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Abstract. We consider a heterogeneous elastic structure which is stratified in one direction.
We derive the limit problem under the sole assumption that the Lamé coefficients and their inverses
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1. Introduction. In this paper, we study the asymptotic behavior of the three-
dimensional isotropic linear elasticity problem

(1)
− div (λε tr(e(u))I + 2µεe(u)) = f in Ω, u ∈ H1

0 (Ω; R3),

e(u) := 1
2 (∇∇∇u+∇∇∇Tu),

when the Lamé coefficients λε, µε and their inverses are bounded in L1(Ω) and weakly*
converge to some measures. We determine the limit problem in terms of these mea-
sures in the case when λε and µε depend only on one variable. Our results have been
announced in [13].

It is well known that when the Lamé coefficients are uniformly bounded from
above and below by positive constants, the sequence of the solutions to (1) converges,
up to a subsequence, to the solution of a problem of the form −divaeffe(u) = f (see
[37, property 4, p. 374]). Under suitable periodicity assumptions, the effective tensor
aeff can be characterized by means of the theory of homogenization [16], [29], [37],
[43], [52]. Diverse asymptotic analyses of (1) and of the associated vibration problem
have been performed under various hypotheses related to geometry and periodicity
when the latter boundedness assumptions fail [1], [7], [8], [9], [12], [14], [15], [20],
[23], [40], [44], [45], [46], [47]. In this context, stratified media have recently been
investigated in [11], where a two-phase medium comprising a distribution of possibly
very stiff homothetical layers alternating with much softer ones is considered. An
interesting aspect of this study resides in the possible emergence of higher order
derivatives (resp., nonlocal terms) in the effective equations when the Lamé coefficients
(resp., their inverses) fail to be bounded in L1. Let us also notice that spectral
properties of high contrast stratified media have been studied in [21], [22], where, in
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4276 MICHEL BELLIEUD AND SHANE COOPER

the presence of a defect, unusual phenomena of “super-exponential” localization of
eigenmodes to the vicinity of the defect are demonstrated.

In this paper, both the elasticity coefficients and their inverses are assumed to be
bounded in L1. Apart from these boundedness conditions, we make no assumption
relating to the oscillatory behavior of these coefficients. In this respect, our analysis is
much more far-reaching than that developed in [11]. Unlike [11], its range of applica-
tion includes both homogenization and singular perturbation problems (see Remark
3.6). Indeed, most of our results do not fall within the scope of [11] (see Remark 3.5).
We show that the latter boundedness assumptions in L1 preclude the appearance of
higher order derivatives in the limit equations and, in most cases, of nonlocal effects.
The sequence of the solutions to (1) is not, in general, bounded in H1(Ω; R3). The
natural functional space is the space of functions with bounded deformation, that is,
the set of elements u of L1(Ω; R3) whose distributional symmetrized gradient Eu is a
matrix-valued measure with finite total variation. This space, introduced in [39], [48]
(see also [41]), has been intensively investigated in the literature [2], [4], [34], [38], [49],
[53], [54]. A significant feature of our results is that the effective problem depends
only on the limit measures of the elasticity coefficients and of their inverses, not on the
sequences themselves, provided these measures have no common atom. Otherwise,
the arbitrary choice of the converging sequences leads to infinitely many distinct limit
problems, some exhibiting nonlocal terms (see Remark 3.7). Similar properties were
already known for diffusion problems in stratified media [17] (see Remark 3.12). The
generalization of such results to elasticity is anything but straightforward, because
effective problems may take a much more complicated form. More precisely, the limit
energy associated to a sequence of linear diffusion problems is always of Dirichlet
form [41]. In contrast, the limit energy associated to a sequence of linear elasticity
problems can be any nonnegative lower semicontinuous quadratic form on L2(Ω; R3)
taking vanishing values on the set of rigid motions [18].

We now present our results in more detail. For a given cylindrical bounded open
subset Ω = (0, L) × Ω′ of R3 with Lipschitz boundary, we consider the problem (1).
The Lamé coefficients are assumed to depend only on the variable x1. We suppose
that λε = lµε for some nonnegative real l and that the following convergences hold:

(2) µε
?
⇀m, (µε)−1 ?

⇀ ν weakly* in M([0, L]).

Under (2), we prove that the solution uε to (1) weakly* converges in BD(Ω) to
some function u with bounded deformation. This effective displacement is character-
ized by the emergence of jumps u+−u− at the interfaces Σt = {t}×Ω′ corresponding
to atoms {t} of ν, giving rise, if m and ν have no common atom, to the following
concentrations of elastic energy:

(3) 1
2ν({t})−1

∫
Σt

(u+− u−) ·A(u+− u−)dH2,

whereA is given by (25). Concentrations of elastic energy also appear on the planes Σt
corresponding to atoms of m. These extra terms are similar to membrane stretching
energy and take the form

1
2m({t})

∫
Σt
a‖ex′(u?) : ex′(u?)dH2,

where the operator ex′ and the fourth order tensor a‖ are given by (9) and (22),
and u? stands for the precise representative of u (see (4)). A concentration of elastic
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energy also emerges on a set of fractal Hausdorff dimension between 2 and 3. It is
given in terms of the Cantor parts νc and mc of the measures ν and m by

1
2

∫
Ω
a⊥ Eu

νc⊗L2 : Eu
νc⊗L2 dν

c ⊗ L2 + 1
2

∫
Ω
a‖ex′(u?) : ex′(u?)dmc ⊗ L2,

the tensor a⊥ being given by (22). The effective displacement u is a function with
bounded deformation and hence is approximately differentiable L3-almost everywhere
(a.e.) in Ω (see Remark 3.4). The bulk effective energy takes the form of a classical
linear elastic energy defined in terms of its approximate symmetric gradient e(u) by

1
2

∫
Ω
ae(u):e(u)dx,

the effective tensor a being given by (25). The total elastic energy F (u) is the sum
of the terms mentioned above, which can be synthesized as follows:

F (u) = 1
2

∫
Ω
a⊥ Euν⊗L2 · Euν⊗L2 dν ⊗ L2 + 1

2

∫
Ω
a‖ex′(u?) · ex′(u?)dm⊗ L2.

The effective displacement is the unique solution to the problem minBDν,m0 (Ω) F (u)−∫
Ω f · udx, where BDν,m

0 (Ω) is defined by (84). When the Cantor parts νc and mc

vanish and ν and m have a finite number of atoms, this limit problem is equivalent
to the system of equations (26).

The paper is organized as follows. The notation is specified in section 2, and
the main results are stated in section 3. Section 4 is devoted to the analysis of the
asymptotic behavior of the solution to (14), and section 5 presents technical results
relating to partial mollification. The proof of the main result (Theorem 3.1) is situated
in section 6.

2. Notation. In this article, {e1, e2, e3} stands for the canonical basis of R3.
Points in R3 and real-valued functions are represented by symbols beginning with a
lightface lowercase letter (for example, x, i, trA, . . .), while vectors and vector-valued
functions are given by symbols beginning with a boldface lowercase letter (for ex-
ample, u, f , divσε, . . . ). Matrices and matrix-valued functions are represented by
symbols beginning with a boldface uppercase letter, with the following exceptions:
∇∇∇u (displacement gradient), e(u) (linearized strain tensor). We denote by ui or (u)i
the components of a vector u and by Aij or (A)ij those of a matrix A (that is,
u =

∑3
i=1 uiei =

∑3
i=1(u)iei and A =

∑3
i,j=1Aijei ⊗ ej =

∑3
i,j=1(A)ijei ⊗ ej ,

where ⊗ stands for the tensor product). For any two vectors a, b in R3, the symmet-
ric product a� b is the symmetric 3× 3 matrix defined by a� b := 1

2 (a⊗ b+ b⊗a).
We do not employ the usual repeated index convention for summation. We denote
by A : B =

∑3
i,j=1AijBij the inner product of two matrices, by S3 the set of all

real symmetric matrices of order 3, and by I the 3 × 3 identity matrix. We denote
by Ln the Lebesgue measure in Rn and by Hk the k-dimensional Hausdorff measure.
The letter C denotes constants whose precise values may vary from line to line. Let
Ω := (0, L) × Ω′ be a connected cylindrical open Lipschitz subset of R3. For any
ϕ ∈ L1

loc(Ω; R3), we denote by ϕ? its precise representative, that is,

(4) ϕ?(x) =

 lim
r→0

∫
−
Br(x)

ϕ(y) dy if this limit exists,

0 otherwise,
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4278 MICHEL BELLIEUD AND SHANE COOPER

whereBr(x) is the open ball of radius r centered at x, and
∫
−
Br(x)ϕ(y) dy :=

∫
Br(x)

ϕ(y) dy

L3(Br(x)) .
We also set

(5) ϕ±(x) =

 lim
r→0

∫
−
B±r (x)

ϕ(y) dy if this limit exists,

0 otherwise,

where

(6) B+
r (x) := Br(x) ∩

(
(x1, L)× Ω′

)
, B−r (x) := Br(x) ∩

(
(0, x1)× Ω′

)
.

The fields ϕ? and ϕ± are Borel-measurable and take the same values on the
Lebesgue points of ϕ; thus,

(7) ϕ± = ϕ? = ϕ L3-a.e. in Ω.

We denote by ϕ′ the element of L1
loc(Ω; R3) defined by

(8) ϕ′1 = 0, ϕ′α = ϕα ∀α ∈ {2, 3},

and ϕ̃ is the extension of ϕ by 0 into R3. If ϕ2, ϕ3 admit weak derivatives with respect
to x2, x3, we set

(9) ex′(ϕ) :=
3∑

α,β=2

1
2

Å
∂ϕα
∂xβ

+
∂ϕβ
∂xα

ã
eα ⊗ eβ .

The symbol Dϕ represents the distributional gradient of ϕ, and Eϕ := 1
2 (Dϕ+

DϕT ) is the symmetric distributional gradient of ϕ. The space of functions with
bounded deformation on Ω is defined by

(10) BD(Ω) :=
{
ϕ ∈ L1(Ω; R3) : Eϕ ∈M(Ω; S3)

}
,

whereM(Ω; S3) stands for the space of S3-valued Radon measures on Ω with bounded
total variation. For any ϕ ∈ BD(Ω), we denote by ‹Eϕ the extension of Eϕ by 0 to
Ω, that is, the element of M(Ω; S3) defined by

(11) ‹Eϕ(A) := Eϕ(A ∩ Ω) for any Borel subset A of Ω.

For any x1 ∈ [0, L], we set

(12) Σx1 := {x1} × Ω′.

The symbol λ
θ represents the Radon–Nikodým density of a (finite) vector-valued

Radon measure λ on Ω with respect to a positive Radon measure θ on Ω. For any Borel
subset E of Ω, we denote by λbE the Radon measure defined by λbE(A) = λ(A ∩E).

3. Setting of the problem and results. Let Ω := (0, L) × Ω′ be a bounded
cylindrical Lipschitz domain of R3, let (λε), (µε) be two sequences in L∞(0, L; R+)
such that µ−1

ε ∈ L∞(0, L; R+), and let

(13) νε := µ−1
ε L1

b[0,L], mε := µεL1
b[0,L].
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We are interested in the asymptotic analysis of the sequence of linear elasticity
problems

(14) (Pε) :


− div(σε(uε)) = f in Ω,

σε(uε)=λεtr(e(uε))I+ 2µεe(uε), e(uε)=
1
2

(∇∇∇uε +∇∇∇Tuε),

uε ∈ H1
0 (Ω; R3), f ∈ L∞(Ω,R3),

under the hypotheses (see Remark 3.3)

(15)
λε = lµε (l ≥ 0), sup

ε>0

Ä
||µε||L1(0,L) +

∣∣∣∣µ−1
ε

∣∣∣∣
L1(0,L)

ä
<∞,

mε
?
⇀m, νε

?
⇀ ν weakly* in M([0, L]).

We emphasize that λε and µε depend only on x1. We suppose that ν and m have
no common atom (see Remark 3.7), that is,

(16) Aν∩Am= ∅, Aν :={t∈[0, L]; ν({t})>0}, Am:= {t∈ [0, L];m({t})>0},

and do not charge the boundary of [0, L] (see Remark 3.8), namely,

(17) m({0})=m({L})=ν({0})=ν({L})= 0.

Under these assumptions, we prove that the sequence of the solutions to (14)
weakly* converges in BD(Ω) to the unique solution to

(18) min
ϕ∈BDν,m0 (Ω)

1
2a(ϕ,ϕ)−

∫
Ω
f ·ϕdx,

where BDν,m
0 (Ω) is the Hilbert space defined by (see (4))

(19) BDν,m
0 (Ω) :=

ϕ ∈ BD(Ω)

∣∣∣∣∣∣∣∣
Eϕ� ν ⊗ L2, Eϕ

ν⊗L2 ∈ L2
ν⊗L2(Ω; S3)

ϕ?α ∈ L2
m(0, L;H1

0 (Ω′)), α ∈ {2, 3}
ϕ = 0 on ∂Ω

 ,

(20) ||ϕ||BDν,m0 (Ω) :=
Å∫

Ω

∣∣ Eϕ
ν⊗L2

∣∣2 dν ⊗ L2
ã 1

2

+
Å∫

Ω
|ex′(ϕ?)|2dm⊗ L2

ã 1
2

,

and a(·, ·) is the continuous coercive symmetric bilinear form on BDν,m
0 (Ω) given by

(21) a(ψ,ϕ) :=
∫

Ω
a⊥ Eψν⊗L2 : Eϕν⊗L2 dν ⊗ L2 +

∫
Ω
a‖ex′(ψ?) : ex′(ϕ?)dm⊗ L2

in terms of the fourth order tensors a⊥ and a‖ defined by

(22)

a⊥Ξ :=

Ö
l tr Ξ + 2Ξ11 2Ξ12 2Ξ13

2Ξ12
l2

l+2 tr Ξ + 2l
l+2Ξ11 0

2Ξ13 0 l2

l+2 tr Ξ + 2l
l+2Ξ11

è
,

a‖Γ := 2l
l+2

3∑
β=2

Γββ
3∑

α=2

eα ⊗ eα + 2
3∑

α,β=2

Γαβeα ⊗ eβ .
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Notice that

(23) (a⊥ + a‖)Ξ = l tr ΞI + 2Ξ.

Equivalently, we have (see Remark 3.4)

(24)

a(ψ,ϕ)=
∫

Ω
ae(ψ):e(ϕ)dx+

∑
t∈Aν

ν({t})−1
∫

Σt
(ψ+−ψ−) ·A(ϕ+−ϕ−)dH2

+
∑
t∈Am

m({t})
∫

Σt
a‖ex′(ψ?) : ex′(ϕ?)dH2

+
∫

Ω
a⊥ Eψ

νc⊗L2 : Eϕ
νc⊗L2 dν

c⊗ L2 +
∫

Ω
a‖ex′(ψ?) : ex′(ϕ?)dmc ⊗ L2,

where ϕ±, Σt are defined by (5), (12), νc (resp., mc) stands for the Cantor part of ν
(resp., m), e(ϕ) is the approximate symmetric differential of ϕ, and

(25) a :=
(
ν
L1

)−1
a⊥ + m

L1a
‖, A :=

Ñ
l + 2 0 0

0 1 0
0 0 1

é
.

Theorem 3.1. The space BDν,m
0 (Ω) defined by (19) and endowed with the norm

(20) is a Hilbert space. Under the assumptions (15), (16), and (17), the symmetric
bilinear form a(·, ·) defined by (21) or (24) is coercive and continuous on BDν,m

0 (Ω).
The sequence of the solutions to (14) weakly* converges in BD(Ω) to the unique
solution to (18).

We can derive the PDE system associated with (18) when ν and m have vanishing
Cantor parts and a finite number of atoms.

Corollary 3.2. If νc = mc = 0 and Aν , Am are finite, the problem (18) is
equivalent to

(26)


− divae(u) = f in Ω \ Σ, u ∈ BDν,m

0 (Ω),

ν({t})−1A(u+− u−)=(ae(u)e1)−=(ae(u)e1)+ on Σt ∀t ∈ Aν ,

(ae(u)e1)−−(ae(u)e1)+−m({t})divx′a‖ex′(u?) = 0 on Σt ∀t ∈ Am,

where (ae(u)e1)+ (resp., (ae(u)e1)−) denotes the trace of ae(u)e1 on the right
(resp., left) face of Σt, and

(27) Σ := Σν ∪ Σm, Σν :=
⋃
t∈Aν

Σt, Σm :=
⋃
t∈Am

Σt.

Remark 3.3. The conclusions of Theorem 3.1 are unchanged if the assumption
λε = lµε in (15) is replaced by λε = lεµε, where (lε) is a sequence of positive real
numbers converging to some l ∈ [0,+∞).

Remark 3.4. The equivalence between (21) and (24) derives from fine properties
of functions with bounded deformations. More precisely, the symmetric distributional
derivative Eϕ of any ϕ ∈ BD(Ω) can be decomposed into an absolutely continuous
part Eaϕ with respect to L3, a jump part Ejϕ, and a Cantor part Ecϕ. The Cantor
part vanishes on any Borel set which is σ-finite with respect to H2. Any element ϕ
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of BD(Ω) is approximately differentiable L3-a.e. in Ω [2, Theorem 7.4], [34]. This
means that, for L3-a.e. x ∈ Ω, there exists a 3× 3 matrix ∇∇∇ϕ(x) such that

lim
r→0+

∫
−
Br(x)

|ϕ(y)−ϕ(x)−∇∇∇ϕ(x)(y − x)|
r

dy = 0.

The absolutely continuous part of Eϕ with respect to L3 is given in terms of the
approximate symmetric differential e(ϕ) = 1

2 (∇∇∇ϕ+∇∇∇Tϕ) by

(28) Eaϕ = e(ϕ)L3.

When Eϕ � L3, e(ϕ) is the weak symmetric gradient of ϕ. The jump part
takes the form Ejϕ = EϕbJϕ

, where the “jump set” Jϕ is a countably H2-rectifiable
subset of Ω (i.e., there exist countably many Lipschitz functions fi : R2 → Ω such that
H2
(
Jϕ \

⋃+∞
i=0 fi(R2)

)
= 0; see [3, Definition 2.57]). For any countably H2-rectifiable

Borel set M ⊂ Ω, the following holds (see [53, Chapter II], [2, eq. (3.2), p. 209]):

(29) EϕbM= (ϕ+
M −ϕ

−
M )� nMH2

bM ,

where nM (x) is a unit normal to M at x, and ϕ±M is deduced from (5) by substituting
B±r (x,nM ) := {y ∈ Br(x),±(y − x) · nM (x) > 0} for B±r (x). In particular, we have

(30) Ejϕ = (ϕ+
Jϕ
−ϕ−Jϕ

)� nJϕH2
bJϕ

.

Due to its absolute continuity with respect to ν⊗L2, the symmetric distributional
gradient of an element of BDν,m

0 (Ω) enjoys a specific decomposition. The measure ν
(resp., m) can be split into an absolutely continuous part νa (resp., ma) with respect
to the Lebesgue measure, a singular part without atom or Cantor part νc (resp., mc),
and a purely atomic part νat:

(31)

ν = νa + νc + νat, νat =
∑
t∈Aν

ν({t})δt, νa =
ν

L1L
1,

m = ma +mc +mat, mat =
∑
t∈Am

m({t})δt, ma =
m

L1L
1.

We have νa ⊗ L2 � L3 and νat ⊗ L2 � H2
bΣν , where Σν is given by (27). The

measures νc ⊗ L2 and L3 are mutually singular. If A is a Borel subset of Ω that is
σ-finite with respect to H2, then by Fubini’s theorem, νc ⊗ L2(A) =

∫
(0,L)H

2(A ∩
Σx1)dνc = 0 because {x1 ∈ (0, L),H2(A ∩ Σx1) > 0} is at most countable and thus
νc-negligible. Accordingly, there exists a Borel partition of Ω, Ω = Ωa∪Ωc∪Ωat with
Ωat = Σν (see (27)) such that

(32)
νa ⊗ L2 = ν ⊗ L2

bΩa =
ν

L1L
3
bΩa , νc ⊗ L2 = ν ⊗ L2

bΩc ,

νat ⊗ L2 = ν ⊗ L2
bΣν =

∑
t∈Aν

ν({t})H2
bΣt .

The condition E(ϕ) � (νa + νc + νat) ⊗ L2, satisfied by any element ϕ of
BDν,m

0 (Ω), implies Eaϕ� νa ⊗ L2, Ecϕ� νc ⊗ L2, Ejϕ� H2
bΣν , and

(33)

Eϕ
ν⊗L2 = Ea

ϕ
νa⊗L21Ωa + Ec

ϕ
νc⊗L21Ωc + Ej

ϕ
νat⊗L21Σν , ν ⊗ L2-a.e. in Ω,

Eaϕ = Ea
ϕ

νa⊗L21Ωaν
a ⊗ L2 = Ea

ϕ
νa⊗L21Ωa

ν
L1L3, Ecϕ = Ec

ϕ
νc⊗L21Ωcν

c ⊗ L2,

Ejϕ = Ej
ϕ

νat⊗L21Σνν
at ⊗ L2 =

∑
t∈Aν

Ej
ϕ

νat⊗L21Σtν({t})H2
bΣt .
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4282 MICHEL BELLIEUD AND SHANE COOPER

In particular we have Jϕ ⊂ Σν , and therefore by (27), (30),

(34) Ejϕ = EϕbΣν =
∑
t∈Aν

(ϕ+ −ϕ−)� e1H2
bΣt .

Taking (28) into account, we infer

(35) Eϕ = e(ϕ)L3 + Eϕ
νc⊗L2 ν

c ⊗ L2 +
∑
t∈Aν

(ϕ+ −ϕ−)� e1H2
bΣt .

We deduce from (28), (33), and (34) that Ea
ϕ

νa⊗L2 =
(
ν
L1

)−1
e(ϕ) L3-a.e. in Ω and

Ej
ϕ

νat⊗L2 = (ν({t}))−1(ϕ+−ϕ−)�e1 H2-a.e. in Σt for all t ∈ Aν , and then from (33)
we deduce that

(36)

Eϕ
ν⊗L2 =

(
ν
L1

)−1
e(ϕ)1Ωa + Ec

ϕ
νc⊗L21Ωc +

∑
t∈Aν

(ν({t}))−1(ϕ+ −ϕ−)� e11Σt ,

ν ⊗ L2-a.e. in Ω ∀ϕ ∈ BDν,m
0 (Ω).

By (32), (36), and the formula a⊥(b�e1) : (c�e1) = c ·Ab for all b, c ∈ R3 (see
(22) and (25)), the following holds for ϕ,ψ ∈ BDν,m

0 (Ω):

(37)

∫
Ω
a⊥ Eψν⊗L2 : Eϕν⊗L2 dν ⊗ L2

=
∫

Ωa

(
ν
L1

)−1
a⊥e(ψ) : e(ϕ)dL3 +

∫
Ωc
a⊥ E

c
ψ

νc⊗L2 : E
c
ϕ

νc⊗L2 dν
c ⊗ L2

+
∑
t∈Aν

∫
Σt

(ν({t}))−1(ψ+ −ψ−) ·A(ϕ+ −ϕ−)dH2.

On the other hand, by (31) we have

(38)

∫
Ω
a‖ex′(ψ?) : ex′(ϕ?)dm⊗ L2

=
∫

Ω

m
L1a

‖ex′(ψ?):ex′(ϕ?)dx+
∫

Ω
a‖ex′(ψ?) : ex′(ϕ?)dmc ⊗ L2

+
∑
t∈Am

m({t})
∫

Σt
a‖ex′(ψ?) : ex′(ϕ?)dH2.

Combining (21), (37), and (38), noticing that, by (7) and (22),∫
Ω

m
L1a

‖ex′(ψ?):ex′(ϕ?)dx =
∫

Ω

m
L1a

‖e(ψ) : e(ϕ)dx,

and taking into account (25), we obtain (24). Notice that when νc vanishes, the space
BDν,m

0 (Ω) is a subspace of the space of special functions with bounded deformation
defined by SBD(Ω) := {ϕ ∈ BD(Ω), Ecϕ = 0} (see [2], [5], [6], [19]).

Remark 3.5 (comparison with the results of [11]). The paper [11] investigates
the linear elastodynamic equations associated with (14) when µε is given by

µε = µ0ε1(0,L)\Cε(x1) + µ1ε1Cε(x1), Cε =
⋃
a∈Aε

a+ rε
(
− 1

2 ; 1
2

)
,
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where Aε is a finite subset of (0, L), rε is a small parameter satisfying rε < ε :=
infa,b∈Aε,a 6=b |b − a|, and (µ0ε), (µ1ε) are two sequences of positive reals. Except in
one case (see [11, section 3.1, case 0 < k < +∞]), this paper studies instances when
one of the sequences (µε) or (µ−1

ε ) is unbounded in L1(0, L). This case corresponds
to µε0 = µ0 > 0, rε � ε, and limε→0

rε
ε µ1ε =: k ∈ (0,+∞). Then the conclusions of

Theorem 3.1 can be obtained in the context of [11]. More precisely, the sequence (µε)
(resp., (µ−1

ε )) weakly∗ converges inM([0, L]) to m = (µ0+nk)L1 (resp., ν = 1
µ0
L1) for

some function n ∈ L∞(0, L), defined by [11, Formula (3.16)], which characterizes the
rescaled effective number of sections of stiff layers per unit length in the e1 direction.
By (16), (19), and (27), the following hold: Aν = Am = ∅, Σ = ∅, BDν,m

0 (Ω) =
H1

0 (Ω; R3). The sequence of the solutions to (14) is bounded in H1
0 (Ω; R3) and weakly

converges to the solution to the problem given, in accordance with (26), by®
− divae(u) = f in Ω, u ∈ H1

0 (Ω; R3),

a = µ0(a⊥ + a‖) + nka‖.

Taking into account (23) and setting λ0 := lµ0, σ0(u) := µ0(a⊥ + a‖)e(u) =
λ0 tr(e(u))I + 2µ0e(u), σx′(u) := a‖e(u), this effective problem can be rewritten
under the form ®

− divσ0(u)− nkdivσx′(u′) = f in Ω,

u ∈ H1
0 (Ω; R3),

which corresponds to the stationary version of the limit problem obtained in [11,
equation (3.18)].

Remark 3.6 (some applications). (i) Our result can be applied to various prob-
lems of homogenization with high contrast which do not fall within the scope of [11].
As an example, let us fix two small parameters ε and rε such that rε � ε, and con-
sider a two-phase ε-periodic composite comprising an alternation of possibly very soft
elastic layers of thickness rε and Lamé coefficients of order rε

ε , with stiffer layers of
thickness of order ε and Lamé coefficients of order 1. More precisely, let us assume
that

(39) µε = µ01(0,L)\Cε + rε
ε µ11Cε , λε = lµε, Cε :=

⋃
{i∈Z,(εi+rεI)⊂(0,L)}

(εi+ rεI) .

Then the assumptions and convergences (15) hold with m = µ0L1 and ν =Ä
1
µ0

+ 1
µ1

ä
L1. By (16) and (19), we have Aν = Am = ∅ and BDν,m

0 (Ω) = H1
0 (Ω; R3),

and the limit problem as ε→ 0, deduced from (26), takes the form

(40)

{
− divσ(u) = f in Ω, u ∈ H1

0 (Ω; R3),

σ(u) =
Ä
µ0µ1
µ0+µ1

a⊥ + µ0a
‖
ä
e(u),

where a⊥ and a‖ are defined by (22).
(ii) Besides homogenization, our result can be applied to various singular per-

turbation problems. By way of illustration, let us consider the case of an elastic
homogeneous isotropic body reinforced by a single stiff layer of thickness ε and Lamé
coefficients of order 1

ε . More precisely, let us assume that the Lamé coefficients take
the form

(41) µε = µ01(0,L)\Cε + 1
εµ11Cε , Cε :=

(
L
2 −

ε
2 ,

L
2 + ε

2

)
, λε = lµε.
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4284 MICHEL BELLIEUD AND SHANE COOPER

Under these hypotheses, the assumptions and convergences (15) hold withm = µ0L1+
µ1δL

2
and ν = 1

µ0
L1. By (16) and (19), we have Aν = ∅, Am = {L/2}, and

BDν,m
0 (Ω) = {ϕ ∈ H1

0 (Ω; R3), ϕ?α(L/2, .) ∈ H1
0 (Ω′) ∀α ∈ {2; 3}}.

Setting

(42)

σ0(u) = lµ0 tr e(u)I + 2µ0e(u),

σ′1((u?)′) = 2l
l+2µ1 tr(ex′((u?)′))I ′ + 2µ1ex′((u?)′), I ′ :=

Ñ
0 0 0
0 1 0
0 0 1

é
,

the limit problem as ε→ 0, deduced from (26), takes the form

(43)


− divσ0(u) = f in Ω \ ΣL/2,

(σ0(u)e1)−−(σ0(u)e1)+ − divx′σ′1((u?)′) = 0 on ΣL/2,

u ∈ H1
0 (Ω; R3), u?α(L/2, .) ∈ H1

0 (Ω′) (α ∈ {2; 3}).

The field (σ(u)e1)− (resp., (σ(u)e1)+) represents the superficial density of forces
exerted by the material occupying Ω \ ΣL/2 on the left (resp., right) face of ΣL/2.

(iii) Assume now that the latter single layer is filled by a soft (instead of stiff)
material of Lamé coefficients of order ε. More precisely, assume that µε is defined
by substituting εµ1 for 1

εµ1 in (41). Then the assumptions and convergences (15)
hold with m = µ0L1 and ν = 1

µ0
L1 + 1

µ1
δL

2
. In this case, by (16) and (19), we have

Aν = {L/2}, Am = ∅, and

BDν,m
0 (Ω) = {ϕ ∈ H1(Ω \ ΣL/2; R3), ϕ = 0 on ∂Ω}.

By (26), the limit problem as ε→ 0 takes the form
− divσ0(u) = f in Ω \ ΣL/2,

µ1A(u+− u−)=(σ0(u)e1)−=(σ0(u)e1)+ on ΣL/2,

u ∈ H1(Ω \ ΣL/2; R3), u = 0 on ∂Ω,

where A (resp., σ0(u)) is defined by (25) (resp., (42)).

Remark 3.7. Assumption (16) is needed in the proofs of Lemma 4.6 and (100).
This assumption is equivalent to (see [26, Lemma 6.2, p. 300])

(44)
∀η > 0, ∃δ > 0, ∃ε0 > 0, ∀ε < ε0,∫

{(s1,t1)∈(0,L)2, |s1−t1|<δ}
µ−1
ε (s1)µε(t1)ds1dt1 < ε.

When ν and m do not satisfy (16), the effective problem depends not only on
the couple (ν,m) but also on the choice of the sequence (µε) satisfying (15). By way
of illustration, let us choose two sequences of positive reals (r(1)

ε ), (r(2)
ε ) such that

r
(1)
ε � r

(2)
ε � 1. Set I1ε :=

(
L
2 −

r(1)
ε

2 , L2 + r(1)
ε

2

)
and I2ε :=

(
L
2 −

r(2)
ε

2 , L2 + r(2)
ε

2

)
, fix

ζ ∈ {−1, 1}, and consider the sequence (µε) defined by

(45) µε := 1(0,L)\I2ε +
Ä
r(2)
ε

äζ
1I2ε\I1ε +

Ä
r(1)
ε

ä−ζ
1I1ε .
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The convergences (15) are satisfied with ν = m = δL
2

+ L1. By adapting to the
framework of elasticity the argument developed in [10, Chapter 4] in the context of
the heat equation, one can prove that under these assumptions, the solution uε to
(14) strongly converges in L2(Ω; R3) to the unique solution to

(46)
(P(ζ)) : inf

ß
F (ζ)(ϕ)−

∫
Ω
f ·ϕdx, ϕ ∈ D

™
,

D :=
¶
ϕ ∈ H1(Ω \ ΣL/2), ϕ = 0 on ∂Ω, (ϕ′)+, (ϕ′)− ∈ H1

0 (ΣL
2

; R3)
©
.

If ζ = −1, the effective energy is given by

F (−1)(ϕ) = 1
2

∫
Ω\ΣL/2

σ(ϕ) : e(ϕ)dx + l+2
2

∫
ΣL/2

|ϕ+
1 − ϕ

−
1 |2dH2

+ 1
4

∫
ΣL/2

σx′(ϕ−) : ex′(ϕ−)dH2 + 1
4

∫
ΣL/2

σx′(ϕ+) : ex′(ϕ+)dH2

+ 1
2

∫
ΣL/2

∣∣(ϕ′)+ − (ϕ′)−
∣∣2 dH2.

If ζ = 1, the effective energy is the nonlocal functional defined by

(47) F (1)(ϕ) = inf
v∈H1

0 (ΣL/2;R3)
Φ(ϕ,v′),

where

Φ(ϕ,v′) := 1
2

∫
Ω\ΣL/2

σ(ϕ) : e(ϕ)dx+ l+2
2

∫
ΣL/2

|ϕ+
1 − ϕ

−
1 |2dH2

+ 1
2

∫
ΣL/2

σx′(v′) : ex′(v′)dH2

+
∫

ΣL/2
|v′ − (ϕ′)+|2 + |v′ − (ϕ′)−|2dH2.

Substituting (ϕ′)++(ϕ′)−

2 for v′ in (47) and applying the two-dimensional Korn
inequality in H1

0 (ΣL/2; R2), we find

F (−1)(ϕ) = φ
(
ϕ, (ϕ′)++(ϕ′)−

2

)
+ 1

8

∫
ΣL/2

σx′
(

(ϕ′)+−(ϕ′)−

2

)
: ex′

(
(ϕ′)+−(ϕ′)−

2

)
dH2

≥ φ
(
ϕ, (ϕ′)++(ϕ′)−

2

)
+ C

∫
ΣL/2

∣∣∣ (ϕ′)+−(ϕ′)−

2

∣∣∣2 dH2.

Therefore, by (47), F (−1)(ϕ) ≥ F (1)(ϕ), and the equality F (−1)(ϕ) = F (1)(ϕ)
can hold only if

1. (ϕ′)+ = (ϕ′)− on ΣL/2, which means that ϕ′?(L/2, x′) = (ϕ′)+(L/2, x′) =
(ϕ′)−(L/2, x′);

2. v′ = ϕ′?(L/2, x′) is the solution to the infimum problem (47), which implies
that ϕ′? = (ϕ′)+ = (ϕ′)− = 0 in ΣL/2.

Such an occurrence does not seem likely, in general, for the solution ϕ to (46);
for instance, if we choose f = e2 in (46), we intuitively expect that projections
(ϕ′)+(L/2, x′), (ϕ′)−(L/2, x′) of the traces on ΣL/2 of the solution ϕ to (46) do not
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4286 MICHEL BELLIEUD AND SHANE COOPER

vanish. Indeed, when (16) is not satisfied, one can prove the existence of infinitely
many different limit problems associated to some sequence (µε) satisfying (15).

Remark 3.8. If ν({0}) > 0, the effective displacement may fail to vanish on Σ0,
and the following concentration of elastic energy may appear on Σ0:

(48) 1
2ν({0})−1

∫
Σ0

u+ ·Au+dH2.

The extra term (48) is obtained by substituting (0, 0) for (t,u−) in (1.3). A
similar contribution emerges on ΣL if ν({L}) > 0. This phenomenon is related to the
fact that the trace application is not weakly* continuous on BD(Ω).

Remark 3.9. Our method applies to the study of second order elliptic systems of
PDEs of the type

(49) (Pε) : −div(µεC∇∇∇uε)=f in Ω, uε ∈ H1
0 (Ω; Rn), f ∈L∞(Ω; Rn),

where Ω := (0, L) × Ω′ is a cylindrical domain in Rd and C is a second order tensor
on Rn+d satisfying the following assumptions of symmetry and ellipticity:

(50)
Cijpq = Cpqij ∀ ((i, j), (p, q)) ∈ (Rn × Rd)2,

C Ξ : Ξ ≥ c|Ξ|2 ∀ Ξ ∈ Rn×d for some c > 0.

We suppose that

(51) T :=
n∑

i,p=1

Ci1p1ei ⊗ ep is invertible.

We denote by BV (Ω; Rn) the space of Rn-valued functions on Ω with bounded
variation, that is,

(52) BV (Ω; Rn) :=
{
ϕ ∈ L1(Ω; Rn) : Dϕ ∈M(Ω; Rn+d)

}
.

Under these assumptions, the solution to (49) weakly* converges in BV (Ω; Rn)
to the unique solution to the problem

(53) min
u∈BV ν,m0 (Ω)

1
2a(u,u)−

∫
Ω
f · udx,

where BV ν,m0 (Ω) is the Hilbert space defined by

(54)

BV ν,m0 (Ω) :=

ϕ ∈ BV (Ω; Rn)

∣∣∣∣∣∣∣∣
Dϕ� ν ⊗ Ld−1, ϕ = 0 on ∂Ω
Dϕ
ν⊗Ld−1 ∈ L2

ν⊗Ld−1(Ω; Rn)

ϕ? ∈ L2
m(0, L;H1

0 (Ω′; Rn))

 ,

||ϕ||BV ν,m0 (Ω) :=
Å∫

Ω

∣∣∣ Dϕ
ν⊗Ld−1

∣∣∣2dν⊗Ld−1
ã1

2

+
Å∫

Ω
|∇∇∇x′(ϕ?)|2dm⊗ Ld−1

ã 1
2

,

and, setting

(55) ∇∇∇x′ϕ :=
n∑
i=1

d∑
α=2

∂ϕi
∂xα

ei ⊗ eα,
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a is the continuous coercive symmetric bilinear form on BV ν,m0 (Ω) given by

(56) a(u,ϕ):=
∫

Ω
a⊥ Duν⊗L2 : Dϕ

ν⊗L2 dν ⊗ Ld−1 +
∫

Ω
a‖∇∇∇x′(u?):∇∇∇x′(ϕ?)dm⊗ Ld−1,

with

(57)

a⊥ijkl :=
n∑

p,r=1

Cijp1(T−1)prCr1kl,

a
‖
ijkl :=

n∑
p,r=1

(Cijp1(T−1)prCr1kl + Cijkl)(1− δj1)(1− δl1).

Proposition 3.10. The normed space BV ν,m0 (Ω) defined by (54) is a Hilbert
space. Under the assumptions (15), (50), (51), the symmetric bilinear form a(·, ·)
defined by (56) is coercive and continuous on BV ν,m0 (Ω), and the sequence (uε) of the
solutions to (49) weakly* converges in BV (Ω; Rn) to the unique solution u to (53).

The proof of Proposition 3.10 is sketched in section 6.4.

Remark 3.11. The particular case of the heat equation in a three-dimensional
domain corresponds to the choice (n, d) = (1, 3) in (49). Setting Ajq := C1j1q, we
deduce from Proposition 3.10 that under the assumption (15), if A is positive definite
and A11 6= 0 (see (51)), the solution uε to

(58) (Pε) : −div(µεA∇∇∇uε) = f in Ω, uε ∈ H1
0 (Ω), f ∈ L∞(Ω),

weakly* converges in BV (Ω; R) to the unique solution to

min
u∈BDν,m0 (Ω)

1
2a(u, u)−

∫
Ω
fudx,

where a is defined on BV ν,m0 (Ω)2 by

a(u, ϕ) :=1
2

∫
Ω
A⊥ Du

ν⊗L2 · Dϕ
ν⊗L2 dν ⊗ L2 + 1

2

∫
Ω
A‖∇∇∇x′(u?) · ∇∇∇x′(ϕ?)dm⊗ L2

in terms of A⊥,A‖ given by

A⊥ij := Ai1A1j
A11

, A
‖
ij := (Ai1A1j

A11
+Aij)(1− δi1)(1− δj1).

Linear diffusion problems in stratified media with high contrast have also been
studied in [25, 26, 27, 28, 30, 31, 32, 33, 35].

Remark 3.12. Let X, Y be separable reflexive Banach spaces such that X ⊂ Y
with dense and compact embedding, let f : [0, L] × X → [0,+∞), g : [0, L] × Y →
[0,+∞) be convex mappings with respect to the second variable with growth condi-
tions of order strictly larger than 1, and let (aε), (bε) be sequences in L∞(0, L) such
that 1

aε

?
⇀ ν and bε

?
⇀m weakly* inM([0, L]) for some couple (ν,m) satisfying (16),

(17). Denoting by u′ the distributional derivative of u, we set W 1,1(0, L;Y,X) :=
{u ∈ L1(0, L;Y ), u′ ∈ L1(0, L;X)} and BV (0, L;Y,X) := {u ∈ L1(0, L;Y ), u′ ∈
M(0, L;X)}, whereM(0, L;X) is the set ofX-valued measures on (0, L) with bounded
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4288 MICHEL BELLIEUD AND SHANE COOPER

total variation. Bouchitté and Picard have established in [17] the Γ-convergence (see
[24]) with respect to the strong topology of L1(0, L;X) of the sequence of functionals

Fε := u ∈ L1(0, L;X)→


∫ L

0

1
aε
f(t, aεu′ε)dt+

∫ L

0
bεG(t, u)dt

if uε ∈W 1,1(0, L;Y,X),
+∞ otherwise,

to the functional

F := u ∈ L1(0, L;X)→


∫ L

0
f(t, u

′

ν )dν +
∫ L

0
G(t, u?)dm

if u ∈ BV (0, L;Y,X) and u′ � ν,

+∞ otherwise.

As an application, we set X = L2(Ω′), Y = H1
0 (Ω′), f(t, u) = |u|2X , G(t, u) = |u|2Y ,

and

Aε :=

Ñ
aε 0 0
0 bε 0
0 0 bε

é
to deduce the convergence of the solution to −divAε∇∇∇uε = f, uε ∈ H1

0 (Ω), to the
solution to minBV ν,m0 (Ω) F (u)−

∫
fudx, where

F (u) := 1
2

∫
Ω

∣∣∣ Du
ν⊗L2

∣∣∣2 dν ⊗ L2 +
3∑

α=2

1
2

∫
Ω
|∇∇∇x′u?|2 dm⊗ L2.

Unlike ours, this approach does not apply to nondiagonal conductivity matrices.

Remark 3.13. When (µε) and (µ−1
ε ) are uniformly bounded in L∞(0, L), the so-

lution uε to (14) weakly converges, up to a subsequence, to u in H1
0 (Ω; R3), and the

sequence σε := σε(uε) weakly converges in L2(Ω; S3) to some σ satisfying −divσ = f
in Ω. The constitutive relation between σ and e := e(u) can be deduced from classical
layering arguments (see the early works of Murat and Tartar [42, 51], [52, p. 140]; see
also [29]). These arguments rest on the so-called good behavior of some components
of σε and eε := e(uε), which do not oscillate in x1 in the following sense: a sequence
(gε) that weakly converges in L2(Ω) to g is said to not oscillate in x1 if, for any
sequence hε(x1) depending only on x1 and weakly converging in L2(0, L) to h, the se-
quence (gεhε) weakly∗ converges inM(Ω) to gh. It turns out that (σε1i)i∈{1,2,3} and
(eεαβ)α,β∈{2,3} are “good” components of σε and eε: denoting by σ(i)

ε the ith column
of σε and noticing that−divσ(i)

ε = fi and curl (hε(x1)e1) = 0, we see by the div-curl
lemma (see [52, Lemma 7.2]) that the sequence σ(i)

ε · hε(x1)e1 = σε1ih(x1) weakly∗

converges in M(Ω) to σ1ih. Likewise, since curl ∇∇∇uεα = 0 and div(hε(x1)eβ) = 0,
the sequence ∇∇∇uεα ·hε(x1)eβ = ∂uεα

∂xβ
hε(x1) weakly∗ converges inM(Ω) to ∂uα

∂xβ
h(x1).

The original idea of Murat and Tartar consists of transforming the constitutive equa-
tion σε = aε(x1)eε into an equation of the formOε = bε(x1)Gε, where bε = φ(aε) for
some suitable fourth order tensors’ valued (nonlinear) mapping φ, and Gε (resp., Oε)
is the matrix of the “good” components (resp., of the remaining so-called oscillatory
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ones), namely,

Gε :=

Ñ
σε11 σε12 σε13
σε21 eε22 eε23
σε31 eε32 eε33

é
, Oε :=

Ñ
eε11 eε12 eε13
eε21 σε22 σε23
eε31 σε32 σε33

é
.

Notice that σε : eε = Oε : Gε = bεGε : Gε. It turns out that up to a subsequence,
(bε(x1)) weakly converges to some b in L2, and hence we can pass to the limit in the
equation Oε = bε(x1)Gε in the weak∗ topology ofM(Ω; S3). We obtain the equation

O = bG in Ω; G :=

Ñ
σ11 σ12 σ13
σ21 e22 e23
σ31 e32 e33

é
, O :=

Ñ
e11 e12 e13
e21 σ22 σ23
e31 σ32 σ33

é
,

which is equivalent to the effective constitutive equation

σ = ae in Ω, a := φ−1(b).

The limit process yielding the effective elasticity tensor a = φ−1(lim
L2−weak φ(aε)) is

called the 1∗-convergence of the sequence (aε) ( see [51, p. 14]). Our proof is connected
to these classical layering arguments insofar as, in order to pass to the limit as ε→ 0 in
the variational formulation (133), we write σε(uε) : e(ϕε) = bεGε(uε) : Gε(ϕε) (see
(141)) and establish that Gε(ϕε) has “good” behavior with respect to some suitable
notion of strong convergence (see (60), (140)).

4. Technical preliminaries and a priori estimates. This section is dedi-
cated, essentially, to the analysis of the asymptotic behavior of the solution (uε) to
(14) and its stress σε(uε) in the limit ε → 0. The following notion of convergence is
a crucial part of this study.

Definition 4.1. Let θε, θ be positive Radon measures on a compact set K ⊂ RN ,
and let fε, f be Borel functions on K. We say that (fε) weakly converges to f with
respect to the pair (θε, θ) if

(59)

sup
ε

∫
K

|fε|2dθε <∞, f ∈ L2
θ(K),

θε
?
⇀ θ and fεθε

?
⇀ fθ weakly* in M(K)

(notation: fε
θε,θ
⇀ f).

We say that (fε) strongly converges to f with respect to the pair (θε, θ) if

(60) fε
θε,θ−−⇀ f and lim sup

ε→0

∫
K

|fε|2dθε ≤
∫
K

|f |2dθ (notation: fε
θε,θ−−→ f).

We now present the main statement of the section. For notational simplicity, the
measures (νε ⊗L2)bΩ and (mε ⊗L2)bΩ are denoted by νε ⊗L2 and mε ⊗L2. We set
(see (11))

(61) σν(ϕ) := l tr
Å ‹Eϕ
ν⊗L2

ã
I + 2

‹Eϕ
ν⊗L2 .
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Proposition 4.2. Let (uε) be the sequence of solutions to (14). Then uε is
bounded in BD(Ω) and

(62) sup
ε>0

∫
Ω
|u′ε|2dmε ⊗ L2 +

∫
Ω
|uε|dx+

∫
Ω
µε |e(uε)|2 dx <∞.

Up to a subsequence, there exists u such that

(63)

uε
?
⇀ u weakly* in BD(Ω), Euε

?
⇀ ‹Eu weakly* in M(Ω; S3),

µεe(uε)
νε⊗L2,ν⊗L2

−−−−−−−−⇀ ‹Eu
ν⊗L2 , σε(uε)

νε⊗L2,ν⊗L2

−−−−−−−−⇀ σν(u),

ex′(u′ε)
mε⊗L2,m⊗L2

−−−−−−−−⇀ ex′((u?)′), u ∈ BDν,m
0 (Ω).

Before presenting the proof of Proposition 4.2, we establish some auxiliary results.
The next lemma states some fundamental properties of convergence with respect to
the pair (θε, θ), proved in [36, Theorem 4.4.2] in a more general context.

Lemma 4.3. Let (θε) be a sequence of positive Radon measures on a compact set
K ⊂ RN weakly* converging in M(K) to some positive Radon measure θ. Then

(i) any sequence (fε) of Borel functions on K such that

(64) sup
ε

∫
K

|fε|2dθε <∞

has a weakly converging subsequence with respect to the pair (θε, θ);

(ii) if fε
θε,θ−−⇀ f (resp., fε

θε,θ−−→ f), then

(65) lim inf
ε→0

∫
K

f2
ε dθε ≥

∫
K

f2dθ

Å
resp., lim

ε→0

∫
K

f2
ε dθε =

∫
K

f2dθ

ã
;

(iii) if fε
θε,θ−−⇀ f and gε

θε,θ−−→ g, then

lim
ε→0

∫
K

fεgεdθε =
∫
K

fgdθ.

As a first application of Lemma 4.3, we obtain some relations between the mea-
sures ν, m, and L1

b[0,L] as follows.

Lemma 4.4. Under (15), the following hold:

(66)
L1
b[0,L] � ν, L1

ν ∈ L
2
ν([0, L]), L1

b[0,L] � m, L1

m ∈ L
2
m([0, L]),∫

[0,L]
|L

1

ν |
2dν ≤ m([0, L]),

∫
[0,L]
|L

1

m |
2dm ≤ ν([0, L]).

Proof. Noticing that by (13) and (15), supε
∫

[0,L] |µε|
2dνε = supεmε([0, L]) <∞

(resp., supε
∫

[0,L] |µε|
−2dmε = supε νε([0, L]) < ∞), we deduce from Lemma 4.3 that

the sequence (µε) (resp., (µ−1
ε )) has a converging subsequence with respect to the pair

(νε, ν) (resp., (mε,m)), and that

(67)
µενε

?
⇀ gν, µ−1

ε mε
?
⇀ hm, g ∈ L2

ν , h ∈ L2
m,∫

|g|2dν ≤ lim inf
ε→0

∫
|µε|2dνε,

∫
|h|2dm ≤ lim inf

ε→0

∫
|µε|−2dmε.
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By (13) we have µενε = µ−1
ε mε = L1

b[0,L], |µε|
2νε = mε, |µε|−2mε = νε, and

therefore gν = hm = L1
b[0,L], L

1
b[0,L] � ν, L1

b[0,L] � m, g = L1

ν , h = L1

m , and the
convergences (15) and (67) imply

(68)

∫
[0,L]
|L

1

ν |
2dν ≤ lim sup

ε→0
mε([0, L]) ≤ m([0, L]),∫

|L
1

m |
2dm ≤ lim sup

ε→0
νε([0, L]) ≤ ν([0, L]).

Assertion (66) is proved.

The following statement is proved in [17, Lemma 3.1].

Lemma 4.5. Let (bε) be a bounded sequence in L1(0, L) that weakly* converges in
M([0, L]) to some Radon measure θ satisfying

(69) θ({0}) = θ({L}) = 0.

Let (wε) be a bounded sequence in W 1,1(0, L) weakly* converging in BV (0, L) to some
w. Assume that

(70) θ({t})Dw({t}) = 0 ∀t ∈ (0, L).

Then

lim
ε→0

∫ L

0
ψbεwεdx =

∫
(0,L)

ψw(r)dθ =
∫

(0,L)
ψw(l)dθ ∀ψ ∈ C([0, L]),

where w(r) (resp., w(l)) denotes the right-continuous (resp., left-continuous) represen-
tative of w.

For any ϕ ∈ BD(Ω), we denote by γ±Σx1
(ϕ) the trace of ϕ on both sides of

Σx1 (see (12)). As shown in the next lemma, the mappings x → γ±Σx1
(ϕ)(x) can be

identified with the Borel fields ϕ± defined by (5).

Lemma 4.6. Let ϕ ∈ BD(Ω), and let ϕ?, ϕ± be defined by (4), (5). Then

(71) γ±Σx1
(ϕ)(x) = ϕ±(x) = lim

r→0

∫
−
B±r (x)

ϕ(y)dy H2-a.e. x ∈ Σx1 ∀x1∈(0, L).

Moreover, we have

(72) ϕ? =
1
2

(ϕ+ +ϕ−) H2-a.e. on Σx1 ∀x1∈(0, L)

and

(73) ϕ?, ϕ± ∈ L1
H2(Σx1) ∀x1∈(0, L).

Furthermore, the following hold:

(74) ϕ+ = ϕ− = ϕ? = lim
r→0

∫
−
B±r (x)

ϕ(y)dy H2-a.e. in Σx1 if |Eϕ|(Σx1) = 0

and

(75) ‹Eϕ� ν ⊗ L2 =⇒ ϕ+ = ϕ− = ϕ? H2-a.e. on Σx1 for m-a.e. x1∈(0, L).
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Proof. The traces of a function with bounded deformation on both sides of a C1

hypersurface M contained in Ω are H2-a.e. equal to its one side Lebesgue limits (see
[38, Trace Theorem, p. 84; Proposition 2.2, p. 91] or [2, (ii)–(iii), p. 209]). Applying
this to M = Σx1 , we obtain (71). Assertion (71) ensures that for all x1 ∈ (0, L), for
H2-a.e. x ∈ Σx1 , the two limits in the first line of (5) exist and are finite. When they
do exist, the limit in the first line of (4) also exists, and

1
2

(ϕ+(x) +ϕ−(x)) =
1
2

Ç
lim
r→0

∫
−
B+
r (x)

ϕ(y) dy +
∫
−
B−r (x)

ϕ(y) dy

å
= lim
r→0

∫
−
Br(x)

ϕ(y) dy = ϕ?(x).

Assertion (72) is proved. Assertion (73) results from (71), (72), and the fact that
the traces of ϕ on each side of Σx1 belong to L1

H2(Σx1). Noticing that by (29) we
have

|EϕbΣx1
| =

∣∣(ϕ+ −ϕ−
)
� e1

∣∣H2bΣx1
∀x1∈(0, L),

we deduce from the elementary inequality

(76) |a| ≤
√

2|a� n| if ||n|| = 1

that ϕ+ = ϕ− H2-a.e. in Σx1 whenever |Eϕ|(Σx1) = 0. Assertion (74) then follows
from (71) and (72). Assertion (75) is deduced from (74) by noticing that, by (16),
m(Aν) = 0 and that ν ⊗ L2(Σx1) = ν({x1})L2(Ω′) = |Eϕ|(Σx1) = 0 if x1 6∈ Aν and
Eϕ� ν ⊗ L2.

Combined with Lemma 4.5, the following lemma will be used to prove a delicate
identification relation (see (100)) in the proof of Proposition 4.8.

Lemma 4.7. Let ϕ ∈ BD(Ω) such that ϕ = 0 on ∂Ω, and let ϕ ∈ L1(0, L; R3) be
the Borel function defined by

(77) ϕ(x1) :=
∫

Σx1

ϕ?dH2 ∀x1 ∈ (0, L).

The following hold:

(78)
ϕ∈BV (0,L; R3), ||ϕ||

L1(0,L;R3)
≤ ||ϕ||L1(Ω), ||ϕ||BV (0,L;R3)

≤
√

2||ϕ||BD(Ω),

Dϕ� |Eϕ|(.× Ω′), |Dϕ|(B) ≤
√

2|Eϕ|(B × Ω′) ∀B ∈ B((0, L)),

where B((0, L)) denotes the Borel σ-algebra of (0, L). Moreover, the left-continuous
representative ϕ(l) (resp., right-continuous representative ϕ(r)) of ϕ is given by

(79)

ϕ(l)(x1) =
∫

Σx1

ϕ−dH2 ∀x1 ∈ (0, L)Ç
resp., ϕ(r)(x1) =

∫
Σx1

ϕ+dH2 ∀x1 ∈ (0, L)

å
.

Proof. Let eV(ϕ, (0, L)) denote the essential variation of ϕ on (0, L), that is,

(80) eV(ϕ, (a, b)) := inf
L1(N)=0

sup

{
n∑
i=1

|ϕ(ti+1)−ϕ(ti)| ,
∣∣∣∣∣t1, . . . , tn ∈ (a, b) \N
a < t1 < · · · < tn < b

}
.
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By [3, Proposition 3.6 and Theorem 3.27], the field ϕ belongs to BV (0, L; R3) if
and only if eV(ϕ, (0, L)) <∞, and in this case eV(ϕ, (0, L)) = |Dϕ|((0, L)). Let a, b
be two real numbers such that 0 ≤ a < b ≤ L, D := {t ∈ (0, L), |Eϕ|(Σt) > 0}, and
let t1, . . . , tn ⊂ (a, b) \D such that 0 < t1 < · · · < tn < L. By (74), (76), and Green’s
formula in BD(Ωi), where Ωi :=(ti, ti+1)× Ω′, since ϕ = 0 on ∂Ω, we have

(81)

|ϕ(ti+1)−ϕ(ti)| =
∣∣∣∣∣
∫

Σti+1

ϕ−dH2 −
∫

Σti

ϕ+dH2

∣∣∣∣∣
≤
√

2

∣∣∣∣∣
(∫

Σti+1

ϕ−dH2 −
∫

Σti

ϕ+dH2

)
� e1

∣∣∣∣∣
=
√

2
∣∣∣∣∫
∂Ωi
γi(ϕ)� ndH2

∣∣∣∣ =
√

2 |Eϕ (Ωi)| ≤
√

2 |Eϕ| (Ωi) ,

where γi(ϕ) denotes the trace on ∂Ωi of the restriction of ϕ to Ωi, and therefore,

n∑
i=1

|ϕ(ti+1)−ϕ(ti)| ≤
n∑
i=1

√
2 |Eϕ| (Ωi) ≤

√
2 |Eϕ| ((a, b)× Ω′) .

By the arbitrary choice of t1, . . . , tn, noticing that D is at most countable and
thus L1-negligible, we infer that ϕ∈BV (a, b; R3) and

(82) |Dϕ|((a, b)) = eV(ϕ, (a, b)) ≤
√

2 |Eϕ| ((a, b)× Ω′) ,

yielding, by the arbitrariness of a, b, the second line of (78). The first line easily fol-
lows. Since ϕ ∈ BV ((0, L); R3), there exists a left-continuous (resp., right-continuous)
representative ϕ(l) (resp., ϕ(r)) of ϕ. Let us fix x1 ∈ (0, L). By (81), we have

lim sup
t→x−1 ,t6∈D

∣∣∣∣∣
∫

Σx1

ϕ−dH2 −ϕ(t)

∣∣∣∣∣ = lim sup
t→x−1 ,t6∈D

∣∣∣∣∣
∫

Σx1

ϕ−dH2 −
∫

Σt
ϕ+dH2

∣∣∣∣∣
≤ lim sup
t→x−1 ,t6∈D

√
2 |Eϕ| ((t, x1)× Ω′) = 0,

and thereforeϕ(l)(x1) =
∫

Σx1
ϕ−dH2. The proof of the identityϕ(r)(x1) =

∫
Σx1

ϕ+dH2

is similar.

In the next proposition, we study the asymptotic behavior of a sequence (ϕε)
satisfying the estimate

(83) sup
ε>0

∫
Ω
|ϕε|dx+

∫
Ω
µε |e(ϕε)|2 dx <∞.

This study will be applied to the sequence of the solutions to (14), and also
to the sequence of test fields defined in section 6 (see Proposition 6.1), which do
not necessarily vanish on ∂Ω. We are led to introduce the normed space BDν,m(Ω)
deduced from (19) by removing the boundary conditions, namely,

(84)

BDν,m(Ω) =

{
ϕ ∈ BD(Ω)

∣∣∣∣∣Eϕ� ν ⊗ L2, Eϕ
ν⊗L2 ∈ L2

ν⊗L2(Ω; R3)

(ϕ?)′ ∈ L2
m(0, L;H1(Ω′; R3))

}
,

||ϕ||
BDν,m(Ω)

:=
∫

Ω
|ϕ|dx+

Å∫
Ω

∣∣∣ Eϕν⊗L2

∣∣∣2dν ⊗ L2
ã 1

2

+
Å∫

Ω
|ex′(ϕ?)|2dm⊗ L2

ã 1
2

.
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Proposition 4.8. Let (ϕε) be a sequence in W 1,1(Ω; R3) satisfying the estimate
(83). Then (ϕε) is bounded in BD(Ω) and, up to a subsequence,

(85)

ϕε → ϕ strongly in Lp(Ω; R3) ∀p ∈
[
1, 3

2

)
,

e(ϕε)L3
bΩ = Eϕε

?
⇀ Eϕ weakly* in M(Ω; S3),

e(ϕε)L3
bΩ = ‹Eϕε ?

⇀ Υ weakly* in M(Ω; S3)

for some ϕ ∈ BD(Ω), Υ ∈M(Ω; S3). Moreover,

(86)

Υ = ‹Eϕ,‹Eϕ�ν⊗L2,
‹Eϕ
ν⊗L2 ∈L2

ν⊗L2(Ω; S3),

µεe(ϕε)
νε⊗L2,ν⊗L2

−−−−−−−−⇀
‹Eϕ
ν⊗L2 , σε(ϕε)

νε⊗L2,ν⊗L2

−−−−−−−−⇀ σν(ϕ),

where σν is given by (61). Assume in addition

(87) sup
ε>0

∫
Ω
|ϕ′ε|2dmε ⊗ L2 <∞;

then

(88)
(ϕ?)′ ∈ L2

m(0, L;H1(Ω′; R3)), ϕ ∈ BDν,m(Ω),

ϕ′ε
mε⊗L2,m⊗L2

−−−−−−−−⇀ (ϕ?)′, ex′(ϕ′ε)
mε⊗L2,m⊗L2

−−−−−−−−⇀ ex′((ϕ?)′).

Proof. By the Cauchy–Schwarz inequality and the estimates (15) and (83), we
have

(89)

∫
Ω
|ϕε|dx+

∫
Ω
|e(ϕε)|dx ≤

∫
Ω
|ϕε|dx+

Å∫
Ω

1
µε
dx

ã 1
2
Å∫

Ω
µε |e(ϕε)|2 dx

ã 1
2

≤ C,

and thus the sequence (ϕε) is bounded in BD(Ω) and weakly* converges in BD(Ω),
up to a subsequence, to some ϕ. From the compactness of the injection of BD(Ω)
into Lp(Ω; R3) for p ∈

[
1, 3

2

)
(see [53, Theorem 2.4, p. 153]), we deduce

(90)
ϕε → ϕ strongly in Lp(Ω; R3) ∀p ∈

[
1, 3

2

)
,

Eϕε
?
⇀ Eϕ weakly* in M(Ω; S3).

The estimate (89) also implies that (e(ϕε)L3
bΩ) is bounded in M(Ω; S3), and hence

the following convergence holds, up to a subsequence, for some Υ ∈M(Ω; S3):

(91) e(ϕε)L3
bΩ = ‹Eϕε ?

⇀ Υ weakly* in M(Ω; S3).

By testing the convergences (90) (second line) and (91) with some arbitrary field
Ψ ∈ D(Ω; S3), we deduce that the following equation holds in M(Ω; S3):

(92) ΥbΩ = Eϕ.
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By (13) and (83), we have

(93) sup
ε>0

∫
Ω
|µεe(ϕε)|2 dνε ⊗ L2 = sup

ε>0

∫
Ω
µε |e(ϕε)|2 dx <∞.

Since the sequence (νε⊗L2) weakly* converges to ν⊗L2 inM(Ω) (see (15)), we
deduce from Lemma 4.3 and (61) that, up to a subsequence,

(94) µεe(ϕε)
νε⊗L2,ν⊗L2

−−−−−−−−⇀Ξ, σε(ϕε)
νε⊗L2,ν⊗L2

−−−−−−−−⇀ l tr (Ξ) I + 2 Ξ

for some

(95) Ξ ∈ L2
ν⊗L2(Ω; S3).

The first convergence in (94) implies, by Definition 4.1, that

(96) e(ϕε)L3
bΩ = ‹Eϕε ?

⇀ Ξν ⊗ L2 weakly* in M(Ω; S3).

Taking (91) into account, we infer that the following equation holds inM(Ω; R3):

(97) Υ = Ξν ⊗ L2.

Noticing that by (17) we have ν ⊗ L2(∂Ω) = 0, we infer from (97) that Υ(∂Ω) = 0,
and then from (11) and (92) that

(98) Υ = Υb∂Ω + ΥbΩ = ‹Eϕ.
By (90), (91), (97), and (98), the assertions (85) and (86) are proved.

Let us now prove (88). By (15), the sequence (mε ⊗ L2) weakly* converges in
M(Ω) to m⊗ L2 , and by (13), (87), and (93) we have

sup
ε>0

∫
Ω
|ϕ′ε|

2 + |ex′(ϕ′ε)|
2
dmε ⊗ L2 < +∞.

Applying Lemma 4.3 we infer, up to a subsequence, the following convergences:

(99)
ϕ′ε

mε⊗L2,m⊗L2

−−−−−−−−⇀ h′, µεϕ
′
ε
?
⇀ h′m⊗ L2 weakly* in M(Ω; R3),

ex′(ϕ′ε)
mε⊗L2,m⊗L2

−−−−−−−−⇀ Γ, µεex′(ϕ′ε)
?
⇀ Γm⊗ L2 weakly* in M(Ω; S3)

for some h′ ∈ L2
m⊗L2(Ω; R3), Γ ∈ L2

m⊗L2(Ω; S3). The proof of (88) (and of Proposi-
tion 4.8) is achieved provided we show that

(100) h′ = (ϕ?)′ m⊗ L2-a.e. in Ω,

(101) (ϕ?)′ ∈ L2
m(0, L;H1(Ω′; R3)), Γ = ex′

(
(ϕ?)′

)
, m⊗ L2-a.e. in Ω.

Proof of (100). Let us fix ψ ∈ D(Ω). By (85), (ψϕε) weakly* converges in BD(Ω)
to ψϕ, and hence by the estimates (78) established in Lemma 4.7, the sequence (ψϕε)
defined by (77) weakly* converges in BV (0, L; R3) to ψϕ. By (66), (78), and (86) we
have

|Dψϕ| � |E(ψϕ)|(.× Ω′) = |ψE(ϕ) +∇∇∇ψ �ϕL3|(.× Ω′)� ν,
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4296 MICHEL BELLIEUD AND SHANE COOPER

and therefore, by (16) and (17), the assumptions of Lemma 4.5 are satisfied by
(bε, wε) := (µε, ψϕε) and (θ, w) := (m,ψϕ). Taking into account (75), (79), and
(99) and applying Fubini’s theorem, we deduce∫

Ω
ψh′dm⊗ L2 = lim

ε→0

∫
Ω
µεψϕ

′
εdx = lim

ε→0

∫
Ω
µεψ(ϕ?)′εdx = lim

ε→0

∫ L

0
µεψϕ′εdx1

=
∫

(0,L)
(ψϕ′)(r)dm =

∫
(0,L)

Ç∫
Σx1

ψ(ϕ′)+dH2

å
dm

=
∫

Ω
ψ(ϕ′)+dm⊗ L2 =

∫
Ω
ψ(ϕ?)′dm⊗ L2.

By the arbitrary choice of ψ, assertion (100) is proved.
Proof of (101). Let us fix Ψ ∈ D(Ω; S3). By (99) and (100), we have

(102)

∫
Ω

Γ : Ψ dm⊗ L2 = lim
ε→0

∫
Ω
µεex′(ϕε) : Ψdx = lim

ε→0
−
∫

Ω
µεϕ

′
ε · divx′Ψdx

= −
∫

Ω
(ϕ?)′ · divx′Ψdm⊗ L2,

where divx′Ψ :=
∑3
α,β=2

∂Ψαβ
∂xβ

eα. By the arbitrary choice of Ψ, we deduce that

ex′
(
(ϕ?)′

)
= Γ, m⊗ L2-a.e.,

yielding ex′
(
(ϕ?)′

)
∈ L2

m(0, L;L2(Ω′; S3)). This, along with (100) and the two-
dimensional second Korn inequality inH1(Ω′; R2), implies (ϕ?)′∈L2

m(0, L;H1(Ω′; S3)).
Assertion (101) is proved.

We are now in a position to prove the main result of section 4.

Proof of Proposition 4.2. By multiplying (14) by uε and integrating it by parts
over Ω, we obtain

∫
Ω σε(uε) : e(uε)dx =

∫
Ω f · uεdx and deduce

(103)
∫

Ω
µε|e(uε)|2dx ≤

∫
Ω
σε(uε) : e(uε)dx ≤ C||f ||L∞(Ω;R3)

∫
Ω
|uε|dx.

Assumptions (15) and the Poincaré and Cauchy–Schwarz inequalities imply

(104)

∫
Ω
|(uε)1|dx ≤ C

∫
Ω

∣∣∣∣∂(uε)1

∂x1

∣∣∣∣ dx ≤ C Å∫
Ω

1
µε
dx

ã 1
2
Ç∫

Ω
µε

∣∣∣∣∂(uε)1

∂x1

∣∣∣∣2 dx
å 1

2

≤ C
Å∫

Ω
µε|e(uε)|2dx

ã 1
2

.

By Fubini’s theorem, Poincaré’s inequality inW 1,1
0 (Ω′; R2), assertion (15), the Cauchy–

Schwarz and Jensen’s inequalities, and Korn’s inequality in H1
0 (Ω′; R2), we have

(105)

∫
Ω
|u′ε|dx ≤ C

∫
Ω
|∇∇∇x′u′ε|dx ≤C

Ç∫ L

0

1
µε
dx1

å1
2
Ç∫ L

0
µε

Å∫
Ω′
|∇∇∇x′u′ε| dx′

ã2

dx1

å1
2

≤ C
Ç∫ L

0
µε

∫
Ω′
|∇∇∇x′u′ε|

2
dx′dx1

å1
2

≤ C
Ç∫ L

0
µε

∫
Ω′
|ex′(u′ε)|

2
dx′dx1

å1
2

.
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We deduce from (103), (104), and (105) that
∫

Ω |uε|dx ≤ C
(∫

Ω |uε|dx
) 1

2 , yielding

(106)
∫

Ω
|uε|dx ≤ C.

On the other hand, by Korn’s inequality in H1
0 (Ω′; R2), we have

(107)

∫
Ω
|u′ε|2dmε ⊗ L2 =

∫ L

0
µε

Å∫
Ω′
|u′ε|2dx′

ã
dx1

≤ C
∫ L

0
µε

Å∫
Ω′
|ex′(u′ε)|2dx′

ã
dx1 ≤ C

∫
Ω
µε|e(uε)|2dx.

By (103), (106), and (107), estimate (62) is proved. In other words, the field ϕε = uε
satisfies (83) and (87). Therefore, by Proposition 4.8 the convergences stated in (63)
hold for some u ∈ BDν,m(Ω). The proof of Proposition 4.2 is achieved provided we
show that

(108) u = 0 on ∂Ω

(which is not straightforward, because the trace is not weakly* continuous on BD(Ω))
and that

(109) (u?)′ = 0 H1 ⊗m-a.e. on ∂Ω′ × (0, L).

Proof of (108). Let us fix Ψ ∈ C∞(Ω; S3). By passing to the limit as ε → 0 in
the integration by parts formula

∫
Ω e(uε) : Ψdx = −

∫
Ω uε · divΨdx, and taking into

account the strong convergence of uε to u in L1(Ω; R3) and the weak* convergence
of (e(uε)) to ‹E(u) in M(Ω; S3) (stated in (85), (86)), we obtain

∫
Ω Ψ : d‹Eu =

−
∫

Ω u · divΨdx and infer from (11) that
∫

Ω Ψ : dEu = −
∫

Ω u · divΨdx. We then
deduce from Green’s formula in BD(Ω),∫

Ω
Ψ : dEu = −

∫
Ω
u · divΨdx+

∫
∂Ω

Ψ : u� ndH2,

that
∫
∂Ω Ψ : u � ndH2(x) = 0. By the arbitrariness of Ψ, taking into account (76),

assertion (108) is proved.
Proof of (109). Let us fix Ψ ∈ C∞(Ω; S3). Since uε = 0 on ∂Ω, (102) holds for

ϕε = uε. We infer

(110)
∫

Ω
ex′(u′) : Ψ dm⊗ L2 = −

∫
(0,L)

Å∫
Ω′

(u?)′ · divx′Ψdx′
ã
dm(x1).

By (88) applied to ϕε := uε, the field (u?)′ belongs to L2
m(0, L;H1(Ω′; R3)), and hence

there exists an m-negligible subset N of (0, L) such that (u?)′(x1, .) ∈ H1(Ω′; R3) for
all x1 ∈ (0, L) \N . By integration by parts, taking into account the symmetry of Ψ,
we infer

(111)
∫

Ω′
(u?)′·divx′Ψdx′=

∫
∂Ω′

(u?)′·ΨndH1(x′)−
∫

Ω′
ex′((u?)′) : Ψdx′ m-a.e. x1.

It follows from (110) and (111) that
∫

(0,L)×∂Ω′(u
?)′ ·Ψndm⊗H1 = 0. By the arbitrary

choice of Ψ, assertion (109) is proved.
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5. Partial mollification in BDν,m(Ω). For any two Borel functions f, g :
Ω → R, we denote by f ∗′ g the partial convolution of g and f with respect to the
variable x′, defined by

(112) f ∗′ g(x) :=


∫

R2
f̃(x1, x

′ − y′)g̃(y′)dy′ if f̃(x1, x
′ − .)g̃(.) ∈ L1(R2),

0 otherwise.

Given δ > 0, the symbol fδ stands for the “partial mollification” of f with respect
to x′ given by

(113) fδ := f ∗′ ηδ,

where ηδ ∈ D(R2) denotes the standard mollifier defined by

η(x′) :=

C exp
Å

1
|x′|2 − 1

ã
if |x′| < 1,

0 otherwise,
ηδ(x′) :=

1
δ2 η

Å
x′

δ

ã
,

the constant C being chosen so that
∫

R2 ηdx
′ = 1. Some basic properties are stated

in the next lemma.

Lemma 5.1. Let f : Ω→ R be a Borel function, let θ be a positive Radon measure
on [0, L], δ > 0, and let p ∈ [1,+∞). Then fδ is Borel measurable. If f ∈ Lpθ⊗L2(Ω),
the following estimates hold:

(114)
∫

Ω′
|fδ(x1, x

′)|pdx′ ≤
∫

Ω′
|f(x1, x

′)|pdx′ ∀x1 ∈ (0, L).

In particular, we have

(115) fδ ∈ Lpθ⊗L2(Ω), ||fδ||Lp
θ⊗L2 (Ω) ≤ ||f ||Lp

θ⊗L2 (Ω).

Moreover, the following convergence holds:

(116) fδ −→
δ→0

f strongly in Lpθ⊗L2(Ω).

The following regularity assertion holds:

(117) fδ(x1, .) ∈ C∞(Ω
′
) ∀x1 ∈ (0, L),

and

(118)

∂n+m

∂xn2x
m
3
fδ = f ∗′ ∂

n+m

∂xn2x
m
3
ηδ ∈ Lpθ⊗L2(Ω) ∀n,m ∈ N,∣∣∣∣∣∣∣∣ ∂n+m

∂xn2x
m
3
fδ
∣∣∣∣∣∣∣∣
Lp
θ⊗L2

≤ C

δn+m ||f ||Lp
θ⊗L2

∀n,m ∈ N.

If f ∈ Lpθ⊗L2(Ω) and h ∈ Lp
′

θ⊗L2(Ω) ( 1
p + 1

p′ = 1), then

(119)
∫

Ω
fδhdθ ⊗ L2 =

∫
Ω
fhδdθ ⊗ L2.

If ψ ∈ C1
c (Ω), then ψδ ∈ C1(Ω) and

(120) ∂
(
ψδ
)

∂xk
=
Å
∂ψ

∂xk

ãδ
∀k ∈ {1, 2, 3}.
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Proof. By Fubini’s theorem, the mappings h±(x) :=
∫

R2(f̃(x1, x
′− y′)ηδ(y′))±dy′

(where l+(x) := sup{l(x), 0}) are Borel measurable, and so is the set A := {x ∈
Ω,
∫

R2

∣∣f̃(x1, x
′ − y′)ηδ(y′)

∣∣dy′ < +∞}; therefore f ∗′ ηδ = (h+ − h−)1A is Borel
measurable. Assertion (114) follows from the classical properties of convolution in
R2 (notice that

∫
R2 ηδdx

′ = 1). Assertion (115) is a straightforward consequence of
(114). We have∫

Ω
|f − fδ|pdθ ⊗ L2 =

∫
[0,L]

dθ(x1)
∫

Ω′
|f − fδ|p(x1, x

′)dx′.

By (114), it holds that
∫

Ω′ |f − f
δ|p(., x′)dx′ ≤ 2p−1

∫
Ω′ |f |

p(., x′)dx′ ∈ L1
θ, and

by the properties of mollification in Lp(Ω′), for all x1 such that f(x1, .) ∈ Lp(Ω′) and
thus for θ-a.e. x1 ∈ [0, L],

∫
Ω′ |f−f

δ|p(x1, x
′)dx′ converges to 0. Assertion (116) then

results from the dominated convergence theorem. Assertion (117) follows from well-
known properties of mollification, and (118) is obtained by differentiation under the
integral sign. Assertion (119) is proved by applying Fubini’s theorem several times.
Assertion (120) is obtained by noticing that ψ̃ ∈ C1

c (R2) and by differentiating under
the integral sign.

The next proposition specifies some properties of partial mollification when ap-
plied to elements of BDν,m

0 (Ω).

Proposition 5.2. Let v ∈ BDν,m
0 (Ω) and δ > 0. Then,

(121) vδ ∈ BD(Ω), Evδ � ν ⊗ L2,
E(vδ)
ν ⊗ L2 =

Å
Ev

ν ⊗ L2

ãδ
,

(122)
(vδ)± = (v±)δ H2-a.e. on Σx1 ∀x1 ∈ (0, L),

(vδ)? = (v?)δ H2-a.e. on Σx1 ∀x1 ∈ (0, L),

(123)
Ä(
vδ
)?ä′ ∈ L2

m(0, L;H1(Ω′; R3)), ex′
Ä(
vδ
)?ä

= (ex′(v?))
δ
,

(124) vδ ∈ BDν,m(Ω), lim
δ→0

∣∣∣∣∣∣v − vδ∣∣∣∣∣∣
BDν,m(Ω)

= 0,

and the following hold for all x ∈ Ω, α ∈ {2, 3}:

(125)
lim
κ→0+

(vδ)∓(x1 ± κ, x′) = (vδ)±(x),

lim
κ→0+

∂

∂xα
(vδ)∓(x1 ± κ, x′) =

∂

∂xα
(vδ)±(x),

(126)

(
vδ1
)+

(x) =
1

l + 2

∫
(0,x1]

(σν)11(vδ)(s1, x
′) dν(s1)

−
3∑

β=2

l

l + 2

∫ x1

0

∂vδβ
∂xβ

(s1, x
′)ds1,

(
vδα
)+

(x) =
∫

(0,x1]
(σν)1α(vδ)(s1, x

′) dν(s1)−
∫ x1

0

∂vδ1
∂xα

(s1, x
′) ds1.
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Proof. By (115) we have vδ ∈ L1(Ω; R3) and
∫

Ω |v
δ|dx ≤

∫
Ω |v|dx. Let us fix

Ψ ∈ D(Ω; S3). Then Ψδ ∈ C∞(Ω; S3); thus using (119), (120), Green’s formula in
BD(Ω), and the fact that v ∈ BDν,m

0 (Ω), we obtain

∫
Ω
vδ · divΨ dx =

∫
Ω
v · (divΨ)δ dx =

∫
Ω
v · div(Ψδ) dx = −

∫
Ω

Ψδ : dEv

= −
∫

Ω
Ψδ : Evν⊗L2 dν ⊗ L2 = −

∫
Ω

Ψ :
Ä
Ev
ν⊗L2

äδ
dν ⊗ L2.

By the arbitrary choice of Ψ, the assertion (121) is proved. Similarly, applying
Green’s formula in BD(Ω) and using (119), (120), and (121), we infer, for all x1 ∈
(0, L),

∫
Σx1

Ψ:
(
vδ
)−� e1dH2 =

∫
∂((0,x1)×Ω′)

Ψ : vδ � n dH2 =
∫

(0,x1)×Ω′
Ψ : dEvδ +

∫
(0,x1)×Ω′

divΨ · vδdx

=
∫

(0,x1)×Ω′
Ψ :
Ä
Ev
ν⊗L2

äδ
dν ⊗ L2 +

∫
(0,x1)×Ω′

(divΨ)δ · vdx

=
∫

(0,x1)×Ω′
Ψδ : Evν⊗L2 dν ⊗ L2 +

∫
(0,x1)×Ω′

div(Ψδ) · vdx

=
∫

Σx1

Ψδ : v− � e1dH2 =
∫

Σx1

Ψ :
(
v−
)δ � e1dH2.

By the arbitrary nature of Ψ and x1, we deduce that
(
vδ
)−�e1 = (v−)δ�e1 and

then, taking into account (76), that
(
vδ
)− = (v−)δ. Arguing in the same manner for(

vδ
)+, we find the first line of (122). By (72) and the latter line, for all x1 ∈ (0, L)

the following equalities hold H2-a.e. on Σx1 :

(v?)δ = 1
2

(
v+ + v−

)δ = 1
2

Ä(
v+)δ +

(
v−
)δä = 1

2

Ä(
vδ
)+

+
(
vδ
)−ä

=
(
vδ
)?
.

Assertion (122) is proved. To prove (123), we first notice that by (19), (115), and
(122), we have

Ä(
vδ
)?ä′ ∈ L2

m(0, L; L2(Ω′; R3)). Taking into account (119), (120),
(122) and integrating by parts with respect to x′ in L2

m(0, L;H1
0 (Ω′; R3)), we find

∫
Ω

Ä(
vδ
)?ä′·divΨdm⊗ L2=

∫
Ω

(
(v?)′

)δ· divΨdm⊗ L2 =
∫

Ω
(v?)′· div

(
Ψδ
)
dm⊗ L2

=−
∫

Ω
ex′ (v?):Ψδdm⊗ L2 = −

∫
Ω
(ex′ (v?))

δ: Ψdm⊗ L2,

yielding (123). Assertion (124) is a consequence of (84), (121), (123), and (116)
applied for f ∈

¶
Ev
ν⊗L2 , ex′(v),v

©
and θ ∈ {ν,m}. Let us fix x ∈ Ω: by (76), (122),

and Green’s formula, denoting by γ the trace application on BD((x1, x1 + κ) × Ω′),
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we have∣∣∣(vδ)−(x1 + κ, x′)− (vδ)+(x)
∣∣∣ ≤ √2

∣∣∣((v−)δ(x1 + κ, x′)− (v+)δ(x)
)
� e1

∣∣∣
=
√

2

∣∣∣∣∣
∫
∂((x1,x1+κ)×Ω′)

ηδ(x′ − y′)γ(v)(s1, y
′)� ndH2(s1, y

′)

∣∣∣∣∣
=
√

2

∣∣∣∣∣
∫

(x1,x1+κ)×Ω′
ηδ(x′ − y′)dEv(s1, y

′) +
∫

(x1,x1+κ)×Ω′
v �∇∇∇x′ηδ(x′ − y′)ds1dy

′

∣∣∣∣∣
≤ C

Ç
|Ev| ((x1, x1 + κ)× Ω′) +

∫
(x1,x1+κ)×Ω′

|v|dx
å
,

and therefore limκ→0+

∣∣(vδ)−(x1 + κ, x′)− (vδ)+(x)
∣∣ = 0. We likewise find that

limκ→0+

∣∣(vδ)+(x1 − κ, x′) − (vδ)−(x)
∣∣ = 0. The first line of (125) is proved. The

second line is obtained by applying (118) and by substituting ∂ηδ
∂xα

for ηδ in the above
computations. To prove (126), we fix (x1, x

′) ∈ Ω, κ > 0: by (121) and Green’s
formula, we have∫

(0,x1+κ)

E11vδ
ν⊗L2 (s1, x

′)dν(s1) =
∫

(0,x1+κ)×Ω′

E11v
ν⊗L2 (s1, y

′)ηδ(x′ − y′)dν ⊗ L2(s1, y
′)

=
∫

(0,x1+κ)×Ω′
ηδ(x′ − y′)dE11v(s1, y

′)

=
∫

Σx1+κ

ηδ(x′ − y′)v−1 (s1, y
′)dH2(s1, y

′) =
(
v−1
)δ

(x1 + κ, y′).

Likewise, the following hold for β ∈ {2, 3}:∫
(0,x1+κ)

Eββvδ
ν⊗L2 (s1, x

′)dν(s1) =
∫

(0,x1+κ)×Ω′
ηδ(x′ − y′)dEββv(s1, y

′)

= −
∫

(0,x1+κ)×Ω′

∂

∂yβ
(ηδ(x′ − y′)) vβ(s1, y

′)dL3(s1, y
′)

=
∫ x1+κ

0

Å
∂
∂xβ

∫
Ω′
ηδ(x′ − y′)vβ(s1, y

′)dy′
ã
ds1 =

∫ x1+κ

0

∂vδβ
∂xβ

(s1, x
′)ds1.

Passing to the limit as κ→ 0+, taking into account (122) and (125), we infer

(127)

∫
(0,x1]

E11vδ
ν⊗L2 (s1, x

′)dν(s1) =
(
vδ1
)+

(x1, y
′),∫

(0,x1]

Eββvδ
ν⊗L2 (s1, x

′)dν(s1) =
∫ x1

0

∂vδβ
∂xβ

(s1, x
′)ds1,

yielding, by (61),∫
(0,x1]

(σν)11(vδ)(s1, x
′) dν(s1) =

∫
(0,x1]

l tr
(
Eϕ
ν⊗L2

)
+ 2 E11ϕ

ν⊗L2 dν(s1)

= (l + 2)
(
vδ1
)+

(x1, y
′) + l

3∑
β=2

∫ x1

0

∂vδβ
∂xβ

(s1, x
′)ds1.
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The first equation in (126) is proved. Similarly, by (121) and Green’s formula,
the following holds for α ∈ {2, 3}:∫

(0,x1+κ)
2E1αvδ
ν⊗L2 (s1, x

′)dν(s1) =
∫

(0,x1+κ)×Ω′
2ηδ(x′ − y′)dE1αv(s1, y

′)

=
∫

Σx1+κ

ηδ(x′ − y′)v−α (s1, y
′)dH2(s1, y

′) +
∫

(0,x1+κ)×Ω′
v1(s1, y

′)
∂ηδ
∂xα

(x′ − y′)ds1dy
′

=
(
vδα
)−

(x1 + κ, x′) +
∫ x1+κ

0

∂vδ1
∂xα

(s1, x
′)ds1.

Sending κ to 0+, we infer from (125) that

(128)
∫

(0,x1]
2E1αvδ
ν⊗L2 (s1, x

′)dν(s1) =
(
vδα
)+

(x1, x
′) +

∫ x1

0

∂vδ1
∂xα

(s1, x
′)ds1

and from (61) that∫
(0,x1]

(σν)1α(vδ)(s1, x
′) dν(s1) =

∫
(0,x1]

2E1αvδ
ν⊗L2 (s1, x

′)dν(s1)

=
(
vδα
)+

(x1, x
′) +

∫ x1

0

∂vδ1
∂xα

(s1, x
′)ds1,

yielding the second equation in (126).

Proposition 5.3. For all v ∈ BDν,m
0 (Ω) and δ > 0, the following holds for some

constant C independent of δ:

(129)

∫
Ω

∣∣∣Evδν⊗L2

∣∣∣2 dν ⊗ L2 ≤
∫

Ω

∣∣∣ Evν⊗L2

∣∣∣2 dν ⊗ L2 <∞,∫
Ω

∣∣∣ ∂
∂xα

Evδ
ν⊗L2

∣∣∣2dν ⊗ L2 ≤ C

δ2

∫
Ω

∣∣∣ Evν⊗L2

∣∣∣2 dν ⊗ L2 <∞,

(130) vδ,
∂vδ

∂xα
,

∂2vδ

∂xα∂xβ
∈ L2(Ω; R3) ∀ a, β ∈ {2, 3}.

Proof. Assertion (129) follows from (115), (118), and (121). By Lemma 4.4, the
Lebesgue measure on Ω is absolutely continuous with respect to m⊗L2; thus by (7)
and (75),

(131)
(
vδ
)+

=
(
vδ
)−

=
(
vδ
)?

= vδ L3-a.e. in Ω.

By (127), (129), (131), the Cauchy–Schwarz inequality, and Fubini’s theorem, we
have ∫

Ω
|vδ1|2dx =

∫
Ω
|(vδ1)+|2dx =

∫
Ω

∣∣∣∣∣
∫

(0,x1]

E11v
δ

ν ⊗ L2 (s1, x
′) dν(s1)

∣∣∣∣∣
2

dx

≤ C
∫

Ω

∣∣∣∣ E11v
δ

ν ⊗ L2

∣∣∣∣2 dν ⊗ L2 ≤ C
∫

Ω

∣∣∣∣ E11v

ν ⊗ L2

∣∣∣∣2 dν ⊗ L2 <∞,
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yielding, by (118),∫
Ω

∣∣∣∣ ∂vδ1∂xα

∣∣∣∣2 dx ≤ C

δ2

∫
Ω

∣∣∣vδ1∣∣∣2 dx ≤ C

δ2

∫
Ω

∣∣∣∣ E11v

ν ⊗ L2

∣∣∣∣2 dν ⊗ L2 <∞.

We deduce from (121), (128), (131), and the last inequalities that for α ∈ {2, 3},∫
Ω
|vδα|2dx ≤ C

∫
Ω

∣∣∣∣∣
∫

(0,x1]

E1αv
δ

ν ⊗ L2 (s1, x
′)dν(s1)

∣∣∣∣∣
2

dx+ C

∫
Ω

∣∣∣∣∫ x1

0

∂vδ1
∂xα

(s1, x
′) ds1

∣∣∣∣2dx
≤ C

∫
Ω

∣∣∣∣ E1αv

ν ⊗ L2

∣∣∣∣2 dν ⊗ L2 + C

∫
Ω

∣∣∣∣ ∂vδ1∂xα

∣∣∣∣2 dx ≤ C

δ2

∫
Ω

∣∣∣∣ Ev

ν ⊗ L2

∣∣∣∣2 dν ⊗ L2 <∞

and then from (118) that for α, β ∈ {2, 3},∫
Ω

∣∣∣∣ ∂vδ∂xα

∣∣∣∣2 dx ≤ C

δ2

∫
Ω
|vδα|2dx ≤

C

δ4

∫
Ω

∣∣∣∣ Ev

ν ⊗ L2

∣∣∣∣2 dν ⊗ L2 <∞,∫
Ω

∣∣∣∣ ∂2vδ

∂xα∂xβ

∣∣∣∣2 dx ≤ C

δ2

∫
Ω

∣∣∣∣ ∂vδ∂xα

∣∣∣∣2 dx ≤ C

δ6

∫
Ω

∣∣∣∣ Ev

ν ⊗ L2

∣∣∣∣2 dν ⊗ L2 <∞.

Assertion (130) is proved.

6. Proof of Theorem 3.1. The proof of Theorem 3.1 rests on the choice of an
appropriate sequence of test fields (ϕε), which will be constructed from an arbitrarily
chosen partially mollified element of BDν,m

0 (Ω), that is, a field ϕ of the type

(132) ϕ = vδ, v ∈ BDν,m
0 (Ω), δ > 0.

Let us briefly outline our approach. In the spirit of Tartar’s method [50], we will
multiply (14) by ϕε and integrate by parts to obtain

(133)
∫

Ω
σε(uε) : e(ϕε) dx =

∫
Ω
f ·ϕεdx.

By passing to the limit as ε → 0 in accordance with the convergences established
in Propositions 4.2 and 6.1, we will find a(u,vδ) =

∫
Ω f · v

δdx, where a(·, ·) is the
symmetric bilinear form on BDν,m(Ω) defined by (21). Then, sending δ to 0, we will
infer from Proposition 5.2 that a(u,v) =

∫
Ω f · vdx. From Proposition 4.2, we will

deduce that u belongs to BDν,m
0 (Ω) and hence is a solution to (18). Next, we will

prove that BDν,m
0 (Ω) is a Hilbert space and a(·, ·) is coercive and continuous on it;

hence the solution to (18) is unique, and the convergences established in Proposition
4.2 for subsequences hold for the complete sequences.

The sequence (ϕε) will be deduced from a family of sequences ((ϕkε)ε)k∈N by a
diagonalization argument. Given k ∈ N, the construction of (ϕkε)ε is based on the
choice of an appropriate finite partition (Ikj )j∈{1,...,nk} of (0, L] defined as follows:
since the set of the atoms of the measures ν and m is at most countable, we can fix
a sequence (Ak)k∈N of finite subsets of [0, L] satisfying

(134)



Ak =
{
tk0 , t

k
1 , . . . , t

k
nk

}
, Ak ⊂ Ak+1 ∀k ∈ N,

0 = tk0 < tk1 < tk2 < · · · < tknk−1
< tknk = L,

ν
({
tkj
})

= m
({
tkj
})

= 0 ∀k ∈ N, ∀j ∈ {0, . . . , nk},

lim
k→∞

sup
j∈{1,...,nk}

∣∣∣tkj − tkj−1

∣∣∣ = 0.
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Setting

(135)
Ikj :=

(
tkj−1, t

k
j

]
∀ k ∈ N, ∀j ∈ {1, . . . , nk},

we introduce the function φkε : (0, L)→ R defined by

(136) φkε(x1) :=
nk∑
j=1

νε((tkj−1, x1))
νε(Ikj )

1Ik
j
(x1).

Note that the restriction of φkε to each Ikj is absolutely continuous, and

(137)

dφkε
dx1

(x1) =
µ−1
ε (x1)
νε(Ikj )

in I̊kj ; 0 ≤ φkε ≤ 1 in (0, L),

φkε((tkj )−) = 1 and φkε((tkj−1)+) = 0 ∀j ∈ {1, . . . , nk}.

For all j ∈ {1, . . . , nk}, x ∈ Ikj × Ω′, α ∈ {2, 3}, we set (see (61))

(138)

ϕkε1(x) :=
φkε(x1)
l + 2

∫
Ik
j

σν11(ϕ)(s1, x
′)dν(s1)

− l

l + 2

3∑
α=2

∫ x1

tk
j−1

∂ϕα
∂xα

(s1, x
′)ds1 + ϕ+

1 (tkj−1, x
′),

ϕkεα(x) :=φkε(x1)
∫
Ik
j

σν1α(ϕ)(s1, x
′)dν(s1)−

∫ x1

tk
j−1

∂ϕ1
∂xα

(s1, x
′)ds1+ϕ+

α (tkj−1, x
′).

The sequence of test fields (ϕε) is determined by the next proposition.

Proposition 6.1. Let v ∈ BDν,m
0 (Ω), δ > 0, and ϕ, ϕkε , respectively, be given

by (132) and (138). There exists an increasing sequence (kε) of positive integers
converging to ∞ such that ϕε defined by

(139) ϕε := ϕkεε

strongly converges to ϕ in L1(Ω; R3) and satisfies assumptions (83) and (87) of Propo-
sition 4.8. In particular, the convergences and relations (85), (86), and (88) are
satisfied. In addition, the following strong convergences in the sense of (60) hold:

σε(ϕε)e1
νε⊗L2,ν⊗L2

−−−−−−−−→ σν(ϕ)e1, ex′(ϕε)
mε⊗L2,m⊗L2

−−−−−−−−→ ex′((ϕ?)′),(140)

where σν is given by (61).

Proposition 6.1 will be proved in section 6.1. The next step consists of passing
to the limit as ε → 0 in (133). Expressing in (133), for g ∈ {uε,ϕε}, the scalar
fields e11(g), σε22(g), σε33(g) in terms of the components of σε(g)e1 and ex′(g) (the
details of this computation are given at the end of the section) leads to the following
equation:

(141)

∫
Ω

1
l+2σε11(uε)σε11(ϕε) +

3∑
α=2

σε1α(uε)σε1α(ϕε) dνε ⊗ L2

+
∫

Ω
4e23(uε)e23(ϕε) + 4(l+1)

l+2

3∑
α=2

eαα(uε)eαα(ϕε) dmε ⊗ L2

+
∫

Ω

2l
l+2

(
e22(uε)e33(ϕε) + e33(uε)e22(ϕε)

)
dmε ⊗ L2 =

∫
Ω
f ·ϕεdx.
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By (63), the next weak convergences in the sense of (59) hold:

(142) σε(uε)e1
νε⊗L2,ν⊗L2

−−−−−−−−⇀ σν(u)e1, ex′(u′ε)
mε⊗L2,m⊗L2

−−−−−−−−⇀ ex′((u?)′).

By passing to the limit as ε→ 0 in (141), by virtue of (140) , (142), and Lemma
4.3(iii), we obtain

(143)

∫
Ω

1
l+2σ

ν
11(u)σν11(ϕ) +

3∑
α=2

σν1α(u)σν1α(ϕ) dν ⊗ L2

+
∫

Ω
4 e23(u?)e23(ϕ?) + 4(l+1)

l+2

3∑
α=2

eαα(u?)eαα(ϕ?)dm⊗ L2

+
∫

Ω

2l
l+2

(
e22(u?)e33(ϕ?) + e33(u?)e22(ϕ?)

)
dm⊗ L2 =

∫
Ω
f ·ϕ dx.

An elementary computation yields

(144)

∫
Ω

1
l+2σ

ν
11(u)σν11(ϕ)+

3∑
α=2

σν1α(u)σν1α(ϕ)dν⊗L2=
∫

Ω
a⊥ Euν⊗L2 : Eϕν⊗L2 dν⊗L2,∫

Ω
4 e23(u?)e23(ϕ?) +

∫
Ω

2l
l+2

(
e22(u?)e33(ϕ?)+ e33(u?)e22(ϕ?)

)
dm⊗L2

+ 4(l+1)
l+2

3∑
α=2

eαα(u?)eαα(ϕ?)dm⊗ L2=
∫

Ω
a‖ex′(u?) : ex′(ϕ?) dm⊗ L2,

where a⊥ and a‖ are given by (22). We infer from (143) and (144) that

a(u,ϕ) =
∫

Ω
f ·ϕ dx,

where a(·, ·) is the continuous symmetric bilinear form on BDν,m(Ω) defined by (21).
Substituting vδ for ϕ (see (132)) and letting δ converge to 0, we deduce from the
strong convergence in BDν,m(Ω) of vδ to v stated in (124) that

(145) a(u,v) =
∫

Ω
f · v dx ∀v ∈ BDν,m

0 (Ω).

Since, by Proposition 4.2, the field u belongs to BDν,m
0 (Ω), we conclude that u is a

solution to (18).
Let us prove that BDν,m

0 (Ω) is a Hilbert space. By the Poincaré inequality in
{v ∈ BD(Ω), v = 0 on ∂Ω} (see [53, Remark 2.5(ii), p. 156]), we have

(146)

∫
Ω
|v|dx ≤ C

∫
Ω
d|Ev| = C

∫
Ω

∣∣∣ Evν⊗L2

∣∣∣ dν ⊗ L2

≤ C
Å∫

Ω

∣∣∣ Evν⊗L2

∣∣∣2 dν ⊗ L2
ã 1

2

≤ C||v||BDν,m0 (Ω) ∀ v ∈ BDν,m
0 (Ω),

and hence the seminorm ||.||BDν,m0 (Ω) defined by (20) is a norm on BDν,m
0 (Ω). On the

other hand, Fubini’s theorem and Korn’s inequality in H1
0 (Ω′; R2) imply

(147)

∫
Ω
|(v′)?|2dm⊗ L2 =

∫ L

0
dm(x1)

∫
Ω′
|(v′)?|2dx′

≤ C
∫ L

0
dm(x1)

∫
Ω′
|ex′(v?)|2dx′ ≤ C||v||2BDν,m0 (Ω) ∀ v ∈ BDν,m

0 (Ω).
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4306 MICHEL BELLIEUD AND SHANE COOPER

Let (vn) be a Cauchy sequence in BDν,m
0 (Ω). By (146) and (147), the se-

quences (vn), ((v′n)?), (Evnν⊗L2 ) are Cauchy sequences in BD(Ω), L2
m(0, L;H1

0 (Ω; R3)),
L2
ν⊗L2(Ω; S3), respectively, and hence the following convergences hold:

(148)

vn → v strongly in BD(Ω),

(v′n)? → w′ strongly in L2
m(0, L;H1

0 (Ω′; R3)),
Evn
ν⊗L2 → Ξ strongly in L2

ν⊗L2(Ω; S3)

for some v, w′, Ξ. We prove below that

E(v)� ν ⊗ L2, Ξ = Ev
ν⊗L2 , v = 0 on ∂Ω,(149)

w′ = (v′)?, m⊗ L2-a.e.(150)

It follows from (148)–(150) that v ∈ BDν,m
0 (Ω) and that (vn) strongly converges

to v in BDν,m
0 (Ω); hence BDν,m

0 (Ω) is a Hilbert space. The proof of Theorem 3.1
is achieved provided we establish that the form a(·, ·) is continuous and coercive on
BDν,m

0 (Ω). The continuity is straightforward. The coercivity of a(·, ·) results from
Lemma 6.2 stated below.

Proof of (149). As vn = 0 on ∂Ω, by (148) and Green’s formula we have, for
Ψ ∈ C1(Ω; S3),∫

Ω
v · divΨdx = lim

n→∞

∫
Ω
vn · divΨdx = − lim

n→∞

∫
Ω

ΨdEvn

= − lim
n→∞

∫
Ω

Evn
ν⊗L2 : ψdν ⊗ L2 = −

∫
Ω

Ξ : ψdν ⊗ L2.

We deduce from Green’s formula that

−
∫

Ω
Ψ : dE(v) +

∫
∂Ω
v � n : ΨdH2 = −

∫
Ω

Ξ : ψdν ⊗ L2.

By the arbitrary choice of ψ, we infer (149).
Proof of (150). By (148), limn→+∞

∫
Ω |(v

′
n)?−w′|2dm⊗L2 = 0, and hence there

exists an m-negligible subset N of (0, L) such that

lim
n→+∞

∫
Σx1

|(v′n)? −w′|2dH2 = 0 ∀x1 ∈ (0, L) \N.(151)

On the other hand, since (vn) strongly converges to v in BD(Ω), the traces
γ±Σx1

(vn) on both sides of Σx1 strongly converge to γ±Σx1
(v) in L1

H2(Σx1) for all x1 ∈
(0, L). By (71), (75), and (149), v?(x1, .) = γ+

Σx1
(v) = γ−Σx1

(v) H2-a.e. on Σx1 for
m-a.e. x1 ∈ (0, L). Accordingly, there exists an m-negligible subset N1 of (0, L) such
that

lim
n→+∞

∫
Σx1

|(vn)? − v?|dH2 = 0 ∀x1 ∈ (0, L) \N1.(152)

Let us fix x1 ∈ (0, L) \ (N ∪ N1). By (151) there exists a subsequence of (v′n)?

converging H2-a.e. on Σx1 to w′. By (152), there exists a further subsequence
converging H2-a.e. on Σx1 to (v′)?. Hence w′ = (v′)? H2-a.e. on Σx1 for m-a.e.
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x1 ∈ (0, L). Setting A := {x ∈ Ω, w′(x) 6= (v′)?(x)}, Ax1 := A ∩ Σx1 , we infer that
H2(Ax1) = 0 for all x1 ∈ (0, L)\ (N ∪N1). It then follows from Fubini’s theorem that
m⊗ L2(A) =

∫
(0,L)H

2(Ax1)dm(x1) = 0.

Lemma 6.2. For all v ∈ BDν,m
0 (Ω), α, β ∈ {2, 3}, we have

(153)
∫

Ω

∣∣∣Eαβvν⊗L2

∣∣∣2 dν ⊗ L2 ≤
∫

Ω
|eαβ((v?)′)|2 dm⊗ L2.

Proof. Let v ∈ BDν,m
0 (Ω), δ > 0, and ϕε be defined by (132), (139). By

Proposition 6.1, the convergence (86) holds, and hence by Lemma 4.3(ii) we have
for α, β ∈ {2, 3} ∫

Ω

∣∣∣Eαβϕν⊗L2

∣∣∣2 dν ⊗ L2 ≤ lim inf
ε→0

∫
Ω
µε |eαβ(ϕε)|2 dx.

As, on the other hand, by (60) and (140) the following holds:

lim
ε→0

∫
Ω
µε |eαβ(ϕε)|2 dx =

∫
Ω
|eαβ((ϕ?)′)|2 dm⊗ L2,

we deduce that ∫
Ω

∣∣∣Eαβϕν⊗L2

∣∣∣2 dν ⊗ L2 ≤
∫

Ω
|eαβ((ϕ?)′)|2 dm⊗ L2.

Substituting vδ for ϕ and passing to the limit as δ → 0, taking into account (84) and
(124), we obtain (153).

Justification of (141). We fix e, ẽ ∈ S3 and set σ := l(tr e)I+ 2e, σ̃ := l(tr ẽ)I+
2ẽ. We have

(154) σ : ẽ =
3∑
i=1

σiiẽii + σ12σ̃12 + σ13σ̃13 + 4e23ẽ23.

Noticing that

e11 = 1
l+2 (σ11 − le22 − le33), ẽ11 = 1

l+2 (σ̃11 − lẽ22 − lẽ33),

σ22 = le11 + (l + 2)e22 + le33 = l
l+2 (σ11 − le22 − le33) + (l + 2)e22 + le33,

σ33 = le11 + le22 + (l + 2)e33 = l
l+2 (σ11 − le22 − le33) + le22 + (l + 2)e33,

we obtain, by substitution,

3∑
i=1

σiiẽii=σ11
1
l+2 (σ̃11−lẽ22−lẽ33)+

Ä
l
l+2 (σ11−le22−le33)+(l+2)e22+le33

ä
ẽ22

+
Ä

l
l+2 (σ11 − le22 − le33) + le22 + (l + 2)e33

ä
ẽ33

= 1
l+2σ11σ̃11 + 4(l+1)

l+2 (e22ẽ22 + e33ẽ33) + 2l
l+2 (e22ẽ33 + e33ẽ22),

yielding, by (154),

σ : ẽ = 1
l+2σ11σ̃11 + +2σ12ẽ12 + 2σ13ẽ13

+ 4e23ẽ23 + 4(l+1)
l+2 (e22ẽ22 + e33ẽ33) + 2l

l+2 (e22ẽ33 + e33ẽ22).

Substituting e(uε), e(ϕε), 1
µε
σε(uε), 1

µε
σε(ϕε), respectively, for e, ẽ, σ, σ̃, we

infer (141).
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4308 MICHEL BELLIEUD AND SHANE COOPER

6.1. Proof of Proposition 6.1. The proof of Proposition 6.1 lies in the asymp-
totic analysis of the family of sequences

((
ϕkε
)
ε

)
k∈N, the results of which are presented

in the next proposition, whose proof is located in section 6.2.

Proposition 6.3. Let v ∈ BDν,m
0 (Ω), δ > 0, σν defined by (61), and ϕ, ϕkε

respectively, be given by (132), (138). Then ϕkε belongs to H1(Ω; R3) and satisfies

(155) sup
k∈N; ε>0

∫
Ω
|ϕkε |2dmε ⊗ L2 <∞,

(156) lim
k→∞

sup
ε>0

∫
Ω
|ϕkε −ϕ| dx = 0,

(157) lim sup
k→∞

lim sup
ε→0

∫
Ω

∣∣∣σε(ϕkε)e1

∣∣∣2 dνε ⊗ L2 ≤
∫

Ω
|σν(ϕ)e1|2 dν ⊗ L2,

(158) lim sup
k→∞

lim sup
ε→0

∫
Ω

∣∣∣ex′((ϕkε)′)∣∣∣2 dmε ⊗ L2 ≤
∫

Ω
|ex′((ϕ?)′)|

2
dm⊗ L2.

Let us fix a decreasing sequence of positive reals (αk)k∈N converging to 0. By
Proposition 6.3, there exists a decreasing sequence of positive reals (εk)k∈N converging
to 0 as k →∞ and such that, for all ε < εk,

(159)

∫
Ω
|ϕkε −ϕ| dx ≤ αk,∫

Ω

∣∣∣σε(ϕkε)e1

∣∣∣2 dνε ⊗ L2 ≤
∫

Ω
|σν(ϕ)e1|2 dν ⊗ L2 + αk,∫

Ω

∣∣∣ex′(ϕkε)
∣∣∣2 dmε ⊗ L2 ≤

∫
Ω
|ex′(ϕ?)|2 dm⊗ L2 + αk.

Let kε be the unique integer such that εkε+1 ≤ ε < εkε (notice that kε →∞). We set

(160) ϕε = ϕkεε .

By (14), (13), (155), (159), and (160), the sequence (ϕε) strongly converges to ϕ in
L1(Ω; R3) and satisfies assumptions (83) and (87) of Proposition 4.8. Therefore, the
convergences (86) and (88) hold. We deduce that

σε(ϕε)e1
νε⊗L2,ν⊗L2

−−−−−−−−⇀ σν(ϕ)e1, ex′((ϕε)′)
mε⊗L2,m⊗L2

−−−−−−−−⇀ ex′((ϕ?)′).

On the other hand, (159) and (160) imply (since kε →∞)

lim sup
ε→0

∫
Ω
|σε(ϕε)e1|2 dνε ⊗ L2 ≤

∫
Ω
|σν(ϕ)e1|2 dν ⊗ L2,

lim sup
ε→0

∫
Ω

∣∣ex′ ((ϕε)′)∣∣2 dmε ⊗ L2 ≤
∫

Ω
|ex′((ϕ?)′)|

2
dm⊗ L2,

yielding (140). Proposition 6.1 is proved provided we establish Proposition 6.3.
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6.2. Proof of Proposition 6.3. Let us prove that ϕkε belongs to H1(Ω; R3).
By (138), ϕkε belongs to H1(Ikj × Ω′; R3) for all j ∈ {1, . . . , nk − 1}, and therefore it
suffices to show that the traces of ϕkε coincide on each side of the common boundaries
of Ikj × Ω′ and Ikj+1 × Ω′, that is,

(161) (ϕkε)− = (ϕkε)+ H2-a.e. on Σtk
j
∀j ∈ {1, . . . , nk − 1}.

One easily deduces from formula (126) (applied to vδ = ϕ) that

(162)

ϕ+
1(tkj , x

′)−ϕ+
1(tkj−1, x

′)=
1

l + 2

∫
Ik
j

(σν)11(ϕ)(s1, x
′)dν(s1)

−
3∑

α=2

l

l + 2

∫
Ik
j

∂ϕα
∂xα

(s1, x
′)ds1.

On the other hand, by the properties of φkε and the definition of ϕkε (see (137), (138)),
we have

(163)

(ϕkε)−1 (tkj , x
′) =

1
l + 2

∫
Ik
j

(σν)11(ϕ)(s1, x
′) dν(s1)

−
3∑

α=2

l

l + 2

∫ tkj

tk
j−1

∂ϕα
∂xα

(s1, x
′)ds1 + ϕ+

1 (tkj−1, x
′).

We infer from (162) and (163) that (ϕkε)−1 (tkj , x
′)) = ϕ+

1 (tkj , x
′). Since (137) and (138)

imply (ϕkε)+
1 (tkj−1, x

′) = ϕ+
1 (tkj−1, x

′) for all j ∈ {1, . . . , nk}, we deduce that (161) is
satisfied by the first component of ϕkε . Likewise, we deduce from the second equation
in (126) that for α ∈ {2, 3},

ϕ+
α (tkj , x

′)− ϕ+
α (tkj−1, x

′) =
∫
Ik
j

(σν)1α(ϕ)(s1, x
′) dν(s1)−

∫
Ik
j

∂ϕ1
∂xα

(s1, x
′) ds1

and then from (138) that

(ϕkε)−α (tkj,x
′)=
∫
Ik
j

(σν(ϕ))1α(s1,x
′)dν(s1)−

∫
Ik
j

∂ϕ1
∂xα

(s1, x
′)ds1+ϕ+

α (tkj−1,x
′),

yielding (ϕkε)−α (tkj , x
′) = ϕ+

α (tkj , x
′). Noticing that (138) also implies (ϕkε)+

α (tkj−1, x
′) =

ϕ+
α (tkj−1, x

′) for all j ∈ {1, . . . , nk}, we infer that (ϕkε)−α (tkj , x
′) = (ϕkε)+

α (tkj , x
′). As-

sertion (161) is proved, and ϕkε belongs to H1(Ω; R3).
The next lemma plays a crucial role in the proof of Proposition 6.3. In what

follows, for all x1 ∈ (0, L), we denote by jx1 the unique integer satisfying

(164) x1 ∈
Ä
tkjx1−1, t

k
jx1

ó
.

Lemma 6.4. We have

(165) lim
ε→0

νε(Ikj ) = ν(Ikj ) and lim
ε→0

mε(Ikj ) = m(Ikj ) ∀k∈N, ∀j∈{1, . . . , nk}.
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For all k ∈ N, the mapping x1 ∈ (0, L]→ ν(Ikjx1
) defined by (135), (164) is Borel

measurable and satisfies, for all p ∈ (0,∞),

(166)

lim
ε→0

∫
ν(Ikjx1

)dmε(x1) =
∫
ν(Ikjx1

)dm(x1),

lim
k→∞

∫ L

0
ν(Ikjx1

)p dL1(x1) = 0, lim
k→∞

∫
[0,L]

ν(Ikjx1
)p dm(x1) = 0.

Proof. Since ν(∂Ikj ) = m(∂Ikj ) = 0 for all k ∈ N, j ∈ {1, . . . , nk} (see (134)), the
convergences (165) result from (15). By (134) and (164), we have

(167) ν(Ikjx1
) =

nk∑
j=1

ν
(
Ikj
)
1Ik

j
(x1),

and hence the mapping x1 ∈ (0, L]→ ν(Ikjx1
) is Borel measurable and, by (165),

lim
ε→0

∫
ν(Ikjx1

)dmε(x1) = lim
ε→0

nk∑
j=1

ν(Ikj )mε(Ikj ) =
nk∑
j=1

ν(Ikj )m(Ikj )

=
∫
ν(Ikjx1

)dm(x1).

The measure ν is bounded and the assumptions (134) imply that, for each fixed
x1 ∈ (0, L], the sequence of sets (Ikjx1

)k∈N is decreasing and satisfies
⋂
k∈N ↓ Ikjx1

=
{x1}; therefore limk→∞ ν(Ikjx1

) = ν({x1}). Applying the dominated convergence the-
orem, noticing that, by (16), L1(Aν) = m(Aν) = 0, we infer

lim
k→∞

∫ L

0
ν(Ikjx1

)p dL1(x1) =
∫
Aν
ν({x1})pdL1(x1) = 0,

lim
k→∞

∫
[0,L]

ν(Ikjx1
)p dm(x1) =

∫
Aν
ν({x1})pdm(x1) = 0.

Proof of (155). By (61), (126), (130), and (132), we have, for all x1 ∈ (0, L),

∫
Ω′

∣∣∣ϕ+(tkjx1−1, x
′)
∣∣∣2 dx′ ≤ C

∫
Ω
|σν(ϕ)|2 dν ⊗ L2 + C

∫
Ω

∣∣∣ ∂ϕ∂xα ∣∣∣2 dx ≤ C,

and therefore by (137), (138), and (164),

sup
x1∈(0,L)

∫
Ω′
|ϕkε |2(x1, x

′)dx′

≤ C
Å∫

Ω
|σν(ϕ)|2dν ⊗ L2+

∫
Ω

∣∣∣ ∂ϕ∂xα ∣∣∣2 dx+
∫

Ω′
|ϕ+(tkjx1−1, x

′)|2dx′
ã
≤C.

By integrating over (0, L) with respect to mε, we obtain (155).
Proof of (156). By (126), (130), and (132), the following estimate holds for
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x1 ∈ Ikj (or equivalently for j = jx1):
(168)∫

Ω′
|ϕ+(x1, x

′)−ϕ+(tj , x′)|dx′ ≤ C
∫
Ik
j
×Ω′
|σν(ϕ)|dν ⊗ L2 + C

3∑
α=2

∫
Ik
j
×Ω′

∣∣∣ ∂ϕ∂xα ∣∣∣ dL3

≤ Cν(Ikj )
1
2 ||σν(ϕ)||

1
2
L2
ν⊗L2

+ C

Ç
sup

j∈{1,...,nk}
L1(Ikj )

å 1
2 3∑
α=2

∥∥∥ ∂ϕ∂xα ∥∥∥
1
2

L2(Ω)

≤ Cν(Ikj )
1
2 + C

Ç
sup

j∈{1,...,nk}
L1(Ikj )

å 1
2

.

By integration over (0, L) with respect to L1, taking into account (134), (164),
(166), we infer

(169) lim
k→∞

∫
Ω
|ϕ+(x1, x

′)−ϕ+(tjx1
, x′)|dx = 0.

By the same argument, we deduce from (137), (138) that

(170) lim
k→∞

∫
Ω
|ϕkε(x1, x

′)−ϕ+(tjx1
, x′)|dx = 0.

Assertion (156) results from (169) and (170).
Proof of (157). Taking into account (14), (61), (137), and (138), an elementary

computation yields, for all j ∈ {1, . . . , nk} and for L3-a.e. x ∈ Ikj × Ω′,

(171)
σε(ϕkε)(x)e1 = µε

(
ltr(e(ϕkε))I + 2e(ϕkε)

)
e1

=
1

νε(Ikj )

∫
Ik
j

σν(ϕ)(s1, x
′)e1dν(s1) + rkε(x),

where for α ∈ {2, 3},

(172)

rkε1
µε

(x) := l
3∑

α=2

Å
∂ϕ+

α
∂xα

(tkj−1, x
′)− ∂ϕ+

α
∂xα

(x1, x
′)
ã

+ 2lφkε(x1)
3∑

α=2

∫
Ik
j

∂(σν(ϕ))1α
∂xα

(s1, x
′)dν(s1)−l

3∑
α=2

∫ x1

tk
j−1

∂2ϕ1
∂x2

α

(s1, x
′)ds1,

rkεα
µε

(x) :=
1

l + 2
φkε(x1)

∫
Ik
j

∂(σν(ϕ))11
∂xα

(s1, x
′) dν(s1)

− l

l + 2

3∑
β=2

∫ x1

tk
j−1

∂2ϕβ
∂xβ∂xα

(s1, x
′)ds1 + ∂ϕ+

1
∂xα

(
tkj−1, x

′)− ∂ϕ1
∂xα

(
x1, x

′).
We prove below that

(173) lim sup
k→∞

lim sup
ε→0

∫
Ω
|rkε |2dνε ⊗ L2 = 0.
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By (171), we have

(174)

∫
Ω

∣∣∣σε(ϕkε)e1 − rkε
∣∣∣2dνε ⊗ L2

=
nk∑
j=1

∫
Ik
j
µ−1
ε (x1)dx1

(νε(Ikj ))2

∫
Ω′

∣∣∣∣∣
∫
Ik
j

σν(ϕ)e1(s1, x
′)dν(s1)

∣∣∣∣∣
2

dx′

≤
nk∑
j=1

ν(Ikj )
νε(Ikj )

∫
Ik
j
×Ω′
|σν(ϕ)e1|2 dν ⊗ L2.

Assertion (157) follows from (165), (173), (174).
Proof of (173). A computation analogous to (168) yields for x1 ∈ Ikj , taking into

account (130),

(175)
∫

Ω′

∣∣∣∣∂ϕ+

∂xα
(x1, x

′)− ∂ϕ+

∂xα
(tj , x′)

∣∣∣∣2 dx′ ≤ Cν(Ikj ) + C sup
j∈{1,...,nk}

L1(Ikj ).

Similarly, by (115),

(176)
∫

Ω′

∣∣∣∣∣
∫
Ik
j

∂σν

∂xα
(s1, x

′)dν(s1)

∣∣∣∣∣
2

dx′ ≤ Cν(Ikj )
∣∣∣∣∣∣∂σν∂xα

∣∣∣∣∣∣2
L2
ν⊗L2 (Ω)

≤ Cν(Ikj ),

(177)

∫
Ω′

∣∣∣∣∣
∫ x1

tk
j−1

∂2ϕβ
∂xβ∂xα

(s1, x
′)ds1

∣∣∣∣∣
2

dx′ ≤ C sup
j∈{1,...,nk}

L1(Ikj )
∣∣∣∣∣∣∣∣ ∂2ϕβ
∂xβ∂xα

∣∣∣∣∣∣∣∣2
L2(Ω)

≤ C sup
j∈{1,...,nk}

L1(Ikj ).

Collecting (137), (172), (175), (176), (177), noticing that µ2
ενε = mε, we infer

(178)
∫

Ω
|rkε |2dνε ⊗ L2 ≤ C

∫
ν(Ikjx1

)dmε(x1) + C sup
j∈{1,...,nk}

L1(Ikj )mε((0, L)).

Assertion (173) results from (134), (166), (178).
Proof of (158). By (138) we have, for x1 ∈ Ikj ,

(179)

ex′(ϕkε)(x) = ex′(ϕ+)(tkj−1, x
′) +Rk

ε(x),

Rk
ε(x) := φkε(x1)

∫
Ik
j

ex′ (σν(ϕ)e1) (s1, x
′)dν(s1)

−
3∑

α,β=2

∫ x1

tk
j−1

∂2ϕ1

∂xα∂xα
(s1, x

′)ds1eα � eβ .

We deduce from (137), (176), (177), (179) that
∫

Ω |R
k
ε |2(x)dmε is bounded from

above by the left-hand side of (178), and hence by (134), (166),

(180) lim
k→∞

sup
ε>0

∫
Ω

∣∣∣Rk
ε

∣∣∣2 dmε ⊗ L2 = 0.
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By (13) and (135) we have∫
Ω

∣∣ex′(ϕ+)
∣∣2 (tkjx1−1, x

′) dmε ⊗ L2 =
nk∑
j=1

mε(Ikj )
∫

Ω′

∣∣ex′(ϕ+)
∣∣2 (tkj−1, x

′) dx′,

yielding, by (165),

(181) lim
ε→0

∫
Ω

∣∣ex′(ϕ+)
∣∣2 (tkjx1−1, x

′)dmε ⊗ L2 =
∫

Ω

∣∣ex′(ϕ+)
∣∣2(tkjx1−1, x

′)dm⊗ L2.

By (134) and (164), for all x1 ∈ (0, L), the sequence (tkjx1−1
)k∈N converges to x1

from below as k →∞. Therefore, by (125), for each x ∈ Ω the following holds:

(182) lim
k→∞

∣∣ex′(ϕ+)
∣∣2 (tkjx1−1, x

′) =
∣∣ex′(ϕ−)

∣∣2 (x).

On the other hand, by (126),
∣∣ex′(ϕ+)

∣∣2(tkjx1−1, x
′) ≤ g(x), where

g(x) :=
∫

(0,L)
|ex′(σν(ϕ)e1)|2 (s1, x

′)dν(s1)+
3∑

α,β=2

∫ L

0

∣∣∣∣ ∂2ϕ1
∂xα∂xβ

∣∣∣∣2(s1, x
′)ds1.

We deduce from (129) and (130) that g ∈ L1
m⊗L2(Ω) and then deduce from (181),

(182) and the dominated convergence theorem that

(183) lim
k→∞

∫
Ω

∣∣ex′(ϕ+)
∣∣2(tkjx1−1, x

′) dm⊗ L2 =
∫

Ω

∣∣ex′(ϕ−)
∣∣2 dm⊗ L2.

By (16) and (35) we have |Eϕ|(Σx1) = 0 for m-a.e. x1 ∈ (0, L); therefore assertion
(74) implies that ex′(ϕ−) = ex′(ϕ?) m⊗L2-a.e. Collecting (179), (180), (181), (183),
and the last equation, assertion (158) is proved.

6.3. Proof of Corollary 3.2. Choosing ϕ ∈ D(Ω\Σ) in (145) (see (27)), taking
into account (24), we get

∫
Ω\Σ σ(u) : e(ϕ)dx =

∫
Ω f ·ϕdx and infer, by the arbitrary

choice of ϕ, that −divae(u) = f in Ω \ Σ. Choosing ϕ ∈ BDν,m
0 (Ω) such that

ϕ ∈ C∞(U) for every connected component U of Ω\Σν , and integrating ae(u) : e(ϕ)
by parts over each connected component of Ω \ Σ, taking the first line of (26) into
account, we deduce∑

t∈Am

∫
Σt

(
(ae(u)e1)−−(ae(u)e1)+) ·ϕ+m({t})a‖ex′(u?) : ex′(ϕ?)dH2

+
∑
t∈Aν

∫
Σt

(ae(u)e1)−·ϕ−−(ae(u)e1)+·ϕ++(u+−u−)·ν({t})−1A(ϕ+−ϕ−)dH2=0

and obtain the transmission conditions stated in the second and third lines of (26).
Conversely, any solution to (26) satisfies (18).

6.4. Sketch of proof of Proposition 3.10. Repeating the argument of the
proof of Proposition 4.2, we establish the a priori estimates

sup
ε>0

∫
Ω
|uε|2dmε ⊗ L2 +

∫
Ω
|uε|dx+

∫
Ω
µε |∇∇∇uε|2 dx <∞
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and deduce, up to a subsequence, the following convergences (analogous to (63)):

(184)
uε

?
⇀ u weakly* in BV (Ω; Rn) for some u ∈ BV ν,m0 (Ω),

µε(C∇∇∇uε)e1
νε⊗L2,ν⊗L2

−−−−−−−−⇀ (C Du
ν⊗Ld−1 )e1, ∇∇∇x′uε

mε⊗L2,m⊗L2

−−−−−−−−⇀ ∇∇∇x′u?,

where BV ν,m0 (Ω) and ∇∇∇x′v are defined by (54) and (55). Fixing v ∈ BV ν,m0 (Ω),
δ > 0, k ∈ N∗, we set ϕ = vδ and

ϕkε(x) :=

Ñ∫
Ik
jx1

(
T−1C Dϕ

ν⊗Ld−1

)
e1(s1, x

′) dν(s1)

é
φkε(x1)

−
∫ x1

tk
jx1−1

(T−1C∇∇∇x′ϕ) e1(s1, x
′)ds1 +ϕ+(tkjx1−1, x

′).

Mimicking Propositions 6.1 and 6.3, we exhibit a sequence ϕε(= ϕkεε ) satisfying

(185)
lim
ε→0

∫
Ω
|ϕε −ϕ| dx = 0,

µε(C∇∇∇ϕε)e1
νε⊗L2,ν⊗L2

−−−−−−−−→ (C Dϕ
ν⊗Ld−1 )e1, ∇∇∇x′ϕε

mε⊗L2,m⊗L2

−−−−−−−−→ ∇∇∇x′ϕ?.

Multiplying (49) by ϕε, integrating by parts, and applying the formula
(186)
C∇∇∇uε :∇∇∇ϕε=(T−1C∇∇∇uε)e1 ·(C∇∇∇ϕε)e1 − (T−1C∇∇∇x′uε) e1 · (C∇∇∇x′ϕε) e1

+C∇∇∇x′uε :∇∇∇x′ϕε,

proved below, we obtain∫
Ω
f ·ϕεdx =

∫
Ω
µε(T−1C∇∇∇uε)e1 · µε(C∇∇∇ϕε)e1 dνε ⊗ L2

+
∫

Ω
−(T−1C∇∇∇x′uε)e1 · (C∇∇∇x′ϕε)e1 +C∇∇∇x′uε · ∇∇∇x′ϕε dmε ⊗ L2.

Passing to the limit as ε→ 0 in accordance with (184) and (185), we find

a(u,ϕ) =
∫

Ω
u ·ϕ dx,

where

a(u,ϕ) :=
∫

Ω

Ä
T−1C Du

ν⊗Ld−1

ä
e1 ·

(
C Dϕ

ν⊗Ld−1

)
e1 dν ⊗ Ld−1

−
∫

Ω
(T−1C∇∇∇x′u?)e1 ·(C∇∇∇x′ϕ)?)e1 +C∇∇∇x′u? :∇∇∇x′ϕ)? dm⊗ Ld−1.

An elementary computation shows that a(·, ·) is also given by (56). The rest of the
proof is similar to that of Theorem 3.1.

Proof of (186). Noticing that T defined by (51) satisfies

(T∇∇∇v)e1 = (C∇∇∇v) e1 − (C∇∇∇x′v) e1,
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and taking into account the invertibility of T and the symmetry of T−1 and C, we
obtain

C∇∇∇u :∇∇∇v = (C∇∇∇u)e1 ·(∇∇∇v)e1 +C∇∇∇u :∇∇∇x′v =(C∇∇∇u)e1 ·(∇∇∇v)e1+∇∇∇u :C∇∇∇x′v
= (C∇∇∇u)e1 ·(∇∇∇v)e1 + (∇∇∇u)e1 ·(C∇∇∇x′v)e1 +∇∇∇x′u :C∇∇∇x′v
= (C∇∇∇u)e1 ·T−1((C∇∇∇v)e1 − (C∇∇∇x′v)e1)

+ T−1((C∇∇∇u)e1 − (C∇∇∇x′u)e1)·(C∇∇∇x′v)e1 +∇∇∇x′u :C∇∇∇x′v
=(T−1C∇∇∇u)e1 ·(C∇∇∇v)e1− (T−1C∇∇∇x′u)e1 ·(C∇∇∇x′v)e1+∇∇∇x′u :C∇∇∇x′v.
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[17] G. Bouchitté and C. Picard, Singular perturbations and homogenization in stratified media,
Appl. Anal., 61 (1996), pp. 307–341.

[18] M. Camar-Eddine and P. Seppecher, Determination of the closure of the set of elasticity
functionals, Arch. Ration. Mech. Anal., 170 (2003), pp. 211–245.

[19] A. Chambolle, An approximation result for special functions with bounded deformation, J.
Math. Pures Appl. (9), 83 (2004), pp. 929–954.

[20] K. B. Cherednichenko and M. Cherdantsev, Two-scale Γ-convergence of integral function-
als and its application to homogenisation of nonlinear high-contrast periodic composites,
Arch. Ration. Mech. Anal., 204 (2012), pp. 445–478.

D
ow

nl
oa

de
d 

11
/0

1/
17

 to
 1

29
.2

34
.0

.6
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/060677689
https://doi.org/10.1137/07069362X
https://doi.org/10.1137/15M1012050


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4316 MICHEL BELLIEUD AND SHANE COOPER

[21] K. B. Cherednichenko, S. Cooper, and S. Guenneau, Spectral analysis of one-dimensional
high-contrast elliptic problems with periodic coefficients, Multiscale Model. Simul., 13
(2005), pp. 72–98, https://doi.org/10.1137/130947106.

[22] M. Cherdantsev, K. B. Cherednichenko, and S. Cooper, Extreme Localisation of Eigen-
functions to One-Dimensional High-Contrast Periodic Problems with a Defect, preprint,
https://arXiv.org/abs/1702.03538, 2017.

[23] S. Cooper, Homogenisation and spectral convergence of a periodic elastic composite with
weakly compressible inclusions, Appl. Anal., 93 (2013), pp. 1401–1430.

[24] G. Dal Maso, An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations
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