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Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic
states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic
quantum interferences translate in the context of the exact factorization of the molecular wave-
function. In particular, we focus our attention on the shape of the time-dependent potential energy
surface—the exact surface on which the nuclear dynamics takes place. We use a one-dimensional
exactly solvable model to reproduce different conditions for quantum interferences, whose char-
acteristic features already appear in one-dimension. The time-dependent potential energy surface
develops complex features when strong interferences are present, in clear contrast to the observed
behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories
propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in
configuration space that mimics one of the exact nuclear probability densities. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4958637]

I. INTRODUCTION

The molecular time-dependent Schrödinger equation
represents a Rosetta stone for a theoretical understanding
of photochemical and photophysical processes, when the
Born-Oppenheimer (BO) approximation1 breaks down. The
combination of important electron-nuclear couplings and
nuclear quantum effects in nonadiabatic dynamics makes
a radical change to the simple picture the BO approximation
offers for molecules in their electronic ground state.2 To
approximate a solution to the time-dependent Schrödinger
equation, the total molecular wavefunction is commonly
expressed in a basis of BO electronic states, leading to
the concept of potential energy surfaces. Based on this
picture, coupled time-dependent nuclear equations—one for
each electronic state contribution—can be solved for small
molecules or for a reduced-dimensionality representation of
larger systems.3–5 A plethora of different techniques has been
developed to approximate the nonadiabatic nuclear dynamics
of molecules, based, for example, on classical or quantum
trajectories,5–25 (frozen) Gaussian basis sets,26–32 linearized
nonadiabatic dynamics (LAND-map),33 or semiclassical
considerations.34–36

The BO picture to excited-state dynamics is nonetheless
not the only possible one. The molecular wavefunction can, for
example, be represented exactly by a simple factorization37,38

in terms of a time-dependent nuclear wavefunction and a
time-dependent electronic wavefunction, parametrically
dependent on the nuclear positions. When inserted into the
molecular time-dependent Schrödinger equation, the Exact
Factorization (EF) leads to coupled equations driving the
dynamics of the two components of the wavefunction: a time-
dependent Schrödinger equation39–42 describes the evolution

a)Electronic address: agostini@mpi-halle.mpg.de

of the nuclear wavefunction, where the effect of the electrons
is fully accounted for by a time-dependent vector potential
and a time-dependent scalar potential (or time-dependent
potential energy surface, TDPES); electronic dynamics is
generated by an evolution equation where the coupling to
the nuclei is expressed by the so-called electron-nuclear
coupling operator.43–47 The EF has been developed both in the
time-independent48–64 and in the time-dependent37–43,65–68

versions and analyzed under different perspectives.44–47,69–72

When nuclear dynamics undergoes a single nonadiabatic
event, we have pointed out the properties of the TDPES and
related them to the, more standard, picture provided in the
BO framework, i.e., BO nuclear wavefunctions evolving
on multiple static potential energy surfaces (PESs). In
this situation, the TDPES shows (i) a diabatic shape in
the vicinity of an avoided crossing, smoothly connecting
the BO PESs involved in the process, and (ii) dynamical
steps bridging piecewise adiabatic shapes, far from the
avoided crossing. In particular, the steps of the TDPES
have been related to the spatial splitting of the (exact)
nuclear wavefunction, which reproduces the dynamics of
BO wavefunctions branching in different adiabatic states.
Furthermore, we have employed these observations to
investigate the suitability of the (quasi)classical treatment40,41

of nuclear dynamics in situations where the electronic
effect can be taken into account exactly, with the aim of
proposing trajectory-based approximation schemes65–68 to the
quantum-mechanical problem.

In the present work, we address a new problem in the
context of the EF, analyzing the appearance of quantum
interferences in nonadiabatic processes and identifying their
signatures in the TDPES. Nonadiabatic quantum interferences
represent a clear Achille’s heel for approximate nonadiabatic
methods based on classical trajectories,7 such as trajectory
surface hopping (TSH).73–75 These events are, for example,
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observed whenever multiple crossings through nonadiabatic
regions take place, for which a proper description of
decoherence effects is paramount (examples of decoherence
corrections for TSH can be found in Refs. 76–82). The aim
of this study is to translate the properties usually observed
in the BO framework to the language of the EF and, from
this, to understand the key features to be accounted for when
developing approximations to the coupled electron-nuclear
quantum dynamics. The reason to focus on the TDPES is that
it represents the very (and only, when the vector potential
can be gauged away) quantity driving the nuclear dynamics,
and all its features are intimately related to the features
of the nuclear wavefunction. In order to study quantum
interferences, we construct a situation where two BO nuclear
wavefunctions, associated to different adiabatic states, meet
at an avoided crossing. The BO wavefunctions reach the
nonadiabatic region after having evolved on different paths;
thus, the recombination patterns might be strongly affected
by the different histories. One of the questions addressed in
this work is as follows: Can such recombination patterns,
i.e., nonadiabatic quantum interferences, be identified in the
TDPES? The importance of capturing the recombination
process imposes that the analysis shall focus on the
nonadiabatic region, by contrast to previous analysis39,41

that has instead mainly placed the attention on the TDPES
far from an avoided crossing. Furthermore, as interferences
are fundamentally quantum-mechanical effects, the natural
question arises as follows: Can classical trajectories, also in
this case, correctly reproduce nuclear dynamics if the exact
TDPES is known? The answer to this second question will
potentially shed light on the possibility of capturing quantum
interferences within a quantum-classical description of the
nonadiabatic process.

Aiming at answering these questions, we organize the
paper as follows. In Sec. II A, we recall the EF and its
connection to the BO framework, while in Sec. II B, we
introduce the context of our analysis and define the central
quantity of our study, i.e., quantum interferences. The one-
dimensional system under investigation and the computational
details are described in Sec. III. The analysis is reported in
Sec. IV: we highlight the effect of quantum interferences on
the nonadiabatic process in Sec. IV A, identifying different
situations where the outcome of the dynamics is more or
less affected by interferences; we pinpoint the features of the
TDPES related to quantum interferences in Sec. IV B; we
study the performance of (independent) classical trajectories
evolving on the exact TDPES in reproducing nuclear dynamics
in Sec. IV C. We state our conclusions in Sec. V.

II. THEORETICAL CONSIDERATIONS

A. Exact factorization of the molecular wavefunction

In excited-state dynamics, the central equation is the
time-dependent Schrödinger equation for a molecular system,

Ĥ(r ,R)Ψ(r ,R, t) = i~∂tΨ(r ,R, t), (1)

where Ψ(r ,R, t) is the time-dependent molecular wavefunc-
tion with r and R being collective variables for the electronic

and nuclear coordinates, respectively. In Eq. (1), Ĥ(r ,R) is
the molecular Hamiltonian, defined as the sum of the nuclear
kinetic energy operator T̂n and the BO Hamiltonian ĤBO(r ,R),
i.e.,

Ĥ(r ,R) = T̂n + ĤBO(r ,R)
= T̂n + T̂e + V̂ee(r) + V̂en(r ,R) + V̂nn(R). (2)

V̂ee(r), V̂en(r ,R), and V̂nn(R) are the electron-electron,
electron-nucleus, and nucleus-nucleus interaction potentials.

The total molecular wavefunction can be expressed in the
so-called Born-Huang representation,83

Ψ(r ,R, t) =
∞
l

χ
(l)
BO

(R, t)Φ(l)
R (r), (3)

where Φ(l)
R (r) are the solutions of the time-independent

electronic Schrödinger equation with corresponding electronic
energy ϵ

(l)
BO

(R),
ĤBO(r ,R)Φ(l)

R (r) = ϵ
(l)
BO

(R)Φ(l)
R (r). (4)

χ
(l)
BO

(R, t) represents a BO nuclear contribution in electronic
state (l).

The Born-Huang representation is a common starting
point for a plethora of techniques aiming at solving the
coupled electron-nuclear dynamics for molecular systems
(for reviews, see Refs. 15 and 84–86). By using solutions
of the time-independent electronic Schrödinger equation to
express the total molecular wavefunction, the Born-Huang
representation leads to the concept of nuclear wavefunctions
evolving on time-independent potential energy surfaces (left
panel of Fig. 1).

In the following, we will preserve the time-dependence
in both the electronic and the nuclear contributions to the full
molecular wavefunction, leading to a representation where a
single product can be used. The exact factorization (EF) of
the molecular wavefunction is defined by

Ψ(r ,R, t) = χ(R, t)ΦR(r , t), (5)

with the partial normalization condition


dr |ΦR(r , t)|2 = 1,
∀R, t. Note the central difference between Eqs. (3) and (5):
the summation over the electronic states is replaced by a
time-dependence in the electronic wavefunction.

The partial normalization condition guarantees that the
squared modulus of the nuclear wavefunction is the exact
nuclear density, computed from the molecular wavefunction.
The relation

| χ(R, t)|2 =


dr |Ψ(r ,R, t)|2 =
∞
l

���χ
(l)
BO

(R, t)���
2
, (6)

between the (exact) nuclear wavefunction and the BO
wavefunctions, then follows. Furthermore, representing the
electronic wavefunction ΦR(r , t) in terms of BO electronic
states, together with Eq. (6), yields

Ψ(r ,R, t) = χ(R, t)ΦR(r , t) = e
i
~ S(R, t)

×

 ∞
l

���χ
(l)
BO

(R, t)���
2 *
,

∞
l

Cl(R, t)Φ(l)
R (r)+

-
. (7)
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FIG. 1. Schematic comparison between the Born-Huang (left panel) and the exact factorization (right panel) representation of a nonadiabatic event. In both
cases, a system initiated a time t0 on ϵ

(S1)
BO

(continuous line) is evolved until a given time t , after the nonadiabatic event (dashed lines). In the Born-Huang
representation, the initial nuclear wavefunction in S1 (in gray) will be split at time t into a contribution in S0 (in black) and a smaller one remaining in S1 (in
gray). In the exact factorization picture, only a single time-dependent nuclear wavefunction is present. The potential energy surface on which this wavefunction
evolves will vary in time. At time t0 (continuous blue curve), the TDPES shape resembles ϵ

(S1)
BO

, while once the nonadiabatic region is passed, the TDPES
exhibits a step connecting two pieces of BO surfaces (dashed blue curve, down-shifted for clarity).

This expression clearly shows that a single-product form
can be used for the molecular wavefunction and is not in
disagreement with the Born-Huang representation of Eq. (3).
In Eq. (7), we have used the symbol Cl(R, t) for the expansion
coefficients of the electronic wavefunction and S(R, t) is a
nuclear phase factor that will be discussed below.

The equations of motion for the electronic—ΦR(r , t)—
and the nuclear—χ(R, t)—contributions to the total molecular
wavefunction read
�
ĤBO(r ,R) + Ûcoup

en [ΦR, χ] − ϵ(R, t)�ΦR(r , t) = i~∂tΦR(r , t),
(8)

*
,

Nn
ν=1

[−i~∇ν + Aν(R, t)]2
2Mν

+ ϵ(R, t)+
-
χ(R, t) = i~∂t χ(R, t).

(9)

Detailed derivation and discussions on these equations were
presented in the literature,37,38,87 and the interested reader
is particularly referred to the complete analysis proposed
in Ref. 41. Ûcoup

en [ΦR, χ] corresponds to an electron-nuclear
coupling operator and is defined by

Ûcoup
en [ΦR, χ] =

Nn
ν=1

1
Mν

 [−i~∇ν − Aν(R, t)]2
2

+

(
−i~∇ν χ(R, t)

χ(R, t) + Aν(R, t)
)

× (−i~∇ν − Aν(R, t))

, (10)

with Aν(R, t) = ⟨ΦR(t)| − i~∇νΦR(t)⟩r being a time-
dependent vector potential.

More important in the context of this work, the equation
of motion for the nuclear wavefunction—Eq. (9)—contains
a time-dependent scalar potential termed “time-dependent
potential energy surface” (TDPES), symbolized by ϵ(R, t) and
defined as

ϵ(R, t) = ϵGI,1(R, t) + ϵGI,2(R, t) + ϵGD(R, t)
= ⟨ΦR(t)|ĤBO + Ûcoup

en − i~∂t |ΦR(t)⟩r . (11)

The subscripts “GI” and “GD” stand for the gauge-
independent and gauge-dependent contributions to the total
TDPES. The exact factorization in Eq. (5) is indeed unique up
to a gauge transformation.41 Henceforth, the time-dependent
vector potential Aν(R, t) will be set to zero, fixing the gauge
freedom and transferring all the electronic backreaction to the
TDPES.41 The nuclear wavefunction can be expressed in a
polar form χ(R, t) = | χ(R, t)|eiS(R, t)/~ and, for 1D problem,
imposing to the phase S(R, t) the condition

S(R, t) =
 R

dR′
ℑ [⟨Ψ(t)|∂R′Ψ(t)⟩r]

| χ(R′, t)|2 (12)

leads to A(R, t) = 0.41,59,64

When a nuclear wavefunction evolves solely in a given
electronic state, the corresponding TDPES resembles its
adiabatic BO surface (continuous curve, right panel of Fig. 1).
During a passage through a nonadiabatic region, the TDPES
follows diabatic curves, connecting smoothly the two involved
adiabatic BO states. After the nuclear wavefunction splitting
and far from the crossing region, the TDPES will display a
step that connects two piecewise adiabatic surfaces (dashed
curve, right panel of Fig. 1). The central theme of the present
work is to investigate whether these features of the TDPES
appear also in cases where BO nuclear wavefunctions interfere
in the nonadiabatic regions.

B. Nonadiabatic quantum interferences

In order to define quantum interferences in the context of
nonadiabatic dynamics, let us consider the following situation
(schematically depicted in Fig. 2).

The nuclear wavefunction is initiated in S1, as shown
in Fig. 2 at time t0, and undergoes a first nonadiabatic
event leading to its branching into two contributions, one that
keeps travelling on the S1 surface and the other being produced
on S0 (Fig. 2 at time t ′). The molecular wavefunction, initially
the productΨ(r ,R, t0) = χ

(S1)
BO

(R, t0)Φ(S1)
R (r), becomes a super-

position of the contributions in each electronic state Ψ(r ,R, t ′)
= χ

(S0)
BO

(R, t ′)Φ(S0)
R (r) + χ

(S1)
BO

(R, t ′)Φ(S1)
R (r). The two BO
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FIG. 2. Appearance of interference effects in nonadiabatic dynamics. Time t0: initial condition for the nonadiabatic dynamics; time t ′: after the first nonadiabatic
crossing (NAC); time t ′′: after the second NAC. The events of interest for the present work are framed by the gray rectangle.

nuclear wavefunctions evolve on the corresponding adiabatic
surfaces, feeling—in the most general case—different forces.
While the two wavefunctions might separate in configuration
space and never meet again, there exists an interesting case
where they both reach a (common) second nonadiabatic
region at a later time. At this point, and without loss of
generality, the full molecular wavefunction can be expressed
as

Ψ(r ,R, t ′′) = (
χ
(S0)
BO

(R, t ′′) + χ
(S0)
BO

(R, t ′′)) Φ(S0)
R (r)

+
(
χ
(S1)
BO

(R, t ′′) + χ
(S1)
BO

(R, t ′′)) Φ(S1)
R (r), (13)

as shown in Fig. 2 at time t ′′. Similarly to time t ′, Ψ(r ,R, t ′′)
is a superposition of the two BO contributions from S0 and
S1. However, the notation indicates here that χ

(S0)
BO

(R, t ′′) and
χ
(S1)
BO

(R, t ′′) have been generated by χ
(S0)
BO

(R, t ′) during the
second nonadiabatic event, and the same idea applies to
χ
(S1)
BO

(R, t ′′) and χ
(S0)
BO

(R, t ′′).
The different histories of the nuclear wavefunction

dynamics can result in specific recombination patterns.
Quantum interferences will be observed whenever a non-zero
overlap exists in the second nonadiabatic region between the
BO nuclear wavefunction contributions. In the expression of
the total nuclear density,

| χ(R, t ′′)|2
=
���χ

(S0)
BO

(R, t ′′)���
2
+
���χ

(S0)
BO

(R, t ′′)���
2
+
���χ

(S1)
BO

(R, t ′′)���
2

+
���χ

(S1)
BO

(R, t ′′)���
2
+ 2ℜ

(
χ
(S0)
BO

(R, t ′′))∗χ(S0)
BO

(R, t ′′)
+

(
χ
(S1)
BO

(R, t ′′))∗χ(S1)
BO

(R, t ′′) , (14)

interferences can be identified in the last term on the
right-hand-side. They are interferences produced by BO
wavefunctions corresponding to the same electronic state but
“generated” by wavefunctions with different histories, e.g.,
χ
(S0)
BO

(R, t ′′) is generated by χ
(S0)
BO

(R, t ′) while χ
(S0)
BO

(R, t ′′) is
generated by χ

(S1)
BO

(R, t ′).
Quantum interferences are affected by various factors,

e.g., initial conditions or different histories of the BO
wavefunctions before recrossing. Hence, their effect on final
electronic populations resulting from nonadiabatic transitions
can be strong,73–75 and this effect is often termed “Stückelberg
oscillations.”7,88

Independent crossings will instead occur if the BO nuclear
wavefunctions fully separate in configuration space before the
second nonadiabatic region. In this case, the interference terms

in Eq. (14) are zero and the nuclear density is simply the sum
of independent contributions.

The analysis we propose in Secs. III and IV aims at
identifying signatures of quantum interferences in the EF
framework. In this context, the concept of multiple BO nuclear
wavefunctions, χ(S0)

BO
and χ

(S1)
BO

, is replaced by a single nuclear
wavefunction, χ, but, as shown in Eq. (6), both formulations
lead to the same nuclear density. Therefore, rather than
rationalizing the appearance of quantum interferences in
terms of BO wavefunctions (second line on the right-hand-
side of Eq. (14)), we analyze the properties of the TDPES,
the very quantity responsible for the nuclear wavefunction
dynamics.

III. MODEL SYSTEM

A. Proton-coupled electron transfer model

The nonadiabatic quantum dynamics investigated in the
present work is based on the 1D Shin-Metiu model89 for
nonadiabatic electron transfer. The system consists of three
ions and a single electron, as depicted in Fig. 3. Two ions
are fixed at a distance of L = 19.05 a.u., the third ion and
the electron are free to move in one dimension along the line
joining the two fixed ions. The Hamiltonian of this system
reads

Ĥ(r,R) = −1
2
∂2

∂r2 −
1

2M
∂2

∂R2 +
1�

L
2 − R

� + 1�
L
2 + R

�

−
erf

(
|R−r |
R f

)
|R − r | −

erf
( |r− L

2 |
Rr

)
�
r − L

2

� −
erf

( |r+ L
2 |

Rl

)
�
r + L

2

� . (15)

FIG. 3. Schematic representation of the model system described by the
Hamiltonian in Eq. (15). R and r indicate the coordinates of the moving ion
and electron, respectively, in one dimension. L is the distance between the
fixed ions.
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Here, the symbols r and R are replaced by r and R, the
coordinates of the electron and the movable ion measured
from the center of the two fixed ions. As it can be seen
from Eq. (15), the movable ion interacts with the fixed ions
via a bare Coulomb potential, whereas the electron interacts
with all ions via a soft-Coulomb potential. The ionic mass
is chosen as M = 1836, the proton mass, whereas the other
parameters are tuned in order to make the system essentially a
two-electronic-state model. We used the following parameters
for the model: Rr = 4.0 a.u., Rf = 4.5 a.u., and Rl = 2.9 a.u.
This parameter set allows to focus on the first two Born-
Oppenheimer potential energy curves (ϵ (S0)

BO
(R) and ϵ

(S1)
BO

(R)
in the inset of Fig. 4), producing a two-state model system.
Interaction between the two electronic states leads to a strong
region of nonadiabaticity in the region around R = −2.0 a.u.
Both ϵ

(S1)
BO

(R) and ϵ
(S0)
BO

(R) exhibit a similar shape before the
nonadiabatic region, with a slightly smaller slope for the latter
in the direct vicinity of the coupling. On the other hand, the
shape of the two PESs strongly differs towards higher R values
(<4.0 a.u.).

B. Initial conditions and computational details

We are interested in studying the relation between
interferences and the shape of the TDPES in nondiabatic
events. As discussed in Sec. II B, a way to carefully
control the interferences in the nonadiabatic region is to
initiate the quantum dynamics with a molecular wavefunction
being described by a superposition of two slightly different
wavefunctions (to reconstruct the situation at time t ′

of Fig. 2). Similar initial conditions were used in the
past to study wavepacket interferometry.73–75 This initial
molecular wavefunction mimics the important situation
observed in multiple nonadiabatic crossings, i.e., when two
nuclear wavepackets formed after a first nonadiabatic event
meet at a later time in a coupling region. As the two
contributions undergo different dynamics before reaching the
coupling region, their recombination can lead to quantum
interferences.

FIG. 4. Left panel: population in S0 for different initial momenta of the S0
wavefunction, Pin,S0. The result obtained from an exact nuclear dynamics
is compared with that of TSH. The overall probability density for the initial
wavefunction |χ(R, t0)|2 is composed of an S0 (|χ(S0)

BO
(R, t0)|2) and an S1

contribution (|χ(S1)
BO

(R, t0)|2), as depicted in the inset and superimposed on

the corresponding BO potential energy curves (ϵ(S0)
BO

and ϵ
(S1)
BO

). Right panel:
S0 population trace for the Pin,S0= 7 a.u. and 20 a.u. runs. The exact nuclear
dynamics (continuous lines) is compared with the IWA (dashed lines).

The initial wavefunction in our simulations is defined as

Ψ(r,R, t0) = χ
(S0)
BO

(R, t0)Φ(S0)
R (r) + χ

(S1)
BO

(R, t0)Φ(S1)
R (r), (16)

where χ
(S0)
BO

(R, t0) = N exp
(
− (R−R0)2

2σ2 + i
~

Pin,S0(R − R0)
)

and

χ
(S1)
BO

(R, t0) = N exp
(
− (R−R′0)2

2σ2

)
. We used for all simula-

tions σ = 0.5 a.u., R0 = −6.0 a.u., and R′0 = −4.0 a.u.
The normalization is set such that


dR| χ(S0)

BO
(R, t0)|2

=


dR| χ(S1)
BO

(R, t0)|2 = 0.5. Such an initial condition therefore
describes a superposition between two nuclear wavefunction
contributions (one in each electronic state considered). The
initial wavefunction in S1 has no initial momentum. The other
contribution, in S0, has an initial momentum Pin,S0 that will
be tuned in the following numerical simulations. Altering the
dynamics of the initial S0 contribution will indeed result in
different quantum interference effects in the coupling region,
and potentially to a different final population of the electronic
states.

In Sec. II B, we have briefly discussed also the case of
independent crossings, leading to the absence of interferences
in the coupling region. In order to reproduce this situation
in the studied model and, thus, to clarify the role of
interference effects in the nonadiabatic region, we have
performed additional quantum dynamics simulations with
the following initial conditions:

Ψ̃1(r,R, t0) = χ̃
(S0)
BO

(R, t0)Φ(S0)
R (r) + 0 · Φ(S1)

R (r) (17)

and
Ψ̃2(r,R, t0) = 0 · Φ(S0)

R (r) + χ̃
(S1)
BO

(R, t0)Φ(S1)
R (r), (18)

where χ̃
(S0)
BO

(R, t0) ∝ χ
(S0)
BO

(R, t0) and χ̃
(S1)
BO

(R, t0) ∝ χ
(S1)
BO

(R, t0).
Here, only the normalization constant is modified with respect
to Eq. (16), as the BO nuclear probability densities integrate
to one. These simulations will be termed “IWA” (indepen-
dent wavefunction approximation) in the following, as they
represent the ideal case of independent, i.e., non-interfering,
dynamics for each initial contribution given in Eq. (16).

In addition, we performed standard TSH calculations
as described in Ref. 7, using a total of 2000 classical
trajectories. The initial conditions were sampled from the
Wigner distribution of χ

(S0)
BO

(R, t0) for 1000 trajectories and
of χ

(S1)
BO

(R, t0) for the other 1000 classical trajectories. All
amplitudes for the TSH trajectories were initiated in the same
way: CTSH

0 (t0) = CTSH
1 (t0) =

√
0.5 + 0.0i.

The TDPES is obtained for each simulation by first
computing the full wavefunction Ψ(r,R, t) for the system,
then using the definition given in Eq. (11). To this
end, we determine the electronic wavefunction as ΦR(r, t)
= Ψ(r,R, t)/(e(i/~)S(R, t)| χ(R, t)|). Here, the phase S(R, t) of
the nuclear wavefunction is given by the gauge condition of
Eq. (12), whereas the modulus | χ(R, t)| is given by the exact
nuclear density, which is available via integration over the
electronic coordinate of |Ψ(r,R, t)|2. We refer to the TDPES
thus computed as “exact potential,” since it is determined from
the (numerically) exact solution of the full time-dependent
Schrödinger equation, and no information about the adiabatic
electronic states is used to determine its form.

All quantum dynamics calculations are performed using
the split-operator technique,90 to solve numerically the full
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time-dependent Schrödinger equation for Ψ(r,R, t), using an
integration time step of dt = 0.1 a.u.; classical trajectories
evolved on the exact TDPES are integrated with the velocity-
Verlet algorithm with dt = 0.1/0.5 a.u. and the initial condi-
tions are sampled as described above for the TSH calculations;
in TSH dynamics dt = 0.01 a.u., classical trajectories are
integrated with the velocity-Verlet algorithm and the fourth-
order Runge-Kutta algorithm is used to solve the electronic
equation. It is worth noting that since in the quantum dynamics
simulations we propagate numerically the full electron-nuclear
wavefunction Ψ(r,R, t) according to the Hamiltonian of
Eq. (15), with the initial conditions discussed above, the
whole manifold of electronic adiabatic states is automatically
included. We will use two adiabatic electronic states only
for the analysis performed in Sec. IV, as the populations of
electronic states that are higher in energy are negligible (three
or more orders of magnitude smaller than the populations
of states S0 and S1). Consequently, TSH calculations are
performed in the restricted space of two electronic states. We
have checked that the results presented below are not affected
if the state S2 is included in the calculations.

IV. RESULTS AND DISCUSSION

A. Shape of the TDPES in the event of nonadiabatic
quantum interferences

As mentioned in Sec. III, the system under consideration
in this work is designed to study the EF description
of interferences due to interactions between two nuclear
wavefunctions in a nonadiabatic region (each nuclear
wavefunction initially evolves in a specific BO state). We
monitored the final S0 population with respect to the initial
momentum of the S0 contribution (Fig. 4, left panel)—the S1
contribution being always the same, as described in Eq. (16).
The overall S0 population with respect to Pin,S0 does not
show particular features, except in the region where Pin,S0 is
comprised between −2 and 12 a.u. In this particular range
of initial momenta, oscillations in the final population are
observed and can be attributed to quantum interferences
between wavefunction components in the coupling region
altering the final populations,75 as detailed below. TSH is in
qualitatively good agreement with the average final population

of the exact result, even though it misses the aforementioned
oscillation between −2 and 12 a.u. The oscillatory behavior of
the TSH result can be related to the overcoherent superposition
of its complex amplitudes, as described in detail in different
recent works,79 while the interference feature observed in
the exact calculation is not clearly reproduced due to the
independent classical trajectory approximation.

What happens if each initial component of the total
wavefunction is run independently? Such simulations—the
IWA mentioned in Sec. III B—would surely highlight
the role of mutual interferences during the nonadiabatic
process, since in this case, the last term in Eq. (14) is not
present. When applied to an initial S0 momentum leading
to weak interferences in the coupling region (for example,
Pin,S0 = 20 a.u.), the summed S0 population during the
IWA dynamics leads to an excellent agreement with the
S0 population time trace for the exact dynamics (as depicted
in the left panel of Fig. 4). In contrast, the IWA fails to
reproduce the exact S0 population when interference effects
are important (Pin,S0 = 7 a.u.) and in this sense mirrors the
behavior of TSH. The IWA will therefore be used as a
tool in the following to shed light on the relation between
interferences and the dynamical shape of the TDPES.

We first start our analysis of the TDPES by observing its
overall behavior during a nonadabatic dynamics containing
quantum interferences effects. Snapshots of the TDPES at
three different times for the run with Pin,S0 = 7 a.u. are
depicted in Fig. 5. At t = 0 a.u., the initial condition leads to
a step in the GI part of the TDPES (ϵGI,1(R, t) + ϵGI,2(R, t) in
Eq. (11)) that bridges the S0 and S1 adiabatic surfaces. At the
initial time, the GD part of the TDPES also presents a step
between two constant values, mirroring the step in the GI part.
Soon after the passage of the system through the nonadiabatic
region (t = 555 a.u., middle panel of Fig. 5), the TDPES shape
shows oscillations, and its description in terms of adiabatic
surfaces connected by simple steps is no more possible. It is
important to note, however, that the GD contribution to the
TDPES also in this case mirrors the GI one, as observed for
simple nonadiabatic events.40 At a later time, ϵGI(R, t) reflects
the complex composition of the total wavefunction, and its
shape matches in some regions of the configuration space, the
shape of a given BO surface. For example, the left shoulder
(0.0 < R < 1.0 a.u.) of the overall nuclear probability density

FIG. 5. Snapshots at t = 0, 555, and 965 a.u. of the GI (red) and GD (blue) contributions to the TDPES, during the dynamics with Pin,S0= 7 a.u. BO potential
energy surfaces (ϵ(l )

BO
) are indicated with thick black curves, and the nuclear probability density distribution |χ(R, t)|2 is depicted with a thin black line.
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distribution belongs, in a BO picture, to the S1 state. Hence,
it is not surprising that the TDPES in this particular region
resembles ϵ (S1)

BO
. In other regions, the TDPES seems to acquire

a mean-field character, mixing variable contributions of ϵ (S0)
BO

and ϵ
(S1)
BO

.

B. Analysis of the TDPES for weak and strong
nonadiabatic quantum interference effects

The first observations presented in Sec. IV A suggest
that the TDPES develops a rather complex structure
whenever nonadiabatic quantum interferences take place in
the dynamics. To shed more light on this intricate structure,
the full TDPES should be monitored for cases with either
strong (Pin,S0 = 7 a.u.) or weak (Pin,S0 = 20 a.u.) interference
effects. Yet we need first to determine a critical time in
the dynamics to perform such analysis. As discussed in
Sec. II B, quantum interferences are observed when the BO
nuclear wavefunctions arrive concurrently in the nonadiabatic
region, leading to non-zero overlaps between transmitted and
transferred BO wavefunctions. It seems therefore natural to
introduce the following indicator:

η(t) =
�����


∆

dR
(
χ
(S0)
BO

(R, t))∗χ(S1)
BO

(R, t)
�����

=
�����


∆

dR| χ(R, t)|2�CS0(R, t)
�∗CS1(R, t)

�����
, (19)

which monitors the overlap of the BO wavefunctions in
the region ∆ as a function of time (the first term on the
right-hand-side). Here, ∆ = {R : −3 a.u. ≤ R ≤ −1 a.u.}. In
the EF framework, however, we do not have direct access
to χ

(l)
BO

(R, t), rather to χ(R, t) and to the projections of
the electronic wavefunction on the adiabatic states, i.e., the
coefficients Cl(R, t) = χ

(l)
BO

(R, t)/χ(R, t) introduced in Eq. (7).
We have therefore expressed the overlap in terms of quantities
defined in the context of the EF (second term on the right-
hand-side).

The behavior of η(t) as a function of time allows us to
identify a time interval for the crossing of the nonadiabatic
region where quantum interferences potentially appear, since
the BO wavefunctions have a non-zero overlap. In particular,
we expect that when independent crossings take place, η(t)
will have a well-defined double-peak shape: one peak will
correspond to the first BO wavefunction entering the coupling
region, transferring amplitude on the other state, and then
leaving the coupling region; the second peak will instead
correspond to the second BO wavefunction following an
analogous process. We also expect that no (or small) difference
will be observed between the exact dynamics and the IWA
during independent crossings.

We have monitored η(t) for both the exact dynamics
and the IWA to highlight specific times where interferences
play a role in the Pin,S0 = 7 a.u. dynamics (left panel of
Fig. 6). While η(IWA) only peaks in the coupling region
with no additional structure, η for the full dynamics displays
oscillations. We investigated the shape of the TDPES for
a time in this particular dynamics where η(IWA) shows a
maximum, while η has a marked structure (red asterisk at

FIG. 6. Indicator η during the quantum dynamics initiated with Pin,S0
= 7 a.u. (left) and Pin,S0= 20 a.u. (right). The indicator computed for the
full dynamics is given in black, while the indicator for the quantum dynamics
within the IWA is depicted with a dashed line. Asterisks indicate a specific
time used for further analysis.

t = 480 a.u. in left panel of Fig. 6). As anticipated above, the
dynamics characterized by Pin,S0 = 20 a.u. does not lead to
important deviations between the different initial conditions, η
being close to η(IWA) except for a small period of time around
t = 380 a.u. (right panel of Fig. 6). η is particularly small at
this time, which implies—based on Eq. (19)—that there is
only a small overlap between the two nuclear wavefunction
contributions (see Fig. 7, upper right panel).

Comparing the exact TDPES for the full quantum
dynamics and the IWA for selected times brings interesting
insights (Fig. 7). Let us start with the case where quantum
interferences between the two initial nuclear components are
small in the coupling region (right panels of Fig. 7). For this
particular case, the TDPES for the exact dynamics, ϵ , perfectly
matches the TDPESs resulting from the two IWA runs, namely,
ϵ̃1 (resulting from the initial conditions given by Eq. (17)) and
ϵ̃2 (Eq. (18)). The only difference between the exact and IWA
dynamics consists in a peak in the region−2.0 < R < −1.0 a.u.

FIG. 7. Analysis of the full TDPES for selected times in the Pin,S0= 7 a.u.
(left) and Pin,S0= 20 a.u. (right) runs (see red asterisks in Fig. 6). The
TDPES for the full (ϵ, black curve) and the IWA dynamics (ϵ̃1 and ϵ̃2,
cyan and orange dashed curve, respectively) is compared. Dashed curves
were rigidly y-shifted for clarity. We note that χ̃1(R, t) and χ̃2(R, t) do not
represent the exact S0 and S1 contributions to the full nuclear wavefunc-
tion but are instead defined as | χ̃1(R, t)|2=


dr |Ψ̃1(r,R, t)|2 and | χ̃2(R, t)|2

=

dr |Ψ̃2(r,R, t)|2. Upper panels give a snapshot of the exact (|χ(R, t)|2)

and IWA (| χ̃1(R, t)|2 and | χ̃2(R, t)|2) probability densities.
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FIG. 8. Contributions to the full TDPESs represented in Fig. 7, for the exact (black) and the IWA (cyan and orange) dynamics. Upper panels correspond to the t
= 480 a.u. in the Pin,S0= 7 a.u. run and the lower panels to t = 380 a.u. in the Pin,S0= 20 a.u. run. Dashed curves in the last column were rigidly y-shifted for
clarity. In the upper panels, gray curves show the components of the full TDPESs for Pin,S0= 6 a.u. (light gray) and Pin,S0= 8 a.u. (dark gray).

for the exact TDPES. This peak acts as a barrier, preventing a
mix between the nuclear wavefunction contributions present
on each of its side. This new feature of the exact TDPES
resembles the dynamical step observed for single nonadiabatic
events.39 Even though the probability density distribution for
the exact nuclear wavefunction perfectly matches the sum of
the two individual probability density distributions for the
IWA (upper right panel of Fig. 7), the peak is not formed in
the latter case due to the independent character of the IWA
dynamics. Upon decomposition of the exact TDPES in its
three contributions (Fig. 8), the origin of this peak appears
to come from ϵGI,2 and is therefore related to the effect of
the electron-nuclear coupling operator. The sum of ϵGI,1 and
ϵGD would only result in the formation of a small step in the
region of the actual peak. As observed in Fig. 8, the IWA leads

to the absence of the barrier in the corresponding ϵGI,2 term
(dashed lines, note that these quantities are multiplied by 10
in the figure).

Such a simple and linear rationalization of the shape of
the exact TDPES is unfortunately no more possible whenever
important nonadiabatic quantum interference effects arise, as
clearly observed in the left panel of Fig. 7. In this case,
summing the two nuclear probability density distributions
for the IWA does not reproduce the exact one, due to
the neglect of interferences in the coupling region within
the IWA (see also the discussion in Figs. 4 and 9). As a
result, the shape of the exact TDPES ϵ is hardly matched
with that of the individual IWA TDPESs ϵ̃1 and ϵ̃2 (lower
left panel of Fig. 7). The only exception is the portion of
configuration space with R < −3 a.u., where the shape of ϵ

FIG. 9. Comparison between nuclear probability density distributions (exact and IWA, solid lines) and histograms constructed from the distribution of the
classical positions (TSH and classical trajectories evolving on the exact TDPES, dashed lines). Snapshots are given for t =100, 420, and 865 a.u., for the runs
with Pin,S0= 7 a.u. (upper panels) and Pin,S0= 20 a.u. (lower panels).
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overlaps with that of ϵ̃2 as the nuclear wavefunction is not
yet affected by effects in the coupling region. As observed
in Fig. 8, both ϵGI,1 and ϵGI,2 match pretty well the IWA1
in this particular region. However, the picture becomes more
complicated for the different contributions to the TDPES in
and after the coupling region. The two GI parts show strong
oscillations, absent from the IWA. The intensity of these
oscillations can be related to phase effects, as described with
a simple model in the Appendix. The exact GD term also
strongly differs form the corresponding IWA contributions.
In fact, the IWA terms have weak structures in R-space
in the region −3.0 < R < −1.5 a.u., while the exact GD
term has a marked maximum at R = −1.85 a.u. A model
for quantum interferences based on Gaussian wavefunctions
is presented in the Appendix. While this model simplifies
the interference picture, it clearly demonstrates the effect of
relative phases in the oscillations and the structure of the
exact TDPES. In the upper panel of Fig. 8, we show as gray
curves the GI and GD components of the TDPES for small
variations of the initial momentum around Pin,S0 = 7 a.u.
Even if the GI contributions to TDPES are high oscillatory,
the characteristics of the oscillations, i.e., the peaks and their
positions, exhibit a smooth dependence on a small variation
of the initial condition. The GD part is also smoothly affected
by the change of initial condition, mainly in the height of the
maximum.

Before concluding this section, let us briefly comment
on the correspondence between the BO and EF pictures
of quantum interferences. In Sec. II B, we have identified
quantum interferences in the BO framework as fundamentally
nuclear quantities, appearing in the expression of the nuclear
density (14). Moving to the EF perspective, however, it is
the TDPES that shows features connected to interferences,
and the TDPES depends only on the electronic wavefunction.
Indeed, nuclear and electronic dynamics are coupled, meaning
that the electronic wavefunction itself depends on the nuclear
wavefunction. Still, how can we move the focus of the problem
from the BO nuclear wavefunctions to the TDPES? The
quantum interference terms in Eq. (14) can be translated into
the EF language as(

χ
(S0)
BO

(R, t))∗χ(S0)
BO

(R, t) + (
χ
(S1)
BO

(R, t))∗χ(S1)
BO

(R, t)
= | χ(R, t)|2 �CS0(R, t)

�∗CS0(R, t)
+
�
CS1(R, t)

�∗CS1(R, t)

. (20)

On the right-hand-side, only the nuclear density appears,
together with the coefficients of the Born-Huang expansion
of the electronic wavefunction ΦR(r , t) of Eq. (7). They are
electronic coefficients, even though they depend on R, in the
sense that, for instance, at a given nuclear position R, their
squared moduli are the electronic populations for that nuclear
configuration. Hence, quantum interferences are mediated
only by the electronic coefficients, according to Eq. (20).
It is natural, therefore, to expect that such a dependence is
transmitted to the TDPES.

This section analyzed the behavior of the TDPES when
quantum interferences emerge from nonadiabatic events.
A simple representation of TDPES based on diabatically
connected BO potential energy surfaces is no more possible

in the presence of nonadiabatic quantum interferences, and
the TDPES develops new features, such as oscillations, peaks,
and mean-field behavior, to name a few.

C. Independent classical trajectories
on the exact TDPES

As discussed in Sec. IV B, the appearance of quantum
interferences is transferred from the nuclear wavefunction
contributions in the BO representation to the electronic
coefficients—and therefore to the TDPES—in the EF
formalism. This change of perspective from the BO to
the EF framework suggests the possibility that Newtonian
trajectories evolving on the (exact) TDPES are able to
correctly reproduce the quantum nuclear distribution, even
in the case studied here where nuclear dynamics manifests a
strong quantum-mechanical character related to interference.
It is important to underline that the analysis presented below
does not propose a strategy to approximate the TDPES. Here,
we investigate the potential of classical trajectories to capture
nuclear dynamics, provided that a good (in this case, the
best) approximation to the TDPES, and thus to the electronic
dynamics, is available.

We have observed that the TDPES exhibits a highly
non-trivial dynamical shape when strong interferences take
place in the coupling region. Recent works showed that
an ensemble of independent classical particles, | χ(R, t0)|2-
distributed at t = 0 a.u., closely follows the nuclear probability
density distribution at later times when propagated classically
on the exact TDPES.41 Is it still possible to capture the
complex nuclear dynamics resulting from interferences in a
nonadiabatic region with independent classical trajectories
evolving on the TDPES? Fig. 9 answers positively to
this question. In the simplest case of weak interferences
(Pin,S0 = 20 a.u., lower panel), the classical trajectories
propagated on the exact TDPES nicely reproduce the splitting
of the nuclear probability density distribution. In fact, the
independent classical trajectories propagated within the EF
formalism give a similar, if not slightly better, description of
| χ(R, t)|2 than the TSH independent classical trajectories. As
expected from the previous discussions, the probability density
from the IWA matches perfectly the | χ(R, t)|2 distribution for
this weakly interfering case.

When it comes to stronger interferences (Pin,S0 = 7 a.u.,
upper panel of Fig. 9), the classical independent trajectories—
both in the TSH and EF dynamics—manage to follow the
exact | χ(R, t)|2. It is interesting to note that, at t = 850 a.u.,
the EF classical trajectories distribution exhibits similar
features as | χ(R, t)|2, such as the position of the main
peak and the shoulder towards lower R values.96 For the
same time, TSH gives a less structured distribution of
trajectories, resulting from a different ratio of trajectories
running in each electronic state (Fig. 4). We note that we
only consider here the probability density distribution in
R-space, and not the actual projection on the corresponding
BO states. As mentioned before, the IWA probability
density distribution does not exactly follow | χ(R, t)|2,
whenever interferences start to play an important role
(t > 100 a.u.).
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V. CONCLUSIONS

In this work, we have analyzed the problem of quantum
interferences in nonadiabatic dynamics from the exact
factorization perspective. In this context, we have addressed
two main questions by studying a one-dimensional model of
nonadiabatic electron transfer, where characteristic features
of quantum interferences already appear. The first is whether,
and how, the appearance of interferences can be identified in
the TDPES, the potential that drives the nuclear evolution. The
second is whether classical (independent) trajectories provide
a correct description of nuclear motion when electronic
dynamics, and thus the TDPES, is solved exactly. In the
spirit of previous work41 that has led to the derivation of a
trajectory-based quantum-classical algorithm67,68 to describe
nonadiabatic processes, the aim of our study is to assess the
potential of a similar treatment of a problem that now presents
a profound quantum-mechanical character, i.e., quantum
interferences. We stress that this work should be regarded
as an exploratory study, rather than as the development
of an actual numerical procedure. It should be borne in
mind that quantum-classical approaches are powerful tools to
investigate the coupled dynamics of electrons and nuclei in
complex (and large) molecular systems—for which a fully
quantum-mechanical description is prohibitively expensive.
However, introducing a classical approximation for selected
nuclear degrees of freedom might come at the price of missing
some features of the dynamics such as nonadiabatic quantum
interferences, whose importance has not been considered
in previous work on the exact factorization. The analysis
proposed here identifies such quantum features in the TDPES,
and it furthermore generalizes the use of a quantum-classical
dynamics based on the exact factorization for nonadiabatic
quantum interferences.

In answering the first question above, related to the
appearance of interferences in the TDPES, we have pointed
out the importance of focusing the analysis in the nonadiabatic
coupling region. In this region, BO wavefunctions with
different histories recombine and effects connected to their
relative phases become evident in the TDPES. We have
observed, in fact, the appearance of an oscillatory behavior of
the TDPES that initiates during the nonadiabatic event. We
have rationalized such a behavior with a simplified model that
allowed us to control the phase relation between the incoming
BO wavefunctions and to tune the oscillations in the TDPES.

Surprisingly, the answer to the second question is that the
classical trajectories evolved on the exact TDPES are able to
reproduce rather well the quantum probability distribution at
all times even in the case when quantum interferences appear.
This test proves once again that the TDPES is a powerful
tool to drive nuclear dynamics in nonadiabatic conditions
and thus confirms the importance of developing accurate
approximation schemes to compute it in general cases.

More generally, this study opens interesting questions
related to the BO and the exact factorization framework.
The question often arose in the literature as to whether or
not Newtonian (classical) trajectories are an efficient tool to
mimic quantum nuclear dynamics in nonadiabatic conditions
(see Refs. 23, 36, 68, 86, and 91–95 for examples). From a BO

perspective, nonadiabatic regions are the heart of the problem,
due to the fact that nonadiabatic couplings are present in the
(a priori infinite) coupled evolution equations for the BO
wavefunctions. In this framework, we might argue that such
involved nuclear evolution equations compensate the rather
simple time-independent electronic problem. When the same
situation is analyzed from the exact factorization perspective,
the complexity of the coupled electron-nuclear problem is
somehow shifted towards the electronic problem and towards
the calculation of the TDPES (and, when necessary, of the
time-dependent vector potential). At the cost of introducing
an actual time-dependence in the electronic wavefunction,
the nuclear equation becomes a standard time-dependent
Schrödinger equation, which can be approximated in terms
of Newtonian trajectories. Providing accurate approximations
to the TDPES might nevertheless be a hard task, and we
shall resort in compromising between the simplification of the
nuclear dynamics and the solution of the electronic problem
(see, for instance, the idea of using coupled trajectories67,68

to solve the nuclear equation of the exact factorization). Still,
developing methods that play with distributing the electron-
nuclear coupling complexity between the electronic and the
nuclear problem in the context of the exact factorization
are an open subject, reinforced by a better understanding
of the exact factorization quantities as done in the present
work.

APPENDIX: A SIMPLE MODEL OF NONADIABATIC
QUANTUM INTERFERENCES BETWEEN NUCLEAR
WAVEFUNCTIONS

In some of the situations studied above, the TDPES pres-
ents a more complex structure than previous observations39

have pointed out and interpreted. When quantum interferences
(as defined in Sec. II B) are observed, oscillations in the
gauge-invariant components of the TDPES seem to appear (in
Fig. 8 for the case Pin,S0 = 7 a.u.) at and after the passage
of the nuclear wavefunction through the coupling region.
The aim of this appendix is to rationalize the appearance of
these oscillations and to relate them to the relative phases of
different BO nuclear wavefunctions, suggesting in this way
a connection between the BO and the EF frameworks. To
this end, we construct a model that allows us to control the
relative phases and to directly relate them to changes in the
(exact) nuclear density and in the TDPES. Comparisons with
the IWA applied to the model will be also discussed. Below,
we will first introduce the model, and we will then discuss the
properties of the TDPES.

When the nuclear wavepacket χ
(S0)
BO

(R, t), initially
evolving along the S0 surface, crosses the coupling region,
it transfers amplitude to S1; similarly, χ

(S1)
BO

(R, t) transfers
amplitude to S0 (see Fig. 2). In the model, we suppose that
at a certain time t∗ during the transfer, χ

(S0)
BO

(R, t∗) can be
approximated as the sum of two contributions, one associated
to the wavepacket on S0 that has not yet reached the avoided
crossing, and the other associated to the wavepacket created
on S0 after the transfer from S1 (see Eq. (13) for comparison).
Moreover, these two contributions are Gaussian wavepackets
travelling with momentum P + dP and P, respectively, and
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are centered at different positions. Therefore, the expression
adopted in the model for χ

(S0)
BO

(R, t∗) is

χ
(S0)
BO

(R, t∗) = N0


Gσ0 (R − R0) e

i
~ (P+dP)(R−R0)

+ Gσ0←1 (R − R0←1) e
i
~ P(R−R0←1)


, (A1)

where the subscript 0 labels the quantities associated to
the wavepacket evolving (and remaining) on S0, while the
subscript 0 ← 1 corresponds to the wavepacket transferred
from S1. In Fig. 10, the squared modulus of the first
contribution of Eq. (A1) is shown in red, while the second
contribution is shown in green. The same idea applies to
χ
(S1)
BO

(R, t∗), during the amplitude transfer from S1 to S0. The
(squared moduli of the) two contributions are shown in Fig. 10,
with an orange line for that centered at R1 with variance σ1
and associated to a momentum P, and a cyan line for the
contribution centered at R1←0 with variance σ1←0 associated
to a momentum P + dP. The expression of χ

(S1)
BO

(R, t∗) is

χ
(S1)
BO

(R, t∗) = N1


Gσ1 (R − R1) e

i
~ P(R−R1)

+ Gσ1←0 (R − R1←0) e
i
~ (P+dP)(R−R1←0)


. (A2)

The parameters used in the numerical calculations are
the following: the normalization constants in the expres-
sions of the nuclear wavefunctions are chosen such
that


dR| χ(S0)

BO
(R, t∗)|2 = 

dRχ
(S1)
BO

(R, t∗) = 0.5; the centers
of the Gaussians are R0 = −2.3 a.u., R0←1 = −1.8 a.u.,
R1 = −2.5 a.u., and R1←0 = −2.0 a.u.; the variances of
the Gaussians are σ0 = 0.20 a.u., σ0←1 = 0.20 a.u. and
σ1 = 0.20 a.u., σ1←0 = 0.24 a.u.; the momentum P is fixed to
the value 3 a.u., while dP is varied in the range 0 to 10 a.u. The
idea here is that the wavepacket on one BO curve approaching
the coupling region with a certain momentum, i.e., either P

FIG. 10. Model used to analyze the nuclear density and TDPES at the
avoided crossing. The thick black lines are the adiabatic potential energy
curves, ϵ

(l )
BO

(R), while the dashed thin line (NACV) shows the quantity

⟨Φ(1)
R |∂RΦ

(2)
R ⟩r . The Gaussian densities corresponding to S0 are plotted as

red and green lines; the densities corresponding to S1 are plotted as orange
and cyan lines. The corresponding density envelops from Eqs. (A1) and (A2)
for the value dP = 0 a.u. are shown as dashed black lines.

or P + dP, produces on the other BO curve a contribution,
which initially has the same momentum. Furthermore, since
all above calculations have been performed by fixing the
momentum of χ

(S1)
BO

(R, t0) to 0 a.u. and by varying Pin,S0 in the
range −10 a.u. to 20 a.u., we assume here that χ

(S1)
BO

(R, t∗) has
acquired momentum when it reaches the avoided crossing, we
fix this value, and we vary only the momentum of χ

(S0)
BO

(R, t∗)
by varying dP.

Using this form for the BO nuclear wavefunctions at the
time of the nonadiabatic event, we compute the full molecular
wavefunction from Eq. (16), the nuclear wavefunction using
the gauge condition derived from Eq. (12), and finally the
TDPES. In particular, Gaussian-shaped wavefunctions with
well-defined momenta allow us (i) to obtain smooth functions
of R when spatial derivatives are involved, as in the expression
of ϵGI,2 and (ii) to directly associate the changes in the TDPES
to the variation of dP. Since a real time-evolution is not
simulated, we do not have direct access to the gauge-dependent
part of the TDPES, which contains the time-derivative of the
electronic wavefunction. However, following the analysis of
Ref. 41, we approximate ϵGD(R, t∗) as

ϵGD(R, t∗) ≃
 R

dR′
(
ϵ
(S1)
BO

(R′) − ϵ
(S1)
BO

(R′)) ∂R′�CS0(R′, t∗)
�2
.

(A3)

While this approximate expression is valid in regions where
the nonadiabatic couplings are negligible—which is indeed
not the case considered here—this contribution has been
shown to be the leading one in a case of single nonadiabatic
event. It will furthermore give us an idea of the overall shape
of ϵGD(R, t∗).

Fig. 11 shows the numerical results for different values of
dP. The panels on the left present the three components of the
TDPES, ϵGI,1(R, t∗) (top), ϵGI,2(R, t∗) (second from the top),
and ϵGD(R, t∗) (third from the top), and the nuclear density
(bottom). The colors correspond to some selected values of
dP as indicated in the figure. In the regions corresponding
to the tails of the nuclear densities, ϵGI,1(R, t∗) follows,
as expected, either one or the other BO potential energy
curve independently of dP. In the intermediate region, small
oscillations are observed: the oscillations occur within the
limits represented by the adiabatic curves and have different
amplitudes depending on the value of dP. The amplitudes,
however, do not have a monotonic behavior as functions of
dP, as they increase up to dP = 6 a.u. and they decrease for
larger values. A similar structure is observed in the shape
of ϵGI,2(R, t∗), where also the displacement of the maxima
is clearly observed as effect of changes in dP. The gauge-
dependent part of the TDPES does not present a simple
step-like shape, as observed in the case of a single crossing
event,39 but oscillations appear, mirroring the oscillations
in ϵGI,1(R, t∗). At the tails, both ϵGI,2(R, t∗) and ϵGD(R, t∗)
reach constant values, not altering the slope of ϵGI,1(R, t∗).
It is interesting to notice that the peaks in ϵGI,2(R, t∗)
might be larger than those in the other two components
of the TDPES; thus, they drastically affect the shape of
the potential in the intermediate region and, consequently,
strongly affect the nuclear dynamics: the passage of the
nuclear wavefunction through the coupling region, and thus
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the “amount” of nuclear density transferred through the
crossing, is controlled by the presence of the potential barrier
in ϵGI,2(R, t∗).

In this model, we cannot reproduce all the oscillations
observed in Fig. 8 since in the tail regions the Gaussian
wavefunctions go monotonically to zero, while in the
full dynamics the BO wavefunctions present additional
oscillations in these regions.

The shape of the TDPES in the nonadiabatic region seems
then to be strongly dependent on the phase relation between
the BO wavefunctions approaching the coupling region. In
order to further validate this statement, we analyze the results
of the IWA for both states S0 and S1. In this case, we compute
the three terms of the TDPES by using the expressions

Ψ̃1(r,R, t∗) = χ̃
(S0)
1 (R, t∗)Φ(S0)

BO
(r) + χ̃

(S1)
1 (R, t∗)Φ(S1)

BO
(r) (A4)

and

Ψ̃2(r,R, t∗) = χ̃
(S0)
2 (R, t∗)Φ(S0)

BO
(r) + χ̃

(S1)
2 (R, t∗)Φ(S1)

BO
(r). (A5)

Here, χ̃(S0)
1 (R, t∗) contains only the first term on the right-hand-

side of Eq. (A1) while χ̃
(S1)
1 (R, t∗) contains only the second

term on the right-hand-side of Eq. (A2). Vice versa, χ̃(S0)
2 (R, t∗)

and χ̃
(S1)
2 (R, t∗) contain the second term on the right-hand-side

of Eq. (A1) and the first term on the right-hand-side of
Eq. (A2), respectively. This choice aims at reproducing the
idea behind the IWA used to analyze the appearance and
effect of interferences on the full dynamics discussed in
Sec. IV.

In both expressions (A4) and (A5), the BO wavefunctions
have the same phase, which indeed disappears in the
components of the TDPES related to the squared moduli
of CS0(R, t∗) or CS1(R, t∗) and, consequently, to the squared
moduli of the BO nuclear wavefunctions. Therefore, it is
easy to understand the structure of the TDPES and of the
nuclear density in Fig. 11 (central and right panels). All
curves, for different values of dP, have the same behavior.
Only some terms in the expression of ϵGI,2 do not simply
depend on squared moduli of CS0(R, t∗) or CS1(R, t∗) and this
is the reason why some curves do not exactly have the same

FIG. 11. TDPES and nuclear densities for the model presented in Fig. 10. Left panels refer to exact calculations, while the central and right panels refer to the
IWA, as described in the text. From top to bottom, the plots show ϵGI ,1(R, t∗) in colors and the BO curves (black dotted curves), ϵGI ,2(R, t∗), ϵGD(R, t∗) from
Eq. (A3), and |χ(R, t∗)|2. The colors refer to different values of dP as shown in the plots.
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shape. The IWA calculations do not show multiple peaks
in the components of the TDPES, as they have the simple
shapes already observed39 in the case of a single nonadiabatic
crossing event. Interference effects are completely absent in
the IWA; thus, we can clearly ascribe the appearance of the
oscillatory structure of the TDPES to the relative phases of
the BO nuclear wavefunctions.
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