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Abstract

We introduce a continuous time stochastic process on strings made of
two types of particle, whose dynamics mimics that of microtubules in a
living cell. The long term behaviour of the system is described in terms of
the velocity v of the string end. We show that v is an analytic function of
its parameters and study its monotonicity properties. We give a complete
characterisation of the phase diagram of the model and derive several
criteria of the growth (v > 0) and the shrinking (v < 0) regimes of the
dynamics.
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1 Introduction

Microtubules are key structural components of the cytoskeleton, which play a
vital role in a number of cellular processes. The dynamics of these tubular poly-
mers alternates between periods of rapid growth and periods of even more rapid
shrinking; the transition from growth to shrinking is called ‘catastrophe’ while
that from shrinking to growth is called ‘rescue’ [4, 8]. This phenomenon of dy-
namical instability makes microtubules responsible for supporting the shape of
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the cell, facilitating intracellular transport and enabling chromosome separation
during mitosis.

Microtubules grow by polymerisation of α−β dimers of tubulin. The polarity
of the latter induces polarity of the microtubule, whose plus end (terminating
with the β-subunit) exhibits the dynamical instability behaviour. The minus
end of microtubule terminates with the α-subunit; in animal cells it is often
attached to centrosomes [4]. When the minus end of a microtubule is free, its
dynamics is known to be much slower than that of the plus end [11]. A study
of the interplay between catastrophes and rescues is thus naturally reduced to
the dynamics of the plus end of microtubule.

During polymerisation the tubulin complexes bind guanosine triphosphate
(GTP) molecules [12], which after the assembly spontaneously hydrolyse to
guanosine diphosphate (GDP) molecules. It is known [13] that the GDP-tubulin
complexes at the plus end of the microtubule are more prone to depolymerisa-
tion compared to the GTP-tubulin complexes, which makes the GTP to GDP
hydrolysis an essential ingredient of the dynamic instability, in addition to poly-
merisation and depolymerisation of individual tubulin complexes.

An important characteristics of the microtubule behaviour is the velocity
of its active plus end. Given that in vivo the concentration of tubulin is not
necessarily constant, it is crucial to understand how this velocity depends on
the rates of the main moves of the dynamics. Here we study the nature of such
dependence in the case of a one-dimensional model inspired by [1]; an interesting
feature of the original model is that it exhibits the so-called re-entrant phase
transition in a subregion of the parameter space [6].

A single protofilament model of microtubules [1] treats the latter as strings
composed of two types of particle—⊕ and 	monomers—whose dynamics is sub-
ject to attachment, detachment and conversion (hydrolysis); here the⊕monomers
and the 	monomers correspond to the GTP-tubulin and the GDP-tubulin com-
plexes respectively. Long term properties of the model were rigorously studied
in [5, 7]. In particular, it has been shown that the dynamics of the active end
of the microtubule can be described in terms of velocity, which is an analytic
function of the rates; in addition, under a suitable ordering of the attachment
rates, the velocity is a decreasing function of the detachment rate and an in-
creasing function of the attachment rates. However, this ‘regular’ behaviour is
not universal: in a region in the complementary part of the parameter space
the velocity is subject to the re-entrant phase transition [6], where a larger
detachment rate leads to a faster growth.

The purpose of this note is to extend the results in [5, 7] to the case of a
general single protofilament model of microtubules, which is a one-dimensional
analogue of the full model from [10]. This general model allows depolymerisation
of the GTP-tubulin complexes, a phenomenon known to exist [4], though at a
very low rate. We show that as long as the attachment rates are ordered as in [5],
the general model exhibits the ‘regular’ behaviour described above, irrespective
of the values of the detachment rates.
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1.1 The model

As time progresses, spontaneous hydrolysis attempts to transform all internal
GTP-tubulin units into GDP-tubulin units. This stochastic mechanism is re-
sponsible for keeping the total number of GTP-complexes ‘essentially bounded’
and mostly located near the active plus end of the microtubule. In this regime
the microtubule typically consists of relatively long sequence of GDP-tubulin
complexes with a small number of GTP-complexes, which have polymerised rel-
atively recently compared to the tubulin subunits deep inside the microtubule
and thus had not enough time to hydrolyse. Occasionally the microtubule can
lose its last GTP-complex and enter the fast shrinking phase, a ‘catastrophe’.
Below we combine this observation together with statistically homogeneous, at
intermediate time scales, nature of microtubule dynamics to both introduce the
velocity of the active end of microtubule and study its dependence on parame-
ters of the model. This velocity is shown to control the large term behaviour of
microtubule.

Informally, we think of microtubules as long strings · · · � ��, where each
monomer � is either in ⊕ state (GTP) or in 	 state (GDP). Given four positive
parameters λ+, λ−, µ+ and µ−, the dynamics of these strings consists of at-
tachment moves (at rate λ+ or λ−), detachment moves (at rate µ+ or µ−) and
independent hydrolysis of individual ⊕ monomers into 	 monomers at rate 1.
Schematically, the transitions are as follows:

· · · � � �⊕ 7→ · · · � � �⊕⊕ rate λ+ ,

· · · � � �	 7→ · · · � � �	⊕ rate λ− ,

· · · � � ��⊕ 7→ · · · � � �� rate µ+ ,

· · · � � ��	 7→ · · · � � �� rate µ− ,

· · · � � ⊕ . . . 7→ · · · � � 	 . . . rate 1 ,

where � denotes either ⊕ or 	 (if irrelevant for the move in question) and the
last, hydrolysis, move applies to each ⊕ monomer (including the one at the
active end of the microtubule, if in state ⊕) independently of any other move.
The (combined) rate of (any) hydrolysis move at any time is thus proportional to
the current total number of ⊕ monomers belonging to the microtubule. Notice
that the rate of the attachment move depends on the state of the end monomer
of the microtubule. The velocity of the active end can be formally defined as
the relative change of length of the microtubule (equivalently, the position of its
active end) per unit of time, see (1.6) below.

This model is non-reversible (the hydrolysis transformation cannot be in-
verted) and evolves through a sequence of transitions between ‘typical’ states
with relatively large number of ⊕ monomers (determined by the values of the
rates λ± and µ±) during the ‘rescue’ phase and the states without ⊕ monomers
during the shrinking phase (‘catastrophe’). The statistical homogeneity of the
dynamics together with good control over the duration of metastable transitions
leading to the loss of the last ⊕ monomer (at the start of each shrinking phase)
allow to describe the long term behaviour of the model by observing the latter
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at the starting points of the ‘catastrophes’.

Formally, the model studied here is as follows. Following [7], we represent
microtubules as semi-infinite strings of monomers,

s = . . . s2s1s0 ,

where sk ∈
{
⊕,	

}
for all k ≥ 0. Monomer s0 is referred to as the active end of s.

Assuming that the initial state of a microtubule contains only a finite number
of ⊕ monomers, the dynamics introduced below almost surely preserves this
property at all subsequent times. In other words, during time intervals when
s contains ⊕ monomers, there is k ≥ 0 such that sk = ⊕ and sn = 	 for all
n > k; i.e., monomer sk is the left-most ⊕ monomer in s. The finite string
w = sk . . . s1s0 contains all ⊕ monomers currently present in s, and is called
the populated zone or the head of s [1]. Obviously, the state of a microtubule is
uniquely described by its head w and the position of its active end s0.

To formally define the dynamics of microtubules, we introduce further no-
tation. Given a two-symbol alphabet {⊕,	}, let

S =
⋃
k≥0

{
⊕,	

}k
be the collection of all finite strings, including the empty one. Then a head is a
word in

W =
{
∅
}
∪
⋃
k≥0

{
w = wk . . . w1w0 ∈

{
⊕,	

}k+1
with wk = ⊕

}
⊂ S .

It is convenient to disjointly decompose

W =W+ ∪W− , (1.1)

whereW+ is the set of all plus-headsw (i.e., ending with a⊕ symbol,w = w′⊕),
andW− contains all remaining heads (i.e., the empty head ∅ and all non-empty
heads w ending with 	, w = w′′	).

For any finite string s ∈ S, write |s| for the length of s (the total number
of symbols in s), and denote by ‖s‖ the number of ⊕ symbols in s. Given two
strings s′ = s′k−1 . . . s

′
0 and s′′ = s′′l−1 . . . s

′′
0 denote by s′s′′ the concatenated

string s′k−1 . . . s
′
0s
′′
l−1 . . . s

′′
0 of length k+l. If a string s is not a head (s ∈ S\W),

by ignoring all 	 symbols at the left end of s, it can be converted into the
corresponding (possibly empty) head,

s 7→ w ≡ 〈s〉 ∈ W . (1.2)

One might think of the map 〈 · 〉 : S → W as a projection.
Similarly, for integer m ≥ 0, ` ≥ 0, let

[ · ]m` :W → Sm
def
=
{
⊕,	

}m+1

4



be the projection map returning the (m+ 1)-symbol substring of monomers in
s indexed by `, `+ 1, . . . , `+m; equivalently, the map such that

w = wk . . . w0 7→ [w ]m` ≡ s = sm . . . s0 , (1.3)

where sj = w`+j for j ∈ {0, . . . ,m}, and we assume that the word s is extended
with 	 monomers on the left if necessary, i.e., we put sj = 	 for all j satisfying
k − ` < j ≤ m. If ` = 0, write [w ]m = [w ]m0 for the word consisting of the
m+1 right-most monomers in w, again extended with 	 on the left if necessary.
Further, if w = wk . . . w1w0 write [w ]0 ≡ [w ]00 for its right-most monomer w0

and use [w ]1 to denote the shortened version w′ = wk . . . w1 of w without its
right-most monomer w0. If w = ∅, we also use [∅ ]1 = ∅ to indicate the fact
that a microtubule without ⊕ monomers loses its right-most 	 monomer.

The state yt of the microtubule at time t ≥ 0 can be completely described by
specifying its head wt = wk(t) . . . w0(t) and the position xt ∈ Z of its right-most
symbol w0(t); clearly, for every t ≥ 0,

yt ≡ (xt,wt) (1.4)

is an element of Y ≡ Z ×W. The dynamics introduced below turns yt into a
Markov process in Y. Without loss of generality we may and often shall assume
that the initially yt starts from the empty head located at the origin,

y0 = (x0,w0) = (0,∅) . (1.5)

Given positive constants λ+, λ−, µ+ and µ−, the dynamics of yt is formally
defined as follows. For arbitrary w ∈ W, w′ ∈ W+ and w′′ ∈ W−, let

(x,w′) 7→
(
x+ 1,w′⊕

)
, rate λ+ ,

(x,w′′) 7→
(
x+ 1,w′′⊕

)
, rate λ− ,

(x,w⊕) 7→
(
x− 1,w

)
, rate µ+ ,

(x,w	) 7→
(
x− 1,w

)
, rate µ− ,

(x,w) 7→
(
x, 〈ŵ〉

)
, rate ‖w‖ ,

where for ‖w‖ > 0 the word 〈ŵ〉 is obtained from w by replacing one of its
⊕ monomers, chosen uniformly at random, with the 	 monomer (and then, if
necessary, ignoring all its 	 monomers on the left; recall (1.2)). Notice that as a
result of the last move the number ‖w‖ of ⊕ monomers in w decreases by one,
‖〈ŵ〉‖ = ‖w‖− 1, and, if the left-most ⊕ monomer in w transforms into 	, the
new head is shorter, |〈ŵ〉| < |w|, or might even become empty, 〈ŵ〉 = ∅. Of
course, in the case ‖w‖ = 0, the last move occurs at rate 0 (i.e., almost certainly
does not occur). In what follows, we write P( · ) and E( · ) for the probability
distribution and the expectation related to the process yt.

If µ+ = 0, we recover the original version of the model studied in [1, 5, 7]. As
we shall see below, the results of [5, 7] extend to the general case µ+ > 0, which
is more realistic. In particular, the long term behaviour of the microtubule is
controlled by its velocity,

v = lim
t→∞

xt − x0

t
, (1.6)
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where the limit exists with probability one. In full analogy with the results in
[5, 7], the velocity v is an analytic function of positive rates λ+, λ−, µ+ and
µ−; moreover, for λ− ≥ λ+ it also possesses natural monotonicity properties
as a function of these rates. Notice, however, that while (1.6) is just a law of
large numbers for the coordinate process (xt)t≥0, the increments xt − xs with
0 < s < t over non-overlapping intervals [si, ti] are not independent. Together
with the surprising result in [6] on the partial case µ+ = 0 of the model, this
suggests that the ‘natural’ monotonicity properties of the velocity v do not
extend to the entirety of the parameter space λ± > 0, µ± > 0.

To study (yt)t≥0, it is convenient to introduce two auxiliary processes. First,
let 0 = τ̃0 < τ̃1 < . . . be the times of consecutive returns of the Markov
process yt to states with empty head (i.e., when the microtubule loses its last
⊕ monomer), and let

ỹ` ≡ yτ̃` =
(
x̃`,∅

)
≡
(
xτ̃` ,∅

)
, ` ≥ 0 . (1.7)

The jump chain (ỹ`)`≥0 can clearly be identified with the process (x̃`)`≥0, where
x̃0 = 0. As we shall see in Sect. 2.1, the increments(

∆`x̃,∆`τ̃
)
≡
(
x̃` − x̃`−1, τ̃` − τ̃`−1

)
, ` ≥ 1 ,

are independent identically distributed (i.i.d.) vectors having exponential mo-
ments in a neighbourhood of the origin; this implies that the convergence in
(1.6) is exponentially fast.

Our second auxiliary process is a ‘finite-window’ version of the process

(yt)t≥0. For a fixed integer m ≥ 0, let [ · ]m :W →
{
⊕,	

}m+1
be the projection

map introduced above. We define a continuous-time Markov chain (ŷt)t≥0 on a

‘finite’ strip Z×
{
⊕,	

}m+1
via

ŷt ≡
(
x̂mt , ŵ

m
t

)
≡ ŷmt

def
=
(
xt,
[
wt

]m)
(1.8)

with jumps (and rates) inherited from the microtubule process (yt)t≥0. Clearly,
the conversion move for ŷt is the same as for yt, whereas the attachment move
is understood as

(x, ŵ) 7→
(
x+ 1, [ŵ⊕]

m)
,

and the detachment move is (with � denoting ⊕ or 	)(
x, ŵ�

)
7→
(
x− 1, [	ŵ]

m)
;

in the ‘finite-state’ situation here and below, ∅ ∈ Sm denotes the word of length
m+ 1 made of 	 monomers only.

As above, define the velocity v̂m of x̂mt as the almost sure limit

v̂m = lim
t→∞

x̂mt − x̂m0
t

. (1.9)

Since x̂mt is an additive functional of the finite state Markov chain ŵm
t , existence

of this limit follows directly from the Ergodic theorem, see, e.g., [9].
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1.2 Results

Our main results are as follows. Recall that P( · ) and E( · ) are the probability
distribution and the expectation (related to the process yt). We say that ξ is
an exponential random variable with parameter ν > 0 (denoted ξ ∼ Exp(ν)), if
P(ξ > x) = e−νx for all x ≥ 0. Then, clearly, Eξ = 1

ν . In particular, η ∼ Exp(0)
means P(η =∞) = 1.

Theorem 1.1. The velocity v of the process xt is an analytic function of the
positive rates λ± and µ±. It satisfies v = Ex̃1/Eτ̃1, and thus v > 0 if Ex̃1 > 0
(the microtubule grows) and v < 0 if Ex̃1 < 0 (the microtubule shrinks).

Remark 1.1.1. Since τ̃1 has exponential moments, Eτ̃1 < ∞. On the other
hand, τ̃1 stochastically dominates the initial holding time η ∼ Exp(λ−+µ−), so
that Eτ̃1 ≥ Eη = 1/(λ− + µ−) > 0.

Remark 1.1.2. Our approach also applies to a biologically more realistic model
in the spirit of [1], where xt is restricted to the half-line Z+ = {0, 1, 2, . . . }. Then
v > 0 corresponds to the ‘phase of unlimited growth’, while v < 0 corresponds
to the ‘compact phase’, where xt is a positive recurrent process.

Remark 1.1.3. Thanks to existence of exponential moments of x̃1, computer
evaluation of the expectation Ex̃1 can be used to numerically study the phase
boundary {v = 0} for the Markov process (yt)t≥0.

Theorem 1.2. Let λ− ≥ λ+. Then v is a strictly monotone function of the
rates λ± and µ±, whose partial derivatives satisfy ∂λ±v > 0 and ∂µ±v < 0.

Remark 1.2.1. Notice that while the condition λ− ≥ λ+ can be relaxed, it
cannot be omitted altogether. In fact, the ‘natural monotonicity’ properties of
v can break in the complementary region λ− < λ+. Eg., in the particular case
µ+ = 0 of the model under consideration it is known [6] that for suitably chosen
λ+ and λ− the velocity v is not monotone in µ−.

The growth phase {v > 0} can be described in terms of the instantaneous
velocities v+ = λ+ − µ+ and v− = λ− − µ− as follows.

Theorem 1.3. Let v and v̂m be as above. If v+ = v−, then v̂m ≡ v = v+ = v−.
Otherwise,

a) if min(v+, v−) > 0, we have v > 0 and v̂m > 0 for all m ≥ 1;

b) if max(v+, v−) < 0, we have v < 0 and v̂m < 0 for all m ≥ 1;

c) if v+ > 0 ≥ v−, we have v̂m ↗ v; in particular, v > 0 if and only if v̂m > 0
for all m large enough;

d) if v− > 0 ≥ v+, we have v̂m ↘ v; in particular, v < 0 if and only if v̂m < 0
for all m large enough.
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Remark 1.3.1. It is easy to describe the ‘growth regime’ {v̂m > 0} of ŷmt in
terms of the instantaneous velocities v± and the stationary distribution π̂m of
the finite state Markov chain ŵm

t , see below. As the latter can be obtained
by solving a finite linear system, the theorem potentially provides an alterna-
tive constructive way of describing the ‘growth regime’ {v > 0} of the main
process yt. A similar property holds in the ‘compact regime’ {v < 0}.

It is convenient to describe the ‘compact regime’ {v < 0} in terms of the
lifetimes T⊕ and T	 of the extreme monomer, formally,

T⊕ = min
{
t > 0 : yt = (−1,∅)

∣∣ y0 = (0,⊕)
}
,

T	 = min
{
t > 0 : yt = (−1,∅)

∣∣ y0 = (0,∅)
}
.

(1.10)

Theorem 1.4. Let ϕ⊕(s)
def
= Ee−sT⊕ and ϕ	(s)

def
= Ee−sT	 be the Laplace

transforms of the lifetimes T⊕ and T	. Then

v < 0 ⇐⇒ ET⊕ <∞ ⇐⇒ ET	 <∞ .

Furthermore, this is equivalent to finiteness of ϕ⊕(s) and ϕ	(s) for some s < 0
(i.e., both T⊕ and T	 have finite exponential moments in a neighbourhood of
the origin).

Remark 1.4.1. For fixed positive rates λ± and µ± it is easy to see that ET⊕
and ET	 are both finite or both infinite. This follows from the facts that: on the
event {T⊕ < ∞} there is a positive probability that the extreme ⊕ monomer
hydrolyses before any other move thus reducing the evolution of the model to the
event {T	 < ∞}; similarly, on the event {T	 < ∞}, with positive probability
the first move results in attachment of a ⊕ monomer thus reducing the evolution
of the model to the event {T⊕ <∞}.

A similar argument shows that either both ϕ⊕(s) and ϕ	(s) are finite for
some s < 0 or they are both infinite for all s < 0, see Sect. 5.

Remark 1.4.2. The equivalence of v < 0 and finiteness of ϕ	(s) for some
s < 0 requires a more delicate argument. Starting from the initial condition
y0 = (0,∅) define the times 0 = T0 < T1 < T2 < . . . by

Tk = min
{
t ≥ 0 : yt = (−k,∅)

}
.

Notice that the consecutive increments Tk − Tk−1, k ≥ 1, are independent and
have the same distribution as T	; moreover, the collection

{
Tk
}
k≥0

is included

in the collection {τ̃`}`≥0 from (1.7).
Now, if ϕ	(s) is finite in a neighbourhood of the origin, then ET	 < ∞

and therefore the almost sure limit of 1
txt along the infinite sequence of times

t = Tk exists and must coincide with that in (1.6), implying v = −1/ET	. On
the other hand, since the trajectory xt is exponentially concentrated around its
mean vt (see Lemma 2.2 below), for v < 0 this implies that the event {T1 > t} ⊆
{xt ≥ 0} has exponentially decaying probability as t→∞; hence, T1 ∼ T	 has
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finite exponential moments in a neighbourhood of the origin and the relation
v = −1/ET	 follows as before. For details, see Sect. 5.

We stress that it is the special property of the model, namely, existence of
exponential moments for the increments (2.1), in turn implying the exponential
concentration property in Lemma 2.2, which makes this argument work. This
key property of the increments (2.1) guarantees that the collection of points
(τ̃`, x̃`)`≥0 is dense enough to capture the long term behaviour of the whole
trajectory (xt)t≥0, irrespectively of the values of the rates λ± and µ±.

The key distinction between the v < 0 and v > 0 cases is as follows. If
v < 0 the collection {Tk}k≥0 is a relatively dense sub-collection of {τ̃`}`≥0 and
hence provides a representative sequence of times which capture the long-term
behaviour of the trajectories yt during the shrinking regime. On the other
hand, if v > 0, only a finite number of Tk are finite and therefore the collection
of times {Tk}k≥0 cannot capture the long-term behaviour of the dynamics; this
is, of course, compatible with the fact that in the growth regime the typical
microtubule grows indefinitely and thus cannot get ‘too much shorter’ compared
to its initial state.

The rest of the paper is organised as follows. In Sect. 2 we introduce and
analyse the renewal decomposition of the microtubule trajectories yt, and prove
Theorem 1.1. The stationary distribution of the Markov chain wt inW together
with that of a finite-window projection ofwt are studied in Sect. 3; as a result, we
deduce Theorem 1.3. In Sect. 4 we extend the previous constructions and derive
the strict monotonicity property of the velocity from Theorem 1.2. Finally,
Theorem 1.4 is verified in Sect. 5.

2 The renewal structure

The times 0 = τ̃0 < τ̃1 < . . . of consecutive returns of the Markov process yt to
states with empty head introduce a natural renewal structure on its trajectories.
As in [5, 7], its long term properties can be deduced from the single cycle
distribution.

2.1 Single cycle estimate

Let times 0 = τ̃0 < τ̃1 < . . . be as defined above. By the strong Markov
property, the increments(

∆`x̃,∆`τ̃
)
≡
(
x̃` − x̃`−1, τ̃` − τ̃`−1

)
, ` ≥ 1 , (2.1)

are independent and identically distributed. The following result is a key to the
analysis below.

Lemma 2.1. The random vectors (2.1) share a common distribution with finite
exponential moments in a neighbourhood of the origin.
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A simple corollary of this result is that the discrete time random walk (x̃`)`≥0

in Z generated by the i.i.d. steps ∆`x̃ exhibits a variety of classical results,
including the (strong) law of large numbers, the (local) central limit theorem
and the large deviation principle. Moreover, the coordinate process xt itself has
the following concentration property.

Lemma 2.2. Denote v = Ex̃1/Eτ̃1. There is positive t0 (depending on the rates
λ± and µ±) such that for every ε > 0 there exist positive constants A = A(t0, ε)
and a = a(t0, ε) so that, uniformly in t ≥ t0, we have

P
(
|xt − vt| > εt

)
≤ Ae−at .

Proof of Lemma 2.1. Fix arbitrary positive rates λ+, λ−, µ+ and µ−, and let
Yt be the birth-and-death process with birth rate λ = max(λ+, λ−) and death
rate 1 per individual. Following the approach of [7, Sect. 2.1] one can couple
yt = (xt,wt) and Yt so that the number ‖wt‖ of ⊕ monomers in wt ≡ w(t),

‖wt‖
def
=
∑
j≥0

1I{wj(t)=⊕} , (2.2)

is stochastically dominated above by the total number of individuals Yt for all
t ≥ 0 (provided the initial conditions satisfy ‖w0‖ ≤ Y0).

Let yt start from the initial state y0 = (0,∅). We are going to show that
the joint generating function (cf. (1.7))

Φ0(z, s)
def
= E(0,∅)

(
zx̃1 esτ̃1

)
is finite for some z > 1 and s > 0. Applying the strong Markov property at the
end of the initial holding time η0 ∼ Exp(λ− + µ−), we obtain

Φ0(z, s) =
µ−

(λ− + µ−)− s
z−1 +

λ−

(λ− + µ−)− s
zΦ1(z, s) , (2.3)

where Φ1(z, s) = E(0,⊕)

(
zx̃1 esτ̃1

)
; it is thus sufficient to show that Φ1(z, s) is

finite for some z > 1 and small enough s > 0.
Consider a coupling of yt starting from y0 = (0,⊕) and Yt with Y0 = 1 such

that ‖wt‖ ≤ Yt for all t ∈ [0, τ̃1]. Let σ0 be the time and κ0 be the number of
jumps until Yt hits 0, and let

xm1 = max
t∈[0,τ̃1]

xt . (2.4)

By the coupling, 0 < τ̃1 ≤ σ0 and xt ∈ [0, xm1 ] ⊆ [0, κ0] for all t ∈ [0, τ̃1], so that
for all z > 0 and s > 0

E(0,⊕)

(
zx̃1 esτ̃1

)
≤ E(0,⊕)

(
zx

m
1 esτ̃1

)
≤ EY0=1

(
zκ0 esσ0

)
. (2.5)

By the well known property of birth-and-death processes, the last expression in
(2.5) is finite for suitably chosen z > 1 and s > 0; hence, the same holds for
Φ1(z, s) and Φ0(z, s). For details, see [7, Sect. 2.2].
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Remark 2.1.1. Let # be the total number of ⊕ monomers attached to wt

during time [0, τ̃1). It is easy to see that 2# ≤ κ0 + 1. Further, if κ̃1 is the total
number of jumps for the process yt starting from (0,⊕) to first hit an empty
head state (x̃1,∅), we have κ̃1 < 3#. Consequently, for positive z, u, s the
coupling above gives

E(0,⊕)

(
zx̃1uκ̃1esτ̃1

)
≤ u3/2 E(0,⊕)

(
(zu3/2)κ0esσ0

)
,

and by choosing z > 1, u > 1 so that zu3/2 > 1 is small enough, and s > 0 as in
the proof of the lemma, we deduce that the expectation on the left is finite. A
straightforward application of the dominated convergence theorem shows that

lim sup
K→∞

E(0,∅)

(
zx̃1esτ̃11Iκ̃1>K

)
= 0 (2.6)

for z > 1 and s > 0 as chosen above.

Remark 2.1.2. The construction in the proof of Lemma 2.1 has a number
of useful generalisations, of which we mention the following. Let (y′t,y

′′
t ) be

a dynamics in Y × Y such that individual processes y′t = (x′t,w
′
t) and y′′t =

(x′′t ,w
′′
t ) in Y describe a microtubule dynamics with respective collections of

rates (λ+
1 , λ

−
1 , µ

+
1 , µ

−
1 ) and (λ+

2 , λ
−
2 , µ

+
2 , µ

−
2 ). Let, further, Yt be a birth-and-

death process with birth rate λ and individual death rate 1. If

λ ≥ max(λ+
1 , λ

−
1 ) + max(λ+

2 , λ
−
2 ) ,

a straightforward modification of the above construction provides a coupling
(y′t,y

′′
t , Yt) such that the bound

max
(
‖w′t‖, ‖w′′t ‖

)
≤ Yt

holds for all t > 0, provided it holds for t = 0. In fact, if (y′t,y
′′
t ) follows

the maximal coupling of y′t and y′′t , the above constraint can be weakened to
λ ≥ max(λ+

1 , λ
+
2 , λ

−
1 , λ

−
2 ).

Proof of Lemma 2.2. Since both τ̃` and x̃` can be written as sums of i.i.d. incre-
ments with finite exponential moments, by the standard large deviation principle
[2, 3] and Lemma 2.1, for every δ > 0 there exist positive B and b so that for
all integer k ≥ 1,

P
(
|x̃k − kEx̃1| > δk

)
≤ Be−bk , P

(
|τ̃k − kEτ̃1| > δk

)
≤ Be−bk . (2.7)

For t ≥ 0, let ` = `t be the number of times the trajectory (ws)0≤s≤t
returns to ∅ (i.e., τ̃` ≤ t < τ̃`+1). The concentration inequality (2.7) then
implies existence of positive constants t∗, C and c, such that the estimate

P
(∣∣`t − t

Eτ̃1

∣∣ > εt
)
≤ C e−ct (2.8)

holds for all t ≥ t∗. Moreover, for any fixed ε > 0, relations (2.4)–(2.5) imply
that

P
(
|xt − x̃`t | > εt

)
≤ P

(
xm1 > ε

2 t
)
≤ De−dt (2.9)
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for some positive constants D and d, uniformly in t ≥ 2/ε.
To finish the proof of the lemma, decompose

xt − vt =
(
xt − x̃`t

)
+
(
x̃`t − `tEx̃1

)
+
(
`t − t

Eτ̃1

)
Ex̃1

and notice that for every fixed ε ∈ (0, 3v)

P
(
|xt − vt| > εt

)
≤ P

(
|xt − x̃`t | > ε

3 t
)

+ P
(∣∣`t − t

Eτ̃1

∣∣ > ε
3Ex̃1

t
)

+ P
(∣∣x̃`t − `tEx̃1

∣∣ > ε
3 t
∣∣ ∣∣`t − t

Eτ̃1

∣∣ ≤ ε
3Ex̃1

t
)
.

(2.10)

The claim of the lemma is now immediate from (2.7), (2.8), and (2.9).

Corollary 2.3. For arbitrary fixed w0 ∈ W, let (yt)t≥0 be the microtubule
process (1.4) started from y0 = (0,w0). Then with t0 possibly also depending
on w0, the claim of Lemma 2.2 remains true.

Proof. Let τ̃0 = min
{
t > 0 : wt = ∅

}
be the time when yt first visits a state

with empty head, yτ̃0 = (x̃0,∅). The coupling construction in Lemma 2.1 shows
that the number ‖wt‖ of ⊕ monomers in wt can be stochastically dominated
by the birth-and-death process (Yt)t≥0 with Y0 = ‖wt‖, while a straightforward
modification of the argument there shows that the hitting time of state 0 for Yt
has exponential moments in a neighbourhood of the origin. As a result, the
consecutive times 0 < τ̃0 < τ̃1 < . . . when wt visits state ∅ form a delayed
renewal system whose delay τ̃0 and inter-arrival gaps ∆̃` = τ̃` − τ̃`−1 have
exponential tails. The result now follows via a suitable modification of the
argument in Lemma 2.2.

Remark 2.3.1. Alternatively, one can couple two copies (Y ′t , Y
′′
t ) of Yt with

(Y ′0 , Y
′′
0 ) = (0, ‖w0‖) in such a way that the difference Y ′′t −Y ′t behaves as a pure

death process. The distribution of the coupling time τ∗ = min
{
t > 0 : Y ′′t = Y ′t

}
is well understood; in particular, τ∗ has the same distribution as the maximum
of ‖w0‖ independent Exp(1) random variables and τ∗−log ‖w0‖ has exponential
moments in a neighbourhood of the origin. Hence, for each δ > 0 the probability

P(τ∗ > δt) ≤ P
(
τ∗ − log ‖w0‖ > δ

2 t
)

is exponentially small uniformly in t ≥ 2
δ log ‖w0‖. The argument then can be

finished as in Lemma 2.2.

2.2 Proof of Theorem 1.1

The result of Theorem 1.1 now follows as in [5], thanks to a locally uniform
version of (2.6).
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3 Stationary distributions

By Lemma 2.1, the process wt (and, hence, its finite-window version ŵm
t for

any m ≥ 0) is a positive recurrent Markov chain. Write π and π̂m for the corre-
sponding stationary distributions in W and Sm = {⊕,	}m+1. It is convenient
to express the velocity v in terms of the probabilities (recall (1.1))

π+
def
= π(W+) =

∑
w∈W+

π(w) , π−
def
= π(W−) =

∑
w∈W−

π(w) .

Similarly, put π̂0
+ = π(⊕) = 1− π̂0

−, and, for m > 0, define

π̂m+
def
=

∑
s∈Sm−1

π̂m(s⊕) , π̂m−
def
=

∑
s∈Sm−1

π̂m(s	) .

Then the following property holds.

Lemma 3.1. Fix arbitrary positive λ± and µ±. Then π̂m+ ↗ π+ as m → ∞,
i.e., the sequence (π̂m+ )m≥0 is strictly increasing and converges to π+.

As in [7], it is convenient to prove the lemma in three steps. First, the non-
strict monotonicity π̂m+ ≤ π̂m+1

+ is deduced from a suitable monotone coupling

(ŵm
t , ŵ

m+1
t ) under which ŵm

t ∈ W+ only if ŵm+1
t ∈ W+. Then, the strict

monotonicity π̂m+ < π̂m+1
+ is obtained from the Ergodic theorem and a uniformly

positive lower bound of the density of the ‘discrepancy times’{
s ≥ 0 : ŵm

s ∈ W−, ŵ
m+1
s ∈ W+

}
.

Finally, the convergence π̂m+ → π+ follows from a suitable monotone coupling
(ŵm

t ,wt) combined with an asymptotically vanishing (as m→∞) upper bound
of the long term density of the corresponding discrepancy times.

3.1 Coupling of finite strings

Recall that the projection [ · ]m : W → Sm =
{
⊕,	

}m+1
maps every word

w ∈ W onto a string s ∈ Sm, consisting of m + 1 right-most symbols in W
(extended on the left by 	 symbols, if necessary). Two strings s′ = s′m . . . s

′
1s
′
0

and s′′ = s′′m . . . s
′′
1s
′′
0 in Sm are (partially) ordered (written s′ ≺m s′′) if

∀k ∈ {0, 1, . . . ,m} , s′k = ⊕ ⇒ s′′k = ⊕ .

In words, s′ ≺m s′′ if s′ can be obtained from s′′ by possibly replacing some
⊕ monomers in s′′ with 	 monomers. Similarly, given two strings s′ ∈ Sm′ and
s′′ ∈ Sm′′ with m′ < m′′, write s′ ≺ s′′ if s′ ≺m′ [ s′′ ]m

′
as strings in Sm′ ,

equivalently, if [ s′ ]m
′′ ≺m′′ s′′.

If s′ ≺ s′′, let d(s′, s′′) be the right-most discrepancy between s′ and s′′,

d(s′, s′′) = min
{
j ≥ 0 : [ s′ ]j 6= [ s′′ ]j

}
, (3.1)

where d(s′, s′′) = 1+max(|s′|, |s′′|) if the set of such indices j is empty. Arguing
similarly to [7, Sect. 3.1] we obtain the following result.
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Lemma 3.2. There exists a coupling (s′t, s
′′
t ) ∈ Sm × Sm+1 starting from the

empty initial condition (s′0, s
′′
0) = (∅,∅) such that the following holds. For

all t ≥ 0, with the discrepancy distance d(s′t, s
′′
t ) defined as in (3.1), we have

s′j(t) = 	 for all j ≥ d(s′t, s
′′
t ). In particular, s′t ≺m s′′t , so that π̂m+ ≤ π̂m+1

+ .

3.2 Strict monotonicity of π̂m
+

In the above coupling, let T̃1 > 0 be the time of the first return of (s′t, s
′′
t ) to

the state (∅,∅). Following the approach of [7, Sect. 3.2], one can show that

E
(∫ T̃1

0

1Is′0(u)=	1Is′′0 (u)=⊕ du
)
> 0 ,

where 1IE denotes the indicator function of an event E (i.e., 1IE(ω) = 1 if ω ∈ E
and 1IE(ω) = 0 otherwise), and thus deduce the strict monotonicity property,

π̂m+1
+ − π̂m+ ≡ π̂

m,m+1
	,⊕ = lim

t→∞

1

t

∫ t

0

1Is′0(u)=	1Is′′0 (u)=⊕ du > 0 . (3.2)

3.3 Convergence of π̂m
+

A version of the above construction can also be used to couple the original
process wt and its finite-window projection s′t = [wt ]m. We then have

π+ − π̂m+ = lim
t→∞

1

t

∫ t

0

1Is′0(u)=	1Iw0(u)=⊕ du . (3.3)

As above, the integral in the last display exhibits a renewal structure at the times
0 = τ̃0 < τ̃1 < . . . when wt returns to state ∅. For the discrepancy event inside
the integral to occur at time u ∈ [τ̃`−1, τ̃`), there must exist time s ∈ (τ̃`−1, u)
such that ws = wm+1(s) . . . w1(s)w0(s) with wm+1(s) = w0(s) = ⊕ and during
the time interval [s, u) all monomers to the right of wm+1 detach from ws with
the monomer wm+1(s) remaining in the ⊕ state. This implies that during the
cycle [τ̃`−1, τ̃`) the process wt must make at least 2(m+2) steps, the probability
of which decays exponentially to 0 as m→∞. As a result (cf. [7, Sect. 3.3]), in
the limit m→∞, the RHS of (3.3) goes to 0.

Together with the previous results, this finishes the proof of Lemma 3.1.

3.4 Proof of Theorem 1.3

For fixed m ≥ 0, the ‘finite strip’ Markov process ŷt = (x̂mt , ŵ
m
t ) is an additive

functional of the head process ŵm
t in Sm. By the Ergodic theorem [9], the

corresponding velocity v̂m (recall (1.9)) can be written as a linear combination
of the instantaneous velocities v+ = λ+ − µ+ and v− = λ− − µ−, namely,

v̂m = v+ π̂
m
+ + v− (1− π̂m+ ) = v− + (v+ − v−) π̂m+ .
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Similarly (for details, see [7, Sect. 3]), the velocity of the full system yt satisfies

v = v+ π+ + v− (1− π+) = v− + (v+ − v−)π+ .

Theorem 1.3 now follows from monotonicity of the convergence π̂m+ ↗ π+ as
m→∞, recall Lemma 3.1.

4 Comparison of infinite strings

In this section we study monotonicity properties of the velocity v, recall (1.6).
A particular care is needed due to interaction between the increments xt − xs
of the coordinate process (xt)t≥0 over non-overlapping intervals [si, ti]. Our
argument follows the (suitably re-organised and simplified) approach of [5].

Fix positive λ± and µ±, and suppose that one is interested in dependence
of the velocity v on the arrival rate λ−. It is then convenient to compare two
copies of the system with λ− taking respective values λ′ > 0 and λ′′ > 0, where
δ = λ′′ − λ′ > 0. For sufficiently small δ, the additional (successful) arrivals of
⊕ monomers in the λ′′-system compared to λ′-system are rare and typically at
most one such arrival takes place during a single cycle of the λ′′-system. The
following construction provides a key ingredient for our analysis of the velocity
v as a function of its rates.

4.1 Relative coupling construction

Let y′t = (x′t,w
′
t) and y′′t = (x′′t ,w

′′
t ) be two copies of the microtubule process

starting from one of the following initial conditions

y′0 = (0,w0) , y′′0 = (1,w0⊕) (4.1)

(i.e., y′′0 is y′0 extended by a single ⊕ monomer) or

y′0 = (0,w0) , y′′0 = (1,w0	) (4.2)

with somew0 ∈ W, individually evolving as a microtubule process with common
positive rates λ± and µ±. Let

τ = min
{
t ≥ 0 : w′t = w′′t = ∅

}
be the first time when both processes enter a state with empty head.

Lemma 4.1. Given the initial conditions (4.1) or (4.2), there exists a coupling
of y′t and y′′t such that at the coupling time τ the inequality x′τ ≤ x′′τ holds with
probability one.

Remark 4.1.1. Notice that for the initial conditions (4.1) or (4.2) we have
x′′0 = x′0 + 1 > x′0. Our construction below assures that x′′t ≥ x′t for all t ∈ [0, τ ],
and hence for all t ≥ 0.
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Recall that every configuration (x,w) ∈ Y with, say, w = w|w|−1 . . . w1w0,
is a compact notation for the semi-infinite string s = . . . s2s1s0 shifted by x
units relative to the origin in Z, write s ∼ (x,w), where

sk =

{
wk , k = 0, 1, . . . , |w| − 1 ,

	 , k ≥ |w| .

Let s′ ∼ (x′,w′) and s′′ ∼ (x′′,w′′) be two such strings with x′ ≤ x′′ and w′,
w′′ ∈ W. We first define kr = d(w′,w′′)− 1 (recall (3.1)), equivalently,

kr = max
{
k ∈

[
0,max(|w′|, |w′′|)

)
: w′j = w′′j for all j = 0, . . . , k

}
,

where we put kr = −1 if the set under consideration is empty. We then use

sr =

{
[w′ ]kr = [w′′ ]kr , if kr ≥ 0 ,

∅ , otherwise ,

to denote the longest common right part of w′ and w′′. Further, let

kl = min
{
k > kr : s′j = s′′x′′−x′+j for all j ≥ k

}
;

as both s′ and s′′ contain a finite number of ⊕ monomers, such kl ≥ 0 always
exists (with probability one). Write

ŝ = . . . s′kl+2s
′
kl+1s

′
kl
≡ . . . s′′x′′−x′+kl+2s

′′
x′′−x′+kl+1s

′′
x′′−x′+kl

for the common part of the strings [ s′ ]∞kr+1 and [ s′′ ]∞kr+1 properly shifted with
respect to the origin in Z, and let wl = 〈ŝ〉 be the corresponding head; of course,
wl = ∅ if ŝ contains no ⊕ monomers. We finally use

s′c = s′kl−1 . . . s
′
kr+1 and s′′c = s′′x′′−x′+kl−1 . . . s

′′
kr+1

to denote the remaining ‘central parts’ of the strings s′ and s′′, with the tacit
assumption that s′c = ∅ if kl = kr + 1.

In the above notation, the canonical from (1.4) of strings s′ and s′′ becomes

s′ ∼ (x′,w′) ≡ (x′,wl s
′
c sr) and s′′ ∼ (x′′,w′′) ≡ (x′′,wl s

′′
c sr) . (4.3)

The relative shift of the two strings is x′′ − x′ = |s′′c | − |s′c|; when the values of
x′ and x′′ are not important we abbreviate the representation (4.3) as

(wl s
′
c sr : wl s

′′
c sr) , (4.4)

while omitting any empty component. In the case of (4.1)–(4.2), we have s′c = ∅
and the one-symbol string s′′c (i.e., |s′′c | = 1) is a ⊕ monomer in (4.1) and a
	 monomer in (4.2). In addition, sr is a sequence of (possibly several) consecu-
tive ⊕ monomers in (4.1), respectively, 	 monomers in (4.2), while wl might be
empty.
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In general, if ‖wl‖ = ‖s′c‖ = ‖s′′c ‖ = 0, then wl = s′c = ∅ while s′′c is a finite
string of 	 monomers, i.e., s′′ is obtained from s′ by shifting it by |s′′c | = x′′−x′
monomers to the right. If the same moves are applied to both s′ and s′′,
the relative shift will be preserved for all future times, including the coupling
time τ . Of course, if |s′′c | = 0, then the infinite strings s′ and s′′ coincide. As we
shall see below, if the joint dynamics starts from a configuration with relative
representation (wl sr : wl sc sr), i.e., s

′′
c = sc while s′c = ∅, a coupling of the two

microtubules can be constructed in such a way that the condition s′c(t) = ∅ is
preserved at all subsequent times. Consequently, for all t ∈ [0, τ ],

‖w′′t ‖ − ‖w′t‖ ≥ ‖sc(t)‖ ≥ 0 ; (4.5)

i.e., the coupling time τ coincides with the earliest t > 0 when w′′t = ∅.
Lemma 4.1 is a straightforward consequence of the following fact.

Lemma 4.2. If the initial strings s′ and s′′ are as in (4.3) with relative repre-
sentation (4.4) of the type (wl sr : wl sc sr), then there exists a coupling (y′t,y

′′
t )

with (y′0,y
′′
0) ∼ (s′, s′′) such that at the coupling time τ the relative shift x′′τ−x′τ

equals |sc(τ)| ≥ 0.

Proof. Given the initial condition (wl sr : wl sc sr) we proceed by induction in
‖wl sc‖, the total number of ⊕ monomers in the combined word wl sc.

Let ‖wl sc‖ = 0; then wl = ∅ and sc is a string of 	 monomers of length
|sc| ≥ 0. If, additionally, sr = ∅, the joint system (y′t,y

′′
t ) has already reached

the coupling event. Otherwise sr ∈ W is not empty, and the infinite string s′′

is just s′ shifted to the right by |sc| monomers; coupling y′t and y′′t by using
identical moves, we deduce the claim of the lemma with the shift |sc| ≥ 0.

Fix now integer k > 0 and suppose that the claim of the lemma has been
verified for all initial configurations

(y′t,y
′′
t ) ∼ (wl sr : wl sc sr) (4.6)

with ‖wl sc‖ < k and arbitrary finite string sr. If at time t ≥ 0 the state of
(y′t,y

′′
t ) is as in (4.6) with ‖wl sc‖ = k, we proceed as follows.

Case I. Let first sr = ∅, i.e.,

(y′t,y
′′
t ) ∼ (wl : wl sc) . (4.7)

If |sc| > 0 (otherwise the two strings are identical and can be coupled as above)
one of the words wl sc and wl must belong to W+ and another to W−. Consider
six independent exponentially distributed random variables

ζ1 ∼ Exp(‖wl‖) , ζ2 ∼ Exp(‖sc‖) , ζ3 ∼ Exp(λ+) ,

ζ4 ∼ Exp(λ− − λ+) , ζ5 ∼ Exp(µ−) , ζ6 ∼ Exp(µ+)

and put ζ = min(ζ1, ζ2, ζ3, ζ4, ζ5, ζ6). Then the next move occurs at time t + ζ
and is as follows
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• if ζ = ζ1, then (y′t+ζ ,y
′′
t+ζ) ∼ (〈ŵl〉 : 〈ŵl〉 sc), where ŵl is obtained from wl

by hydrolysing one of its ⊕ monomers, chosen uniformly at random;

• if ζ = ζ2, then (y′t+ζ ,y
′′
t+ζ) ∼ (wl : wl ŝc), where ŝc is obtained from sc by

hydrolysing one of its ⊕ monomers, chosen uniformly at random;

• if ζ = ζ3, then (y′t+ζ ,y
′′
t+ζ) ∼ (wl⊕ : wl sc⊕), i.e., a single ⊕ monomer

attaches to both strings.

The outcome of the remaining three moves depends on which of the words—
wl or wl sc—belongs to W+.

Case Ia. If wl sc ∈ W+, then:

• if ζ = ζ4, then (y′t+ζ ,y
′′
t+ζ) ∼ (wl⊕ : wl [ sc ]1⊕), i.e., a single ⊕ monomer

attaches to y′t;

• if ζ = ζ5, then (y′t+ζ ,y
′′
t+ζ) ∼ ([wl ]1 : [wl ]1 	 sc), i.e., the microtubule y′t

loses its right-most 	 monomer;

• if ζ = ζ6, then (y′t+ζ ,y
′′
t+ζ) ∼ (wl : wl [ sc ]1), i.e., y′′t loses its right-most

⊕ monomer.

As a result of a move with ζ = ζj for j = 1, 2, 4, 6, we get a new relative
representation (w̃l s̃r : w̃l s̃c s̃r) with ‖w̃l s̃c‖ < k, and s̃r might be non-trivial if
the right-most monomers of both w̃l and w̃l s̃c coincide; this can also happen for
ζ = ζ5 provided [wl ]1 ∈ W+. In all these cases the claim of the lemma follows
from the induction hypothesis.

Otherwise the system re-enters a configuration of the type (4.6) (if ζ = ζ3)
or (4.7) (if ζ = ζ5 and [wl ]1 ∈ W−). We finally notice that the relative shift
|̃sc| increases by 1 if ζ = ζ5, decreases by 1 if ζ = ζ4 or ζ6 (in particular, it can
happen that s̃c = ∅, so that both strings s′ and s′′ become identical after the
move), or does not change.

Case Ib. If wl sc ∈ W−, we put

• if ζ = ζ4, then (y′t+ζ ,y
′′
t+ζ) ∼ ([wl ]1⊕ : [wl ]1 ⊕ sc⊕), and the system

enters the case (4.6);

• if ζ = ζ5, then (y′t+ζ ,y
′′
t+ζ) ∼ (wl : wl[ sc ]1), and the system re-enters the

case (4.7) (if [ sc ]1 = ∅, then both s′ and s′′ become identical);

• if ζ = ζ6, then (y′t+ζ ,y
′′
t+ζ) ∼ ([wl ]1 : [wl ]1 ⊕ sc), i.e., y

′
t loses its right-

most ⊕ monomer and the system re-enters the case (4.7) if [wl ]1 ∈ W+,
or enters the case (4.6) if [wl ]1 ∈ W−.

To summarise, starting from a configuration as in (4.7) with ‖wlsc‖ = k, we
get to (4.7), (4.6), or enter a configuration covered by the induction hypothesis.

Case II. Let (y′t,y
′′
t ) ∼ (wl sr : wl sc sr) with sr 6= ∅. If y′t = (x′t,wl sr), let Tr

be the lifetime of the string sr,

Tr = min
{
t̄ > 0 : x′t+t̄ = x′t − |sr|

}
;
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it is, of course, possible that Tr = ∞ with positive probability. Notice that as
long as sr 6= ∅, the only allowed move for the ‘internal’ parts wl sc (respectively,
wl) is hydrolysis of one of its ⊕ monomers. We thus let

ζ1 ∼ Exp(‖wl‖) , ζ2 ∼ Exp(‖sc‖) ,

define ζ = min(ζ1, ζ2, Tr), and proceed as follows.

• if ζ = ζ1, then (y′t+ζ ,y
′′
t+ζ) = (〈ŵl〉 s̃r : 〈ŵl〉 sc s̃r), where ŵl is obtained from

wl by hydrolysing one of its ⊕ monomers, chosen uniformly at random;

• if ζ = ζ2, then (y′t+ζ ,y
′′
t+ζ) = (wl s̃r : wl ŝc s̃r), where ŝc is obtained from sc

by hydrolysing one of its ⊕ monomers, chosen uniformly at random;

• if ζ = Tr, then (y′t+ζ ,y
′′
t+ζ) ∼ (wl : wl sc), i.e., the system revisits a config-

uration of the type (4.7), after which one proceeds as in Case I above.

Notice that in the first two cases the number of ⊕ monomers decreases, so the
new configuration is covered by the induction hypothesis.

To summarise, starting from a configuration as in (4.6) with ‖wl sc‖ = k,
the joint dynamics either hits a state (4.6) with ‖w̃l s̃c‖ < k (and thus covered
by the induction hypothesis), or reaches (wl : wl sc), a reduced configuration of
the type (4.7), from which a hydrolysis event (occurring with uniformly positive
probability not smaller than k/(k + λ− + µ− + µ+)) leads to a configuration
covered by the induction hypothesis. Since the latter happens with probability
one, the proof of the lemma follows.

4.2 Relative shift argument

Fix arbitrary positive rates λ± and µ±. Using the construction of Sect. 4.1 and
the renewal structure of the trajectories of the process yt, we deduce the strict
monotonicity of the velocity v = v(λ+, λ−, µ+, µ−) as a function of its rates in
the whole region λ− ≥ λ+. We follow the approach of [5, Sect. 3.2] and sketch
the argument for λ− dependence; the other cases are similar.

Since by Theorem 1.1 the velocity v is an analytic function of the rates, its
strict monotonicity follows from the following fact.

Lemma 4.3. There exist sufficiently small δ0 > 0 and a positive constant
c = c(λ+, λ− + δ0, µ

+, µ−) such that the inequality

v(λ+, λ− + δ, µ+, µ−)− v(λ+, λ−, µ+, µ−) ≥ cδ > 0 (4.8)

holds uniformly in δ ∈ (0, δ0).

Proof. It is convenient to merge the constructions of Sect. 4.1 and that in the
proof of Lemma 2.1 to produce a coupling

(
y′t,y

′′
t , Y

δ
t

)
t≥0

of the microtubule

processes y′t (with parameters λ+, λ−, µ+, and µ−) and y′′t (with parameters

19



λ+, λ− + δ, µ+, and µ−) and a birth-and-death process Y δt (with birth rate
λ− + δ and death rate one per individual) such that the bound

max
(
‖w′t‖, ‖w′′t ‖

)
≤ Y δt

holds for all t ≥ 0 provided it holds for t = 0, recall Remark 2.1.2. In what
follows, we have λ− ≥ λ+ and δ > 0 is fixed sufficiently small.

If w′0 = w′′0 = ∅ and Y0 = 0, write (τ ′`)`≥0 and (τ ′′` )`≥0 for the times
of consecutive returns by the processes y′t and y′′t to states with empty head,
similarly, let (τ̄`)`≥0 be the times of consecutive returns to the state with no
individuals (Y δτ̄` = 0) for the process Y δt ; then τ ′0 = τ ′′0 = τ̄0 = 0, and{

τ̄`
}
`≥0
⊆
{
τ ′`
}
`≥0

,
{
τ̄`
}
`≥0
⊆
{
τ ′′`
}
`≥0

,

that is, when Y δt = 0, both y′t and y′′t contain no ⊕ monomers.
Let Aδt be the arrival flow for Y δt ; clearly, Aδt is a Poisson process of inten-

sity λ− + δ < λ− + δ0. It is convenient to think of Aδt as a perturbation of
an arrival Poisson flow At of intensity λ−; the latter is obtained from Aδt by
independently removing individual events with probability δ/(λ−+ δ) > 0. The
removed arrivals (those that are present in Aδt but not in At) will be called the
excess (or δ-) arrivals. Notice that in the coupling

(
y′t,y

′′
t , Y

δ
t

)
every At-arrival

corresponds to a simultaneous ⊕ monomer attachment attempt in both micro-
tubule processes, while each δ-arrival corresponds to a ⊕-monomer attachment
attempt in the process y′′t only; the latter is successful provided the microtubule
y′′t ends with 	 monomer (i.e., w′′t ∈ W−).

Decompose the trajectory
(
y′t,y

′′
t , Y

δ
t

)
at times τ̄`, ` ≥ 1, and denote

∆`A ≡ Aτ̄` −Aτ̄`−1
, ∆`A

δ ≡ Aδτ̄` −A
δ
τ̄`−1

, ` ≥ 1 .

The excursions arising as a result of this surgery are classified into three groups—
N , S, and D—in which the value of the difference ∆`A

δ −∆`A is, respectively,
zero, one, or at least two. In words, N , S and D are the collections of excursions
in Y δt with no δ-arrivals, a single δ-arrival, and at least two δ-arrivals.

For fixed t > 0, let `t = max
{
` ≥ 0 : τ̄` ≤ t

}
be the number of complete

excursions made by an Y δt trajectory by time t. Denoting δjx
′ = x′τ̄j − x

′
τ̄j−1

,
we decompose (recall that x′0 = x′′0 = 0 and τ̄0 = 0)

x′t =

`t∑
j=1

δjx
′ +
(
x′t − x′τ̄`t

)
= N′t + S′t + D′t +

(
x′t − x′τ̄`t

)
, (4.9)

where the increment contribution from each group is given by

N′t =

`t∑
j=1

δjx
′ · 1Ij∈N , S′t =

`t∑
j=1

δjx
′ · 1Ij∈S , D′t =

`t∑
j=1

δjx
′ · 1Ij∈D .

Following the same approach for the process y′′t , we get

x′′t = N′′t + S′′t + D′′t +
(
x′′t − x′′τ̄`t

)
. (4.10)
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To check (4.8), we show that for some positive constants A, a, and c, the bound

P
(
x′′t < x′t + cδt

)
≤ Ae−at (4.11)

holds uniformly in δ ∈ (0, δ0) and t large enough. It is achieved by term-wise
comparison of the decompositions (4.9) and (4.10).

First, N′t ≡ N′′t for all t ≥ 0. Next, an argument similar to (2.4)–(2.5) implies
that the distributions of the increments x′t−x′τ̄`t and x′′t −x′′τ̄`t are stochastically

dominated by that of the number of jumps in a single excursion in Y δt , and hence
have exponential tails: for every β > 0 there are positive B0 and b0 so that for
all t large enough we have

P
(
x′t > x′τ̄`t + βt

)
≤ B0 e

−b0t , P
(
x′′t > x′′τ̄`t + βt

)
≤ B0 e

−b0t . (4.12)

Further, by [5, Proposition A.1], the expectation of each term contributing
to D′t (similarly, to D′′t ) is bounded above by c2δ

2 with some absolute constant
c2 > 0. By an estimate similar to (2.10) (or that in [5, Proposition A.2]), there
exist positive constants C2, B2 and b2, such that the estimates

P
(
D′t > C2δ

2t
)
≤ B2 e

−b2t , P
(
D′′t > C2δ

2t
)
≤ B2 e

−b2t (4.13)

hold for all δ > 0 small enough and all t large enough.
Each term contributing to S′′t consists of possibly several excursions of y′′t ,

exactly one of which has a single δ-arrival attempt. If the latter is unsuccessful,
the corresponding parts of trajectories of y′′t and y′t coincide. Otherwise the
joint dynamics (y′t,y

′′
t ) between the time tδ of the successful δ-arrival and the

earliest time τ ′′` > tδ follows the scenario treated by Lemma 4.1. In particular,

P
(
S′′t ≥ S′t

)
= 1 .

On the other hand, a simple one-trajectory bound based upon the construction
in Sect. 4.1 implies that

E
[(

(x′′τ̄j − x
′′
τ̄j−1

)− (x′τ̄j − x
′
τ̄j−1

)
)
1Ij∈S

]
≥ c1 δ

for some positive c1. Therefore, an argument similar to that in the derivation
of (4.13) implies that for some positive constants C1, B1, and b1, the estimate

P
(
S′′t − S′t < C1δt

)
≤ B1 e

−b1t (4.14)

holds for all (fixed) δ > 0 small enough and all t large enough.
Finally, in view of the decompositions (4.9)–(4.10), the estimates (4.12)–

(4.14) imply (4.11). It is then straightforward to deduce (4.8).

Remark 4.3.1. An alternative derivation of (4.8) can be obtained using the
Ergodic theorem for Markov chains [9]; for details, see [5].
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4.3 Proof of Theorem 1.2

By (4.8), the partial derivative ∂v/∂λ− is strictly positive in the region under
consideration. The argument for the other parameters is similar.

5 Properties of the lifetimes

It remains to prove Theorem 1.4. Let lifetimes T⊕ and T	 be as in (1.10), and
let ϕ⊕(s) and ϕ	(s) be their respective Laplace transforms. If yt starts from
(0,∅), conditioning on the first move, we get

ϕ	(s) = E
(
e−sη0

)( µ−

λ− + µ−
+

λ−

λ− + µ−
ϕ⊕(s)ϕ	(s)

)
, (5.1)

where η0 ∼ Exp(λ− + µ−) is the initial holding time; this implies

ET	 =
1

λ− + µ−
+

λ−

λ− + µ−
(
ET⊕ + ET	

)
.

Consequently, the expectations ET⊕ and ET	 are either both finite or both
infinite; similarly, if one of the functions ϕ⊕(s) or ϕ	(s) is analytic in a neigh-
bourhood of the origin, so is another. As in [7, Sect. 4.2], it is thus sufficient to
verify the result in terms of ET	 and ϕ	(s).

Let ET	 < ∞ and let the process yt start from y0 = (0,	). Consider a
sequence of stopping times 0 = S0 < S1 < . . ., where for k ≥ 1

Sk = min
{
t > Sk−1 : xt = −k

}
.

Clearly, {Sk} is a renewal sequence whose independent increments Sk − Sk−1

have the same distribution as T	. Let (x̄k)k≥0 with x̄k = x̃Sk
be a subwalk of

(x̃k)k≥0 observed at times Sk, recall (1.7). By the strong law of large numbers,

1

k
x̄k −→ − 1

ET	

with probability one (as k →∞), while Lemma 2.2 implies that v = − 1
ET	

< 0.

Assume that v < 0. By Lemma 2.2 and the simple observation

P
(
T	 > t

)
≤ P(xt ≥ 0) ≤ P

(
|xt − vt| > |v|

2 t
)
,

there exist positive constants A and a so that the estimate

P
(
T	 > t

)
≤ Ae−at

holds for all t > 0 large enough. It is then straightforward to deduce that
EeuT	 <∞, for each u ∈ (0, a), and therefore, ϕ	(s) is analytic in a neighbour-
hood of the origin. This finishes the proof of Theorem 1.4.
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We finally notice that, starting from y0 = (0,⊕) and arguing as in the
derivation of (5.1), we get, for all s > 0,

ϕ⊕(s) = E
(
e−sη1

) ϕ	(s) + µ+ + λ+Ee−sT⊕⊕

1 + µ+ + λ+
, (5.2)

where T⊕⊕ = min
{
t > 0 : yt = (−2,∅) | y0 = (0,⊕⊕)

}
is the lifetime of the

word ⊕⊕ and η1 ∼ Exp(1 + µ+ + λ+) is the initial holding time. Proceeding as
in [7, Sect. 4.1] we deduce

Ee−sT⊕⊕ = ϕ⊕(s)ϕ	(s) +
(
ϕ⊕(s)− ϕ	(s)

)
ϕ⊕(s+ 1) ,

which together with (5.2) and (5.1) can be used to derive a functional relation
in terms of ϕ⊕(s) and ϕ⊕(s+ 1). For details, see [7, Sect. 4.1].
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