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Characterizing Feshbach resonances in ultracold scattering calculations
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We describe procedures for converging on and characterizing zero-energy Feshbach resonances that appear
in scattering lengths for ultracold atomic and molecular collisions as a function of an external field. The elastic
procedure is appropriate for purely elastic scattering, where the scattering length is real and displays a true pole.
The regularized scattering length procedure is appropriate when there is weak background inelasticity, so that the
scattering length is complex and displays an oscillation rather than a pole, but the resonant scattering length ares

is close to real. The fully complex procedure is appropriate when there is substantial background inelasticity and
the real and imaginary parts of ares are required. We demonstrate these procedures for scattering of ultracold 85Rb
in various initial states. All of them can converge on and provide full characterization of resonances, from initial
guesses many thousands of widths away, using scattering calculations at only about ten values of the external field.
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I. INTRODUCTION

Zero-energy Feshbach resonances are formed when a bound
or quasibound state is tuned across a threshold by varying
an applied field, most commonly a magnetic field. They are
ubiquitous in studies of ultracold physics [1], where they can be
used to tune scattering lengths for many applications, including
studies of equations of state [2], solitons [3], and Efimov
physics [4,5]. They are also used for magnetoassociation to
form ultracold molecules [6,7].

Low-energy scattering may be described by the energy-
dependent scattering length a(E,B) = −k−1 tan δ, where E =
h̄2k2/2μ is the collision energy, μ is the reduced mass, and δ is
the scattering phase shift. This is constant as E → 0, where it
reduces to the usual zero-energy scattering length. At constant
energy it is convenient to write a(E,B) as simply a(B). In
the simplest case of an isolated narrow resonance without
inelastic scattering, a(B) is real and shows a simple pole as a
function of applied field B. If the background scattering length
abg(B) is constant across the width of the resonance, the pole
is described by [8]

a(B) = abg

(
1 − �

B − Bres

)
, (1)

where Bres is the position of the resonance, and the width
of the resonance is characterized by �. The parameters are
generally weakly dependent on energy in the threshold region.
Obtaining them from quantum scattering calculations based
on interaction potentials is an important problem in ultracold
collision physics.

It is possible to locate both the pole and the zero of the
scattering length and converge on them numerically using
standard root-finding algorithms [9,10]. In the case where
abg(B) is constant, � is the separation between the pole and
the zero. For resonances that are not isolated and narrow,
the behavior of the scattering length is more complicated
than Eq. (1). Nevertheless, Eq. (1) always holds in some
region close to the pole and the parameters may be defined
in terms of this local behavior. When this is done, abg may not
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describe a(B) far from the pole and � may not be precisely
the separation between the pole and a zero. Such effects are
particularly prominent when there are numerous overlapping
resonances [11] or when abg is small so that the zero is
artificially far from the pole [12].

If inelastic decay is present then the scattering length
is complex [13] and its behavior is considerably more
complicated. It has no clearly defined zero crossing and
it no longer shows a pole but instead oscillates with a
finite amplitude [14,15]. This may render decayed resonances
unsuitable for tuning scattering lengths to large values [16].
In addition, inelastic rates usually peak sharply near reso-
nance [17] and the resulting losses may make the resonances
unsuitable for purposes such as magnetoassociation [18]. In
other cases, Feshbach resonances can actually reduce inelastic
cross sections, which might aid sympathetic cooling [15,19].

In the inelastic case, there is no efficient procedure available
to locate and characterize Feshbach resonances. It is in
principle possible to obtain resonance parameters by explicit
least-squares fitting of S-matrix elements from quantum
scattering calculations to appropriate functional forms [20].
It is also possible to extract an overall width by fitting to the
S-matrix eigenphase sum as a function of energy [20]. This
approach has been used for zero-energy Feshbach resonances
as a function of magnetic field [17,19], but it requires large
numbers of scattering calculations and substantial manual
labor. Better methods are clearly needed.

In this paper we describe efficient, automatable procedures
for locating and characterizing zero-energy Feshbach reso-
nances, both in the purely elastic case and in the presence of
inelastic scattering. Our algorithms are built on an approach
for resonances in purely elastic scattering that we have used
previously [12,21] but have not described in detail. This
converges towards a pole using an iterative three-point fit
to calculated scattering lengths. We begin by describing an
improved algorithm for this case that converges stably on
widths and background scattering lengths as well as pole
positions. We then extend the approach to handle the important
case when there is inelastic scattering but the inelastic loss
away from resonance is small. Finally, we deal with the case
where there is strong background inelastic scattering. All
the methods have been implemented in the general-purpose
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quantum scattering package MOLSCAT [22] and are illus-
trated here with examples from calculations on collisions of
85Rb [23].

II. ELASTIC SCATTERING

We first describe a reliable general method for converging
on and characterizing a resonance in the case of purely elastic
scattering. Early versions of this method have been employed
in previous work [12,21], but here we refine it and provide a
complete description. We refer to the method described in this
section as the elastic procedure.

The elastic procedure uses three calculated scattering
lengths a1, a2, and a3 at fields B1, B2, and B3, respectively,
close to the resonance. Solving three simultaneous equations
allows us to extract the three parameters from Eq. (1). Defining

ρ =
(

B3 − B1

B2 − B1

)(
a2 − a1

a3 − a1

)
, (2)

we obtain

Bres = B3 − B2ρ

1 − ρ
, (3)

abg� = (B3 − Bres)(B1 − Bres)(a3 − a1)

B3 − B1
, (4)

and finally

abg = a1 + abg�

B1 − Bres
. (5)

In order to iterate and converge towards the pole we must
not only choose a point for a new scattering calculation but
also choose which of the previous three results to discard.
The obvious choice for a new point is the estimated Bres,
but this causes points to pile up close to the pole, and
Eqs. (2)–(5) are numerically unstable when two points are
very close together. We therefore choose the new point with
the aim that the final three points should include one point very
close to the pole, one point between tmin� and 2tmin� from the
pole, and one point between tmax� and 2tmax� from the pole
on the opposite side. These three points can be thought of as
allowing characterization of Bres, abg�, and abg, respectively.
The tolerances tmin and tmax are positive, with tmin < tmax. The
values tmin = 0.1 and tmax = 1.0 are almost always appropriate
for isolated resonances; we use these values throughout this
paper, but different choices may be appropriate in other cases.
We terminate the iteration when the estimated value of Bres is
within a small amount ε of the closest of the three points and
the other two points satisfy the criteria above. The logic we
have implemented to select which point to discard and where
to place the next point is shown in Fig. 1.

We need three fields in the vicinity of the resonance to
start the procedure. We choose to use equally spaced points
separated by a small amount δB; in this work we choose this
value to be 0.2 G. The algorithm will, of course, perform best
when one of the initial points is close to the pole, but in this
paper we choose points such that the pole is approximately
at the midpoint of two of them to provide the strictest test
of the procedure. In practice, the initial estimate of the pole
position could come from a number of different sources such

as scattering calculations on a grid or calculations of the bound
states of the system; we usually use the program FIELD [24],
which can directly calculate fields at which there is a bound
state exactly at threshold.

To demonstrate the convergence of this method, we apply it
to a resonance near 171 G in collisions of two 85Rb atoms
in their lowest (F = 2,MF = 2) state. Scattering lengths
are calculated using the MOLSCAT package, as described by
Blackley et al. [23], at energy E = 1 nK × kB. We choose ε =
10−9 G, which is limited by noise in our scattering calculations.
Table I summarizes the convergence towards the resonance,
with the parameters estimated by Eqs. (2)–(5) at each iteration;
Fig. 2 provides a graphical representation of the convergence
process. This resonance is narrow, with � = 2.3 × 10−5 G,
yet our method successfully converges rapidly on the pole
even though the closest of the three initial points is over 4000
widths away. The eighth and ninth points are actually placed
away from the pole by the algorithm to satisfy the requirements
associated with tmin and tmax before the final point is placed
extremely close to the pole. The entire procedure needs only
ten scattering calculations and requires no human intervention
after the initial set of points; a corresponding manual search
and subsequent least-squares fit would have needed many more
scattering calculations and considerable human input.

If the pole position Bres is all that is required, and � and
abg are unimportant, then the fastest convergence is often
achieved by setting tmin = tmax = 0. With this choice, the
present algorithm reduces to that used in previous work from
our group [12,21]. The equations for � and abg then become
unstable as convergence proceeds and the points cluster close
to the pole, but Bres usually converges smoothly.

All the algorithms described here make the approximation
that abg(B) is constant across the range of points. This
approximation improves as the convergence proceeds and the
range of points becomes smaller. Nevertheless, it is the limiting
factor that determines the distance from which convergence
can be achieved. At least one of the initial points must give
a scattering length that is affected by the resonance by more
than the variation of abg(B) across the range of the points. For
very narrow resonances, computational noise in the scattering
length can also affect convergence.

III. INELASTIC SCATTERING

In the presence of inelastic loss, the diagonal S-matrix
element in the incoming channel S00 = exp(2iδ) has mag-
nitude less than 1. The phase shift δ is thus complex, and so is
the scattering length a = α − iβ, where β � 0 [13]. The real
and imaginary parts of the scattering length characterize the
elastic and inelastic cross sections, respectively. The energy-
dependent scattering length may be written exactly as [14]

a(E,B) = − tan δ(E,B)

k
= 1

ik

(
1 − S00(E,B)

1 + S00(E,B)

)
. (6)

Around a resonance, the scattering length at constant energy
describes a circle in the complex plane [14], beginning and
ending at the background scattering length abg,

a(B) = abg + ares

2(B − Bres)/�inel
B + i

. (7)
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Input fields B1, B2, B3 and
corresponding a1, a2, a3

Calculate dn = Bres−Bn
Δ

Sort 3 points and relabel
min, mid, max such that
|dmin| < |dmid| < |dmax|

tmax <
|dmax| < 2tmax

Discard point corre-
sponding to dmax

tmin < |dmid| < 2tmin

dmaxdmid < 0

|dminΔ| > ε Stop

Discard point cor-
responding to dmid

Discard point cor-
responding to dmin

Relabel remaining 2
points as min, max such

that |dmin| < |dmax|

yes

no

yes

no

no

yes

yes

no

|dmax| > tmax
New point at

B = Bres ± 1.5tmaxΔ

|dmin| > tmin
New point at

B = Bres ± 1.5tminΔ

New point at B = Bres

Return to start

no

yes

no

yes

FIG. 1. Flowchart representation of the algorithm to select which point to discard and where to place the next point.

abg = αbg − iβbg is now complex and ares = αres − iβres

is a resonant scattering length that describes the size and
direction of the circle. In addition, �inel

B is a decay width for the
quasibound state that causes the resonance; it is a real quantity,
with dimensions of field whose sign depends on the magnetic
moment of the state relative to the threshold. It is useful to

identify

αres�
inel
B = −2αbg� (8)

to allow a connection back to Eq. (1), although � no longer
has a simple interpretation as the distance between the pole
and zero in a.
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TABLE I. Convergence towards the resonance near Bref = 171.561 G for two 85Rb atoms in their F = 2,MF = 2 state. Units are G and
the Bohr radius a0.

Resonance near Bref = 171.561 G

Estimated values

n Bn − Bref (Bn − Bres)/� a Bres − Bref � abg abg�

1 −1.00227 × 10−1 4.24 × 103 −438.67
2 2.99773 × 10−1 −1.27 × 104 −438.76
3 9.97730 × 10−2 −4.24 × 103 −438.85 3.40045 × 10−2 −1.8427 × 10−5 −438.73 8.0846 × 10−3

4 3.40045 × 10−2 −1.45 × 103 −439.06 3.68297 × 10−3 −2.0840 × 10−5 −438.75 9.1437 × 10−3

5 3.68297 × 10−3 −166 −441.40 −3.79856 × 10−4 −2.4633 × 10−5 −438.74 1.0807 × 10−2

6 −3.79856 × 10−4 6.49 −371.13 −2.26739 × 10−4 −2.3598 × 10−5 −438.75 1.0354 × 10−2

7 −2.26739 × 10−4 −0.00989 −44657 −2.26973 × 10−4 −2.3563 × 10−5 −438.76 1.0339 × 10−2

8 −2.23438 × 10−4 −0.150 −3364.4 −2.26973 × 10−4 −2.3568 × 10−5 −438.77 1.0341 × 10−2

9 −2.62324 × 10−4 1.50 −146.31 −2.26973 × 10−4 −2.3565 × 10−5 −438.82 1.0341 × 10−2

10 −2.26973 × 10−4 4.24 × 10−5 1.631 × 107 −2.26972 × 10−4 −2.3564 × 10−5 −438.76 1.0339 × 10−2

Around a decayed resonance, both α and β show an
oscillation, determined by ares, rather than a pole [14,15,19].
This has implications for the observation and use of such
resonances [16–18]. In the very common case |ares| � βbg,
β(B) displays a peak of magnitude ares. However, ares is
inversely proportional to �inel

B . Somewhat counterintuitively,
therefore, weaker inelastic decay of the quasibound state
responsible for the resonance causes a higher peak in β(B)
(and hence in the inelastic rate) around Bres.

A. Weak background inelasticity

We first consider the important case where the background
inelasticity can be neglected, so we approximate βbg = 0.
Under this approximation ares is real [19], though a(B) itself
remains complex near resonance. There are thus only four
parameters to extract. Even so, Eq. (7) does not allow us to
extract parameters as easily as we could from Eq. (1). However,
this can be overcome by defining a regularized scattering

FIG. 2. Convergence towards the elastic resonance near 171 G for
two 85Rb atoms in their F = 2,MF = 2 state. Note the logarithmic
vertical scale. The closed circles show |a| from scattering calculations
at the sequence of points n produced by the elastic procedure, the
black line shows Eq. (1) with the final estimated parameters, and the
small dots show the results of scattering calculations on a grid for
comparison.

length

A = α + β2

α − αbg
(9)

= αbg − αbg�

B − Bres
, (10)

which is real and shows a simple pole just like Eq. (1). This
allows us to use Eqs. (2)–(5) with a replaced by A to extract
three of the parameters and converge on the resonance position
as before, with minimal modification of the elastic procedure.
We refer to the resulting method as the regularized scattering
length (RSL) procedure.

The final parameter ares can be estimated at each stage of
the convergence using the identity

ares = |a − abg|2
β

= β + (α − αbg)2

β
. (11)

In the important case where �inel
B is very small, the peak in

β is very narrow. Estimating ares from the maximum value
of β can thus be very difficult, but Eq. (11) provides a
useful estimate as soon as both α and β differ significantly
from their background values. Equations (9) and (11) each
needs an estimate of αbg. This can be obtained iteratively,
but we find that in practice it is adequate to take it from
the previous or current iteration, respectively. To calculate
A at the first iteration we use the average of a1 and a2 as an
initial approximation for abg. Equation (11) can also be used
separately from the convergence algorithm employed here, for
example, to estimate ares from scattering calculations on a grid
that is not fine enough to resolve the peak in β.

Table II summarizes the convergence towards two reso-
nances in collisions of a pair of 85Rb atoms in their F = 2,

MF = −2 excited state, using the RSL procedure. These
results are also shown in Fig. 3. These collisions are weakly
inelastic away from resonances, because loss comes only from
spin-relaxation transitions driven by the weak dipole-dipole
interaction. We use a slightly larger value for the convergence
criterion than in the previous section, ε = 10−8 G.

The first inelastic resonance we analyze, near 215 G, shows
only weak inelastic decay, as seen from the small values
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TABLE II. Convergence towards resonances with weak background inelasticity for two 85Rb atoms in their F = 2,MF = −2 state. Units
are G and the Bohr radius a0.

Resonance near Bref = 215.084 G

Estimated values

n Bn − Bref (Bn − Bres)/� αn βn An Bres − Bref � abg ares

1 −9.96246 × 10−2 −18.0 −402.1 0.000796 −402.1
2 3.00375 × 10−1 53.9 −374.5 0.000692 −374.5
3 1.00375 × 10−1 18.0 −360.0 0.000649 −360.0 2.81284 × 10−3 5.514 × 10−3 −381.53 7.168 × 105

4 2.81284 × 10−3 0.438 489.6 0.00219 489.6 3.95129 × 10−4 5.524 × 10−3 −381.02 3.459 × 108

5 3.95129 × 10−4 0.00354 1.07 × 105 67.6 1.07 × 105 3.75429 × 10−4 5.568 × 10−3 −381.19 1.716 × 108

6 −7.97622 × 10−3 −1.50 −635.1 0.00197 −635.1 3.75433 × 10−4 5.569 × 10−3 −381.01 1.716 × 108

7 1.21083 × 10−3 0.150 2159 0.0299 2159 3.75433 × 10−4 5.569 × 10−3 −381.00 1.716 × 108

8 3.75433 × 10−4 −1.80 × 10−7 −1.32 × 107 1.70 × 108 −2.19 × 109 3.75434 × 10−4 5.569 × 10−3 −381.00 1.707 × 108

Resonance near Bref = 603.977 G

1 −9.93851 × 10−2 −531 −476.7 0.00159 −476.7 -
2 3.00615 × 10−1 1.59 × 103 −475.6 1.39 × 10−5 −475.6 -
3 1.00615 × 10−1 531 −475.0 0.000630 −475.0 1.08784 × 10−2 1.7996 × 10−4 −475.91 1.446 × 103

4 1.08784 × 10−2 54.5 −467.1 0.0954 −467.1 9.67212 × 10−4 1.8191 × 10−4 −475.82 7.991 × 102

5 9.67212 × 10−4 1.87 −246.8 76.3 −221.4 6.13682 × 10−4 1.8905 × 10−4 −475.86 7.635 × 102

6 6.13682 × 10−4 −0.00659 −483.8 762 −7.32 × 104 6.14914 × 10−4 1.8838 × 10−4 −475.82 7.621 × 102

7 5.86657 × 10−4 −0.150 −648.9 720 −3647 6.14919 × 10−4 1.8837 × 10−4 −475.81 7.621 × 102

8 6.14919 × 10−4 −2.65 × 10−5 −475.8 762 −1.84 × 107 6.14924 × 10−4 1.8838 × 10−4 −475.83 7.621 × 102

of β and negligible differences between α and A except
at the final point. The RSL procedure converges smoothly
and provides stable values of all the resonance parameters.
The fitted β(B) is shown in Fig. 3(a); it is accurate near
the center of the resonance, but deviates from the calculated
values by a small amount in the wings because the actual
background βbg is nonzero. As described above, the RSL
procedure provides an estimate ares = 1.7 × 108a0 that is
stable over the final few iterations even when β is six orders
of magnitude smaller than ares; the final calculation confirms
that these estimates of ares are remarkably accurate. For this
resonance, the elastic procedure would work well until the
last point, when it would predict a pole position some distance
away from the resonance. The elastic procedure would thus fail
to converge, and continue indefinitely, repeatedly approaching
the resonance and jumping away again.

The second resonance we analyze, near 604 G, is quite
strongly decayed. The pole in α is strongly suppressed, to the
point that α does not even cross zero. By contrast, the regu-
larized scattering length still has a pole and zero crossing as
before. The elastic procedure would fail completely anywhere
near the center of the resonance, but with the modification of
Eq. (9) we can efficiently converge to the resonance position.
The final fitted α(B) and β(B), shown in Fig. 3(b), agree
very well with the calculated values, demonstrating that the
resonance has been accurately characterized. The new fitted
value of � = 1.8 × 10−4 G is two orders of magnitude smaller
than the value reported previously [23], which was obtained
by fitting α(B) to Eq. (1) far from resonance.

B. Strong background inelasticity

Finally, we consider the case with background inelasticity
included. There are now six parameters required to character-

ize a resonance according to Eq. (7): Bres, �inel
B , and the real

and imaginary parts of abg and ares. However, each value of
a(B) has real and imaginary parts, so we again need scattering
calculations at only three fields.

We begin by locating the scattering length at the center of
the circle described by Eq. (7), ac = abg − iares/2. Starting
from the equation for a circle, (αn − αc)2 + (βn − βc)2 = R2,
it is straightforward to derive the simultaneous equations(

α2 − α1 β2 − β1

α3 − α2 β3 − β2

)(
αc

βc

)
= 1

2

(|a2|2 − |a1|2
|a3|2 − |a2|2

)
. (12)

These are solved to obtain ac and R = |an − ac| = |ares|/2.
Across the resonance, the angle θ around this circle is
described by a Breit-Wigner phase

θ

2
= θbg

2
+ arctan

(
�inel

2(Bres − B)

)
. (13)

We define the dimensionless quantity

ã(B) = tan
θ

2
= tan

(
arg[a(B) − ac]

2

)
, (14)

which has a pole analogous to Eq. (1). We evaluate ã1, ã2,
and ã3 at B1, B2, and B3 and use Eqs. (2)–(5) to obtain
parameters B̃res, �̃, and ãbg (which do not have immediate
physical interpretations). Now ãbg = tan(θbg/2) tells us where
abg lies on the circle,

abg = ac + R exp(iθbg), (15)

and therefore

ares = 2i(ac − abg). (16)
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FIG. 3. Convergence towards resonances with weak background
inelasticity for two 85Rb atoms in their F = 2,MF = −2 state:
(a) resonance near 215 G and (b) resonance near 604 G. The large
symbols show values of |α| (red closed circles) and β (blue open
circles) from scattering calculations at the sequence of points n

produced by the RSL procedure, the fitted functions are shown
as corresponding lines through the symbols, and the small dots
show the results of scattering calculations on a grid for comparison.
The black squares and line in (b) show the regularized scattering
length A.

Since a(Bres) is diametrically opposite abg on the circle,

ã(Bres) = tan

(
θbg + π

2

)
= − 1

ãbg
. (17)

We then obtain Bres from

Bres = B̃res − ãbg�̃

ã(Bres) − ãbg
= B̃res + �̃

1 + ã−2
bg

. (18)

Finally, we obtain �inel
B from one calculated scattering length

using Eq. (7).
This procedure provides an estimate of Bres and other

parameters from calculations of a(B) at a set of three points.
We iterate using the algorithm described in Sec. II, but using
the larger of �inel

B and � to constrain the separation of the
points from Bres. We refer to the resulting method as the fully
complex procedure.

To demonstrate this, we consider convergence towards a
resonance near 172 G in collisions of two 85Rb atoms in their
F = 3,MF = 2 excited state. In this case the atoms can decay
through spin-exchange collisions, which cause faster inelastic
loss away from resonance than in Sec. III A. The convergence
is summarized in Table III and shown in Fig. 4, using ε =
10−7 G. The procedure converges rapidly on the resonance
position and the final fitted functions show excellent agreement
with the calculated scattering lengths. The resonance is very
strongly decayed; |ares| is less than 5a0 and has a substantial
imaginary component. This makes the oscillations in α(B) and
β(B) somewhat asymmetric.

The fully complex procedure can also resolve the discrep-
ancy between the calculated β(B) and the fitted function far
from resonance in Fig. 3(a). Figure 5 shows the results of
the fully complex procedure in this case, and it may be seen
that excellent agreement is obtained. The converged values of
the parameters are very similar to those in Table II, with the
addition of βbg = 7.20 × 10−4a0 and βres = −582a0.

For this procedure to converge well, the circle in the com-
plex plane described by a(B) must be well formed. Variation
of abg(B) across the width of the resonance can distort the
circle; if this distortion is significant compared to the size of
the circle, the procedure may fail. This leads to the criterion∣∣∣∣dabg

dB
�inel

B

∣∣∣∣ � |ares|. (19)

The procedure may thus be unsuitable for the widest and most
strongly decayed resonances (large �inel

B and small ares). The
procedure may also fail for overlapping resonances. These

TABLE III. Convergence towards the resonance near Bref = 171.845 G for two 85Rb atoms in their F = 3,MF = 2 state. Units are G and
the Bohr radius a0.

Resonance near Bref = 171.845 G

Estimated values

n Bn − Bref (Bn − Bres)/� αn βn Bres − Bref �inel
B αbg βbg αres βres

1 −1.00244 × 10−1 38.0 −490.99 22.388
2 2.99756 × 10−1 −114 −491.02 22.371
3 9.97560 × 10−2 −38.0 −491.09 22.386 6.92055 × 10−2 −4.7788 × 10−2 −491.01 22.377 0.10979 0.065852
4 6.92055 × 10−2 −26.4 −491.12 22.391 1.58950 × 10−2 −1.2632 × 10−2 −491.03 22.384 0.71330 0.026746
5 1.58950 × 10−2 −6.14 −491.40 22.446 −2.91246 × 10−3 −1.5078 × 10−3 −491.01 22.376 9.7150 −1.3474
6 −2.91246 × 10−3 1.01 −489.17 23.122 −1.80823 × 10−4 −2.7312 × 10−3 −491.03 22.382 4.4502 −0.37429
7 −1.80823 × 10−4 −0.0241 −490.88 26.918 −2.43111 × 10−4 −2.6270 × 10−3 −491.04 22.386 4.5243 −0.36788
8 1.50937 × 10−4 −0.150 −491.94 26.638 −2.44221 × 10−4 −2.6291 × 10−3 −491.04 22.387 4.5232 −0.37363
9 −2.44221 × 10−4 1.75 × 10−6 −490.67 26.910 −2.44216 × 10−4 −2.6290 × 10−3 −491.04 22.387 4.5232 −0.37361
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FIG. 4. Convergence towards the resonance near 172 G for two
85Rb atoms in their F = 3,MF = 2 state. (a) α (red closed circles)
and β (blue open circles) from scattering calculations at the sequence
of points n produced by the fully complex procedure. The fitted
functions are shown as corresponding lines through the symbols and
the small dots show the results of scattering calculations on a grid
for comparison. (b) Circle described by a(B) = α(B) − iβ(B) in the
complex plane.

restrictions are similar to the criteria used to define an isolated
narrow resonance [20,25].

IV. CONCLUSION

In this paper we have developed three procedures for
efficiently and accurately converging on and characterizing
different kinds of zero-energy Feshbach resonances as a
function of external field. These procedures can converge on
and accurately characterize resonances, from initial guesses

FIG. 5. Convergence towards the resonance near 215 G for two
85Rb atoms in their F = 2,MF = −2 state using the fully complex
procedure. Only β is shown and the axis is expanded to show the
asymmetry clearly. Symbols and lines are as in previous figures.

many thousands of widths away, with a total of only around
ten scattering calculations.

First we described the elastic procedure. This is designed
for resonances in purely elastic scattering, where the scattering
length has a true pole. At each iteration, the procedure
characterizes the resonance using scattering calculations at
three values of the external field while ensuring that the
points do not cluster too close to the pole. This allows stable
evaluation of the width and background scattering length as
well as the pole position.

For the case of weak background inelasticity we have
developed the regularized scattering length procedure. The
oscillation in the complex scattering length is converted into a
true pole in a regularized scattering length, and convergence on
the pole is achieved in the same way as in the elastic procedure.
We also provided a means to estimate the resonant scattering
length ares from calculations in the wings of the resonance.

Finally, we have developed a fully complex procedure
to converge on and extract all six parameters needed to
characterize resonances when there is substantial background
inelasticity and the real and imaginary parts of abg and ares are
required.
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