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1. Introduction

Skolem Arithmetic is the weak fragment of first-order arithmetic involving
only multiplication. Thoralf Skolem gave a quantifier-elimination technique
and argued for decidability of the theory in [2]. However, his proof was
rather vague and a robust demonstration was not given of this result until
Mostowski [3]. Skolem Arithmetic is somewhat less fashionable than Pres-
burger Arithmetic, which involves only addition, and was proved decidable
by Presburger in [4]. Indeed, Mostowski’s proof made use of a reduction from
Skolem Arithmetic to Presburger Arithmetic through the notion of weak di-
rect powers (an excellent survey on these topics is [5]). The central thread
of this paper is putting to work results about Skolem Arithmetic from the
past, to solve open and naturally arising problems from today. Many of our
results, like that of Mostowski, will rely on the interplay between Skolem and
Presburger Arithmetic.

A constraint satisfaction problem (CSP) is a computational problem in
which the input consists of a finite set of variables and a finite set of con-
straints, and where the question is whether there exists a mapping from the
variables to some fixed domain such that all the constraints are satisfied.
When the domain is finite, and arbitrary constraints are permitted in the
input, the CSP is NP-complete. When the structure of the variables within
the constraints in the instance is restricted or the constraints come from a
restricted set of relations, it can be possible to solve the CSP in polynomial
time. Structural restrictions on the variables usually take the form of some
restriction to the Gaifman Graph built from the variables as vertices, with
an edge between variables if they appear in a single constraint. When the
CSP has instances whose corresponding Gaifman Graph comes from a class
of graphs of bounded-treewidth (we will not define this class save to say its
members are somewhat tree-like), then this restricted CSP can be solved in
polynomial time [6]. This result is tight, under a certain assumption from
Parameterized Complexity Theory [7]. The set of relations that is allowed to
formulate the constraints in the input is often called the constraint language.
The question which constraint languages give rise to polynomial-time solv-
able CSPs has been the topic of intensive research over the past years. It has
been conjectured by Feder and Vardi [8] that CSPs for constraint languages
over finite domains have a complexity dichotomy: they are either in P or NP-
complete (it is known they are always in NP). This conjecture is now known
on substantial classes (e.g. structures with domains of size ≤ 3 [9, 10] and
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smooth digraphs [11, 12]). Further, there are three papers on arxiv claiming
to prove it in full generality [13, 14, 15]. Various methods, combinatorial
(graph-theoretic), logical and universal-algebraic have been brought to bear
on this classification project, with many remarkable consequences. A con-
jectured delineation for the dichotomy was given in the algebraic language
in [16], and it is this version of the Feder-Vardi Conjecture which the three
papers claim to settle.

By now the literature on infinite-domain CSPs is also beginning to ma-
ture. Here the complexity can be much higher (e.g. undecidable [17]) but
on natural classes there is often the potential for structured classifications,
and this has proved to be the case for reducts of (i.e. structures whose rela-
tions admit a first-order definition in), e.g., the rationals with order [18], the
random (Rado) graph [19] and the integers with successor [20]; as well as first-
order expansions of linear program feasibility [21]. Skolem and Presburger
Arithmetic represent perfect candidates for continuation in this vein. These
natural classes around Skolem and Presburger Arithmetic have the property
that, for constraint languages that are their reducts, the corresponding CSPs
sit in NP.

Meanwhile, a literature existed on satisfiability of circuit problems over
sets of integers involving work of the first author [1], itself continuing a line of
investigation begun in [22] and pursued in [23, 24, 25]. The circuits typically
compute some set of integers at their unique output node and one asks for
satisfiability in terms of evaluations of free set-variables at their input nodes.
The problems in [1] can be seen as variants of certain functional CSPs whose
domain is all singleton sets of the non-negative integers and whose relations
are set operations of the form: complement, intersection, union, addition and
multiplication (the latter two are defined set-wise, e.g. A × B := {ab : a ∈
A ∧ b ∈ B}). Here, by functional CSPs we mean CSPs over a functional
signature, and not CSPs that compute a function (for example, a satisfying
assignment or counting the number of satisfying assignments). An open
problem in the area was the complexity of the problem when the permitted set
operators were precisely complement, intersection, union and multiplication.
In this paper we resolve that this problem is in fact decidable, indeed in triple
exponential space. We prove this result by using the decidability of the theory
of Skolem Arithmetic with constants. We take here Skolem Arithmetic to
be the non-negative integers with multiplication (and possibly constants).
In studying this problem we are able to bring to light existing results of
[1] as results about their related CSPs, providing natural examples with
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interesting super-NP complexities (remember the constraint language here
is not a reduct of Skolem Arithmetic but rather built from singleton sets of
non-negative integers). In addition, we improve one of the upper bounds of
[1] to a tight upper bound. This is the circuit satisfiability problem where
the permitted set operators are just intersection, union and multiplication,
and where we improve the bound from NEXP to PSPACE. Interestingly,
this result does not immediately translate to a similar upper bound for the
corresponding functional CSP.

In the second part of the paper, Skolem Arithmetic takes centre stage
as we initiate the study of the computational complexity of the CSPs of
its reducts. For minor technical reasons which we will come back to, we
here consider × to be a ternary relation, rather than a binary function.1

CSP(N;×), that is the problem of model-checking over Skolem Arithmetic a
positive first-order sentence involving just ∃ and ∧, is in P; indeed it is trivial.
The object therefore of our early study is its first-order expansions. We show
that CSP(N; +, 6=) is NP-complete, as is CSP(N;×, c) for each c > 1. As
an example of another non-trivial hard class, we show that CSP(N;×, U) is
NP-complete when U is any non-empty set of integers greater than 1 such
that each has a prime factor p, for some prime p, but omits the factor p2

(Theorem 5). Clearly, CSP(N;×, U) is in P (and is trivial) if U contains 0 or
1. As a counterpoint to our NP-hardness results, we prove that CSP(N;×, U)
is in P whenever there exists m > 1 so that U ⊇ {m,m2,m3, . . .}.

Related work. Apart from the research on circuit problems mentioned
above there has been work on other variants like circuits over integers [26]
and positive natural numbers [27], equivalence problems for circuits [28],
functions computed by circuits [29], and equations over sets of natural num-
bers [30, 31]. Typically, the complexity of membership of circuits is similar
to the corresponding equivalence of circuits problem, though the latter may
be slightly higher and belies some imperfect bounds2. The complexity of the
satisfiability of circuits is generally higher than these other circuit problems.
Some interesting recent work on the multiplicative theory of numbers appears

1In this paper × is overloaded, meaning both a binary function on sets and a ternary
relation on non-negative integers. Since these are of distinct types, this should not cause
too much confusion.

2Tables detailing these complexities can be found together at
https://en.wikipedia.org/wiki/Circuits over sets of natural numbers
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in [32].

2. Preliminaries

Let N be the set of non-negative integers, and let N+ be the set of positive
integers. When numbers appear as part of the input to a computational
problem, we will always assume they are encoded in binary. For m ∈ N, let
Divm be the set of factors of m. Finally, let {N} be the set of singletons
{{x} : n ∈ N}.

2.1. Constraint Satisfaction Problems

We use a version of the CSP permitting both relations and functions (and
constants). Thus, a constraint language consists of a domain together with
functions, relations and constants over that domain. One may thus consider
a constraint language to be a first-order structure, whose signature describes
the arities of the relations and functions involved. A homomorphism from a
constraint language Γ to a constraint language ∆, over the same signature,
is a function f from the domain of Γ to the domain of ∆ that preserves
the relations, i.e. if (x1, . . . , xk) ∈ RΓ, then also (f(x1), . . . , f(xk)) ∈ R∆.
A homomorphism from a constraint language to itself is an endomorphism.
An endomorphism that also preserves the negations of relations is termed an
embedding and a bijective embedding is an automorphism.

A constraint language is a core if all of its endomorphisms are embed-
dings (equivalently, if the domain is finite, automorphisms). Every finite-
domain constraint language has a unique induced substructure which is a
core. For infinite-domain constraint languages, the situation is more com-
plex [33], though often cores still do exist. The functional version of the
CSP has previously been seen in, e.g., [34]. For a purely functional con-
straint language, a primitive positive (pp) sentence is the existential quantifi-
cation of a conjunction of term equalities. More generally, and when relations
are present, we may have positive atoms in this conjunction. The problem
CSP(Γ) takes as input a pp sentence φ, and asks whether it is true on Γ. The
problem CSPc(Γ) is the same except that we enrich Γ with constants naming
the elements of the domain, that may now be used in pp sentences. In the
finite-domain case, cores are important because they allow pp definition (i.e.
in a pp formula) of the constants (at least up to automorphism). Again,
in the infinite-domain case, the situation is more complex [33]. Definitions
by pp formulas play a key role in the study of CSPs due to the following
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observation, that holds generally and not just in the finite-domain case, and
which we will freely use without specific reference.

Proposition 1 ([35]). If Γ is a constraint language and R is a relation pp
definable in Γ, then there is a polynomial time reduction from CSP(Γ;R) to
CSP(Γ).

In light of this proposition, we see that if Γ is finite-domain, then CSP(Γ) and
CSPc(Γ) have the same complexity, up to polynomial time reductions. We
will allow that the functions involved on φ be defined on a larger domain than
the domain of Γ. This is rather unheimlich3 but it allows the problems of [1]
to be more readily realised in the vicinity of CSPs. For example, one such
typical domain is {N}, but we will allow functions such as − (complement), ∪
(union) and ∩ (intersection) whose domain and range is the set of all subsets
of N. We will also employ the operations of set-wise addition A+B := {a+b :
a ∈ A∧ b ∈ B} and multiplication A×B := {ab : a ∈ A∧ b ∈ B}. Our main
results are for constraint languages with an infinite domain, though some of
our subsidiary results involve those that are finite.

2.2. Computational Complexity

Definable sets of the Arithmetical Hierarchy are built from formulas in
the language of Peano Arithmetic (see [37] for more on these), the union of
Presburger and Skolem Arithmetics, involving both addition and multiplica-
tion. Formulas of first-order logic with only bounded quantification of the
form ∃x ≤ z or ∀x ≤ z define Σ0 = Π0 sets at the base of the Arithmetical
Hierarchy. These are the sets whose membership is decidable by a Turing
Machine. Note that we conflate formulas and definable sets in the notation
Σ0 and Π0. A first-order formula over Peano Arithmetic is considered Σi+1 if
it begins with a block of (bounded or unbounded) existential quantifiers and
then alternates between (bounded or unbounded) universal and existential
quantifiers i times before culminating with a Σ0 = Π0 formula. Again, we
conflate formulas and definable sets to obtain levels Σi+1 of the Arithmeti-
cal Hierarchy. Definable sets Πi+1 are defined similarly but with outermost
universal quantification. Finally, we define ∆i = Σi ∩ Πi.

3Weird. Thus spake Lindemann about Hilbert’s non-constructive methods in the reso-
lution of Gordon’s problem (see [36]).
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The Polynomial Hierarchy PH (see [38]) is the subrecursive analog of the
Arithmetical Hierarchy in which polynomial time P takes the role of the de-
cidable sets Σ0 = Π0, and alternation corresponds to looking for a choice
in a non-deterministic computation (existential) or considering all choices
(universal). Hence we define ΣP

0 = ΠP
0 = P and ΣP

1 = NP. The Polyno-
mial Hierarchy sits within PSPACE =

⋃
k≥1 DSPACE(nk). Finally, we intro-

duce the classes 2EXPSPACE =
⋃
k≥1 DSPACE(22n

k

) and 3EXPSPACE =⋃
k≥1 DSPACE(222

nk

). Presburger Arithmetic is decidable in 2EXPSPACE
[39] and Skolem Arithmetic is decidable in 3EXPSPACE [40]. Where no
SPACE is written explicitly, the complexity classes may be assumed to refer
to time.

For sets A and B we say that A is polynomial-time many-one reducible to
B, in symbols A≤p

m B, if there exists a polynomial-time computable function
f such that for all x it holds that (x ∈ A ⇐⇒ f(x) ∈ B). If f is even
computable in logarithmic space, then A is logspace many-one reducible to
B, in symbols A≤log

m B. A is nondeterministic polynomial-time many-one
reducible to B, in symbols A≤NP

m B, if there is a nondeterministic Turing
transducer M that runs in polynomial time such that for all x it holds that
x ∈ A if and only if there exists a y computed by M on input x with y ∈ B.
The reducibility notions ≤p

m, ≤log
m , and ≤NP

m are transitive and NP is closed
under these reducibilities. For more on these complexity classes we refer the
reader to [38].
2.3. Circuit Problems

A circuit C = (V,E, gC) is a finite, non-empty, directed, acyclic multi-
graph (V,E) with a specified node gC ∈ V . The graph does not need to
be connected and only has multiple edges between two nodes when a binary
operator is applied on both sides to a single set (e.g. A × A). Let V =
{1, 2, . . . , n} for some n ∈ N. The nodes in the graph (V,E) are topologically
ordered, i.e., for all v1, v2 ∈ V , if v1 < v2, then there is no path from v2 to
v1. Nodes are also called gates. Nodes with indegree 0 are called input gates
and gC is called the output gate. If there is an edge from gate u to gate v,
then we say that u is a predecessor of v and v is a successor of u.

Let O ⊆ {∪,∩, −,+,×}. An O-circuit with unassigned input gates C =
(V,E, gC , α) is a circuit (V,E, gC) whose gates are labeled by the labeling
function α : V → O ∪ N ∪ {?} such that the following holds: Each gate
has an indegree in {0, 1, 2}, gates with indegree 0 have labels from N ∪ {?},
gates with indegree 1 have label −, and gates with indegree 2 have labels
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from {∪,∩,+,×}. Input gates with a label from N are called assigned (or
constant) input gates; input gates with label ? are called unassigned (or
variable) input gates. An O-formula is an O-circuit that only contains nodes
with outdegree one.

Let u1 < · · · < un be the unassigned inputs in C and x1, . . . , xn ∈ N.
By assigning value xi to the input ui, we obtain an O-circuit C(x1, . . . , xn)
whose input gates are all assigned. In this circuit, each gate g computes the
following set I(g): If g is an assigned input gate, i.e. where α(g) 6= ?, then
I(g) = {α(g)}. If g = uk is an unassigned input gate, then I(g) = {xk}.
If g has label − and predecessor g1, then I(g) = N \ I(g1). If g has label
◦ ∈ {∪,∩,+,×} and predecessors g1 and g2, then I(g) = I(g1) ◦ I(g2).
Finally, let I(C(x1, . . . , xn)) = I(gC) be the set computed by the circuit
C(x1, . . . , xn).
Definition 1. Let O ⊆ {∪,∩, −,+,×}.

MCN(O) = {(C, b) | C is an O-circuit without unassigned inputs and b ∈ I(C)}
ECN(O) = {(C1, C2) | C1 and C2 are O-circuits without unassigned inputs and

we have I(C1) = I(C2)}
SCN(O) = {(C, b) | C is an O-circuit with unassigned inputs u1 < · · · < un and

there exist x1, . . . , xn ∈ N such that b ∈ I
(
C(x1, . . . , xn)

)
}

MFN(O), EFN(O), and SFN(O) are the variants that deal with O-formulas
instead of O-circuits.

Note that MCN, ECN and SCN intimate Membership of a Circuit, Equivalence
of Circuits and Satisfiability of a Circuit, respectively. When an O-circuit is
used as input for an algorithm, then we use a suitable encoding such that it
is possible to verify in deterministic logarithmic space whether a given string
encodes a valid circuit. In Section 3, for i ∈ N, we often identify {i} with i,
where this can not cause a harmful confusion.

3. Circuit Satisfiability and functional CSPs

We investigate the computational complexity of functional CSPs. The
reader interested only in arithmetic circuits may jump to Section 3.2. In
many cases we can translate known lower and upper bounds for member-
ship, equivalence, and satisfiability problems of arithmetic circuits [25, 28,
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CSPc({N};O)
O Lower Bound Upper Bound

− ∪ ∩ + × Σ1 P3 Σ2 P5
− ∪ ∩ + PSPACE C1 3EXPSPACE C4
− ∪ ∩ × PSPACE C1 3EXPSPACE C3
− ∪ ∩ NP P8 NP P8
∪ ∩ + × Σ1 P3 Σ1 P4
∪ ∩ + ΠP

2 C1 3EXPSPACE C4
∪ ∩ × ΠP

2 C1 3EXPSPACE C3
∪ + × Σ1 P3 Σ1 P4
∪ + ΠP

2 C1 3EXPSPACE C4
∪ × ΠP

2 C1 3EXPSPACE C3
∩ + × Σ1 P3 Σ1 P4
∩ + NP P7 NP C2
∩ × NP P6 NP C2

+ × Σ1 P3 Σ1 P4
+ NP P7 NP P9
× NP P6 NP C2

Table 1: Upper and lower bounds for CSPc({N};O), together with the proposition or
corollary in which they are proved. All lower bounds are with respect to ≤log

m -reductions.

1] to CSPs. Our main result is the decidability of SCN(−,∪,∩,×) and
CSPc({N}; −,∪,∩,×), which solves the main open question of the paper
[1]. We emphasise that the domain of CSPc({N}; −,∪,∩,×) is the set of
singletons that we defined as {N} and not, e.g., the set of subsets of all
natural numbers. This would be a different CSP. Our unusual definition is
motivated by the circuit problems whose relationship to CSPs we wish to
formalise. Table 1 summarizes the results obtained in this section.

3.1. Recasting circuit results for CSPs

We start with the observation that the equivalence of arithmetic terms
reduces to functional CSPs. This yields several lower bounds for the CSPs.
Proposition 2. Whenever O ⊆ {−,∪,∩,+,×} it holds that EFN(O)≤log

m

CSPc({N};O).

Proof. An EFN(O)-instance (F1, F2) is mapped to the CSPc({N};O)-instance
F1 = F2.
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Corollary 1.

1. CSPc({N}; −,∪,∩,+) and CSPc({N}; −,∪,∩,×) are ≤log
m -hard for PSPACE.

2. CSPc({N};∪,∩,+), CSPc({N};∪,∩,×), CSPc({N};∪,+), and
CSPc({N};∪,×) are ≤log

m -hard for ΠP
2 .

Proof. The statements follow from Proposition 2 and the following facts
[28]: EFN(−,∪,∩,+) and EFN(−,∪,∩,×) are ≤log

m -complete for PSPACE.
EFN(∪,∩,+), EFN(∪,∩,×), EFN(∪,+), and EFN(∪,×) are ≤log

m -complete
for ΠP

2 .

CSPs with + and × can express Diophantine equations, which implies
the hardness under (polynomial time) Turing reductions of such CSPs.

Proposition 3. CSPc({N}; +,×) is ≤log
m -hard for Σ1.

Proof. By the Matiyasevich-Robinson-Davis-Putnam theorem [41, 42], there
exists an n ∈ N and a multivariate polynomial p with integer coefficients such
that for every A ∈ Σ1 there exists an a ∈ N such that

x ∈ A ⇐⇒ ∃y ∈ Nn, p(a, x, y) = 0.

In the equation p(a, x, y) = 0 we can move negative monomials and negative
constants to the right-hand side. This yields multivariate polynomials l and
r with coefficients from N such that

x ∈ A ⇐⇒ ∃y ∈ Nn, l(a, x, y) = r(a, x, y).

The right-hand side is an instance of CSPc({N}; +,×). Hence, for every
A ∈ Σ1, A≤log

m CSPc({N}; +,×).

Proposition 4. CSPc({N};∪,∩,+,×) ∈ Σ1.

Proof. It is decidable whether a given assignment satisfies an instance of
CSPc({N};∪,∩,+,×). Hence testing the existence of a satisfying assignment
is in Σ1.

Proposition 5. CSPc({N}; −,∪,∩,+,×) ∈ Σ2.
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Proof. By Glaßer et al. [28], ECN(−,∪,∩,+,×) ∈ ∆2. Consider an arbi-
trary CSPc({N}; −,∪,∩,+,×)-instance φ := ∃y ∈ Nn[t0 = t1 ∧ · · · ∧ t2m =
t2m+1], where each ti is a term or (equivalently) a tree-like circuit. It holds
that

φ ∈ CSPc({N}; −,∪,∩,+,×) ⇐⇒ ∃y ∈ Nn[ECN(t0, t1)∧· · ·∧ECN(t2m, t2m+1)].

The right-hand side is a Σ2 predicate.

The following propositions transfer the NP-hardness from satisfiability
problems for arithmetic circuits to CSPc({N};×) and CSPc({N}; +).

Proposition 6. CSPc({N};×) is ≤log
m -hard for NP.

Proof. It is known that 3SAT≤log
m SCN(∩,×) [1]. The reduction has the ad-

ditional property that it outputs pairs (C, b) where the circuit C is connected
in the sense that from each gate there exists a path to the output gate. Hence
it suffices to construct a ≤log

m -reduction that works on SCN(∩,×)-instances
(C, b) where C is connected.

For such a pair (C, b) we construct a CSPc({N};×)-instance where each
gate g is represented by the variable g. Moreover, each gate g causes the
following constraints: If g is an assigned input gate with value k ∈ N, then
we add the constraint g = k. For unassigned input gates no additional
constraints are needed. If g is a ×-gate with predecessors g1 and g2, then we
add the constraint g = g1 · g2. If g is a ∩-gate with predecessors g1 and g2,
then we add the constraints g = g1 and g = g2. If g is the output gate, then
this causes the additional constraint g = b. Finally, if g1, . . . , gn are the gates
in C and c1, . . . , cm are the constraints described above, then the reduction
outputs the CSPc({N};×)-instance ϕ := ∃g1, . . . , gn[c1 ∧ · · · ∧ cm].

It remains to argue that for connected C it holds that

(C, b) ∈ SCN(∩,×) ⇐⇒ ϕ ∈ CSPc({N};×).

Assume (C, b) ∈ SCN(∩,×) and consider an assignment that produces
{b} at the output gate. Since C is connected, each gate gi computes a
singleton {ai}. Hence a1, . . . , an is a satisfying assignment for ϕ, which shows
ϕ ∈ CSPc({N};×).

Assume ϕ ∈ CSPc({N};×). Let a1, . . . , an be a satisfying assignment for
ϕ and let l be the number of C’s input gates. The constraints in ϕ make
sure that C(a1, . . . , al) produces {ai} at gate gi. In particular, C(a1, . . . , al)
produces {b} at the output gate, which shows (C, b) ∈ SCN(∩,×).
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Proposition 7. CSPc({N}; +) is ≤log
m -hard for NP.

Proof. It suffices to show SCN({+})≤log
m CSPc({N}; +) [1]. The proof is

similar to the proof of Proposition 6, but easier, since we have no ∩-gates
and hence we do not need the assumption that C is connected.

The remaining results in this section show that certain functional CSPs
belong to NP. This needs non-trivial arguments of the form: If a CSP can be
satisfied, then it can be satisfied even with small values. These arguments are
provided by the known results that integer programs, existential Presburger
Arithmetic, and existential Skolem Arithmetic are decidable in NP.

Proposition 8. CSPc({N}; −,∩,∪) is ≤log
m -complete for NP.

Proof. Consider a CSPc({N}; −,∩,∪)-instance ϕ := ∃x1, . . . , xn[t1 = t′1 ∧
· · · ∧ tm = t′m]. We show that if ϕ ∈ CSPc({N}; −,∩,∪), then it has a
satisfying assignment d = (d1, . . . , dn) such that d1, . . . , dn ∈ {0, . . . , n − 1}.
Since MCN(−,∩,∪) ∈ P from [25], we deduce CSPc({N}; −,∩,∪) ∈ NP.

Assume ϕ ∈ CSPc({N}; −,∩,∪) and choose a satisfying assignment a =
(a1, . . . , an) such that a′ = max{a1, . . . , an} is minimal. Assume that a′ ≥ n,
we will show a contradiction. Let b′ = min(N − {a1, . . . , an}) and note that
b′ < n by a simple counting argument. Let b be the assignment that is
obtained from a if all occurrences of a′ are replaced with b′. For any term t
in ϕ, the sets computed by t under the assignments a and b are denoted by ta
and tb, respectively. Observe that for all terms t in ϕ and all x ∈ N−{a′, b′}
it holds that:

x ∈ ta ⇐⇒ x ∈ tb
a′ ∈ ta ⇐⇒ b′ ∈ tb
b′ ∈ ta ⇐⇒ a′ ∈ tb

It follows that for all atoms t = t′ in ϕ it holds that

ta = t′a ⇐⇒ tb = t′b.

Therefore, b is a satisfying assignment that is smaller than a, which contra-
dicts the minimal choice of a.
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For the NP-hardness it suffices to show 3SAT≤log
m CSPc({N}; −,∩,∪). On

input of a 3CNF-formula t = t(x1, . . . , xn) the reduction outputs the instance
of CSPc({N}; −,∩,∪)

ϕ := ∃x1, . . . , xn[t′ ∩ {1} = {1}],

where t′ is obtained from t by replacing ¬,∧,∨ with −,∩,∪, respectively.
Every satisfying assignment for t also satisfies ϕ. Conversely, if a1, . . . , an is
a satisfying assignment for ϕ, then we obtain a satisfying assignment for t if
values greater than 1 are replaced with 0.

Proposition 9. CSPc({N}; +) ∈ NP.

Proof. Consider a CSPc({N}; +)-instance ϕ := ∃x1, . . . , xn[s1 = t1 ∧ · · · ∧
sm = tm]. Each atom si = ti can be written as 0 = ti − si = ai,1x1 + · · · +
ai,nxn + ci where ai,j, ci ∈ Z. Let

A =

a1,1 · · · a1,n
...

...
am,1 · · · am,n

 and c =

 c1
...
cm

 .

Hence ϕ ∈ CSPc({N}; +) if and only if there exists an x = (x1, . . . , xn) ∈ Nn

such that Ax+ c = 0. The latter of these is an integer program that can be
decided in NP [43, 44].

Proposition 10.

1. CSPc({N};∩,+)≤NP
m CSPc({N}; +,=, 6=).

2. CSPc({N};∩,×)≤NP
m CSPc({N};×,=, 6=).

Proof. We show the first statement, the proof of the second one is analo-
gous.

For a term t, let t′ be the term obtained from t if every subterm of the
form s1 ∩ s2 is replaced with s1.

We describe the ≤NP
m -reduction on input of a CSPc({N};∩,+)-instance

ϕ := ∃x1, . . . , xn[t0 = t1 ∧ · · · ∧ t2m = t2m+1].

For each atom t2i = t2i+1, we guess nondeterministically whether t2i = t2i+1 ∈
{N} or t2i = t2i+1 = ∅. If we guessed t2i = t2i+1 ∈ {N}, then replace t2i with

13



t′2i, replace t2i+1 with t′2i+1, and for every subterm s1 ∩ s2 that appears in
t2i or t2i+1 add the constraint s′1 = s′2. If we guessed t2i = t2i+1 = ∅, then
guess a subterm u1 ∩ u2 in t2i, guess a subterm u3 ∩ u4 in t2i+1, remove the
atom t2i = t2i+1, and add the constraints u′1 6= u′2 and u′3 6= u′4. The obtained
formula ψ is the result of the ≤NP

m -reduction.
We argue that the described ≤NP

m -reduction reduces the CSPc({N};∩,+)
to the CSPc({N}; +,=, 6=).

Assume ϕ ∈ CSPc({N};∩,+) and fix some satisfying assignment a =
(a1, . . . , an) ∈ Nn. Consider the nondeterministic path of the reduction that
for all atoms correctly guesses whether t2i = t2i+1 ∈ {N} or t2i = t2i+1 = ∅,
and that for all t2i = t2i+1 = ∅ guesses subterms u1 ∩ u2 in t2i and u3 ∩ u4

in t2i+1 such that u1, u2, u3, u4 ∈ {N}, u1 6= u2, and u3 6= u4. If t2i = t2i+1 ∈
{N}, then t′2i = t2i = t2i+1 = t′2i+1 and hence the formula is still satisfied after
replacing t2i with t′2i and t2i+1 with t′2i+1. Moreover, the added constraints
s′1 = s′2 are satisfied, since in t2i and t2i+1 all subterms s1 ∩ s2 must be
nonempty. If t2i = t2i+1 = ∅, then after removing the atom t2i = t2i+1 and
after adding the constraints u′1 6= u′2 and u′3 6= u′4 the formula is still satisfied.
So at the described nondeterministic path the reduction outputs a formula
ψ ∈ CSPc({N}; +,=, 6=).

Assume there is a nondeterministic path where the reduction outputs a
formula ψ ∈ CSPc({N}; +,=, 6=). Consider a satisfying assignment a for ψ,
we claim that a satisfies ϕ. If this is not true, then ϕ must have an atom
t2i = t2i+1 that is not satisfied by a.

Case 1: At the path that produced ψ we guessed that t2i = t2i+1 ∈ {N}.
In this case we added the constraints s′1 = s′2, which ensure that t2i = t′2i and
t2i+1 = t′2i+1. Hence under the assignment a it holds that t2i = t′2i = t′2i+1 =
t2i+1, which contradicts the assumption that t2i = t2i+1 is not satisfied by a.

Case 2: At the path that produced ψ we guessed that t2i = t2i+1 = ∅.
Here we added the constraints u′1 6= u′2 and u′3 6= u′4, which are satisfied by
a. Hence under the assignment a we have t2i = t2i+1 = ∅, which contradicts
the assumption that t2i = t2i+1 is not satisfied by a.

It follows that a satisfies ϕ and hence ϕ ∈ CSPc({N};∩,+).

Corollary 2. CSPc({N};∩,+),CSPc({N};∩,×) ∈ NP.

Proof. CSPc({N}; +,=, 6=)-instances and CSPc({N};×,=, 6=)-instances are
formulas of existential Presburger arithmetic and existential Skolem arith-
metic, which are both decidable in NP [45, 46]. Now the statement follows
from Proposition 10.
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3.2. New circuit results

We now show that the decidability of Skolem Arithmetic [40] can be used
to decide the satisfiability of arithmetic circuits without +. This solves the
main open question of the paper [1] and at the same time implies the decid-
ability of the corresponding CSPs. Note that we consider Skolem Arithmetic
with constants, which are not included in the treatment of [40]. For an
explicit extension of decidability to the case with constants, see [47].

Our construction is motivated by the following idea. Consider a {−,∪,×}-
circuit C with n unassigned input gates. For every gate g in C, we construct
a formula φg(x1, . . . , xn, z) that expresses the predicate

C(x1, . . . , xn) produces at gate g a set that contains z.

The definition of φg is straightforward (g1, g2 denote g’s predecessors): If g is
the i-th unassigned input gate, then φg(x1, . . . , xn, z) := (z = xi). If g is an
assigned input gate with label l ∈ N, then φg(x1, . . . , xn, z) := (z = l). If g
is a complement gate, then φg(x1, . . . , xn, z) := ¬φg1(x1, . . . , xn, z). If g is a
∪-gate, then φg(x1, . . . , xn, z) := φg1(x1, . . . , xn, z)∨φg2(x1, . . . , xn, z). If g is
a ×-gate, φg(x1, . . . , xn, z) := ∃f1, f2(φg1(x1, . . . , xn, f1)∧φg2(x1, . . . , xn, f2)∧
z = f1f2). For the output gate gC it holds that

(C, z) ∈ SCN(−,∪,×)⇐⇒ ∃x1, . . . , xn φgC (x1, . . . , xn, z).

The right-hand side is a first-order sentence of Skolem Arithmetic.
By the above construction, each ∪-gate and each ×-gate double the size

of the formula, which results in a formula φgC of exponential size. Therefore,
in the proof of Theorem 1 we introduce further variables to φg, which allow
us to reuse the formula. For example, if g is a ×-gate, we can reuse the
formula as follows.

φg(x1, . . . , xn, z) := ∃f1, f2 ∀e ∃i, v [(f1 · f2 = z) ∧
(e = 0→ (i = g1 ∧ v = f1)) ∧
(e = 1→ (i = g2 ∧ v = f2)) ∧
φi(x1, . . . , xn, v)]

Here e acts like a switch: e = 0 expresses φg1(x1, . . . , xn, f1) and e = 1
expresses φg2(x1, . . . , xn, f2). This formula is technically more involved, but
φi appears just once, which results in a formula φgC of polynomial size.
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Theorem 1. SCN(−,∪,∩,×) ∈ 3EXPSPACE.

Proof. Let C be a circuit with gates g1, . . . , gr such that g1, . . . , gn are the
unassigned input gates, gn+1, . . . , gm are the assigned input gates, and gr
is the output gate. We will reduce C to a first-order sentence φ such that
gr ∈ I(C(g1, . . . , gn)) iff (N;×, 0, 1, . . .) |= φ. Without loss of generality we
may assume that C does not have ∩-gates (recall that A∩B = −(−A∪−B)).
For every gate gk we define a formula ϕk := ϕk(x1, . . . , xn, ik, vk, bk) in Skolem
arithmetic such that the following holds.

(∗) For a1, . . . , an, v ∈ N, b ∈ {0, 1}, and i = 1, . . . , k it holds that ϕk(a1, . . . ,
an, 0, v, b) is true and

• ϕk(a1, . . . , an, i, v, b) is true IFF

• (b = 1 iff C(a1, . . . , an) produces at gi a set that contains v).

Let ϕ0 := b0 ∨ ¬b0 ∨ (x1 · . . . · xn · i0 · v0 = 0), which is always true and
which has the free variables x1, . . . , xn, i0, v0, b0. For 1 ≤ k ≤ n, the formula
ϕk which corresponds to the k-th unassigned input gate gk is defined as

ϕk := ∃ik−1, vk−1, bk−1

[(ik = k ∧ bk = 0)→ (xk 6= vk ∧ ik−1 = 0)]∧
[(ik = k ∧ bk = 1)→ (xk = vk ∧ ik−1 = 0)]∧
[ik 6= k → (ik−1 = ik ∧ vk−1 = vk ∧ bk−1 = bk)]∧
ϕk−1.

Observe that the free variables of ϕk are the variables x1, . . . , xn, ik, vk, bk,
i.e., ϕk = ϕk(x1, . . . , xn, ik, vk, bk). For n + 1 ≤ k ≤ m, the formula ϕk
which corresponds to the assigned input gate gk is defined analogously, just
by replacing xk with the label of the gate gk. An induction on k shows that
(∗) holds for all ϕk where 0 ≤ k ≤ m.

Now define the formulas ϕk for the inner gates gk where m < k ≤ r. Here
dk, ek, fk, f

′
k, hk, and h′k are used as auxiliary variables.

If gk is a complement gate with predecessor gp, then let

ϕk := ∃ik−1, vk−1, bk−1

[ik = k → (ik−1 = p∧vk−1 = vk∧(bk = 1→ bk−1 = 0)∧(bk = 0→ bk−1 = 1))]∧
[ik 6= k → (ik−1 = ik ∧ vk−1 = vk ∧ bk−1 = bk)] ∧
ϕk−1.
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If gk is a ∪-gate with predecessors gp and gq, then let

ϕk := ∃fk, hk∀ek∃ik−1, vk−1, bk−1

[(ik = k ∧ ek = 0)→ (ik−1 = p ∧ vk−1 = vk ∧ bk−1 = fk)]∧
[(ik = k ∧ ek 6= 0)→ (ik−1 = q ∧ vk−1 = vk ∧ bk−1 = hk)]∧
[(ik = k ∧ bk = 1)→ (fk = 1 ∨ hk = 1)]∧
[(ik = k ∧ bk = 0)→ (fk = 0 ∧ hk = 0)]∧
[ik 6= k → (ik−1 = ik ∧ vk−1 = vk ∧ bk−1 = bk)]∧
ϕk−1.

If gk is a ×-gate with predecessors gp and gq, then let

ϕk := ∃fk, f ′k∀ek∀hk, h′k∃dk∃ik−1, vk−1, bk−1

[(ik = k ∧ bk = 1∧ ek = 0)→ (fk · f ′k = vk ∧ ik−1 = p∧ vk−1 = fk ∧ bk−1 = 1)]∧
[(ik = k ∧ bk = 1∧ ek 6= 0)→ (fk · f ′k = vk ∧ ik−1 = q ∧ vk−1 = f ′k ∧ bk−1 = 1)]∧
[(ik = k∧ bk = 0∧hk ·h′k = vk ∧ dk = 0)→ (ik−1 = p∧ vk−1 = hk ∧ bk−1 = 0)]∧
[(ik = k∧ bk = 0∧hk ·h′k = vk ∧ dk 6= 0)→ (ik−1 = q∧ vk−1 = h′k ∧ bk−1 = 0)]∧
[ik 6= k → (ik−1 = ik ∧ vk−1 = vk ∧ bk−1 = bk)]∧
ϕk−1.

Again it holds that ϕk’s free variables are x1, . . . , xn, ik, vk, bk and an
induction on k shows that (∗) holds for all ϕk where 0 ≤ k ≤ r. So for the
output gate gr we obtain

(C, v) ∈ SCN(−,∪,∩,×)) ⇐⇒ ∃a1, . . . , an ϕr(a1, . . . , an, r, v, 1).

The right-hand side is a first-order sentence of Skolem arithmetic. On input
(C, v) this sentence can be computed in polynomial time, which shows that
SCN(−,∪,∩,×) is ≤p

m-reducible to Skolem arithmetic. The latter is decidable
in 3EXPSPACE [40] (see Corollary 2.6 on page 137).

Historical note. The reader may be curious as to why decidability was pre-
viously known for SCN(−,∪,∩,+) yet not for SCN(−,∪,∩,×). The authors of
[1] had initially approached the circuit satisfiability problems with machinery
developed for circuit memberships problems. Following this approach, the re-
sult for SCN(−,∪,∩,+) is readily found, but that for SCN(−,∪,∩,×) is more
elusive. Had a logic-oriented approach been initiated to SCN(−,∪,∩,+),
based on Presburger Arithmetic, then the approach to SCN(−,∪,∩,×) based
on Skolem Arithmetic would have been more obvious.

17



Corollary 3. CSPc({N}; −,∪,∩,×) ∈ 3EXPSPACE

Proof. By Theorem 1, it suffices to show that CSPc({N}; −,∪,∩,×)≤p
m

SCN(−,∪,∩,×). We describe the reduction on the input of an instance of
CSPc({N}; −,∪,∩,×) given by φ := ∃y ∈ Nn

∧m
i=0(t2i = t2i+1). Observe that

m∧
i=0

(t2i = t2i+1) ⇐⇒
m∧
i=0

(t2i ∩ t2i+1) ∪ (t2i ∩ t2i+1) = ∅

⇐⇒
m⋃
i=0

[(t2i ∩ t2i+1) ∪ (t2i ∩ t2i+1)] = ∅

⇐⇒ 0 ∈ 0×
m⋃
i=0

[(t2i ∩ t2i+1) ∪ (t2i ∩ t2i+1)]︸ ︷︷ ︸
C:=

.

So φ ∈ CSPc({N}; −,∪,∩,×) if and only if (C, 0) ∈ SCN(−,∪,∩,×).

Corollary 4. CSPc({N}; −,∪,∩,+) ∈ 3EXPSPACE

Proof. By Corollary 3, it suffices to show that we have CSPc({N}; −,∪,∩,+)
≤p

m CSPc({N}; −,∪,∩,×). Consider a CSPc({N}; −,∪,∩,+)-instance

φ := ∃y ∈ Nn

m∧
i=0

(t2i = t2i+1).

We may assume that 0 and 1 are the only constants that occur in φ. We
can do this, since constants c > 1 can be removed as follows: Let l = blog cc,
replace c with a new variable z, and add constraints

(z0 = {2}) ∧ (z1 = z0 + z0) ∧ · · · ∧ (zl = zl−1 + zl−1) ∧ (z =
∑
i∈I

zi),

where z0, . . . , zl are new variables and

I = {i | the i-th bit in c’s binary representation is 1}.

Note that removing constants in this way can be done in polynomial time.

Consider the term q :=
(
{0, 1} × {0, 1} ∩ {0, 1, 2}

)
× {0} ∩ {1}. Since

{0, 1} × {0, 1} indicates all composite positive integers, its complement is
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the set of primes. Then
(
{0, 1} × {0, 1} ∩ {0, 1, 2}

)
is the set of odd primes,

and
(
{0, 1} × {0, 1} ∩ {0, 1, 2}

)
× {0} ∩ {1} is the set of positive integers

involving an odd prime factor. Finally, we see the whole expression generates
the set {2i | i ∈ N}.

For every term t, let t′ be the term that is obtained from t if every
constant c is replaced with 2c, every + operation is replaced with ×, and
every complement operation s is replaced with (s∩q). The computation of t′

is possible in polynomial time, since only the constants 0 and 1 can appear.
The reduction outputs the CSPc({N}; −,∪,∩,×)-instance

φ′ := ∃y ∈ Nn

m∧
i=0

(t′2i = t′2i+1) ∧
n∧
i=1

(yi ∪ q = q).

Observe that for all terms t and all e = (e1, . . . , en) ∈ Nn it holds that

t′(2e1 , . . . , 2en) = {2i | i ∈ t(e1, . . . , en)}. (1)

It remains to show that φ and φ′ are equivalent.
If e = (e1, . . . , en) ∈ Nn is a satisfying assignment for φ, then by equa-

tion (1), z = (2e1 , . . . , 2en) is a satisfying assignment for φ′ (note that
∧n
i=1(yi∪

q = q) holds, since yi = 2ei ∈ q).
If z = (z1, . . . , zn) ∈ Nn is a satisfying assignment for φ′, then because of

the constraints
∧n
i=1(yi ∪ q = q), z1 = 2e1 , . . . , zn = 2en for e = (e1, . . . , en) ∈

Nn and by (1), e is a satisfying assignment for φ.

A second open problem from [1]: SCN(∪,∩,×) ∈ PSPACE.
We now improve another of the upper bounds of [1] to a tight upper

bound. Here we have the circuit satisfiability problem where the permit-
ted set operators are just intersection, union and multiplication, where we
improve the bound from NEXP to PSPACE.

The absolute value of an integer x is denoted by abs(x). For v = (v1, . . . ,
vn) ∈ Zn and A = (ai,j) ∈ Zm×n let |v|∞ = max{abs(v1), . . . , abs(vn)} and
|A|∞ = max{abs(ai,j) | 1 ≤ i ≤ m and 1 ≤ j ≤ n}. For a circuit C, let |C|
be the size of the circuit, i.e., the length of the encoding of the circuit.

An estimation from [48] yields the following bound for the size of small
elements in Nn that solve a system of linear equations.

Lemma 1. Let k,m, n ∈ N+, A = (ai,j) ∈ Zm×n and b ∈ Zm such that
|A|∞, |b|∞ ≤ k. If there exists y ∈ Nn such that Ay = b, then there exists
z ∈ Nn such that Az = b and |z|∞ ≤ (32k)12n4

.
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Proof. We adopt the following definitions from [48]. The size of a rational
number r = p/q where p and q are relatively prime integers is size(r) =
1 + dlog2(abs(p) + 1)e + dlog2(abs(q) + 1)e. The size of a rational vector
v = (v1, . . . , vn) ∈ Qn is size(v) = n + size(v1) + · · · + size(vn). The size of
a rational matrix A = (ai,j) ∈ Qm×n is size(A) = mn +

∑
i,j size(ai,j). The

size of a system Ax ≤ b of rational linear inequalities is size(Ax ≤ b) =
1 + size(A) + size(b). A rational polyhedron is a set {x ∈ Rn | Ax ≤ b} for
some A ∈ Qm×n and b ∈ Qm. The facet complexity of a rational polyhedron
P ⊆ Rn is the smallest number ϕ such that ϕ ≥ n and there exists a system
Ax ≤ b of rational linear inequalities defining P , where each inequality in
Ax ≤ b has size at most ϕ, i.e., there exist m ∈ N, A = (ai,j) ∈ Qm×n, and
b = (b1, . . . , bm) ∈ Qm such that P = {x ∈ Rn | Ax ≤ b} and ∀i [1 + n +
size(bi) +

∑n
j=1 size(ai,j) ≤ ϕ].

Let C =

 A
−A
−In

 ∈ Z(2m+n)×n and d =

 b
−b
0

 ∈ Z2m+n, where In denotes

the identity matrix of size n and 0 the zero element in Zn. Consider the
rational polyhedron P = {x ∈ Rn | Cx ≤ d} and let ϕ be its facet complexity.
Observe that ϕ ≤ 1 + n + size(k) + n · size(k) ≤ (n + 1) · log2 16(k + 1). By
definition, Cx ≤ d if and only if Ax ≤ b and −Ax ≤ −b and −Inx ≤ 0 if and
only if Ax = b and x ∈ (R≥0)n. Therefore, P = {x ∈ (R≥0)n | Ax = b}. By
assumption, y ∈ P ∩ Zn and hence P ∩ Zn 6= ∅. By Corollary 17.1b in [48],
there exists z ∈ P ∩ Zn = P ∩ Nn such that size(z) ≤ 6n3ϕ. So size(z) ≤
6n3(n+ 1) · log2 16(k + 1) ≤ 12n4 · log2 32k and hence |z|∞ ≤ (32k)12n4

.

We use the following problem which asks for the solvability of a system
of monomial equations.

Name: MonEq
Instance: A list of equations of the following form.

x5z7 = 59y3z2

yz2 = 23x5

x2y4z3 = 311

Question: Is this system of equations solvable over the natural
numbers?
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Formally, the problem MonEq is defined as follows, where 00 is defined
as 1.

MonEq = {(A,B,C,D) | A = (ai,j) ∈ Nm×n, B = (bi,j) ∈ Nm×n, C =
(c1, . . . , cm) ∈ Nm, D = (d1, . . . , dm) ∈ Nm, and
there exist x1, . . . , xn ∈ N such that for all i ∈
{1, . . . ,m},

∏n
j=1 x

ai,j
j = cdii ·

∏n
j=1 x

bi,j
j }

Let us consider the variant of MonEq that restricts to positive constant
factors and positive solutions. We show that if a system of such monomial
equations has a solution over N+, then it has a solution that consists of small
numbers in N+.

Lemma 2. Let k,m, n ∈ N+, A = (ai,j) ∈ Nm×n, B = (bi,j) ∈ Nm×n, C =
(c1, . . . , cm) ∈ (N+)m, and D = (d1, . . . , dm) ∈ Nm such that |A|∞, |B|∞, |C|∞,
|D|∞ ≤ k and |{p | p is prime factor of c1 · · · cm}| ≤ k. If there exists y =

(y1, . . . , yn) ∈ (N+)n such that
∧m
i=1(
∏n

j=1 y
ai,j
j = cdii ·

∏n
j=1 y

bi,j
j ), then there

exists z = (z1, . . . , zn) ∈ (N+)n such that
∧m
i=1(
∏n

j=1 z
ai,j
j = cdii ·

∏n
j=1 z

bi,j
j )

and |z|∞ ≤ 2(32k2)13n
4

.

Proof. Let {p1, . . . , pl} be the set of prime factors of c1 · · · cm. So ci =
p
ei,1
1 p

ei,2
2 · · · p

ei,l
l for suitable exponents ei,j ∈ N. By assumption, there exist

y1, . . . , yn ∈ N+ such that

m∧
i=1

( n∏
j=1

y
ai,j
j = cdii ·

n∏
j=1

y
bi,j
j

)
. (2)

We may assume that yi = p
si,1
1 p

si,2
2 · · · p

si,l
l for suitable exponents si,j ∈ N,

since other prime factors can be deleted in yi. The equalities in (2) hold with
respect to each prime factor, i.e., for all r ∈ {1, . . . , l},

m∧
i=1

n∏
j=1

(psj,rr )ai,j = (pei,rr )di ·
n∏
j=1

(psj,rr )bi,j . (3)

So for fixed r ∈ {1, . . . , l} it holds that
∧m
i=1

∑n
j=1(ai,j − bi,j)sj,r = diei,r.

Hence A′sr = tr, where A′ = A − B ∈ Zm×n, sr = (s1,r, . . . , sn,r) ∈ Nn, and
tr = (d1e1,r, . . . , dmem,r) ∈ Nm. Note that |A′|∞ ≤ k and |tr|∞ ≤ k2, since
ei,r ≤ p

ei,r
r ≤ ci ≤ k. By Lemma 1, there exists xr = (x1,r, . . . xn,r) ∈ Nn such
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that A′xr = tr and |xr|∞ ≤ (32k2)12n4
. So

∧m
i=1

∑n
j=1(ai,j − bi,j)xj,r = diei,r

and hence
m∧
i=1

n∏
j=1

(pxj,rr )ai,j = (pei,rr )di ·
n∏
j=1

(pxj,rr )bi,j . (4)

Since this equation holds for all primes pr, we obtain
m∧
i=1

n∏
j=1

(p
xj,1
1 · · · pxj,ll )ai,j = (p

ei,1
1 · · · p

ei,l
l )di ·

n∏
j=1

(p
xj,1
1 · · · pxj,ll )bi,j . (5)

We define zj = p
xj,1
1 · · · pxj,ll ∈ N+ and obtain

m∧
i=1

n∏
j=1

z
ai,j
j = cdii ·

n∏
j=1

z
bi,j
j . (6)

By assumption, l, |C|∞ ≤ k and hence p1, . . . , pl ≤ k. So zj ≤ kxj,1+···+xj,l ≤
kk·(32k2)12n

4

≤ 2(32k2)13n
4

.

We extend Lemma 2 to the case where the vectors C, y, and z can contain
0’s.

Corollary 5. Let k,m, n ∈ N+, A = (ai,j) ∈ Nm×n, B = (bi,j) ∈ Nm×n, C =
(c1, . . . , cm) ∈ Nm, and D = (d1, . . . , dm) ∈ Nm such that |A|∞, |B|∞, |C|∞,
|D|∞ ≤ k and |{p | p is prime factor of c1 · · · cm}| ≤ k. If there exists y =

(y1, . . . , yn) ∈ Nn such that
∧m
i=1(
∏n

j=1 y
ai,j
j = cdii ·

∏n
j=1 y

bi,j
j ), then there

exists z = (z1, . . . , zn) ∈ Nn such that
∧m
i=1(
∏n

j=1 z
ai,j
j = cdii ·

∏n
j=1 z

bi,j
j ) and

|z|∞ ≤ 2(32k2)13n
4

.

Proof. We may assume that (ci = 0 =⇒ di 6= 0) for all i ∈ {1, . . . ,m},
since otherwise cdii = 1 = 1di and we can use ci = 1 instead of ci = 0.

Consider the equations
∏n

j=1 y
ai,j
j = cdii ·

∏n
j=1 y

bi,j
j for i ∈ {1, . . . ,m}. If

such an equation is 0, then we delete it, i.e., we delete the i-th row in A
and B, and the i-th component of C and D. This results in matrices A′ =
(a′i,j), B

′ = (b′i,j) ∈ Nm′×n and vectors C ′ = (c′i), D
′ = (d′i) ∈ Nm′ . Note

that C ′ ∈ (N+)m
′
, since if c′i = 0, then by our assumption d′i 6= 0 and hence

equation i is 0 and was deleted. Let y′ = (y′1, . . . , y
′
n) ∈ (N+)n be the vector

that is obtained from y by replacing all 0’s with 1’s. Observe that

m′∧
i=1

(
n∏
j=1

y′
a′i,j
j = c′

d′i
i ·

n∏
j=1

y′
b′i,j
j ), (7)
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since if yj = 0, then
∧m′

i=1 a
′
i,j = b′i,j = 0 (otherwise equation i is 0 and was

deleted) and hence y
a′i,j
j = y

b′i,j
j = 1 = y′

a′i,j
j = y′

b′i,j
j . By Lemma 2, there exists

z′ = (z′1, . . . , z
′
n) ∈ (N+)n such that

m′∧
i=1

(
n∏
j=1

z′
a′i,j
j = c′

d′i
i ·

n∏
j=1

z′
b′i,j
j ) (8)

and |z′|∞ ≤ 2(32k2)13n
4

. Let J = {j | 1 ≤ j ≤ n and yj = 0} be the set of
positions of 0’s in y. Let z = (z1, . . . , zn) ∈ Nn be the vector that is obtained
from z′ by replacing the j-th component with 0 for all j ∈ J . It follows that

m′∧
i=1

(
n∏
j=1

z
a′i,j
j = c′

d′i
i ·

n∏
j=1

z
b′i,j
j ), (9)

since for j ∈ J it holds that yj = 0 and hence
∧m′

i=1 a
′
i,j = b′i,j = 0 and

z′
a′i,j
j = z′

b′i,j
j = 1 = z

a′i,j
j = z

b′i,j
j .

It remains to argue that z also satisfies each deleted equation i. Assume∏n
j=1 y

ai,j
j = cdii ·

∏n
j=1 y

bi,j
j = 0. From

∏n
j=1 y

ai,j
j = 0 it follows that there

exists j ∈ {1, . . . , n} such that y
ai,j
j = 0 and hence yj = 0 = zj and ai,j 6= 0,

which shows z
ai,j
j = 0 and

∏n
j=1 z

ai,j
j = 0. From cdii ·

∏n
j=1 y

bi,j
j = 0 it follows

that cdii = 0 or there exists j ∈ {1, . . . , n} such that y
bi,j
j = 0. As above

this implies cdii ·
∏n

j=1 z
bi,j
j = 0. This shows that z also satisfies all deleted

equations. Together with (9) we obtain

m∧
i=1

(
n∏
j=1

z
ai,j
j = cdii ·

n∏
j=1

z
bi,j
j ). (10)

Finally, note that |z|∞ ≤ |z′|∞ ≤ 2(32k2)13n
4

.

Lemma 3. Let C0 be a {∪,∩,×}-circuit with n unassigned input gates. If
(C0, 0) ∈ SCN(∪,∩,×), then there exists z = (z1, . . . , zn) ∈ Nn such that

0 ∈ C0(z1, . . . , zn) and |z|∞ ≤ 2291·|C0|
5

.

Proof. Let 1, . . . , n be the unassigned input gates. Moreover, let n +
1, . . . , n + r be the assigned input gates and let bn+1, . . . , bn+r ∈ N be their
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labels. We may assume that in C0 all gates are connected to the output gate.
Assume 0 ∈ C0(y1, . . . , yn) for suitable y1, . . . , yn ∈ N.

Let C1 be the {∪,∩,×}-circuit that is obtained by recursively unfolding
C0 such that all inner gates have outdegree 1 (i.e., if one disregards the
input gates, then C1 is a tree). More precisely, C1 is obtained from C0 by
duplicating all inner gates with outdegree greater than 1, where the gates
are processed recursively from bottom to top. Observe that

∀x1, . . . , xn ∈ N, C1(x1, . . . , xn) = C0(x1, . . . , xn) and (11)

|C1| ≤ 2|C0| − 1, (12)

where the inequality is shown by an induction on the number of gates. Now
for each union gate in C1, we will cut either the left or the right input
(hence making union gates trivial) and then delete all inner gates that are
not connected to the output gate anymore. Observe that in this way it is
possible to obtain a {∩,×}-circuit C2 such that

C2(y1, . . . , yn) = {0}. (13)

Moreover, it holds that

∀x1, . . . , xn ∈ N, C2(x1, . . . , xn) ⊆ C0(x1, . . . , xn) and (14)

|C2| ≤ 2|C0|. (15)

Let I(g) be the set computed by gate g of the circuit C2(y1, . . . , yn). From
C2(y1, . . . , yn) 6= ∅ it follows that |I(g)| = 1 for all gates g.

We recursively attach a monomial of the form x7
1x

23
2 · · ·x5

n+r to each gate
of C2: For g ∈ {1, . . . , n+r} attach the monomial xi to the input gate g. Let
g be a gate with the direct predecessors g1 and g2 such that the monomial M1

is attached to g1 and M2 is attached to g2. If g is a ×-gate, then attach the
monomial M1 ·M2 to g (where the product is simplified such that multiple
occurrences of the same variable are combined). If g is a ∩-gate, then attach
the monomial M1 to g. Apart from the input gates, C2 is a tree and each
input gate has outdegree ≤ |C2| ≤ 2|C0|. Therefore, the exponents in the
monomials are less than or equal to 2|C0|.

Consider the following system of monomial equations: For each ∩-gate
g we take the equation M1 = M2 to the system, where M1 and M2 are the
monomials that are attached to g’s direct predecessors. For each assigned
input gate g ∈ {n+1, . . . , n+ r} we take the equation xg = bg to the system.
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Finally, we take the equation M = 0 to the system, where M is the monomial
attached to the output gate.

For a monomial M attached to some gate, let M(a1, . . . , an) denote the
number that is obtained when M is evaluated for x1 = a1, . . . , xn = an and
xn+1 = bn+1, . . . , xn+r = bn+r. An induction on the structure of C2 yields the
following.

Claim 1. If gate g in C2 has the monomial M attached, then for all a1, . . . , an ∈
N, the gate g of the circuit C2(a1, . . . , an) either computes ∅ or computes the
set {M(a1, . . . , an)}.

Next we show that the solutions of our system of monomial equations are
exactly the assignments that produce {0} at the output gate.

Claim 2. For all a1, . . . , an+r ∈ N it holds that (a1, . . . , an+r) is a solution
for our system of monomial equations if and only if C2(a1, . . . , an) = {0} and∧n+r
g=n+1 ag = bg.

Assume (a1, . . . , an+r) is a solution for our system of monomial equa-
tions. Because of the equations xg = bg it must hold that

∧n+r
g=n+1 ag = bg.

Let us show that I(C2(a1, . . . , an)) 6= ∅: Otherwise there exists a ∩-gate
g with direct predecessors g1 and g2 such that I(g1) 6= ∅, I(g2) 6= ∅, and
I(g1) 6= I(g2). Let M , M1, and M2 be the monomials attached to g, g1,
and g2, respectively. By Claim 1, I(g1) = {M1(a1, . . . , an)} and I(g2) =
{M2(a1, . . . , an)}. The equation M1 = M2 appears in our system of mono-
mial equations and hence for the assignment x1 = a1, . . . , xn+r = an+r, the
value of M1 equals the value of M2. Together with

∧n+r
g=n+1 ag = bg this shows

M1(a1, . . . , an) = M2(a1, . . . , an) and hence I(g1) = I(g2), which is a contra-
diction. This shows I(C2(a1, . . . , an)) 6= ∅. Now let M denote the monomial
attached to the output gate and recall that the equation M = 0 appears in
our system of monomial equations. Together with

∧n+r
g=n+1 ag = bg this implies

M(a1, . . . , an) = 0. By Claim 1, I(C2(a1, . . . , an)) = {M(a1, . . . , an)} = {0}.
Conversely, assume I(C2(a1, . . . , an)) = {0} and

∧n+r
g=n+1 ag = bg. We

show that x1 = a1, . . ., xn = an, xn+1 = bn+1, . . ., xn+r = bn+r is a solution
for our system of monomial equations. In the circuit C2(a1, . . . , an), each
∩-gate g computes a nonempty set. So if g1 and g2 are the predecessors
of g, then I(g) = I(g1) = I(g2). Let M , M1, and M2 be the monomi-
als attached to g, g1, and g2, respectively. From Claim 1 it follows that
M1(a1, . . . , an) = M2(a1, . . . , an). So all equations of the form M1 = M2 are
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satisfied. The additional equations of the form xn+i = bn+i are also satisfied.
From I(C2(a1, . . . , an)) = {0} and Claim 1 it follows that M(a1, . . . , an) = 0
where M is the monomial attached to C2’s output gate. This shows that
all equations of our system are satisfied by the solution (a1, . . . , an+r). This
proves Claim 2.

Our system of monomial equations can be formally written as

m∧
i=1

(
n′∏
j=1

x
ai,j
j = cdii ·

n′∏
j=1

x
bi,j
j ), (16)

where m = 1 + r + (number of ∩-gates), n′ = n + r, ai,j, bi,j, ci ∈ N,
and di = 1. The factors cdii are used to express the right-hand side of
the equations xg = bg and M = 0. Define A = (ai,j) ∈ Nm×n′ , B =
(bi,j) ∈ Nm×n′ , C = (c1, . . . , cm) ∈ Nm, D = (d1, . . . , dm) ∈ Nm, and
k = 2|C0|. Since the variables ai,j and bi,j describe exponents in monomi-
als attached to gates in C2, they are less than or equal to k. Moreover,
ci ≤ k, since these variables are 0 or they describe labels of assigned in-
put gates in C2, which are also labels of assigned input gates in C0. Hence
|A|∞, |B|∞, |C|∞, |D|∞ ≤ k. Moreover, |{p | p is prime factor of c1 · · · cm}| ≤
k, since {p | p is prime factor of c1 · · · cm} is a subset of

{p | p is prime factor of the label of an assigned input in C0}.

By (13), C2(y1, . . . , yn) = {0} and from Claim 2 it follows that y = (y1, . . . ,
yn′) := (y1, . . . , yn, bn+1, . . . , bn+r) is a solution for our system of mono-

mial equations, i.e.,
∧m
i=1(
∏n′

j=1 y
ai,j
j = cdii ·

∏n′

j=1 y
bi,j
j ). From Corollary 5

it follows that there exists a solution z′ = (z1, . . . , zn′) ∈ Nn′ such that

|z′|∞ ≤ 2(32k2)13n
′4

. Let z = (z1, . . . , zn) and observe that

|z|∞ ≤ |z′|∞ ≤ 2(32k2)13n
′4

≤ 2(32(22|C0|))13|C0|
4

≤ 2291·|C0|
5

. (17)

By Claim 2, C2(z1, . . . , zn) = {0}. By (14), C2(z1, . . . , zn) ⊆ C0 = (z1, . . . , zn)
and hence 0 ∈ C0(z1, . . . , zn).

Theorem 2. SCN(∪,∩,×) ∈ PSPACE.

Proof. Let C be a {∪,∩,×}-circuit with n unassigned input gates. It
suffices to decide whether or not (C, 0) ∈ SCN(∪,∩,×), since for every b ∈

26



N it holds that (C, b) ∈ SCN(∪,∩,×) if and only if ((C ∩ {b}) × 0, 0) ∈
SCN(∪,∩,×). Assume (C, 0) ∈ SCN(∪,∩,×), i.e., there exist y1, . . . , yn ∈ N
such that 0 ∈ C(y1, . . . , yn). By Lemma 3, there exists z = (z1, . . . , zn) ∈ Nn

such that 0 ∈ C(z1, . . . , zn) and |z|∞ ≤ 2291·|C|
5

.
Let P = {p1, . . . , pl} be the set of prime factors of the labels of the

assigned inputs. For x ∈ N+ let π(x) be the number obtained from x, if one
removes all prime factors that are not in P , and let π(0) = 0. An induction
on the structure of C shows the following.

Claim 3. Let x1, . . . , xn ∈ N, I(g) the set computed by gate g of the circuit
C(x1, . . . , xn), and I ′(g) the set computed by gate g of the circuit C(π(x1), . . . ,
π(xn)). Then it holds that π(I(g)) ⊆ I ′(g).

Let z′ = (z′1, . . . , z
′
n) with z′i = π(zi). By Claim 3, we have 0 ∈ C(z′1, . . . , z

′
n)

and |z′|∞ ≤ |z|∞ ≤ 2291·|C|
5

. Hence z′1, . . . , z
′
n ∈ S := {0}∪{pe11 · · · p

el
l | e1, . . . ,

el ≤ 291·|C|5}. So each positive z′i can be described by a vector (ei,1, . . . , ei,l),
which has polynomial size in |C|. This yields the following nondeterministic
algorithm, which decides whether (C, 0) ∈ SCN(∪,∩,×).

• determine the set P = {p1, . . . , pl} of prime factors of the labels of the
assigned inputs

• nondeterministically choose z′1, . . . , z
′
n ∈ S, where positive z′i are repre-

sented by vectors (ei,1, . . . , ei,l)

• build the circuit C ′ = C(z′1, . . . , z
′
n), where each number z′1, . . . , z

′
n is

generated by a small {×}-circuit using square and multiply (note that
these numbers can have exponential size)

• if (C ′, 0) ∈ MCN(∪,∩,×), then accept, otherwise reject

It is known that MCN(∪,∩,×) ∈ PSPACE [25]. So our algorithm shows
SCN(∪,∩,×) ∈ PSPACE.

It is not clear how to turn the upper bound SCN(∪,∩,×) ∈ PSPACE given
in Theorem 2 into an upper bound for CSPc({N};∪,∩,×). The reason is
that with CSPs we can formulate queries such as “there exists an assignment
such that two expressions generate the same set”. We do not know how to
formulate this with circuits.
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From Table 1 we can recover some interesting open questions. In partic-
ular, we would like to improve the gap between the lower and upper bounds
for CSPc({N};O), where O contains ∪ and exactly one arithmetic operation
(+ or ×).

4. CSPs over first-order expansions of Skolem Arithmetic

We now commence our exploration of the complexity of CSPs generated
from the simplest expansions of (N;×). Abandoning our set-wise definitions,
we henceforth use × to refer to the syntactic multiplication of Skolem Arith-
metic (which may additionally carry semantic content). By syntactic, we
mean it belongs to the signature (language) of Skolem Arithmetic. When we
wish to refer to multiplication in a purely semantic way, we prefer the dot no-
tation ·s or

∏
. We will consider × as a ternary relation rather than a binary

function. This would only affect our complexity-theoretic results up to a
quadratic factor, since the functional and relational notations are equivalent
under ×(x, y) = z (prefix functional) iff ∃z × (x, y, z) (prefix relational). We
use the prefix variant here to avoid ambiguity, in our exposition we always
favour infix. The technical advantage in using the relational form can be
exemplified by our argument in the upcoming Lemma 4, in which we want to
take the atomic constraints from the instance. In the functional formulation
these may have nested applications of the function operator, and turning
this to an equivalent relational formulation adds potentially quadratically
many constraints. We will never use syntactic × in a non-standard way, i.e.
holding on a triple of integers for which it does not already hold in natural
arithmetic.

Proposition 11. Let Γ be a finite signature reduct of (N;×, 1, 2, . . .). Then
CSP(Γ) is in NP.

Proof. It is known that Skolem Arithmetic admits quantifier-elimination
and that the existential theory in this language is in NP [46]. The result
follows when one considers that we can substitute quantifier-free definitions
for each among our finite set of first-order definable relations.

Upper bounds. We continue with polynomial upper bounds. Note that
constants are no longer assumed to necessarily exist in our structures (in
contrast to the situation in Proposition 11).
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Lemma 4. Let U ⊆ N be non-empty and U∩{0, 1} = ∅. Then CSP(N;×, U)
is polynomial-time reducible to CSP(N+;×, U).

Proof. Let φ be an arbitrary instance of CSP(N;×, U) involving a set of
atoms C on variables V . We construct a set V ′ ⊆ V incrementally by
repeating the following three steps until a fixed point is reached.

• if U(v) ∈ C, then V ′ := V ′ ∪ {v},

• if (x× y = z) ∈ C and z ∈ V ′, then V ′ := V ′ ∪ {x, y}, and

• if (x× y = z) ∈ C and x, y ∈ V ′, then V ′ := V ′ ∪ {z}.

Note that if v ∈ V ′, then any solution to φ must satisfy s(v) 6= 0. Let
V0 = V \ V ′. Construct φ′, an instance for CSP(N;×, U, 0), with atoms C ′

and variables V ′ by replacing each variable v ∈ V0 with the constant 0. Note
the following:

1. if U(0) ∈ C ′, then the variable that was replaced by 0 is a member of
V ′ so this case cannot occur.

2. if (0× y = z) ∈ C ′ or (x× 0 = z) ∈ C ′, then the variable replaced by 0
is not a member of V ′ while z is a member of V ′. This situation cannot
occur.

3. if (x × y = 0) ∈ C ′, then note that x, y ∈ V ′ so the variable that
was replaced with 0 also was a member of V ′. Hence, this case cannot
occur.

Thus, 0 can only appear in three cases: (x × 0 = 0), (0 × x = 0), and
(0 × 0 = 0). Let φ′′ be an instance for CSP(N+;×, U) built from atoms C ′′

and variables V ′ where C ′′ is obtained from C ′ by removing these kinds of
constraints. Note that (N;×, U, 0) |= φ′ iff (N;×, U) |= φ′′. Also note that if
φ′′ has a solution, then it has a solution s : V ′ → N+. This implies that φ′ is
satisfiable on (N;×, U) iff it is satisfiable on (N+;×, U)

The transformation above can obviously be carried out in polynomial
time. In order to prove the lemma, it remains to show that (N;×, U) |= φ iff
(N;×, U, 0) |= φ′.

Assume first that φ has a solution s : V → N. Since C ′′ ⊆ C, it follows
immediately that s is a solution to φ′′, too.

Assume instead that φ′′ has a solution s′ : V ′ → N+. We claim that
the function s : V → N defined by s(v) = s′(v) for v ∈ V ′ and s(v) = 0
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otherwise is a solution to φ. If the variable v ∈ V appears in an atom U(v),
then v ∈ V ′ and U(v) is satisfied by s. Consider an atom (x × y = z) ∈ C.
If {x, y, z} ⊆ V ′, then s satisfies the atom since (x × y = z) ∈ C ′′. Assume
x 6∈ V ′. Then z 6∈ V ′, s(x) = s(z) = 0 and the atom is satisfied by s. The
same reasoning applies when y 6∈ V ′. Assume finally that z 6∈ V ′. Then at
least one of x, y 6∈ V ′ so s(x) = 0 and/or s(y) = 0. Combining this with the
fact that s(z) = 0 implies that the atom is satisfied by s.

We now borrow the following slight simplification of Lemma 6 from [49].

Lemma 5 (Scalability [49]). Let Γ be a finite signature constraint lan-
guage with domain R, whose relations are quantifier-free definable in +,≤
and <, such that the following holds.

• Every satisfiable instance of CSP(Γ) is satisfied by some rational point.

• For each relation R ∈ Γ , it holds that if x := (x1, x2, . . . , xk) ∈ R, then
(ax1, ax2, . . . , axk) ∈ R for all a ∈ {y : y ∈ R, y ≥ 1}.

• CSP(Γ) is in P.

Then CSP(∆) is in P, where ∆ is obtained from Γ by substituting the domain
R by Z.

Lemma 6. Arbitrarily choose m > 1 and U ⊆ N+ such that {m,m2, m3, . . .} ⊆
U . Then, CSP(N+;×, U) is in P.

Proof. For natural numbers x, define `(x) to be the number of factors of
m in x, i.e. the number of times one may successively divide x by m without
leaving a remainder. Now define h(x) = m`(x). Let D = {1,m,m2,m3, . . . }.
The function h is a homomorphism from (N+;×, U) to (D;×, U∩D). Clearly,
h(U) = U ∩D. Suppose a · b = c where a, b, c ∈ N+. We see that

h(a) · h(b) = m`(a) ·m`(b) = m`(a)+`(b) = m`(a·b) = m`(c) = h(c).

Define h′(1) = 0 and h′(mk) = k. Note that h′ is a homomorphism from
(D;×, U ∩D) to (N; +, x ≥ 1). We know that CSP(R; +, x ≥ 0, x ≥ 1) is in
P (via linear programming) and this implies tractability of CSP(N; +, x ≥ 1)
through CSP(Z; +, x ≥ 1, x ≥ 0) by Lemma 5.
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Proposition 12. Arbitrarily choose m > 1 and U ⊆ N such that {m,m2,m3

, . . .} ⊆ U . Then, CSP(N;×, U) is in P.

Proof. Combine Lemma 4 with Lemma 6.

Cores. We say that an integer m > 1 has a degree-one factor p if and only
if p is a prime such that p|m and p2 6 | m. Let Divm be the set of divisors of
m, pp-definable in (N;×,m) by ∃y x×y = m. We can pp-define the relation
{1} in (Divm;×,m) since x = 1 iff x× x = x (recalling 0 /∈ Divm). It follows
that {1,m} are contained in the core of (Divm;×,m).

Lemma 7. Let m > 1 be an integer that has a degree-one factor p. Then
(Divm;×,m) has a two-element core.

Proof. Consider the function e : Divm → Divm uniquely defined by e(1) =
1, e(p) = m, e(p1) = · · · = e(pk) = 1 (i.e. all the other prime divisors
map to 1), and the rule e(x · x′) = e(x) · e(x′). We claim that e is an
endomorphism of (Div(m);×,m). Clearly, e(m) = m. Arbitrarily choose a
tuple (x, y, z) ∈ (x × y = z). Let x = xα1

1 · . . . · xαa
a and y = yβ11 · . . . · y

βb
b

be prime factorisations. Note that at most one of x1, . . . , xa, y1, . . . , yb can
equal p and, if so, the corresponding exponent must equal one. If none of
the factors equal p, then e(x) = e(y) = e(z) = 1 and e(x) × e(y) = e(z).
Otherwise, assume without loss of generality that x1 = p. Then we have
e(x) = e(z) = m and e(y) = 1. Once again e(x)×e(y) = e(z) and e is indeed
an endomorphism of (Divm;×,m). It follows that ({1,m};×,m) is the core
of (Divm;×,m).

Lemma 8. Let m be an integer that does not have a degree-one factor. Then
(Divm;×,m) does not have a two-element core.

Proof. Assume m has the prime factorization m = pα1
1 · . . . · p

αk
k and note

that α1, . . . , αk > 1. Assume e : Divm → {a, b} is an endomorphism to a two-
element core, i.e. the range of e is {1,m}. Since multiplication is determined
by the action of the primes, we can see that for one prime p ∈ {p1, . . . , pk}
we must have e(p) = m. Consider p×p = p2. If we apply the endomorphism
e to this tuple, we end up with e(p) × e(p) = e(p)2 which is not possible.
Hence, e does not exist and (Divm;×,m) does not admit a two-element core.

Lower bounds. We now move to lower bounds of NP-completeness.
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Proposition 13. CSP(N; 6=,×) is NP-complete.

Proof. NP membership follows from Proposition 11. For NP-hardness,
we will encode the CSP of a certain Boolean constraint language, i.e. with
domain {0, 1}, with two relations: 6= and R1 := {0, 1}3\{(1, 1, 1)}. This CSP
is NP-hard because 6= omits constant and semilattice polymorphisms and R1

omits majority and minority polymorphisms (an algebraic reformulation of
Schaefer’s Theorem [9] in the spirit of [35]).

To encode our Boolean CSP, ensure all variables v satisfy v × v = v,
which enforces the domain {0, 1}. Consider 0 to be false and 1 to be true. 0
is pp-definable by x× x = x ∧ ∃y y 6= x ∧ x× y = x. For {0, 1}3 \ {(1, 1, 1)}
take R1(x, y, z) to be ∃w x × y = w ∧ w × z = 0; and for 6= take 6=. The
reduction may now be done by local substitution and the result follows.

An operation t : Dk → D is a weak near-unanimity operation if t satisfies

t(x, . . . , x) = x, and
t(y, x, . . . , x) = t(x, y, x, . . . , x) = · · · = t(x, . . . , x, y).

Theorem 3 ([50]). Let Γ be a constraint language over a finite set D. If
Γ is a core and does not have a weak near-unanimity polymorphism, then
CSP(Γ) is NP-hard.

Lemma 9. Arbitrarily choose an m > 1 such that m 6= kn for all k, n > 1
together with a finite set {1,m} ⊆ S ⊆ N \ {0}. If (S;×,m) is a core, then
CSP(S;×,m) is NP-hard.

Proof. Assume (S;×,m) admits a weak near-unanimity operation t : Sk →
S. The relation

∏k
i=1 xi = xk+1 is pp-definable in (S;×,m) and so is the

relation

R = {(x1, . . . , xk) ∈ Sk |
k∏
i=1

xi = m}.

The relation R contains the tuples

(m, 1, . . . , 1)
(1,m, 1, . . . , 1)

...
(1, . . . , 1,m).
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Applying t component-wise (i.e. vertically) to these tuples yields a tuple
(a, . . . , a) for some a ∈ D. However, R does not contain a tuple (a, . . . , a)
for any a ∈ D since this would imply that m = ak for some a, k > 1. We
conclude that CSP(S;×,m) is NP-hard by Theorem 3.

Note that the proof of this last lemma is made easier by our assumption that
× is a relation and not a function. Were it a function we would need to prove
the domain S is closed under it.

Theorem 4. CSP(N;×,m) is NP-hard for every integer m > 1.

Proof. If m = kn for some k, n > 1, then we can pp-define the constant
relation {k} since x = k ⇔

∏k
i=1 x = m. Hence, we assume without loss of

generality that m 6= kn for all k, n > 1.
We further know that Divm is pp-definable in (N;×,m), i.e. there is

polynomial time reduction from (Divm;×,m) to (N;×,m). The core of
(Divm;×,m) is some (S;×,m), where {1,m} ⊆ S ⊆ Divm and the result
follows from Lemma 9.

Theorem 5. Let U be any subset of N \ {0, 1} so that every x ∈ U has a
degree-one factor. Then CSP(N;×, U) is NP-hard.

Proof. From Lemma 7, for each x ∈ U , the core of (N;×, x) is the same
(up to isomorphism). Fix some m ∈ U . We claim there is a polynomial
time reduction from CSP(Divm;×,m) to CSP(N;×, U), whereupon the result
follows from Theorem 4.

To see the claim, take an instance φ of CSP(Divm;×,m) and build an
instance ψ of CSP(N;×, U) by adding an additional variable vm, now substi-
tuting instances of m for vm, and adding the constraint U(vm). Correctness
of the reduction is easy to see and the result follows.

For x ∈ N \ {0, 1}, define its minimal exponent, min-exp(x), to be the
smallest j such that x has a factor of pj, for some prime p, but not a factor
of pj+1. Thus an integer with a degree-one factor has minimal exponent 1.
Call x ∈ N\{0, 1} square-free if it omits all repeated prime factors. For a set
U ⊆ N \ {0, 1}, define its basis, basis(U) to be the set {min-exp(x) : x ∈ U}.

Lemma 10. Let U ⊆ N \ {0, 1}, so that basis(U) is finite and basis(U) 6=
{1}. There is some set X pp-definable in (N;×, U) so that basis(X) = {1}.
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Proof. Let r = max(basis(U)) and take an element x that witnesses this,
of the form qr · pa11 · · · p

ak
k , where p1, . . . , pk are prime and each is coprime to

q (which is square-free), and where a1, . . . , ak > r. Set

ξ(y) := ∃z, x1, . . . , xk U(z) ∧ yr · xa11 · · ·x
ak
k = z.

We claim that ξ defines a set of integers X so that basis(X) has the desired
property. The non-emptiness is clear since 1 ∈ basis(X) by construction.

Firstly, we will by contradiction argue that 0 /∈ basis(X). Assume 0 ∈
basis(X). This implies that 1 ∈ X. Hence, ∃z, x1, ..., xk U(z)∧1r·xa11 · · ·x

ak
k =

z, so xa11 · · ·x
ak
k ∈ U . It follows that d = min{a1, . . . , ak} ∈ basis(U). Now,

a1, . . . , ak > r so d > r. This contradicts the fact that r = max(basis(U)).
We will now argue by contradiction that 1 < s /∈ basis(X). Assume

s ∈ basis(X). Then there exists a t = qs ·pa11 · · · p
ak
k ∈ X where s < a1, . . . , ak.

Since t ∈ X, we know that ∃z, x1, . . . , xk U(z) ∧ ts · xa11 · · ·x
ak
k = z. Let e =

tr · xa11 · · ·x
ak
k ∈ U as above. Let’s expand t: e = (qs · pa11 · · · p

ak
k )r · xa11 · · ·x

ak
k .

We see that min-exp(e) > r which contradicts the choice of r.

Example 1. We provide an example of the construction of the previous
lemma in vivo. Let U := {p2, p2q3, p4q4r8 : p, q, r primes}, so that basis(U) =
{2, 4}. Then ξ(y) := ∃z, x U(z) ∧ y4 · x8 = z. We can now deduce X :=
{p, pq2 : p, q primes} and basis(X) = {1}.

Theorem 6. Let U ⊆ N\{0, 1} be so that basis(U) is finite. Then CSP(N;×, U)
is NP-complete.

Proof. Membership of NP follows from Proposition 11. We use the con-
struction of the previous lemma to pp-define X with basis(X) = {1}. This
allows us to polynomially reduce CSP(N;×, X) to CSP(N;×, U) by local
substitution. NP-hardness for the former comes from Theorem 5 and the
result follows.

5. Final remarks

In this paper we have provided a solution to the major open question
from [1] as well as begun the investigation of CSPs associated with Skolem
Arithmetic. However, the thrust of our work must be considered exploratory
and there are two major directions in which more work is necessary.
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A perfunctory glance at the results of Section 3 shows that some of our
bounds are not tight, and it would be great to see some natural CSPs in
this region manifesting complexities such as PSPACE-complete. It is infor-
mative to compare our Table 1 with Table 1 in [1]. Our weird formulation
of these CSPs belies the fact there are more natural versions where, for
O ⊆ {−,∩,∪,+,×}, we ask about CSP(P(N);O), where P(N) is the power
set of N, rather than the somewhat esoteric CSP({N};O). Indeed, if we
replace complement “−” by set difference “\”, these questions could also be
phrased for just the finite sets of P(N) (see [51]).

Meanwhile, the results of Section 4 need to be extended to a classification
of complexity for all CSP(Γ), where Γ is a reduct of Skolem Arithmetic (N;×).
We anticipate the first stage is to complete the classification for CSP(N;×, U)
where U is first-order definable in (N;×).
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