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Abstract

Conical intersections represent critical topological features of potential energy sur-

faces and open ultrafast nonradiative deactivation channels for photoexcited molecules.

In the following, we investigate how this funneling picture is transposed in the eyes

of the exact factorization formalism for a two-dimensional model system. The exact

factorization of the total molecular wavefunction leads to the fundamental concept of

time-dependent potential energy surface and time-dependent vector potential, whose

behavior during a dynamics through a conical intersection has up to now remained

unexplored. Despite the fact that these quantities might be viewed as time-dependent

generalizations of the adiabatic potential energy surfaces and the nonadiabatic coupling

vectors – characteristic quantities appearing in the Born-Oppenheimer framework – we

observe that they do not exhibit particular topological features in the region of conical

intersection, but still reflect the complex dynamics of the nuclear wavepacket.
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Light absorption in molecular systems triggers a highly nonequilibrium dynamics, most

of the time combined with the appearance of nonadiabatic effects attesting from the break-

down of the Born-Oppenheimer (BO) approximation. Dynamics through so-called “conical

intersections” perfectly exemplify the strong interplay between electronic and nuclear motion

in excited-state dynamics.1,2 Conical intersections (CIs) are related to regions of molecular

configuration space for which two (or more) electronic states become degenerate. Only a

set of two nuclear coordinates can linearly lift this degeneracy, leading to the formation of

a characteristic double-cone shape in the so-called branching space. Any other nuclear dis-

placements in the intersection space (defined by the remaining 3Nn − 8 coordinates, with

Nn the number of nuclei) preserve degeneracy between electronic states. As such, CIs act as

efficient funnels between electronic states, allowing a photoexcited molecule to relax between

electronic states efficiently.3–9

While Teller predicted this feature of potential energy surfaces (PESs) in 193710 – only

ten years after the seminal article of Born and Oppenheimer11 – the relevance of CIs in

photochemical processes was only notified decades after,12,13 further supported by extensive

theoretical analysis.1,2,14–27 The picture of CIs in molecular systems is, however, a result

of the so-called electronic “adiabatic representation” – in which electronic wavefunctions

are represented by eigensolutions of the electronic (time-independent) Schrödinger equation.

The characteristic conical shape of potential energy surfaces indeed disappears in a diabatic

representation of the electronic state, in which the nuclear kinetic energy operator becomes

diagonal. Hence, the funnel picture of CIs is rooted in a particular representation of the

electronic wavefunctions.

More critical is the question of the dynamics of a nuclear wavepacket through a CI.

The present Letter focuses on this particular topic, analyzed in the perspective of the exact

factorization (EF).28,29 Previous work30 on a related topic, but from a time-independent

viewpoint, has shown how typical features connected to CIs between adiabatic PESs and/or

to molecular geometric phases disappear in the EF, and how such features re-emerge only in
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the ”BO limit”,31 or infinite-mass limit30 (except if one chooses current-carrying eigenstates

in systems with degeneracies32). Here, the dynamical perspective – that has so far remained

unexplored – will be investigated by reporting the key differences between the EF formalism

and the adiabatic representation.

In the EF, the solution of the time-dependent Schrödinger equation Ĥ(r,R)Ψ(r,R, t) =

i~∂tΨ(r,R, t), i.e., the molecular wavefunction, is written as a single product Ψ(r,R, t) =

χ(R, t)ΦR(r, t) of a nuclear wavefunction and an electronic factor, with parametric depen-

dence on the nuclear configuration. The whole set of electronic and nuclear coordinates is in-

dicated as r,R, respectively, and the molecular Hamiltonian Ĥ(r,R) = T̂n(R)+ ĤBO(r,R)

comprises the nuclear kinetic energy, T̂n(R), and the electronic BO Hamiltonian, ĤBO(r,R),

containing the electronic kinetic energy and all the interactions. The partial normalization

condition on the electronic wavefunction,
∫
dr|ΦR(r, t)|2 = 1, ∀R, t, guarantees the unique-

ness of the factored form of Ψ(r,R, t) up to within a (R, t)-dependent phase transformation,

and that |χ(R, t)|2 yields the exact nuclear many-body density. In addition, χ(R, t) yields as

well the exact nuclear many-body current density. As a result of the EF, the time-dependent

Schrödinger equation is decomposed as coupled evolution equations for the two components

of the molecular wavefunction, namely

(
ĤBO(r,R) + Û coup

en [ΦR, χ]− ε(R, t)
)

ΦR(r, t) = i~∂tΦR(r, t) (1)

(
Nn∑
ν=1

[−i~∇ν + Aν(R, t)]
2

2Mν

+ ε(R, t)

)
χ(R, t) = i~∂tχ(R, t) . (2)

The nuclear equation is a standard time-dependent Schrödinger equation, with time-dependent

vector Aν(R, t) and scalar ε(R, t) potentials accounting for the (nonadiabatic) effect of the

electrons. More details on Aν(R, t) and ε(R, t) will be given below, being the central quan-

tities of interest for our analysis of dynamics through CIs. The electronic equation describes

how the electronic wavefunction follows nuclear evolution, containing the full dynamical cou-

pling to the nuclear degrees of freedom, encoded in the operator Û coup
en [ΦR, χ] (for further
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information on this operator, the interested reader is referred to Refs.28,29,33,34).

The EF, both in its static30,32,35–50 and dynamical formulations,28,29,33,51–62 has been em-

ployed for a large variety of purposes, from the rationalization of electron-nuclear correla-

tion31,36,44,50,63 to the interpretation of nonadiabatic processes in molecular systems,33,55,59,61,64

mainly via the analysis of the vector and scalar potentials of the theory. The common aim

of those analysis has been, and still is, to explore new avenues for the development of algo-

rithms for excited-state dynamics. In this Letter we proceed along similar lines and focus

on the dynamics through a CI, which offers the opportunity to deploy for the first time the

EF formalism to nonadiabatic processes in more than one dimension.

In the time-independent case, it has been shown30 that when two adiabatic PESs present

a CI the scalar potential from the EF does not manifest any singular behavior, rather it

acquires a diabatic-like character that completely overlooks the presence of the CI. Does this

feature persist during the dynamics? What happens far away from the CI, where dynamics is

supposed to happen ”adiabatically”? These questions will be addressed below. Furthermore,

previous analysis have focused either on one-dimensional problems28,29,33,51,52,56,57,61 or on

static situations30 where the electronic factor in the EF is real. Both cases yield a trivial

vector potential. In a general situation, however, the effect of the vector potential shall

be accounted for, especially in a dynamical situation. Then, how does the vector potential

look like? Does it manifest any common feature with its ”adiabatic counterpart”, i.e., the

nonadiabatic coupling vectors, which are singular at the CI? In the following, the vector

potential will be also discussed.

To address these different questions, we performed numerically exact quantum dynamics

simulations for a two-state two-dimensional system, constructed from a model of the iso-

merization of retinal in rhodopsin65,66 (see Computational Details for more information).

We stress here that we adopted this model with the only intention of studying a dynamics

through CIs. Therefore, we are not going to comment on the implications of our findings for

the chemical system this model depicts. The relevant portion of the model adiabatic PESs is
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Figure 1: Left: Schematic representation of the interesting portion of the model adiabatic
potential energy surfaces used in this work. Right: Total nuclear density |χ(R, t)|2 around
the CI (t = 295 a.u., upper panel), and after bifurcation (t = 675 a.u., lower panel). The
direction of the nonadiabatic coupling vectors d12(R) are represented as a vector field in the
right upper panel, and a blue dot highlights the location of the CI of interest.

depicted in Fig. 1 (left) and characterized by two effective coordinates, R = (X, Y ), X being

the reactive coordinate towards the CI. The initial Gaussian wavepacket is initialized in the

excited state and sent towards a CI located at RCI = (1.63, 0.0) with an initial momentum

P ini = (10.0, 0.0). We chose this set of initial conditions for two reasons: (i) the initial nu-

clear wavepacket will rapidly enter the CI region, leading to an almost complete population

transfer to the ground state (state 1), and (ii) a small portion of the wavepacket remains

in state 2 after the CI, leading eventually to a wavepacket bifurcation. Hence, we will focus

in the following on two particular snapshots during the simulated quantum dynamics. At

t = 295 a.u. (Fig. 1, upper right panel), the nuclear wavepacket evolves on the BO PES

2 in the neighborhood of the CI and starts to transfer population onto the BO PES 1. At

t = 675 a.u. (Fig. 1, lower right panel), the nuclear wavepacket has left the first CI region

and is entering a second coupling region. However, the nuclear wavepacket components in

state 2 and 1 also start to spatially separate due to the differences in the PESs topology –

a bifurcation takes place.
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Figure 2: Gauge-invariant part of the TDPES at two different times of the simulation. a)
At t = 295 a.u.: the total nuclear wavefunction is in the neighborhood of the CI. b) At
t = 675 a.u.: a bifurcation of the total nuclear wavefunction is taking place. Left panel:
comparison of the Born-Oppenheimer (adiabatic) PESs (in blue) with the TDPES (in red).
Middle panel: TDPES, with the corresponding contour map. Right panel: TDPES, BO
PESs, and nuclear densities in state 1 and 2 – |χ1(R, t)|2 and |χ2(R, t)|2 – along a cut in
the X direction (indicated by a blue line in the middle panel). The inset in the lower right
panel represents a zoom on the nuclear densities in the region of bifurcation.

Let us now turn to the EF representation of this dynamics through a CI. The time-

dependent scalar potential, or time-dependent PES (TDPES), is defined as

ε(R, t) = 〈ΦR(t)|ĤBO + Û coup
en − i~∂t|ΦR(t)〉r , (3)

with 〈. . .〉r indicating an integration over electronic coordinates.1 The first two terms do not

depend on the choice of the (R, t)-dependent gauge, i.e., they are gauge invariant, while the

last term depends on the choice of gauge. In this Letter, only the first gauge-invariant term

of the TDPES will be analyzed. In fact, the remaining terms do not develop any peculiar

feature in the chosen gauge (introduced below), as they (i) cancel each other when the nuclear

wavepacket passes through the conical intersection, and (ii) produce a small “bump” when

1In this particular case, it is a sum over the discrete set of electronic states.
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the nuclear wavepacket splits. An analytical justification of this observation is currently

under investigation. It follows that only the term 〈ΦR(t)|ĤBO|ΦR(t)〉r exhaustively reflects

in the TDPES the behavior of the nuclear density in the dynamics presented here.51,52 The

first panel of Fig. 2a compares the adiabatic BO PESs (blue) to the TDPES (red) when the

nuclear wavepacket is passing through the CI (t = 295 a.u.). The conical shape formed by the

adiabatic PESs is clearly absent from the TDPES, which shows a smooth character, bridging

the two adiabatic surfaces diabatically (Fig. 2a, middle panel). A cut along the X coordinate,

depicted by a blue line in the middle panel of Fig. 2a, facilitates the comparison between

the adiabatic PESs and the TDPES. In this one-dimensional representation (Fig. 2a, right

panel), it becomes evident that the TDPES perfectly follows a diabatic character, merging

in the region of the CI the topology of the adiabatic BO PESs 2 and 1. This smooth and

structureless picture of the TDPES is, however, altered at t = 675 a.u., after the crossing

through the CI (Fig. 2b). At this particular time, the TDPES follows the adiabatic surfaces in

some region of the configuration space, but also exhibits additional features directly related

to the underlying nuclear wavepacket dynamics. As observed in the one-dimensional cut

(Fig. 2b, right panel), a component of the nuclear wavefunction on the BO PES 2 has indeed

been reflected in the region X < 3.0 (see inset in the right panel of Fig. 2b). This reflection

leads to a splitting of the total nuclear wavefunction (Fig. 1, lower right panel) that the

TDPES enforces by slowly developing a step, which will eventually bridge the BO PES 2 with

the BO PES 1. This step is clearly apparent in a one-dimensional cut along the X coordinate

(Fig. 2b, right panel, in the region 2.2 < X < 3.5). We note that the overlap between the

TDPES and the BO PES 2 in the X < 3.0 region is not total as the nuclear wavefunction

component in state 1 is non-zero in this region. To summarize, the dynamics of a nuclear

wavepacket through a CI is characterized in the EF by a smooth gauge-independent TDPES

exhibiting a diabatic character; the TDPES will, however, develop peculiar structures if a

wavepacket bifurcation occurs after the CI.

The behavior of the TDPES presented above extends the observations performed on one-
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dimensional systems to a more general case involving dynamics through CIs. However, the

EF formalism is not only concerned with the TDPES, but also introduces a time-dependent

vector potential

Aν(R, t) = 〈ΦR(t)| − i~∇ν |ΦR(t)〉r (4)

(we have A(R, t) = A(X, Y, t) in the present case2 with ν = 1). In a one-dimensional

case, this vector potential could easily be gauged away – a strategy followed in most pre-

vious works on the EF. However, such a choice of gauge is not general enough to be ap-

plied on systems in higher dimensions. In the following, we fix the gauge by imposing

that the phase of the nuclear wavefunction S(R, t) = 0, i.e., the nuclear wavefunction

given by χ(R, t) = |χ(R, t)|eiS(R,t)/~ is real and non-negative in this gauge. As a direct

consequence of this choice of gauge, all the complex contributions to the total molecular

wavefunction are transferred to the electronic wavefunction, and the time-dependent vec-

tor potential corresponds to A(R, t) = 〈ΦR(t)| − i~∇|ΦR(t)〉r = =〈Ψ(R,t)|∇|Ψ(R,t)〉r
|χ(R,t)|2 , where

=〈Ψ(R, t)|∇|Ψ(R, t)〉r (divided by the nuclear mass) is the true nuclear many-body current

density. It is worth stressing here that, despite A(R, t) being a gauge-dependent quantity,

it acquires in the chosen gauge a special meaning, as it is the (observable) nuclear current

density. Furthermore, as it follows from its definition, the vector potential might be viewed

as a generalization of the concept of nonadiabatic couplings in the EF formalism. As a

result of the previous considerations, the behavior of A(R, t) during a funneling through a

CI deserves a thorough analysis.

The vector potential A(R, t) does not show any singularity when the nuclear wavepacket

reaches the CI (Fig. 3), mostly pointing towards positive X values. Bearing in mind its

relationship with the true nuclear current density, the overall behavior of the vector potential

reflects that the nuclear wavefunction is mostly travelling towards positive X values, with

2The vector potential has the dimensionality of the nuclear configuration space, i.e., it is a 3Nn-
dimensional vector. For the model system presented here, we expect the vector potential to be a 2-component
vector. Therefore, we can either set ν = 1 and associate two Cartesian components, x and y, to the “nucleus”
ν, as done here, or set ν = 2 and associate one Cartesian component to each value of ν.
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Figure 3: Left: representation of the time-dependent vector potential A(R, t) at t = 295
a.u., in the region where |χ(R, t)|2 > 10−10. The colormap indicates the magnitude of the
vector field, and a blue dot highlights the location of the CI of interest. Right: Ax(R, t)
(top) and Ay(R, t) (bottom) components of the time-dependent vector potential. Arrows
have a fixed length and indicate the direction of the field component.

a slight expansion in the Y coordinate. Breaking A(R, t) into its Ax(R, t) and Ay(R, t)

components (Fig. 3, right panels) confirms this overall trend in the vector field.

Figure 4: Left: representation of the time-dependent vector potential A(R, t) at t = 675 a.u.,
in the region where |χ(R, t)|2 > 10−10. The colormap indicates the magnitude of the vector
field, and a blue dot highlights the location of the CI of interest. Right: time-dependent
vector potential superimposed on the total nuclear density |χ(R, t)|2.

The behavior of the vector potential, and its relation to the nuclear wavepacket dynamics,

becomes even clearer at the time of bifurcation (Fig. 4). The direction of A(R, t) indeed

reflects the complex dynamics where the main component of the nuclear wavepacket (3 <
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X < 5) evolves towards positive X in state 1, while a smaller wavepacket in state 2 (centered

at X = 2) is bouncing back towards the CI. As A(R, t) is the nuclear current density, the

vector field clearly exhibits changes of direction as a result of this bifurcation. In addition,

A(R, t) appears to have a non-vanishing curl during the dynamics,3 a property that does not

depend on a particular choice of gauge, as ∇× Ã(R, t) = ∇× (A(R, t) +∇θ(R, t)) = ∇×

A(R, t) (with θ(R, t) the gauge phase and Ã is the gauge-transformed vector potential33).

This result shall be considered of general validity, as only in a highly symmetric situation

one might expect to obtain a nuclear current density, i.e., a vector potential, with vanishing

curl. Therefore, the time-dependent vector potential of the EF cannot be in general gauged

away. We finally note that the curl of the vector potential does not appear to present any

peculiar feature related to the CI.

Overall, both the time-dependent potential energy surface and the time-dependent vector

potential do not present any peculiar feature connected to conical intersections. From a prac-

tical point of view, this result is extremely encouraging, as it proves that working in the exact

factorization framework greatly simplifies the description of nonadiabatic processes, even in

the presence of CIs that lead in the adiabatic representation to singular nonadiabatic cou-

pling vectors and – as recently noted – even more problematic singular diagonal second-order

couplings.64,67 The reported analysis confirms that the development of (quantum-classical

trajectory-based) algorithms68–73 to simulate excited-state dynamics can easily proceed in

such a representation-free framework. The gauge introduced in this work has also its advan-

tage from a quantum-classical perspective: the nuclear wavefunction contains information

only about the nuclear density, whose evolution can be easily mimicked by classical tra-

jectories (or frozen/thawed Gaussians). Phase information, and consequently information

about the nuclear velocity field, is totally encoded in the electronic wavefunction, i.e., in the

time-dependent vector potential, as shown in this work. Purely classical trajectories can be

employed to follow the evolution of the nuclear wavefunction in the present gauge, without

3If the flux of the curl of the vector potential is computed on a surface whose boundary encircles the
position of the CI, one obtains a value that is not “quantized” and will depend on the choice of the surface.
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the need of refining the dynamics with semiclassical-like phase corrections. This simplified

nuclear dynamics comes at the cost of introducing a vector potential contribution to the

nuclear Hamiltonian. The vector potential is, however, a well-behaving function, that intro-

duces no numerical complications. It is worth noting that all quantities are smooth functions

of nuclear coordinates if the nuclear wavefunction does not present nodes, for example result-

ing from strong interference effects as recently described for nonadiabatic processes.61 From

a quantum-mechanical point of view this might seem a severe restriction, but it is indeed

important to keep in mind that the probability of finding classical trajectories in a region of

zero probability is very small.

In summary, the time-dependent potential energy surface shown in the Letter dynamically

switches from a diabatic shape to a series of steps that either connect or are “enclosed” by the

adiabatic surfaces. Transitions between diabatic and adiabatic character are not imposed,

but they are features arising directly from the dynamics. Furthermore, the time-dependent

potential energy surface remains at all times a smooth function of nuclear coordinates. We

also introduced for the first time a gauge where the time-dependent vector potential is non-

zero. Such vector potential is as well a smooth function of nuclear coordinates. Being related

to the nuclear velocity field, the dynamics naturally leads to a situation where the vector

potential develops a non-zero curl – a gauge-independent quantity. Therefore, the vector

potential provides information on the nuclear current that cannot be accounted for by any

choice of the nuclear phase.

Computational details

The initial nuclear wavepacket is taken as Gaussian, with widths σX = 0.05 and σY = 0.2,

and is centered at Rini = (0.0,−0.5). We first solve the full time-dependent Schrödinger

equation numerically using a split-operator formalism74 in a diabatic basis. The 2-by-2

Hamiltonian is given by
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Ĥ(X, Y ) = − 1

2m
(∂2
X+∂2

Y )12+

1
2
W1 (1− cos(X)) + ω

2
Y 2 λY

λY E1 − 1
2
W2 (1− cos(X)) + ω

2
Y 2 + κY


(5)

with W1 = 0.1323, ω = 0.007, m = 2000.0, E1 = 0.091, W2 = 0.040, λ = 0.007, and

κ = 0.0037. All quantities (parameters and coordinates) are given in atomic units, and the

coordinate X is dimensionless. This model is adapted from the one presented in Refs.65,66

We then reconstructed the TDPES and the time-dependent vector potential from the

time-dependent nuclear wavefunctions χl(R, t), with l = 1, 2, using the relation χ(R, t) =√
|χ1(R, t)|2 + |χ2(R, t)|2. The coefficients of the electronic wavefunction in the diabatic

basis are then given as χl(R, t)/χ(R, t). Using the fact that nonadiabatic coupling vectors

are identically zero in the diabatic basis, we provide the general expressions of the gauge-

invariant, εGI , and gauge-dependent, εGD, parts of the TDPES and of the vector potential in

this basis, namely εGI =
∑

l,k(χ
∗
kχl/|χ|2)Vkl +

∑
ν(~2/2Mν)

∑
l |∇ν(χl/χ)|2 −

∑
ν(A

2
ν/2Mν),

εGD = −i~
∑

l(χl/χ)∗∂t(χl/χ) and Aν = −i~
∑

l(χl/χ)∗∇ν(χl/χ), where the symbol Vkl

indicates the elements of the electronic Hamiltonian in the diabatic basis and l, k label the

states. It is worth pointing out that the two EF quantities of interest here do not depend

on a particular choice of electronic representation.
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