [16]. The position of the maximum 
of B(r) is quite close to the neutron star surface for the potential 
Uπ , whereas it is shifted towards the center for U2

π . This is related 
to the fact that, for U2

π , the energy density is more concentrated 
about the center (see Fig. 4).

In Fig. 4, we plot the energy densities for several values of the 
baryon number close to nmax. We find that, especially for the po-
tential U2

π , the energy density is quite sharply concentrated about 
the center. This may look surprising at first sight, but is simply 
related to the shape of the potential U2

π , which is quite peaked 
about the anti-vacuum (h = 1). Indeed, the BPS equation (8) just 
states that the baryon density is proportional to the square root of 
the potential, so peaked potentials lead to peaked baryon density 
(and energy density) profiles already in the case without grav-
ity. It is perhaps more instructive to compare the central energy 
density of the case without gravity to the central energy density 
for nmax. The central energy density for the case without grav-
ity does not depend on the baryon number B and is given by 
ρBPS(r = 0) = 2μ2U(h = 1). Using the parameter values (9), we 
find for Uπ : ρBPS(r = 0) = 4(m/l3) = 285 MeV fm−3. The central 
energy density for nmax is, therefore, about 2.7 times the non-
gravitational energy density ρBPS(r = 0), see Fig. 4a. Similarly, we 
get for U2

π : ρBPS(r = 0) = 8(m/l3) = 909 MeV fm−3. In this case, 
the central energy density for nmax is just about 2.2 times the non-
gravitational energy density ρBPS(r = 0), see Fig. 4b. These results 
in both cases indicate a rather high stiffness of the effective (on-
shell) EoS of strongly self-gravitating BPS Skyrmions, i.e., a nuclear 
matter which is only weakly compressible in strong gravitational 
fields. This result, again, compares quite well with the Skyrmion 
crystal results of Ref. [16], where a compression of the central en-
ergy density by not more than a factor of three is observed for all 
solutions.

5. Discussion

We used the BPS Skyrme model (6) for the description of neu-
tron stars and found that by simply fitting the two model param-
eters to the nucleon mass and radius we already get very rea-
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Fig. 4. The energy density ρ(r), for different solutions close to the maximum mass solution.
sonable results for the resulting neutron star masses and radii. In 
particular, for the maximum possible neutron star mass we find 
Mmax = 2.44M
 or Mmax = 3.73M
 , respectively, for the two po-
tentials considered. This compares extremely well with the obser-
vational constraint Mmax ∼ 2.5M
 . We take this, together with the 
perfect fluid behavior of the model, as a further very strong indica-
tion that, indeed, the BPS Skyrme model provides the most impor-
tant contribution to the static bulk properties of nuclear matter. In 
a strict sense, our results are not yet final predictions of neutron 
star properties, because genuine predictions require the knowledge 
of the full near-BPS Skyrme model (1) together with the values of 
all its coupling constants, which should follow from an application 
to nuclear physics and the corresponding detailed fit to nuclear 
data. The full near-BPS Skyrme model may also lead to a further 
improvement in the description of neutron stars, in the following 
sense. Even if the additional (standard Skyrme) terms are quite 
unimportant in the bulk, this is not true at the surface, because 
at the surface the Skyrme field is close to its vacuum value, and 
the term L6 approaches the vacuum much faster than the stan-
dard Skyrme model terms. The standard Skyrme model is known 
to prefer crystalline structures for large B , so crystalline structures 
(“neutron star crust”) can be expected at the surface of a neutron 
star described by the near-BPS Skyrme model, whereas the bulk 
and core remain in a fluid phase. But precisely this structure is 
expected in current models of neutron stars (see, e.g., [26]).

When compared with other, more traditional methods of nu-
clear physics, the advantage of the (near-) BPS Skyrme model at 
this moment is not so much its ability to make quantitative pre-
dictions – although this, too, should change with more detailed 
investigations and with advanced numerical methods, assisted by 
a rigorous analytical control which follows from the integrability 
properties of the BPS model. After all, the methods and models of 
nuclear physics are well developed and lead to very precise de-
scriptions of nuclei and nuclear matter. However, a drawback of 
many models of nuclear physics is that they are tailor-made to de-
scribe rather specific physical phenomena, therefore it is difficult 
to use them for extrapolations to new phenomena or parameter 
values where they have not been employed before. We think it 
is one of the outstanding features of the BPS Skyrme model that 
it captures a generic property of (bulk) nuclear matter and allows, 
therefore, for far-reaching extrapolations. Concretely, in the present 
letter we extrapolated from B = 1 (which provided the parameter 
fit values) to B ∼ 1057 (the neutron star) and from a nonrelativistic 
to a highly relativistic regime, with very accurate results. In other 
words, the (near) BPS Skyrme model provides a unified descrip-
tion of nuclear matter, reaching from nucleons and atomic nuclei 
to neutron stars.

There are two particular (related) results of our calculations 
which are somewhat different from most traditional nuclear 
physics calculations of neutron stars using the TOV equations (22), 
(23), although they are completely compatible with all observa-
tional data. In the traditional approach, the metric function B(r), 
the energy density ρ(r) and the pressure p(r) are considered as 
independent field variables, so the two TOV equations (22), (23)
must be closed by a third equation. For this, usually a univer-
sal algebraic equation of state (EoS) p = p(ρ) resulting from the 
thermodynamic limit of a nuclear effective field theory (EFT) (like 
Quantum Hadron Dynamics (QHD) [27]) is assumed. In our model, 
on the other hand, we find that already the EFT itself is of the 
perfect-fluid type defining its own energy density and pressure, 
both of which depend on the metric in an explicit fashion. It is, 
therefore, not possible to define a universal, algebraic off-shell EoS, 
and the true off-shell EoS relating ρ and p is a complicated and 
metric-dependent differential equation. We remark that our off-
shell EoS share some features with the “quasi-local” EoS explicitly 
depending on the geometry (e.g., metric or curvature), which were 
introduced in [28] for the description of anisotropic stars and fur-
ther studied in [29] and, in relation with neutron stars, in [30]. It 
turns out that in stars with anisotropic matter such quasi-local EoS 
are even required for consistency [28]. In our case, it is still pos-
sible to find (numerically) an on-shell algebraic EoS for solutions 
ρ(r) and p(r), but this on-shell EoS is no longer universal and de-
pends on the neutron star mass or baryon number B . This does 
not mean that the EoS of nuclear matter depends on the sample 
size. The EoS for the BPS Skyrme model without gravity is always 
the same, p = 0 at equilibrium (nuclear saturation), for arbitrary B . 
The B dependence of the on-shell EoS for self-gravitating nuclear 
matter in the BPS Skyrme model is exclusively a consequence of 
self-gravitation. Due to the nonlinearity of gravity, the effects of 
self-gravitation are stronger for larger B (larger neutron star mass) 
and the effective on-shell EoS, therefore, gets stiffer. Concretely, 
we found an effective on-shell EoS of the type p = a(B)ρb(B) , see 
Eq. (21), where a(B) increases with increasing B whereas b(B) de-
creases.

This increasing stiffness has a particular physical effect in the 
cases we considered, namely a neutron star radius R which grows 
with the neutron star mass M , i.e., (dM/dR) > 0 (except for stars 
very close to their maximum mass in the case of the potential Uπ , 
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see Fig. 1). This behavior is at variance with the results found for 
solutions of the TOV equations for many (fixed, universal) nuclear 
physics EoS, where the neutron star radius is either essentially 
constant for a range of neutron star masses or even shrinks with 
increasing mass [24]. The reason for this behavior is that for a fixed 
EoS the increasing strength of self-gravitation for larger masses 
may collapse the star to much higher densities and, for softer EoS, 
even to smaller sizes. Only sufficiently stiff universal EoS are com-
patible with (dM/dR) > 0. We remark that one particular case of 
an EoS which is sufficiently stiff to support (dM/dR) > 0 for al-
most all values of M is precisely given by the Skyrme crystal of 
Ref. [16]. The M(R) curve found there is, in fact, quite similar 
to the one we find for the pion mass potential Uπ , see Fig. 1b. 
In the BPS Skyrme model, the squeezing effect of nonlinear self-
gravitation is balanced by the increasing stiffness of the on-shell 
EoS. We emphasize that, at present, (dM/dR) > 0 is compatible 
with observations and that the observational data are not yet suf-
ficiently precise to settle this question. If (dM/dR) > 0 finally turns 
out to be true, this either rules out a large class of EoS which are 
well motivated from nuclear physics, because only very stiff fixed 
EoS are compatible with (dM/dR) > 0. Or it may indicate that in 
the traditional derivation of the EoS from an EFT like QHD one 
has to go beyond mean field theory, such that backreaction effects 
of gravity on the EoS may be taken into account, at least for nu-
clear matter in sufficiently strong gravitational fields. A detailed 
discussion of these issues will be given elsewhere. In any case, the 
qualitative results we found for the EoS within the BPS Skyrme 
model also point towards possible improvements of the standard 
nuclear physics approach to neutron stars in strong gravitational 
fields.

There are many ways in which the present investigation can 
be deepened and extended. One obvious possibility is to use addi-
tional potentials and to study how the shapes of these potentials 
influence the properties of the resulting neutron stars, e.g., which 
maximal masses can be reached and for which potentials the re-
lation (dM/dR) > 0 remains true. Another interesting research di-
rection is related to rotating neutron stars and to neutron stars 
in magnetic fields. In principle, both these tasks are rendered fea-
sible by the fact that it is known how to rotate Skyrmions (for 
a recent discussion see, e.g., [31]) and what is the correct, QCD 
induced coupling of Skyrmions to the electromagnetic interaction 
[32]. Still, the resulting systems are no longer spherically symmet-
ric, so a full system of PDEs has to be solved numerically in these 
cases. A further step in the analysis would be to use the full near-
BPS Skyrme model as a basis for the calculation of neutron star 
solutions and properties, but here, in a first step, the detailed ap-
plication of the near-BPS Skyrme model without gravity to nuclei 
and nuclear matter is required. As the BPS and integrability prop-
erties are no longer available in this case, full three-dimensional 
numerical calculations will be necessary.
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