

Human Echolocators adjust loudness and number of clicks for detection of reflectors at various azimuth angles

Journal:	Proceedings B
Manuscript ID	RSPB-2017-2735.R1
Article Type:	Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Thaler, Lore; Durham University, Psychology De Vos, Rick; Technische Universiteit Eindhoven Kish, Daniel; World Access for the Blind Antoniou, Michail ; University of Birmingham Baker, Chris; University of Birmingham Hornikx, Maarten; Technische Universiteit Eindhoven
Subject:	Neuroscience < BIOLOGY, Behaviour < BIOLOGY
Keywords:	sonar, audition, blindness, SNR, beam pattern
Proceedings B category:	Neuroscience & Cognition

SCHOLARONE[™] Manuscripts

1	
2	
3	Human Echolocators adjust loudness and number of clicks for
4	detection of reflectors at various azimuth angles
5	
6	Thaler ¹ , L., De Vos ² , R., Kish ³ , D., Antoniou ⁴ , M., Baker ⁴ , C., Hornikx ² , M.
8 9 10 11	 Department of Psychology, Durham University, Science Site, South Road, Durham DH1 3LE, United Kingdom Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
12 13	3 - World Access for the Blind, Placentia, 92870, California, United States
14 15 16 17 18 19 20 21 22 23	4 - Department of Electronic Electrical and Systems Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
24 25 26 27 28 29 30 31	Corresponding author: Lore Thaler lore.thaler@durham.ac.uk Department of Psychology, Durham University Science Site, South Road Durham DH1 3LE United Kingdom http://orcid.org/0000-0001-6267-3129

32

33 Abstract

34	In bats it has been shown that they adjust their emissions to situational demands. Here we report
35	similar findings for human echolocation. We asked 8 blind expert echolocators to detect reflectors
36	positioned at various azimuth angles. The same 17.5cm diameter circular reflector placed at 100cm
37	distance at 0°, 45° or 90° with respect to straight ahead was detected with 100% accuracy, but
38	performance dropped to \sim 80% when it was placed at 135° (i.e. somewhat behind) and to chance
39	levels (50%) when placed at 180° (i.e. right behind). This can be explained based on poorer target
40	ensonification due to the beam pattern of human mouth clicks. Importantly, analyses of sound
41	recordings show that echolocators increased loudness and numbers of clicks for reflectors at farther
42	angles. Echolocators were able to reliably detect reflectors when level differences between echo and
43	emission were as low as -27dB, which is much lower than expected based on previous work.
44	Increasing intensity and numbers of clicks improves signal to noise ratio and in this way
45	compensates for weaker target reflections. Our results are the first to show that human
46	echolocation experts adjust their emissions to improve sensory sampling. An implication from our
47	findings is that human echolocators accumulate information from multiple samples.

48

49 Keywords: sonar; audition; blindness; beam-pattern; SNR

50 1. Introduction

Echolocation is the ability to use reflected sound to infer spatial information about the environment.
Just as certain species of bats or marine mammals, people can echolocate by making their own
sound emissions [1 – 4]. In fact, some people who are blind have trained themselves to use mouth
clicks to echolocate. The beam pattern of mouth clicks that blind echolocators make exhibits a
gradual 5dB drop in intensity as function of angle from straight ahead to 90° to the side, but click
energy is more heavily attenuated at further angles, and in particular at 135° sound energy drops by
~12 dB and at 180° (right behind the echolocator) by ~20dB [5].

58 Detection of objects in echolocation depends on the echo-acoustic reflections they provide, and in 59 bats it has been shown that echolocation behaviour is linked to the beam pattern of their emissions 60 e.g. [6]. Since the beam pattern of human mouth clicks shows that click sound levels decrease at 61 further azimuth angles it follows that the same reflector will be less effectively ensonified at further 62 angles as compared to straight ahead. Therefore, based on the beam pattern of human mouth clicks 63 we would predict that echolocation behaviour for object detection (i.e. to determine if an object is 64 present or absent) should also change as a function of azimuth angle. Echolocating bats may shift 65 spectro-temporal aspects of their calls (i.e. intensity, duration, spectrum, pulse rate) pending 66 situational demands [7 - 12]. Bats may for example increase the intensity of their calls to 67 compensate for a drop in echo intensity if targets are less effectively ensonified [13] and/or when 68 ambient noise is present [14]. The possibility arises that human echolocators would also show 69 adaptive emission behaviour if they are presented with reflectors that are less effectively ensonified, 70 e.g. reflectors that are located off to the side as compared to in front of them. We might also expect 71 a change in the accuracy of detection if targets are less effectively ensonified. 72 [15] provided a model based analysis estimating minimum level of reflected (echo) to direct 73 (emission) sound (Reflected-to-Direct Level Difference, RDLD) that echolocators should be able to

74 detect. Based on the analysis of a previous study [16] they suggested that the minimum RDLD for

75	reflection delays between 4 and 15 ms should be between -22 and -19dB. It would follow that
76	people should not be able to detect reflectors with RDLDs less than -22 dB at distance of 100cm
77	(delay ~6ms). In the current study we tested this hypothesis by calculating RDLDs based on acoustic
78	measurements.
79	To date there have not been any investigations of the dynamics of human echolocation behaviour,
80	i.e. if people adjust their emissions to situational demands or not. Furthermore, ideas about
81	minimum perceptible echo strength are based on acoustic models, but they have not been
82	evaluated in people who have expertise in echolocation. Therefore, we here tested these ideas in a
83	sample of 8 blind expert echolocators. Specifically, the same 17.5cm diameter circular disk was
84	placed at 100cm distance at 0°, 45° or 90°, 135° or 180° degrees with respect to straight ahead.
85	People's task was to use mouth click based echolocation to determine if a reflector had been
86	present or not. We recorded the acoustics of the task using microphones placed next to participants'
87	ears. We analyzed the recorded sound files to calculate acoustic properties of clicks and echoes.
88	We found that echolocators detected reflectors placed within the frontal hemisphere with 100%
89	accuracy, but performance dropped to $^{\circ}80\%$ when the reflector was placed at 135° (i.e. somewhat
90	behind) and to chance levels (50%) when placed right behind the echolocators (180°). Furthermore,
91	echolocators increased loudness of clicks and also made more clicks for reflectors at angles 135° to
92	180° as compared to reflectors at 0°to 90°. There were no changes in spectral content, duration or
93	inter click intervals.
94	Level differences in terms of overall sound energy between echo and emission (i.e. Reflected-to-
95	Direct Sound Level Differences RDLD [15]) ranged from -11dB (0°), -14dB (45°), -18dB (90°), -27dB
96	(135°) and -31dB (180°). This implies that expert echolocators failed to perceive RDLDs of -31dB
97	(180°), but that they were able to reliably detect RDLDs as low as -27dB (135°) in our study (i.e. at
98	onset delays of ~6ms). Measuring echo intensity revealed that changes in echo strength as function
99	of angle follow the same pattern as changes in RDLD, but that echo strength drops less than RDLD.

Submitted to Proceedings of the Royal Society B: For Review Only

Dynamic Human Echolocation

100	This can be explained by	the fact that increases in click intensity	/ as function of angle will 'boost'
	1 /	1	

- 101 echo intensity, i.e. making clicks louder will also make echoes louder. Yet, since RDLD is computed as
- 102 the difference between echo and click, and this difference remains even if both click and echo
- 103 become louder, RDLDs are left unchanged by the boost in click intensity.
- 104 Close temporal proximity of clicks and echoes in our study (onset delay ~6ms) implies that detection
- 105 of echoes takes place within a temporal window for which forward masking (of the echo by the
- 106 emission) which sometimes goes into simultaneous masking (when click duration exceeds echo

107 delay) [17, 18] and/or echo suppression [19, 20] are relevant. Even though research suggests that

- 108 echo suppression is reduced in active echolocation, it is nonetheless present and affects
- 109 performance [21]. The reason that an increase in click intensity (as well as numbers of clicks) is a
- 110 useful strategy to increase detection performance, is because of the non-linear behaviour of
- 111 masking [17, 18].
- In the following sections we describe the methods and results, before discussing the implications ofour findings.
- 114

115 2. Methods

The experiment was conducted following the British Psychological Society (BPS) code of practice and according to the World Medical Organization Declaration of Helsinki. All procedures had been approved by the Durham University Department of Psychology ethics committee (REF 14/13). Participants volunteered to take part in the study. Information and consent forms were provided in an accessible format, and we obtained informed consent from all participants.

121

122

123 2.1. Participants

- 124 Eight blind participants with experience in echolocation took part in the experiment. Participant
- details are listed in Table 1. All participants (except S1) had normal hearing as assessed with pure
- tone audiometry (500-8000Hz). S1 had hearing loss (~15dB) from 500-4000Hz.

127

Participant	Gender	Age at	Cause of Vision	Severity of	Age at onset	Age at start of
ID		Time of	Impairment	Vision	of Vision	using mouth-
		Testing		Impairment at	Impairment	click based
				Time of		echolocation
				Testing		
S1	male	53	optic nerve	right eye total	5 yrs	43 yrs
			compression	blindness; left		
				eye bright		
				light detection		
				(tested with		
				blindfold)		
S2	female	41	Leber's	Total	birth	31 yrs
			Congenital	blindness		
			Amaurosis			
S3	male	49	Retinoblastoma	Total	Birth;	< 3 yrs
				blindness	enucleation	
					at 1 yrs	
S4	male	33	optic nerve	Total	14 yrs	15 yrs
			atrophy			
S5	male	56	retinal	bright light	birth	6 yrs
			detachment	detection		
				(tested with		
				blindfold)		
56	male	43	Leber's	bright light	birth	33 yrs
			Congenital	detection right		
			Amaurosis	eye; total		
				blindness left		
				eye; (tested		
57	mala	24	daucoma	Total	gradual loss	12 yrs
57	male	54	giaucoma	hlindness	graduarioss	12 915
60	mala	22	Ontic nonvo	bright light		20.100
58	male	32	optic nerve	detection	ð yrs	29 yrs
			асторну	(tostod with		
				hindfold		
				piniaroia)		

128

129 **Table 1** – Details of participants who took part in the study.

130

131 2.2. Setup and Apparatus

132	All testing was conducted in a 2.9m x 4.2m x 4.9m noise-insulated and echo dampened room (walls
133	and ceiling lined with foam wedges with cut-off frequency 315Hz; floor covered with foam baffles,
134	noise floor 24dBA). Participants stood in the centre of the room. Tactile markers were used to allow
135	participants to reliably place their head at the same position throughout a trial, whilst not impeding
136	movements of the mouth for clicking. The reflector was a 17.5cm diameter 5mm thickness wooden
137	disk, presented at mouth level at 100cm distance on top of a .5cm diameter steel pole (17.5
138	diameter comprises 10° acoustic angle at 100cm). A reflector could be presented at 0°, 45°, 90°, 135°
139	and 180° to the left of the participant. The reflector always faced the participant. Figure 1 illustrates
140	the set-up. We made recordings of testing sessions with microphones placed on either side of the
141	participant's head, next to the tragus of each ear (DPA SMK-SC4060 miniature microphones; DPA
142	microphones, Denmark; TASCAM DR100-MKII recorder; TEAC Corporation, Japan; 24bit and 96 kHz).

143

149 2.3. Task & Procedure

- 150 Participants placed their head in the centre of the room facing straight ahead. The head had to be
- 151 kept straight ahead for the duration of a trial. A reflector could be presented at 0°, 45°, 90°, 135° and
- 152 180° to the left of the participant always at 100cm distance. The participant's task on every trial was
- to make mouth clicks and to judge vocally if there was a reflector present or not. Participants
- 154 received feedback (correct or incorrect response). Reflectors were present on 50% of the trials, and
- absent otherwise. The order in which locations were tested was as follows. The first ten trials were

Figure 1 – Sketch of the experimental setup as seen from above. The reflector was a 17.5 cm diameter circular disk made
 from 5mm thick wood. The reflector always faced the participant and was presented at 100cm distance. Each location was
 tested separately, but we have drawn reflectors at each location for illustration of reflector orientation with respect to the
 participant. Relative dimensions drawn approximately, not to scale

¹⁴⁸

156	presented at 0°, followed by 10 trials at 45°, then 135°, etc. up to 180°. This was followed by a break.
157	Then testing was resumed starting at 180° going to 0°. A total of 20 trials were done for each
158	location. Within each location, the order of present and absent trials was randomized. For each
159	location participants were made familiar with the task, and given the opportunity of two practice
160	trials. We instructed participants to give a response whenever they felt they were ready to do so (i.e.
161	there was no limit on trial duration). We instructed them to go with their 'best guess' if they felt
162	unable to reach a decision otherwise. Total testing time was approximately 45 minutes for each
163	participant. Participants were asked to block their ears and hum in between trials. The start of a trial
164	was indicated to the participant via a tap on their foot (using a long cane). The participant then
165	unblocked their ears and commenced the trial.
105	
166	
166 167	2.4. Data analysis
165 166 167 168	2.4. Data analysis2.4.1. Behaviour and acoustics
163 166 167 168 169	 2.4. Data analysis 2.4.1. Behaviour and acoustics To characterize detection performance we computed percentage correct detections for each
166 167 168 169 170	 2.4. Data analysis 2.4.1. Behaviour and acoustics To characterize detection performance we computed percentage correct detections for each location.
166 167 168 169 170 171	 2.4. Data analysis 2.4.1. Behaviour and acoustics To characterize detection performance we computed percentage correct detections for each location. To characterize participants clicking behaviour we analysed recorded sound files for each
165 166 167 168 169 170 171 172	 2.4. Data analysis 2.4.1. Behaviour and acoustics To characterize detection performance we computed percentage correct detections for each location. To characterize participants clicking behaviour we analysed recorded sound files for each participant. Analysis were done using Matlab (The Mathworks, Natick, USA). We analysed the

spectra, as well as peak frequency, power spectral centroid, and bandwidth based on power spectra.

175 We also computed the level difference between reflected sound (echo) and direct sound (click)

- 176 (RDLD), and echo intensity (dB SPL). This was done to characterize participant's echo-acoustic
- 177 sensitivity. The number of clicks for each trial was determined visually and acoustically by visual and
- acoustic screening of the sound files. During this process, clicks were also isolated from intermittent
- 179 speech and other background noise for further analysis. Click duration was computed as the time

180	from click onset to offset. To obtain onset and offset we first computed the click envelope as the
181	absolute value of signal and smoothing it with a 40 sample (0.42ms) moving average. Click onset was
182	determined as the first point where envelope value exceeded 5% (-26dB) of the maximum. The
183	offset was determined by fitting a decaying exponential to the envelope (starting from envelope
184	maximum; performing a non-linear least squares fit with a trust-region algorithm implemented in
185	the Matlab optimization toolbox) and determining where the fitted curve dropped to 5% (-26dB) of
186	maximum. Click intensity was computed as root mean square (RMS) intensity of clicks for the
187	duration of the click. To characterize spectral content of clicks we computed each click's power
188	spectrum and then determined the peak frequency, power spectral centroid, and bandwidth (using a
189	25dB drop relative to peak [22], and using the powerbw.m function implemented in the Matlab
190	signal processing toolbox) for each trial, and then averaged across trials for each location. We also
191	calculated the (amplitude) spectral centroid, as well as bandwidth based on a 3dB and on a 10dB
192	drop (results provided in Supplemental Results S1). To compute RDLD, which only applies to
193	reflector present trials, we determined click and echo RMS intensity, and then took the difference.
194	The echo was detected by windowing of the sound at the expected time of the echo (since the
195	reflector had been placed at 100cm distance), and determining on- and offset using the same
196	method as used for clicks. We imposed the additional criterion that echo duration could not exceed
197	click duration. For two participants RDLDs could not be computed because these participant's click
198	durations exceeded echo onset time. Since duration estimates will affect RMS calculations, we also
199	calculated click intensity and RDLDs based on peak intensity values that are not affected by duration
200	estimates (results provided in Supplemental Results S1).

201

202 2.4.2. Statistical analysis

- 203 To investigate effects of reflector location (0°, 45°, 90°, 135° and 90°) on detection and clicking
- 204 behaviour we subjected data to repeated measures ANOVA. Pairwise comparisons were done using

10

205	t-tests (paired samples). For all analyses statistical significance was determined using an alpha level
206	of .05. Greenhouse Geisser correction was applied if the sphericity assumption could not be upheld.

207

208 3. Results

209	People's detection performance is shown in Figure 2 top left panel. It appears that performance is
210	stable across reflector locations 0°, 45° and 90°, but drops for 135° and 180°. Consistent with this the
211	main effect of location was significant (F(1.628, 11.396)=33.767; p<.001; η_p^2 = .828), and linear
212	(F(1,7)=152.482; p<.001; η_p^2 = .956) and quadratic trends (F(1,7)=56.952; p<.001; η_p^2 = .891) were
213	significant as well. Follow up t-tests showed that whilst performance did not decrease from 0° to 45°
214	(p=.351) and from 45° to 90° (p=.685), it decreased significantly from 90° to 135° (p=.043), and from
215	135° to 180° (p=.006). One sample t-tests showed that performance was significantly better than
216	chance in locations 0° (t(7)=19.0; p<.001), 45° (t(7)=12.333; p<.001), 90° (t(7)=29.023; p<.001) and
217	135° (t(7)=4.472; p=.003) , but that it did not differ from chance at 180° (t(7)=1.62; p=.149).
218	

233	$(F(1,7)=10.929; p=.013; \eta_p^2=.610)$. The fourth order trend was significant as well $(F(1,7)=10.112;$
234	p=.015; η_p^2 = .591). Follow up t-tests showed that whilst numbers of clicks did not increase from 0° to
235	45° (p=.266) and from 45° to 90° (p=.498), they increased significantly from 90° to 135° (p=.005), but
236	then again remained the same from 135° to 180° (p=.227). With respect to click intensity it appears
237	that people steadily increase the intensity of their clicks as angles become more eccentric.
238	Consistent with this the main effect of location was significant (F(1.377, 9.640)=4.931; p=.043; η^2_p =
239	.413), and the linear trend was significant as well (F(1,7)=6.352; p=.040; η^2_p = .476). Follow up t-tests
240	showed that whilst click intensity did not increase from 0° to 45° (p=.184) and from 45° to 90°
241	(p=.165), it increased significantly from 90° to 135° (p=.031), but then again did not differ
242	significantly from 135° to 180° (p=.143). The same pattern of results was obtained based on peak
243	intensity values (Supplemental Results S1). Click Duration, Inter Click Intervals, Click Peak Frequency,
244	Power Spectral Centroid and Bandwidth remained stable across testing locations (Figure 2 middle
245	and bottom panels), and consequently none of the ANOVAs revealed significant effects of location
246	for these measures. The same pattern of results was obtained for the (amplitude) spectral centroid
247	and for bandwidth using drop values of 3dB and 10dB (Supplemental Results S1). The fact that
248	spectral content did not change is also evident in Figure 3, which shows that power spectra (1/3
249	Octave Bands) did not change across testing locations.

250

Figure 3 – Power Spectra (1/3 Octave Bands with respect to total power) for the different testing locations. Thin lines
 denote data for individual participants, where the same line colours and types denotes data from the same participant
 across testing locations. Thick lines and symbols denote the average across participants. Spectral content of clicks remains
 unchanged across testing locations.

255

256	To characterize the acoustics further we calculated RDLDs for right and left channels separately.
257	Data are shown in Figure 4 left panel. Echo intensities (i.e. only intensity of the reflected sound) are
258	shown in Figure 4 right panel. With respect to RDLDs it is evident that they decrease as reflectors are
259	located at further testing angles. It is also evident that RDLDs are generally higher for the left as
260	compared to the right channel, except for 0° and 180° testing locations. The decrease of RDLDs at
261	further testing angles was expected because the beam pattern of mouth clicks causes reflectors at
262	further angles to be less well ensonified, thus returning weaker echoes. On the other hand, since the
263	relative positioning of mouth to ear is fixed, the click as heard through each channel remains the
264	same regardless of testing location. As a result the relative strength of the reflected sound (echo) as
265	compared to the direct sound (click), which is measured in RDLDs, decreases at further angles. The
266	effect that RDLDs are generally higher for the left as compared to the right channel, except for 0°
267	and 180° testing locations was also expected because reflectors at 45°, 90° and 135° testing
268	locations were presented on the left side, thus leading to attenuation of reflected sound for the right
269	as compared to the left channel for those locations. Consistent with these expectations the ANOVA
270	revealed a significant effect of location on RDLD (F(4,20)=68.422; p<.001; η_p^2 = .932), a significant
271	effect of 'channel' (F(1,5)=21.947; p=.005; η^2_{p} = .814), and a significant location x channel interaction
272	(F(4,20)=12.045; p<.001; η_p^2 = .707). Follow up t-tests showed that RDLDs differed significantly
273	between left and right channels at 45° (t(5)=5.078; p=.004), 90° (t(5)=5.575; p=.003) and 135°
274	(t(5)=2.660; p=.045), but not at 0° (t(5)=.188; p=.858) or 180° (t(5)=.304; p=.773). The same pattern
275	of results was obtained based on peak intensity values (Supplemental Results S1).

276

4. Discussion

291 Our results clearly demonstrate that people, just like bats, adjust their emissions to situational

demands. In our study people adjusted the intensity and number of clicks they made. Increasing the

intensity of clicks leads to an increase in echo intensity. Therefore, it is likely that people (just like

bats [13, 14]) increased click intensity to increase signal to noise ratio (SNR), where the signal is the

- 295 echo and noise is residual ambient noise and/or noise intrinsic to the human auditory system. Close
- temporal proximity of clicks and echoes in our study (onset delay ~6ms) implies that detection of

297	echoes will be affected by forward masking (of the echo by the emission) which sometimes goes into
298	simultaneous masking (when click duration exceeds echo delay) [17, 18] and/or echo suppression
299	[19, 20]. The reason that an increase in click intensity is nonetheless a useful strategy to increase
300	detection performance (by increasing SNR) is because of the non-linear behaviour of masking [17,
301	18]. Increasing the number of clicks is expected to have the same purpose, i.e. to increase SNR. In
302	fact, artificial systems and applications make use of this by averaging across multiple samples in
303	order to increase signal to noise ratio. An important implication from this is that human echolocators
304	must accumulate information from multiple samples over time. We did not find evidence for
305	changes in spectral content, click duration or inter click intervals. This does not rule out that these
306	aspects might change in other contexts, however.
307	Recordings in our study were made next to the tragus of each ear. Nonetheless, even though our
308	measurements do not allow us to describe intensity of the click signal as measured at the mouth,

309 our measurements are well suited to quantify changes in transmitted click intensity across

310 conditions. Specifically, even though changes in sound intensity measured at the ear can be due to

311 changes either in intensity of the sound made at the mouth or changes in directionality of the sound,

directionality of sounds can only be altered by changing the shape of the mouth, i.e. increasing

313 mouth aperture. Importantly, however, changes in mouth aperture that would lead to changes in

314 intensity as measured at the ear in our current study (e.g. ~7dB from 0° to 180°) would also cause

315 substantial changes in spectral content of the clicks, because changes in the aperture of the human

mouth affect both directionality and spectral content [23, 24]. In our study we did not observe any

317 change in spectral content across conditions. As a consequence changes in click intensity that we

318 measured at the ear must be due to changes in intensity of the clicks, rather than changes in

319 directionality.

320 In bats, adaptive behaviour has been observed as well. For example, some species may shift spectro-

321 temporal aspects of their calls (i.e. intensity, duration, spectrum, pulse rate) pending on the

17

322	environmental conditions $[7 - 14]$, or they may adjust the direction and/or width of their sound
323	beam when they lock onto a target [6, 7, 25, 26]. Humans can of course adjust click direction by
324	moving their head. Since head movements were not permitted in our study, we did not measure
325	dynamic adjustments in terms of head rotation. Nonetheless, it has been shown that human
326	echolocation can be facilitated by head movement [27-29]. Based on our current results we suggest
327	that future work should characterize these movements with respect to echo-acoustic sampling. The
328	paradigm we used here did not require self movement of the echolocators, or approach of a target,
329	and it is possible that for this reason we did not observe changes in inter click interval, click duration
330	or spectrum, that are typically observed in bats during target approach. Nonetheless, the changes in
331	behaviour (and RDLD) that we observed in our study are consistent with changes that one might
332	expect based on the transmission characteristics of mouth clicks that expert echolocators make
333	[5,30], and we also show that human echolocation behaviour is a dynamic process. This raises the
334	possibility that human echolocation may be governed by similar principles as echolocation in bats.
335	Participants in our study performed better than chance for 0°, 45°, 90° and 135°, but not at 180°.
336	This implies that despite increased echo intensity and multiple samples the echo signal was not
337	reliable enough to support accurate performance at 180°. At 180° the difference between reflected
338	and direct sound (i.e. RDLD) in our study was -31 dB and echo intensity was 53dB SPL. Whilst for
339	normal hearing sound levels of 53dB SPL are readily audible, the likely reason that an echo of this
340	magnitude did not support reliable performance in our participants was that they followed the much
341	louder click in brief succession (echoes were 31 dB softer than clicks, i.e. less than 2.8% intensity). As
342	mentioned above, echo perception in our study took place within a temporal window for which
343	forward masking (of the echo by the emission) which sometimes goes into simultaneous masking
344	(when click duration exceeds echo delay) [17, 18] and/or echo suppression [19, 20] are relevant for
345	human hearing. Even though research suggests that echo suppression is reduced in echolocation, it
346	is nonetheless present and affects performance [21]. Thus forward (or simultaneous) masking
347	and/or echo suppression are the likely explanation for why echolocators did not detect echoes at

18

348	sound levels of 53 dB SPL in 180° conditions. At the same time, RDLD for 135° was -27 dB in the left
349	channel (and -31 dB in the right channel), and echo intensity was 56 dB SPL (left) and 51dB SPL
350	(right). Since performance for 135° with ~80% was better than chance this implies that our
351	participants could successfully perform when RDLD was as low as -27 dB and the echo was 56dB SPL.
352	This suggests that under these conditions effects of forward masking and/or echo suppression could
353	be overcome by our participants. Another possibility is that in these conditions participants were
354	able to rely on a binaural intensity cue to perform the task [31]. Such binaural cues were absent at
355	180° (compare Figure 3). It has been shown that echolocating bats (big brown bats) can detect
356	echoes at RDLDs as low as -90dB at a target distance of 80cm (delay of 4.8ms) [32]. The
357	measurement setup in [32] was slightly different in that intensity of the emission (direct sound) was
358	measured 10cm in front of the bat's mouth and the intensity of the echo was measured as it was
359	delivered to the bats ear. Nonetheless, RDLDs measured for bats would still be well below the values
360	we have shown here for people.
361	Previous work done by [15] had estimated 'best' RDLDs for human echolocators to be between -22
362	and -19dB for echo delays between 4 and 15ms. These estimates were based on acoustic modelling
363	using a previously published study to estimate RDLDs and audibility thresholds [16]. RDLD values of -
364	19 to -22 were already well below those for human audibility thresholds for single reflections based
365	on external signals (e.g. noise bursts), which are more around -15dB for delays between 5 and 7 ms
366	[33, 34]. Our results based on analyses of RDLDs clearly demonstrate that echo-acoustic sensitivity in
367	our sample of eight echolocation experts is much better than expected based on previous
368	estimates. This emphasizes the adaptation of the human auditory system in human echolocation
369	experts. It also highlights that in order to understand how human echolocation works there is a need
370	to conduct behavioural work in human echolocation experts in addition to acoustic modelling.
371	The results reported here were obtained with a circular disk reflector of 17.5cm diameter. Reflector
372	size was kept unchanged since the variable under investigation was reflector location. Based on our

Submitted to Proceedings of the Royal Society B: For Review Only

Dynamic Human Echolocation

373	analyses of echo	intensity and RDLD	s we would predict,	however, that i	ncreasing reflector size
-----	------------------	--------------------	---------------------	-----------------	--------------------------

- 374 would enable reliable performance even at 180°, i.e. behind the echolocators at 100cm, as long as
- 375 RDLDs of -27dB or better and echo intensity of 56dB SPL or better can be achieved. This is because
- these are the lowest values that were reliably detected in our study (i.e. at 135°).
- 377 In the current study sound measurements made next to the tragus of each ear, whilst in [5]
- 378 recordings of clicks were made within the horizontal/vertical planes. Nonetheless, the spectro-
- temporal pattern of clicks that we measured here were similar to those reported in [5], with the
- exception that two participants in our current study made clicks of longer duration.
- 381 In our study participants were not permitted to move their head because the goal was to measure
- 382 changes in emission and detectability as function of angle. It was evident from discussing the task
- 383 with each participant, however, that they would typically use head movements to get better
- 384 impressions of objects located at farther angles. Nonetheless, in everyday situations it is often not
- known in advance where an object might be. Therefore, detection of objects at farther angles is
- 386 required also during regular echolocation processes.
- 387 In conclusion, our results are the first to demonstrate that human echolocators adjust their sound
- 388 emission strategies to improve sensory sampling, highlighting the dynamic nature of the
- 389 echolocation process in humans.

390	Competing interests
391	We have no competing interests.
392	
393	Author contributions
394	LT designed the study, coordinated the study, carried out data collection, analysed data, wrote
395	manuscript draft, and revised manuscript draft. RDV assisted with coordinating the study, and
396	carried out data collection. MH contributed to acoustic analyses. DK, MA, CB and MH revised
397	manuscript draft. All authors gave final approval of the manuscript draft.
398	
399	Funding
400	This work was supported by the British Council and the Department for Business, Innovation and
400 401	This work was supported by the British Council and the Department for Business, Innovation and Skills in the UK (award SC037733) to the GII Seeing with Sound Consortium. This work was partially
400 401 402	This work was supported by the British Council and the Department for Business, Innovation and Skills in the UK (award SC037733) to the GII Seeing with Sound Consortium. This work was partially supported by Biotechnology and Biological Sciences Research Council grant to LT (BB/M007847/1).
400 401 402 403	This work was supported by the British Council and the Department for Business, Innovation and Skills in the UK (award SC037733) to the GII Seeing with Sound Consortium. This work was partially supported by Biotechnology and Biological Sciences Research Council grant to LT (BB/M007847/1). The funders had no role in study design, data collection and analysis, decision to publish, or
400 401 402 403 404	This work was supported by the British Council and the Department for Business, Innovation and Skills in the UK (award SC037733) to the GII Seeing with Sound Consortium. This work was partially supported by Biotechnology and Biological Sciences Research Council grant to LT (BB/M007847/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
400 401 402 403 404 405	This work was supported by the British Council and the Department for Business, Innovation and Skills in the UK (award SC037733) to the GII Seeing with Sound Consortium. This work was partially supported by Biotechnology and Biological Sciences Research Council grant to LT (BB/M007847/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
400 401 402 403 404 405 406	This work was supported by the British Council and the Department for Business, Innovation and Skills in the UK (award SC037733) to the GII Seeing with Sound Consortium. This work was partially supported by Biotechnology and Biological Sciences Research Council grant to LT (BB/M007847/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

408 References

- 409 [1] Griffin DR. 1944 Echolocation by blind men, bats, and radar. *Science*, *100*:589–590.
- 410 [2] Kolarik AJ, Cirstea S, Pardhan S, Moore BC. 2014 A summary of research investigating
- 411 echolocation abilities of blind and sighted humans. *Hear Res*, **310C**:60–68.
- 412 [3] Stoffregen TA, Pittenger JB. 1995 Human echolocation as a basic form of perception and action.
- 413 *Ecol Psychol*, **7**:181–216.
- 414 [4] Thaler, L., Goodale, M.A. 2016 Echolocation in People: An Overview. WIREs Cogn Sci, doi:

415 **10.1002/wcs.1408**

- 416 [5] Thaler, L., Reich, G. M., Zhang, X., Wang, D., Smith, G. E., Tao, Z., ... & Antoniou, M. 2017 Mouth-
- 417 clicks used by blind expert human echolocators–signal description and model based signal
 418 synthesis. *PLOS Computational Biology*, **13(8)**, e1005670.
- 419 [6] Yovel, Y, Falk, B, Moss, CF, Ulanovsky, N. 2010 Optimal localization by pointing off-axis. *Science*,
 420 **327**: 701-704
- 421 [7] Ghose, K & Moss, C.F. 2006 Steering by hearing: A bat's acoustic gaze is linked to its flight motor
- 422 output by a delayed, adaptive linear law. J. Neurosci, **26**, 1704-1710.
- 423 [8] Moss CF, Bohn K, Gilkenson H, Surlykke A. 2006 Active listening for spatial orientation in a
- 424 complex auditory scene. *PLoS Biol.* **4(4)**:e79.
- 425 [9] Siemers BJ, Schnitzler HU Echolocation. 2004 Echolocation signals reflect niche differentiation in
- 426 five sympatric congeneric bat species. *Nature*, **429**: 657–661.
- 427 [10] Surlykke, A., & Moss, C. F. 2000 Echolocation behavior of big brown bats, Eptesicus fuscus, in
- 428 the field and the laboratory. *The Journal of the Acoustical Society of America*, **108(5)**, 2419-
- 429 2429.
- 430 [11] Ulanovsky N, Fenton MB, Tsoar A, Korine C. 2004 Dynamics of jamming avoidance in
- 431 echolocating bats. *Proceedings of the Royal Society of London B: Biological Sciences,*
- 432 **271(1547)**:1467-75.

433	[12] Vespe, M., Jones, G. & Baker, C.J. 2010 Diversity Strategies: Lessons from Natural Systems. In:					
434	Principles of Waveform Diversity and Design. Wicks, M., Mokole, E., Blunt, S., Schneible, R. &					
435	Amuso, V. (Eds). pages 25-50 .					
436	[13] Hiryu S, Hagino T, Riquimaroux H, Watanabe Y. 2007. Echo-intensity compensation in					
437	echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone.					
438	The Journal of the Acoustical Society of America. 121(3): 1749-57.					
439	[14] Tressler J, Smotherman MS 2009 Context-dependent effects of noise on echolocation pulse					
440	characteristics in free-tailed bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol					
441	195(10): 923–934.					
442	[15] Pelegrín-García, D. and Rychtáriková, M., 2016. Audibility thresholds of a sound reflection in a					
443	classical human echolocation experiment. Acta Acustica united with Acustica, 102(3): 530-					
444	539.					
445	[16] Rice, C. E., Feinstein, S. H., & Schusterman, R. J. 1965 Echo-detection ability of the blind: Size					
110	and distance factors, loweral of Europeinsontal Daughology, 70(2) 246					
440	and distance factors. <i>Journal of Experimental Psychology</i> , 70(3) , 246.					
446 447	[17] Moore, B.C., 2012. An introduction to the psychology of hearing. Brill.					
446 447 448	 [17] Moore, B.C., 2012. An introduction to the psychology of hearing. Brill. [18] Zwicker, E. and Fastl, H., 2013. Psychoacoustics: Facts and models (Vol. 22). Springer Science & 					
446 447 448 449	 [17] Moore, B.C., 2012. An introduction to the psychology of hearing. Brill. [18] Zwicker, E. and Fastl, H., 2013. Psychoacoustics: Facts and models (Vol. 22). Springer Science & Business Media.[19] Litovsky, R. Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. 1999 The 					
446 447 448 449 450	 [17] Moore, B.C., 2012. An introduction to the psychology of hearing. Brill. [18] Zwicker, E. and Fastl, H., 2013. Psychoacoustics: Facts and models (Vol. 22). Springer Science & Business Media.[19] Litovsky, R. Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. 1999 The precedence effect. The Journal of the Acoustical Society of America, 106(4), 1633-1654. 					
446 447 448 449 450 451	 [17] Moore, B.C., 2012. An introduction to the psychology of hearing. Brill. [18] Zwicker, E. and Fastl, H., 2013. Psychoacoustics: Facts and models (Vol. 22). Springer Science & Business Media.[19] Litovsky, R. Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. 1999 The precedence effect. The Journal of the Acoustical Society of America, 106(4), 1633-1654. [20] Wallach, H., Newman, E. B., & Rosenzweig, M. R. 1949 A precedence effect in sound 					
446 447 448 449 450 451 452	 [17] Moore, B.C., 2012. An introduction to the psychology of hearing. Brill. [18] Zwicker, E. and Fastl, H., 2013. Psychoacoustics: Facts and models (Vol. 22). Springer Science & Business Media.[19] Litovsky, R. Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. 1999 The precedence effect. The Journal of the Acoustical Society of America, 106(4), 1633-1654. [20] Wallach, H., Newman, E. B., & Rosenzweig, M. R. 1949 A precedence effect in sound localization. The Journal of the Acoustical Society of America, 21(4), 468-468. 					
446 447 448 449 450 451 452 453	 [17] Moore, B.C., 2012. An introduction to the psychology of hearing. Brill. [18] Zwicker, E. and Fastl, H., 2013. Psychoacoustics: Facts and models (Vol. 22). Springer Science & Business Media.[19] Litovsky, R. Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. 1999 The precedence effect. The Journal of the Acoustical Society of America, 106(4), 1633-1654. [20] Wallach, H., Newman, E. B., & Rosenzweig, M. R. 1949 A precedence effect in sound localization. The Journal of the Acoustical Society of America, 21(4), 468-468. [21] Wallmeier, L., Geßele, N., & Wiegrebe, L. 2013 Echolocation versus echo suppression in humans. 					
446 447 448 449 450 451 452 453 454	 [17] Moore, B.C., 2012. An introduction to the psychology of hearing. Brill. [18] Zwicker, E. and Fastl, H., 2013. Psychoacoustics: Facts and models (Vol. 22). Springer Science & Business Media.[19] Litovsky, R. Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. 1999 The precedence effect. The Journal of the Acoustical Society of America, 106(4), 1633-1654. [20] Wallach, H., Newman, E. B., & Rosenzweig, M. R. 1949 A precedence effect in sound localization. The Journal of the Acoustical Society of America, 21(4), 468-468. [21] Wallmeier, L., Geßele, N., & Wiegrebe, L. 2013 Echolocation versus echo suppression in humans. Proceedings of the Royal Society B: Biological Sciences, 280, 20131428. 					
446 447 448 449 450 451 452 453 454 455	 [17] Moore, B.C., 2012. An introduction to the psychology of hearing. Brill. [18] Zwicker, E. and Fastl, H., 2013. Psychoacoustics: Facts and models (Vol. 22). Springer Science & Business Media.[19] Litovsky, R. Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. 1999 The precedence effect. The Journal of the Acoustical Society of America, 106(4), 1633-1654. [20] Wallach, H., Newman, E. B., & Rosenzweig, M. R. 1949 A precedence effect in sound localization. The Journal of the Acoustical Society of America, 21(4), 468-468. [21] Wallmeier, L., Geßele, N., & Wiegrebe, L. 2013 Echolocation versus echo suppression in humans. <i>Proceedings of the Royal Society B: Biological Sciences, 280</i>, 20131428. [22] Arditi, G., Weiss, A.J. & Yovel, Y. 2015. Object localization using a biosonar beam: how opening 					
446 447 448 449 450 451 452 453 454 455 456	 [17] Moore, B.C., 2012. An introduction to the psychology of hearing. Brill. [18] Zwicker, E. and Fastl, H., 2013. <i>Psychoacoustics: Facts and models</i> (Vol. 22). Springer Science & Business Media.[19] Litovsky, R. Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. 1999 The precedence effect. <i>The Journal of the Acoustical Society of America</i>, <i>106</i>(4), 1633-1654. [20] Wallach, H., Newman, E. B., & Rosenzweig, M. R. 1949 A precedence effect in sound localization. <i>The Journal of the Acoustical Society of America</i>, <i>21</i>(4), 468-468. [21] Wallmeier, L., Geßele, N., & Wiegrebe, L. 2013 Echolocation versus echo suppression in humans. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <i>280</i>, 20131428. [22] Arditi, G., Weiss, A.J. & Yovel, Y. 2015. Object localization using a biosonar beam: how opening your mouth improves localization, <i>Royal Society Open Science</i>, <i>2</i>, 150225. 					
446 447 448 449 450 451 452 453 454 455 456 457	 [17] Moore, B.C., 2012. An introduction to the psychology of hearing. Brill. [18] Zwicker, E. and Fastl, H., 2013. <i>Psychoacoustics: Facts and models</i> (Vol. 22). Springer Science & Business Media.[19] Litovsky, R. Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. 1999 The precedence effect. <i>The Journal of the Acoustical Society of America</i>, <i>106</i>(4), 1633-1654. [20] Wallach, H., Newman, E. B., & Rosenzweig, M. R. 1949 A precedence effect in sound localization. <i>The Journal of the Acoustical Society of America</i>, <i>21</i>(4), 468-468. [21] Wallmeier, L., Geßele, N., & Wiegrebe, L. 2013 Echolocation versus echo suppression in humans. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <i>280</i>, 20131428. [22] Arditi, G., Weiss, A.J. & Yovel, Y. 2015. Object localization using a biosonar beam: how opening your mouth improves localization, <i>Royal Society Open Science</i>, <i>2</i>, 150225. [23] Halkosaari T, Vaalgamaa M, Karjalainen M. 2005 Directivity of artificial and human speech. 					

- 459 [24] Monson, B.B., Hunter, E.J. and Story, B.H., 2012. Horizontal directivity of low-and high-
- 460 frequency energy in speech and singing. *The Journal of the Acoustical Society of America*,

461 **132(1):** 433-441.

- 462 [25] Ghose, K & Moss, C.F. 2003 The sonar beam pattern of a flying bat as it tracks tethered
- 463 insects. J. Acoust. Soc. Am. **114**, 1120-1131.
- 464 [26] Surlykke, A.; Ghose, K., Moss, C.F. 2009 Acoustic scanning of natural scenes by echolocation in
 465 the big brown bat, *Eptesicus fuscus*. J. Exp. Biol. 212, 1011-1020.
- 466 [27] Milne, J. L., Goodale, M. A., & Thaler, L. 2014 The role of head movements in the discrimination
- 467 of 2-D shape by blind echolocation experts. *Attention, Perception, & Psychophysics, 76*,
- 468 1828–1837.
- 469 [28] Wallmeier, L., & Wiegrebe, L. 2014 Ranging in human sonar: Effects of additional early
- 470 reflections and exploratory head movements. *PLoS One, 9*, e115363.
- 471 doi:10.1371/journal.pone.0115363.
- 472 [29] Wallmeier, L., & Wiegrebe, L. 2014 Self-motion facilitates echo-acoustic orientation in humans.
- 473 Royal Society Open Science, 1, 140185.
- 474 [30] de Vos, R., & Hornikx, M. 2017 Acoustic Properties of Tongue Clicks used for Human
- 475 Echolocation. *Acta Acustica united with Acustica*, **103(6)**, 1106-1115.
- 476 [31] Rowan D, Papadopoulos T, Edwards D, Allen R. 2015 Use of binaural and monaural cues to
- identify the lateral position of a virtual object using echoes. *Hearing Research*, **323**: 32–39.
- 478 [32] Simmons JA, Moffat AJ, Masters WM. 1992 Sonar gain control and echo detection thresholds in
- 479 the echolocating bat, E ptesicusfuscus. *The Journal of the Acoustical Society of America*.
- **91(2)**:1150-63.
- 481 [33] Buchholz JM. 2007 Characterizing the monaural and binaural processes underlying reflection
 482 masking. *Hearing Research* 232(1):52-66.
- 483 [34] Zurek PM. 1979 Measurements of binaural echo suppression. *The Journal of the Acoustical*484 Society of America 66(6):1750-7.

485	Captions
486	
487	Table 1 – Details of participants who took part in the study.
488	
489	Figure 1 – Sketch of the experimental setup as seen from above. The reflector was a 17.5 cm
490	diameter circular disk made from 5mm thick wood. The reflector always faced the participant and
491	was presented at 100cm distance. Each location was tested separately, but we have drawn reflectors
492	at each location for illustration of reflector orientation with respect to the participant. Relative
493	dimensions drawn approximately, not to scale
494	
495	Figure 2 – Measures of echolocation behaviour. Bars are means and errors bars standard error of
496	the mean (SEM) across people. People's detection performance (top left panel), numbers of clicks
497	per trial (top middle panel) and click intensity (top right panel) change across testing locations, but
498	click duration (middle left panel), inter click interval (bottom middle panel), click peak frequency
499	(middle right panel), click bandwidth (25dB drop) (bottom left panel) and click power spectral
500	centroid (bottom middle panel) remain unchanged.
501	
502	Figure 3 – Power Spectra (1/3 Octave Bands with respect to total power) for the different testing
503	locations. Thin lines denote data for individual participants, where the same line colours and types
504	denotes data from the same participant across testing locations. Thick lines and symbols denote the
505	average across participants. Spectral content of clicks remains unchanged across testing locations.
506	
507	Figure 4 - RDLDs (left panel) and echo intensity (right panel) for right and left channels separately.
508	Symbols are means and errors bars SEM across people. RDLDs and echo intensity decrease at further
509	angles.

Table 1 – Details of participants who took part in the study.

Participant ID	Gender	Age at Time of Testing	Cause of Vision Impairment	Severity of Vision Impairment at Time of Testing	Age at onset of Vision Impairment	Age at start of using mouth- click based echolocation
S1	male	53	optic nerve compression	right eye total blindness; left eye bright light detection (tested with blindfold)	5 yrs	43 yrs
S2	female	41	Leber's Congenital Amaurosis	Total blindness	birth	31 yrs
\$3	male	49	Retinoblastoma	Total blindness	Birth; enucleation at 1 yrs	< 3 yrs
S4	male	33	optic nerve atrophy	Total	14 yrs	15 yrs
S5	male	56	retinal detachment	bright light detection (tested with blindfold)	birth	6 yrs
S6	male	43	Leber's Congenital Amaurosis	bright light detection right eye; total blindness left eye; (tested with blindfold)	birth	33 yrs
S7	male	34	glaucoma	Total blindness	gradual loss since birth	12 yrs
S8	male	32	Optic nerve atrophy	bright light detection (tested with blindfold)	8 yrs	29 yrs

<u>17.5cm</u>

Figure 1 – Sketch of the experimental setup as seen from above. The reflector was a 17.5 cm diameter circular disk made from 5mm thick wood. The reflector always faced the participant and was presented at 100cm distance. Each location was tested separately, but we have drawn reflectors at each location for illustration of reflector orientation with respect to the participant. Relative dimensions drawn approximately, not to scale

277x338mm (300 x 300 DPI)

Figure 2 – Measures of echolocation behaviour. Bars are means and errors bars standard error of the mean (SEM) across people. People's detection performance (top left panel), numbers of clicks per trial (top middle panel) and click intensity (top right panel) change across testing locations, but click duration (middle left panel), inter click interval (bottom middle panel), click peak frequency (middle right panel), click bandwidth (25dB drop) (bottom left panel) and click power spectral centroid (bottom middle panel) remain unchanged.

264x236mm (300 x 300 DPI)

Figure 3 – Power Spectra (1/3 Octave Bands with respect to total power) for the different testing locations.
 Thin lines denote data for individual participants, where the same line colours and types denotes data from the same participant across testing locations. Thick lines and symbols denote the average across participants. Spectral content of clicks remains unchanged across testing locations.

274x479mm (300 x 300 DPI)

Figure 4 - RDLDs (left panel) and echo intensity (right panel) for right and left channels separately. Symbols are means and errors bars SEM across people. RDLDs and echo intensity decrease at further angles.

116x53mm (300 x 300 DPI)