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Inelastic losses in radio-frequency-dressed traps for ultracold atoms

Daniel J. Owens and Jeremy M. Hutson*

Joint Quantum Centre (JQC) Durham-Newcastle, Department of Chemistry, Durham University, South Road,
Durham DH1 3LE, United Kingdom

(Received 22 August 2017; published 12 October 2017)

We calculate the rates of inelastic collisions for ultracold alkali-metal atoms in radio-frequency-dressed
traps, using coupled-channel scattering calculations on accurate potential energy surfaces. We identify a radio-
frequency-induced loss mechanism that does not exist in the absence of radio frequency (rf) radiation. This
mechanism is not suppressed by a centrifugal barrier in the outgoing channel, and can be much faster than spin
relaxation, which is centrifugally suppressed. We explore the dependence of the rf-induced loss rate on singlet
and triplet scattering lengths, hyperfine splittings, and the strength of the rf field. We interpret the results in terms
of an adiabatic model of the collision dynamics, and calculate the corresponding nonadiabatic couplings. The
loss rate can vary by 10 orders of magnitude as a function of singlet and triplet scattering lengths. 87Rb is a
special case, where several factors combine to reduce rf-induced losses; as a result, they are slow compared to
spin-relaxation losses. For most other alkali-metal pairs, rf-induced losses are expected to be much faster and
may dominate.
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I. INTRODUCTION

Radio-frequency-dressed traps [1,2] have been widely
used [3] to confine ultracold atoms in complex geometries,
including shells [4] and rings [5]. These geometries are valu-
able in many fields, including condensate splitting and atom
interferometry [6] and the study of low-dimensional quantum
systems [7]. The atoms are trapped using a combination of
magnetic and radio frequency (rf) fields, and are confined
in an adiabatic potential obtained by diagonalizing a simple
Hamiltonian in a basis set of rf-dressed atomic states. Radio
frequency dressing has also been used to form new structures
in optical lattices [8,9].

There are various sources of losses of atoms from rf-dressed
traps. The rf-dressed state that is adiabatically trapped is not
the lowest that exists, and Burrows et al. [10] have considered
one-body losses due to nonadiabatic transitions to lower states.
Such losses may be made acceptably small by avoiding very
low rf coupling strengths. However, the presence of rf radiation
introduces additional loss mechanisms that are not present for
atoms in a purely magnetic trap, due to rf-induced inelastic
collisions.

Tscherbul et al. [11] have developed a coupled-channel
theory of atomic collisions in rf fields and applied it to
rf-induced resonances in 87Rb. Hanna et al. [12] developed
an approach based on multichannel quantum defect theory,
and also explored rf-induced resonances in 87Rb and 6Li.
However, Hanna et al. stated that calculations with their
method were impractical close to atomic rf transitions,
which is precisely the case that is required to investigate
collisions of atoms in rf-dressed traps. Owens et al. [13]
have shown that rf dressing can be used to create new
Feshbach resonances at desired magnetic fields that are
convenient for atomic cooling. These resonances may be
valuable for molecule formation, particularly in heteronuclear
systems.

*j.m.hutson@durham.ac.uk

Most experimental work with rf-dressed traps to date has
used 87Rb atoms. However, there is considerable interest in
extending this to other atomic species. In this paper we use
coupled-channel calculations to explore the rates of rf-induced
inelastic collisions theoretically. We show that 87Rb is a special
case, where the losses induced by rf radiation are very small.
Most other alkali-metal atoms may be expected to have much
faster rf-induced collisional losses.

II. METHODS

We use the convention that lower-case quantum numbers
refer to individual atoms and upper-case quantum numbers
refer to the colliding pair. In the absence of fields, each atom
is described by its electron spin s = 1/2 and nuclear spin i,
which couple to form a resultant f . In a magnetic field B, each
state splits into components labeled by mf = ms + mi , where
each m is the projection of the corresponding quantity on the
magnetic field axis Z. The Hamiltonian for each atom is

ĥ = ζ î · ŝ + (gSŝz + gi îz)μBB, (1)

where ζ is the hyperfine coupling constant and gS and gi are
electron and nuclear spin g factors with the sign convention of
Arimondo et al. [14]. At the low magnetic fields considered
here, f is nearly conserved but ms and mi are not.

To incorporate the effects of rf radiation on a single atom,
we use a basis set of photon-dressed functions in an uncoupled
representation, |sms〉|imi〉|NMN 〉, where N is the photon
number with respect to the average photon number N0. In the
present work we focus on circularly polarized radiation, with
either MN = N (right-circularly polarized, σ+) or MN = −N

(left-circularly polarized, σ−). In the present work we consider
σ− polarization, with B(t) = Brf[êx cos 2πνt − êy sin 2πνt],
where êx and êy are unit vectors along the X and Y axes. The
Hamiltonian of the rf field is

ĥrf = hν(â†
−â− − N0), (2)
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FIG. 1. rf-dressed atomic levels of f = 1 states of 87Rb for
frequency 3.0 MHz and photon numbers N = −1, 0, and 1, shown
with respect to the energy of the f = 1, mf = 0 state for N = 0.
Solid lines show levels for zero rf intensity and dashed curves show
levels for Brf = 0.5 G with Matom

tot = 0. Atoms can be trapped at the
minimum in the upper dashed curve.

where â− and â
†
− are photon annihilation and creation operators

for σ− photons. Its interaction with an atom is

ĥint
rf = μBBrf

2
√

N0
[(gSŝ+ + gi î+)â†

− + (gSŝ− + gi î−)â−], (3)

where Brf is the amplitude of the oscillating magnetic field, ŝ+
and ŝ− are raising and lowering operators for the electron spin,
and î+ and î− are the corresponding operators for the nuclear
spin. For σ+ polarization, â+ replaces â

†
− and â

†
+ replaces â−

in Eq. (3). For σX radiation with rf field B(t) = Brf cos 2πνt ,
both σ+ and σ− coupling terms are present, renormalized by
1/2 [15].

If couplings involving the photon annihilation and creation
operators are neglected, states with different mf values and
different photon numbers N cross as a function of magnetic
field. For example, for 87Rb, with i = 3/2, and 3.0-MHz
radiation, the (f,mf ,N ) = (1,+1,1), (1,0,0), and (1,−1,−1)
states all cross near B = 4.27 G, as shown in Fig. 1. If the
radiation has σ− polarization, these three states all have the
same total projection quantum number Matom

tot , and are coupled
by the interaction (3), so the triple crossing becomes an avoided
crossing; for Brf = 0.5 G, the minimum separation between the
states is h×0.35 MHz. Ultracold atoms in the uppermost state
can be trapped in the vicinity of the avoided crossing. These
atoms are in a state whose character is principally (1,+1,1)
on the low-field side of the crossing, but is (1,−1,−1) on the
high-field side and a complicated mixture of all three states
close to the crossing itself.

We carry out quantum scattering calculations of collisions
between pairs of atoms in rf-dressed states. The Hamiltonian
for the colliding pair is

h̄2

2μ

[
−R−1 d2

dR2
R + L̂2

R2

]
+ V̂ (R) + ĥ1 + ĥ2 + ĥrf

+ ĥint
rf,1 + ĥint

rf,2, (4)

where μ is the reduced mass, L̂2 is the operator for the
end-over-end angular momentum of the two atoms about one
another, and V̂ (R) is the interaction operator,

V̂ (R) = V̂ c(R) + V̂ d(R). (5)

Here V̂ c(R) = V0(R)P̂ (0) + V1(R)P̂ (1) is an isotropic potential
operator that depends on the electronic potential energy curves
V0(R) and V1(R) for the singlet and triplet electronic states
and V̂ d(R) is a relatively weak anisotropic operator that
arises from the combination of spin dipolar coupling at long
range and second-order spin-orbit coupling at short range.
The singlet and triplet projectors P̂ (0) and P̂ (1) project onto
subspaces with total electron spin quantum numbers 0 and 1,
respectively. The potential curves for the singlet and triplet
states are taken from Ref. [16] for Rb2 and from Ref. [17]
for K2.

The basis set of photon-dressed functions for a pair of
atoms is

|s1ms1〉|i1mi1〉|s2ms2〉|i2mi2〉|LML〉|NMN 〉, (6)

where L is the angular momentum for relative motion and ML

is its projection onto Z. The basis set is symmetrized to take
account of exchange symmetry. The matrix elements of the
Hamiltonian in this basis set have been given in the appendix
of Ref. [18], except for the rf terms, which involve raising and
lowering operators with nonzero matrix elements,

〈sms ± 1|ŝ±|sms〉 = [s(s + 1) − ms(ms ± 1)]
1
2 ; (7)

〈imi ± 1|î±|imi〉 = [i(i + 1) − mi(mi ± 1)]
1
2 ; (8)

and photon creation and annihilation operators with nonzero
matrix elements,

〈N + 1MN ± 1|â†
±|NMN 〉 = (N0 + N + 1)

1
2 ; (9)

〈N − 1MN ∓ 1|â±|NMN 〉 = (N0 + N )
1
2 ; (10)

〈NMN |â†
±â±|NMN 〉 = N0 + N. (11)

We assume N0 � N , so that the matrix elements of â
†
± and â±

cancel with the factor N
1/2
0 in the denominator of Eq. (3).

The only conserved quantum numbers in a collision are
parity (−1)L and the total projection Mtot = MF + ML + MN ,
where MF = mf 1 + mf 2. Our basis set includes all possible
values of ms1, ms2, mi1, mi2, and ML, for each value of L and
MN that give the required parity and Mtot. The values of L, N ,
and MN are limited by L � Lmax, |N | � Nmax, and |MN | �
Nmax; the values used for Lmax and Nmax will be described for
each set of calculations.

Expanding the scattering wave function in the basis set
described above produces a set of coupled equations in the
interatomic distance coordinate R. The number of coupled
equations varies from 30 to 208. These equations are solved
using the MOLSCAT package [19]. In the present work we
use the hybrid log-derivative propagator [20] to propagate the
coupled equations from short range out to Rmax = 15 000 bohr.
MOLSCAT applies scattering boundary conditions to extract the
scattering S matrix, and then obtains the complex energy-
dependent scattering length a(E,B) = α(E,B) − iβ(E,B)
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FIG. 2. The rf-dressed atomic thresholds of 87Rb + 87Rb for
f = 1 and Mtot = 0. The corresponding thresholds of 39K + 39K
are almost identical. The rf-induced collisions that cause trap loss
are from the uppermost of these thresholds to all the lower ones. The
thresholds are calculated for ν = 3.0 MHz and Brf = 0.5 G. Near zero
magnetic field the thresholds can be labeled from top to bottom as
MF = −2,−1,0,+1,+2 with N = −2,−1,0,+1,+2, respectively.

from the identity [21],

a(E,B) = 1

ik

(
1 − S00(E,B)

1 + S00(E,B)

)
, (12)

where k2 = 2μE/h̄2 and S00(E,B) is the diagonal S-matrix
element in the incoming s-wave channel. This is constant as
E → 0, where it reduces to the usual zero-energy scattering
length in the absence of inelastic collisions. For s-wave
collisions (incoming L = 0), the rate coefficient for inelastic
loss is [22]

k2(E,B) = 2hgαβ(E,B)

μ[1 + k2|a(E,B)|2 + 2kβ(E,B)]
, (13)

where gα is 2 for identical bosons and 1 for distinguishable
particles. This is independent of energy in the limit E → 0,
but resonant peaks are moderated by the k2|a|2 term in the
denominator at the collision energy of 1 μK×kB used in the
present calculations.

III. RESULTS

In this section we present the results of coupled-channel
scattering calculations for rf-dressed states of 39K and 87Rb
in the vicinity of an rf-dressed trap. Since 87Rb is a special
case with highly atypical properties, we consider first the more
typical case of 39K, which (like 87Rb) has nuclear spin i = 3/2
and a hyperfine ground state with f = 1.

To describe an rf-dressed trap for f = 1 atoms requires a
minimum of three rf-free states with (f,mf ,N ) = (1,+1,1),
(1,0,0), and (1,−1,−1), as shown in Fig. 1. To describe a pair
of such states requires photon numbers N from −2 to 2. For
rf field amplitude Brf = 0.5 G, this produces atomic collision
thresholds as shown for 87Rb + 87Rb in Fig. 2. The thresholds
for 39K + 39K are almost identical. Pairs of atoms are trapped
at the highest of the five thresholds shown, and can undergo
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FIG. 3. (a) Rate coefficient for inelastic loss of adiabatically
trapped 39K + 39K as a function of magnetic field with ν = 3.0 MHz
and Brf = 0.5 G, from calculations with Lmax = 2 (solid, green)
and Lmax = 0 (dashed, blue). (b) Contribution from rf-modified
spin-relaxation collisions, obtained from the difference between the
Lmax = 0 and Lmax = 2 results (red, solid) compared with rf-free spin
relaxation for (f,mf ) = (1,−1) atoms (black, dashed).

inelastic collisions to produce atoms at the lower thresholds.
Such inelastic collisions release kinetic energy of at least
h×0.25 MHz ≈ kB×12.5 μK, and the recoil will usually eject
both collision partners from the trap.

A. Inelastic collisions of rf-dressed 39K

The inelastic collision rates for 39K + 39K at Brf = 0.5 G
are shown in Fig. 3(a), as a function of magnetic field
across the trap. The solid line shows the inelastic rate from
calculations with Lmax = 2, while the dashed line shows
the rate from simplified (and computationally far cheaper)
calculations with Lmax = 0. Both calculations use photon
numbers −2 � N � 2, and adding additional values of N

makes no further difference to the results.
The main source of inelasticity in 39K + 39K collision exists

even for Lmax = 0. It arises from collisions that conserve
mf 1 + mf 2 + MN and thus do not change ML; we refer
to these are rf-induced collisions. Since L does not need
to change, there is no centrifugal barrier in the outgoing
channel and no centrifugal suppression of the inelastic rate. For
Brf = 0.5 G, the loss rate peaks at kmax

2 = 6.33×10−14 cm3 s−1
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FIG. 4. Height and FWHM width of the peak in inelastic rate
coefficient for 39K + 39K, as a function of rf amplitude Brf .

(β = 0.015 bohr) near the trap center and dies off on either
side. However, the peak is a strong function of Brf . Figure 4
shows the height kmax

2 and full width at half maximum
(FWHM) of the peak as a function of Brf , obtained from
calculations with Lmax = 0; the peak width increases as Brf

increases, but the peak height decreases. The width increases
faster than linearly with Brf ; although the range of B across
which the atomic states are strongly mixed by rf dressing is
linear in Brf , the kinetic energy released also depends on Brf

and this affects the inelastic cross sections in a complicated
way. The peak cross section decreases as the kinetic energy
release increases.

For 39K + 39K, the inelastic rates are fairly similar for
Lmax = 2 and Lmax = 0. The small difference arises because,
even in the absence of rf radiation, atoms in f = 1,mf < 1
may undergo spin-relaxation collisions to produce atoms in
lower magnetic sublevels. Such collisions are driven only by
the weak anisotropic part of the interaction, V d(R) in Eq. (5).
Since they change MF = mf 1 + mf 2, and MF + ML must be
conserved, they must also change ML. For s-wave collisions,
L is initially zero, so changing ML requires a final state with
L > 0, which must have L � 2 to conserve parity. The rates
of spin-relaxation collisions are therefore suppressed because
the products are trapped inside an L = 2 centrifugal barrier,
which has height kB×1.5 mK for 39K + 39K. Figure 3(b) shows
the difference between the Lmax = 2 and Lmax = 0 results
in Fig. 3(a) and compares it with the rate of spin-relaxation
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FIG. 5. Rate coefficient for inelastic loss for adiabatically trapped
87Rb in f = 1 as a function of magnetic field with ν = 3.0 MHz
and Brf = 0.5 G. (a) Calculation using Lmax = 0. (b) Calculation
including spin relaxation, using Lmax = 2 (solid green line). Rate
coefficients for rf-free spin relaxation are shown as dashed lines for
(1,−1) + (1,−1), dashed-dotted lines for (1,−1) + (1,0), dotted lines
for (1,0) + (1,0) and long dashed lines for (1,0) + (1,1).

collisions from an rf-free calculation for two atoms initially in
the (f,mf ) = (1,−1) state. It may be seen that the difference
approaches the rf-free spin-relaxation rate at high magnetic
field, where the adiabatically trapped state is principally
(1,−1). However, it decreases to zero at low magnetic field,
where the trapped state is principally (1,1), which is the rf-free
ground state and cannot undergo inelastic collisions. At the
trap center the rf-modified spin-relaxation rate is about half its
rf-free value.

B. Inelastic collisions of rf-dressed 87Rb

Figure 5 shows the calculated inelastic rate constant as
a function of magnetic field for 87Rb, for the same rf fre-
quency and field strength as Fig. 3. Figures 5(a) and 5(b)
show calculations with Lmax = 0 and 2, respectively. In this
case the rate coefficient for rf-induced loss (with Lmax = 0)
reaches a maximum of only kmax

2 = 1.25×10−20 cm3 s−1

(β = 6.47×10−8 bohr) at B = 4.2713 G (the trap center).
This is more than 6 orders of magnitude slower than for
39K2, and 4 orders of magnitude lower than the rf-modified
spin-relaxation rate at the trap center. Consequently Fig. 5(b)
is totally dominated by spin relaxation. In this case, however,
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FIG. 6. Contour plots of the dependence of collision properties
on the fractional part of vD for the singlet and triplet states, for
adiabatically trapped 87Rb in f = 1 with ν = 3.0 MHz and Brf =
0.5 G. (a) Rate coefficient for rf-induced loss at the trap center kmax

2 .
(b) Real part of scattering length arf . (c) Mapping between vD and the
singlet and triplet scattering lengths for 87Rb, according to Eq. (14).

the spin relaxation itself shows more complicated structure
as a function of B; the dashed lines in Fig. 3(b) show the
rf-free spin relaxation rates for (1,1) + (1,1), (1,1) + (1,0),
(1,1) + (1,−1), and (1,0) + (1,−1) collisions. As for 39K,
the losses for rf-dressed states approach those for rf-free
(1,1) + (1,1) at high magnetic field, but around the trap center
there are also contributions from other components of the wave
function of the rf-dressed atomic states.

The rf-induced loss rate depends strongly on the singlet and
triplet scattering lengths as and at. In order to explore this, we
have carried out Lmax = 0 calculations on a set of potentials
modified at short range to allow adjustment of as and at. We
retained the functional forms of the potential curves of Strauss
et al. [16], but modified the short-range matching point RSR

to 3.5 Å for the singlet potential and to 5.6 Å for the triplet
potential in order to provide sufficient flexibility to adjust the
scattering lengths through a complete cycle. We then adjusted
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FIG. 7. Contour plot of the rate coefficient for rf-induced loss at
the trap center, for adiabatically trapped f = 1 states of an artificial
atom with a hyperfine splitting 0.7 times that of 87Rb. All other
quantities are the same as for Fig. 6.

the short-range power NSR to obtain modified potentials with
different scattering lengths, maintaining continuity of the
potential and its derivative at RSR as described in Ref. [23].

Contour plots of the resulting rf-induced peak loss rates kmax
2

and the corresponding real part of the scattering length arf (for
collisions of rf-dressed atoms) are shown in Fig. 6, calculated
at the trap center for Brf = 0.5 G. Since the possible singlet
and triplet scattering lengths range from −∞ to +∞, the loss
rate is displayed as a function of two phases, defined as the
fractional parts of the quantum numbers at dissociation vD,s

and vD,t for the singlet and triplet states. These each map onto
the corresponding scattering length according to

a = ā
[
1 − tan

(
vD + 1

2

)
π

]
, (14)

where ā = 0.477988 . . . (2μC6/h̄
2)−1/4 is the mean scattering

length of Gribakin and Flambaum [24] and C6 is the leading
long-range dispersion coefficient. For 87Rb, ā = 78.95 bohr.
The mapping between scattering length and vD is shown for
87Rb in the top panel of Fig. 6.

Figure 6 shows that kmax
2 varies by more than 10 orders of

magnitude as a function of the singlet and triplet scattering
lengths. Both kmax

2 and arf depend only on the fractional
parts of vD for the singlet and triplet states (and hence on
as and at), as indicated by the repeating patterns in Fig. 6. The
most striking feature of Fig. 6(a) is a deep diagonal trough
in the rf-induced loss rate when vD,s ≈ vD,t (as ≈ at), with
no corresponding feature in arf . Superimposed on this are
peaks in kmax

2 and poles in the corresponding arf . These are of
three different types. First, there are near-vertical bands near
integer values of vD,t, corresponding to |at| = ∞. These are
entrance-channel resonances; they occur near integer values
of vD,t because the incoming channel is mostly triplet in
character. Secondly, there is a Feshbach resonance due to a
closed channel with excited hyperfine character (f = 2 here),
which produces curving bands of peaks in kmax

2 that cross the
vertical bands near vD,s = 0.1. Lastly, there is an additional
Feshbach resonance that produces very narrow vertical bands
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FIG. 8. Adiabats [eigenvalues of the Hamiltonian of Eq. (4) at fixed R] with respect to a pure triplet curve (a) for field-free collisions with
(f1,f2,F = 2) and (b) for collisions of rf-dressed atoms with f = 1, at the trap center with rf field frequency 3 MHz and strength Brf = 0.5 G,
for Mtot = 0. (c) Nonadiabatic matrix elements between (1,1,2), (1,2,2), and (2,2,2) in (a). (d) Nonadiabatic matrix element between the
uppermost of the six (f1,f2,Mtot) = (1,1,0) rf-dressed states and the next-highest state.

of peaks near vD,t = 0.3; these probably arise from pure triplet
states that exist at the (f1,f2) = (1,2) threshold in the absence
of rf and magnetic fields.

To explore the dependence of the pattern on hyperfine
splitting, we have repeated the calculations on a series of
artificial systems with the 87Rb hyperfine splitting reduced
from its real value, using the same set of interaction potentials.
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FIG. 9. Contour plot of the rate coefficient for rf-induced loss at
the trap center, for adiabatically trapped f = 1 states of an artificial
atom with the mass of 87Rb with the hyperfine splitting of 39K. All
other quantities are the same as for Fig. 6.

The results with the hyperfine splitting at 70% of its real value
are shown in Fig. 7. The general form of the contour plot is
unchanged, with a deep trough around vD,s ≈ vD,t (as ≈ at)
and peaks around vertical bands at integer values of vD,t. As
expected, however, the Feshbach peaks have shifted. They now
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FIG. 10. rf-dressed atomic levels of f = 2 states of 87Rb for
frequency 3.0 MHz and photon numbers N = −2, −1, 0, 1, and
2, shown with respect to the energy of the f = 2, mf = 0 state for
N = 0. Solid lines show levels for zero rf intensity and dashed lines
show levels for Brf = 0.5 G with Mtot = 0. Atoms can be trapped at
the minimum in the uppermost dashed curve.
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FIG. 11. Rate coefficient for inelastic loss of adiabatically trapped
87Rb in f = 2 as a function of magnetic field with ν = 3.0 MHz
and Brf = 0.5 G. (a) Calculation of rf-induced loss, using Lmax = 0.
(b) Calculation including spin relaxation, using Lmax = 2.

display distinct avoided crossings with the vertical bands of
peaks. For some values of the hyperfine splitting, the crossings
are so strongly avoided that the vertical bands near integer vD,t

are barely identifiable.
The trough observed here for rf-induced inelastic collisions

when as ≈ at has a similar origin to that found for spin-
exchange collisions. Myatt et al. [25] measured a very low
rf-free spin-exchange rate in dual Bose-Einstein condensates
of 87Rb in (f,mf ) = (1,−1) and (2,2) states. Julienne et al.
[26] explained this using an adiabatic model of the collision
dynamics [27] where the Hamiltonian of Eq. (4) (without
rf) is diagonalized at each value of the interatomic distance
R. For 87Rb, the exchange splitting between the singlet and
triplet curves is comparable to the hyperfine splitting around
RX = 22 bohr. Inside this distance the adiabatic states are
essentially pure singlet and triplet states, whereas outside
it they are described by atomic quantum numbers (f,mf ).
Julienne et al. [26] considered scattering at zero magnetic
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FIG. 12. (a) Adiabats [eigenvalues of the Hamiltonian of Eq. (4)
at fixed R] for collisions of field-dressed 87Rb atoms in f = 2 states,
with respect to a pure triplet curve, for Mtot = 0. (b) Nonadiabatic
matrix elements between the top two adiabatic states for 87Rb.
(c) Nonadiabatic matrix elements between the top two adiabatic states
with the hyperfine splitting reduced to the value for 39K.

field, with f1 and f2 coupled to give a resultant F . The
resulting rf-free adiabats for F = 2 are shown in Fig. 8(a),
with respect to the pure triplet interaction potential. The
nonadiabatic matrix elements 〈i|d/dR|j 〉 between the states
that are asymptotically (f1,f2,F ) = (1,1,2), (1,2,2), and
(2,2,2) are shown in Fig. 8(c). The overall magnitude is
usefully characterized by the integral,

Dij =
∫ 〈

i

∣∣∣∣ d

dR

∣∣∣∣j
〉
dR, (15)

which is π/2 for a complete avoided crossing, and 1.05, 0.55,
and 0.49 for the three couplings in Fig. 8(c). The adiabats and
nonadiabatic couplings are independent of the singlet and
triplet scattering lengths. However, Julienne et al. [26] argued
that, when as ≈ at, the radial wave functions R−1χi(R) and
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FIG. 13. Contour plot of the rate coefficient for rf-induced loss
at the trap center, for adiabatically trapped f = 2 states of 87Rb. All
other quantities are the same as for Fig. 6.

R−1χj (R) in the incoming (1,2,2) and inelastic outgoing
(1,1,2) channels are in phase around RX. This minimizes the
matrix element that controls inelastic scattering,

− h̄2

2μ

∫
χi(R)∗

〈
i

∣∣∣∣ d

dR

∣∣∣∣j
〉

d

dR
χj (R) dR. (16)

Figures 8(a) and 8(c) may be compared with the adiabats
for collisions of rf-dressed 87Rb atoms in f = 1 states at the
trap center (4.27 G), which are shown in Fig. 8(b), and the
nonadiabatic matrix element from the uppermost of the six
(f1,f2,Mtot) = (1,1,0) states to the next-highest state, which
are shown in Fig. 8(d). The nonadiabatic matrix element again
peaks around 22 bohr for 87Rb; the mechanism is similar to
that for spin exchange, and the overall inelastic coupling is
smallest when as ≈ at, producing the diagonal troughs seen in
Figs. 6 and 7.

The actual singlet and triplet scattering lengths for 87Rb
are indicated by a cross on Fig. 6(a). This shows that 87Rb
is special in two different ways. Not only are its singlet and
triplet scattering lengths quite similar, but their actual values
correspond to vD ≈ 0.5 and lie well away from the peaks due
to Feshbach resonances. The value of kmax

2 at the deepest point
in the trough in Fig. 6(a) is about kmax

2 = 5.3×10−21 cm3 s−1,
which is not far from the value of 1.25×10−20 cm3 s−1 obtained
for 87Rb on the potentials of Ref. [16].

Figure 9 shows a contour plot similar to Fig. 7 but with the
hyperfine splitting of 39K (462 MHz). The structure is similar,
with a Feshbach resonance avoided crossing with vertical
bands of peaks at integer vD,t, though the resonances are
distinctly wider than in Figs. 6(a) and 7. The actual scattering
lengths of 39K are shown as a black cross; the value of kmax

2
at this point is 5.3×10−14 cm3 s−1, which may be compared
with kmax

2 = 6.33×10−14cm3 s−1 from the calculation with the
mass and interaction potentials for 39K in Sec. III A.

C. Inelastic collisions of rf-dressed f = 2 states

A somewhat different case occurs for atoms in f = 2 states.
Here there are 5 photon-dressed atomic states that cross as a
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FIG. 14. Contour plot of the rate coefficient for rf-induced loss at
the trap center, for adiabatically trapped f = 2 states of an artificial
atom with the mass of 87Rb but the hyperfine splitting of 39K. All
other quantities are the same as for Fig. 6.

function of magnetic field, as shown for 87Rb in Fig. 10. It
requires a minimum of five rf-free states (with photon numbers
N from −2 to 2) to describe a single trapped atom, and
describing two such atoms requires photon numbers from −4
to 4. The coupled-channel calculation is thus computationally
considerably more expensive. Nevertheless, the principles are
exactly the same and rate coefficients for inelastic loss can
again be obtained from β, the imaginary part of the complex
scattering length, for atoms initially at the highest rf-dressed
threshold.

Figure 11 shows the rate coefficient for inelastic loss for
87Rb in f = 2, as a function of magnetic field near the trap
center. As before, Fig. 11(a) shows the rf-induced loss, from
a calculation with Lmax = 0, while Fig. 11(b) shows the loss
including spin relaxation, from a calculation with Lmax = 2.
The rf-induced loss rate is about a factor of 400 larger than
for 87Rb in f = 1, but it is still much lower than the loss rate
due to spin relaxation. Once again this illustrates the special
properties of 87Rb.

It is notable that the rf-induced loss rate for f = 2 is far
lower than the rf-free spin-exchange rates for (2,0) + (2,0)
and (2,1) + (2,−1) collisions, which are 1.73×10−13 and
1.25×10−13 cm3 s−1, respectively. This is true even though
the wave function for the rf-dressed atomic state includes
substantial amounts of (2,0) and (2,1) near the trap center.
It may be again rationalized by considering adiabatic curves
obtained by diagonalizing the Hamiltonian of Eq. (4) at each
value of the interatomic distance R. For rf-free collisions of
two f = 2 atoms, there are contributions from F = 0, 2,
and 4. The inelasticity is dominated by F = 2, for which
the adiabats and nonadiabatic matrix elements were shown
in Figs. 8(a) and 8(c). Figure 12(a) shows the adiabats for
collisions of rf-dressed 87Rb atoms in f = 2 states at the trap
center, and Fig. 12(b) shows the corresponding nonadiabatic
matrix elements between the uppermost and next-highest
state. The nonadiabatic coupling is quite different from the
previous cases: There is no feature around 22 bohr, and
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FIG. 15. Rate coefficient for inelastic loss of adiabatically trapped
39K in f = 2 as a function of magnetic field with ν = 3.0 MHz
and Brf = 0.5 G. Results are shown including spin relaxation, using
Lmax = 2 (solid, green) and for rf-induced loss alone, using Lmax = 0
(dashed, blue).

instead the matrix element peaks around 32 bohr, where
the difference between the singlet and triplet curves is
comparable with the splittings 	rf due to rf dressing. The
coupling is far weaker than in the cases shown in Fig. 8.
The integral Dij over the nonadiabatic coupling is only
1.96×10−6, as compared to π/2 for a completed avoided
crossing.

We have also investigated the dependence of kmax
2 for the

f = 2 states of 87Rb2 on the singlet and triplet scattering
lengths. The resulting contour plot is shown in Fig. 13. It has a
considerably simpler structure than Figs. 6, 7, and 9, because
the atoms are both in their upper hyperfine state and there are
no closed channels that can cause Feshbach resonances. The
only features are a diagonal trough for vD,s ≈ vD,t (as ≈ at)
and a near-vertical band of maxima where vD,t is close to an
integer. These have the same causes as discussed for f = 1
above.

For atoms trapped in their upper hyperfine state, with no
Feshbach resonances, the dependence of kmax

2 on as and at

may be expected to resemble Fig. 13 qualitatively for all atoms.
However, there is a strong overall dependence on the hyperfine
coupling constant. To illustrate this, we have repeated the
calculations shown in Fig. 13 with the hyperfine coupling
constant set to the value for 39K but the reduced mass retained
at the value for 87Rb. The results are shown in Fig. 14. It
may be seen that the general structure of peaks and troughs
is unchanged, but the peaks are about a factor of 200 higher
for the smaller hyperfine splitting of 39K (462 MHz) than for
that of 87Rb (6,834 MHz). This effect may also be traced to
the effects of nonadiabatic transitions. The adiabats for 39K
are similar to those shown for 87Rb in Fig. 12(a). However, the
nonadiabatic matrix element, shown in Fig. 12(c), is a factor of
200 larger than for 87Rb, with integral Dij = 3.8×10−4. The
nonadiabatic matrix element reflects the amount of singlet
character in the wave function of the rf-dressed atomic pair at
long range; this in turn depends on the degree of mixing of

f = 1 and f = 2 states in the magnetic field, which increases
as the hyperfine splitting decreases.

The specific case of 39K in rf-dressed f = 2 states is
of interest. Figure 15 shows k2 as a function of magnetic
field from calculations with Lmax = 0 and 2, using the
potentials of Ref. [17]. It may be seen that, as for 39K
in f = 1, the rf-induced loss dominates the loss due to
rf-modified spin relaxation. The rate coefficient peaks at
kmax

2 = 5.38×10−13 cm3 s−1. The rf-induced loss is about 5
orders of magnitude faster than for 87Rb, and again more
typical. The value is comparable to the one from Fig. 14 at
the values of vD,s and vD,t for 39K, shown with a black cross,
which is kmax

2 = 2.34×10−13 cm3 s−1. The difference between
these two values arises because the calculations in Fig. 14 used
the reduced mass and interaction potentials for 87Rb rather
than 39K.

An atom for which f = 2 is not the highest state, such as
85Rb, may be expected to show more complex behavior than
Fig. 13, with Feshbach resonances reappearing at some values
of vD,s and vD,t (as and at). We will investigate this in future
work.

IV. CONCLUSIONS

Cold atoms in radio-frequency-dressed traps may undergo
inelastic collisions by mechanisms that do not occur in the
absence of an rf field. These collisions may lead to trap loss.
We have investigated inelastic losses for alkali-metal atoms in
rf-dressed traps, using coupled-channel scattering calculations
on accurate potential energy surfaces. We have explored the
dependence of the loss rates on singlet and triplet scattering
lengths, hyperfine splittings, and the strength of the rf field.

There are two components of the inelastic loss. One is due
to spin-relaxation collisions, driven by the dipolar interaction
between the electron spins of the two atoms. This component
exists even in the absence of rf dressing, but is generally fairly
small, both because the dipolar interaction is weak and because
there is a centrifugal barrier in the outgoing channel. It is
modified near the trap center because the rf-dressed states
are mixtures of different spin states, and drops to zero on
the low-field side of the trap, where the adiabatically trapped
state correlates with the lowest state in the magnetic field. The
second component, which we refer to as rf-induced loss, is
potentially stronger; the inelastic collisions are driven by the
difference between the singlet and triplet interaction potentials,
and there is no centrifugal barrier in the outgoing channel.

For 87Rb in f = 1 states, the calculated rate coeffi-
cient for rf-induced loss is very small. We obtain kmax

2 =
1.25×10−20 cm3 s−1 at the trap center for an rf field strength
Brf = 0.5 G. This is much smaller than the rf-modified
spin-relaxation loss rate coefficient for 87Rb.

We have explored the dependence of the rf-induced loss rate
on the singlet and triplet scattering lengths as and at, and find
that it can change by 10 orders of magnitude as the scattering
lengths are varied. It is generally small when as ≈ at, but may
be enhanced by resonances of two different types. 87Rb is a
very special case: Not only is as very similar to at, but their
actual values are such that there is no enhancement by either
type of resonance. Other alkali-metal atoms will generally have
much larger rf-induced loss rates. For 39K, which is a more

042707-9



DANIEL J. OWENS AND JEREMY M. HUTSON PHYSICAL REVIEW A 96, 042707 (2017)

typical case, we obtain kmax
2 = 6.33×10−14 cm3 s−1 for Brf =

0.5 G. This is much larger than the rf-modified spin-relaxation
loss rate, and 6 orders of magnitude larger than for 87Rb. The
rf-induced loss rate at the trap center increases at lower rf field
strengths.

We have also investigated rf-induced loss for alkali-metal
atoms in their upper hyperfine states, f = 2 for 87Rb and
39K. These losses are also small when as ≈ at. In this case
there are no Feshbach resonances, but the loss rates may
still be enhanced by entrance-channel effects when |at| is
large. The rf-induced loss rates also depend strongly on the
atomic hyperfine splitting, increasing as the hyperfine splitting

decreases because of mixing of atomic f states by the magnetic
field.
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