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Abstract—Recently, subsynchronous oscillations (SSOs) have 

occurred frequently due to the interaction between wind farm 
controllers and transmission networks. When an SSO occurs, sub- and 
supersynchronous interharmonics are present in a voltage/current 
signal. Because SSOs are serious threats to power system safety and 
stability, it is important to study sub- and supersynchronous 
interharmonic phasor and frequency estimators for SSO identification 
and monitoring (thus for mitigation equipment operation). The 
systematic errors of the Taylor-Fourier multifrequency model-based 
parameter estimator are analyzed theoretically. It is found that the key 
to high estimation accuracy is to select interharmonic and 
fundamental model frequencies as accurately as possible. To this end, 
the three-point interpolated discrete Fourier transform and an 
iteration scheme are used to select initial model frequencies and 
modify them iteratively. Simulation tests show that the interharmonic 
total vector error (TVE) and frequency error (FE) of the proposed 
method are always below 0.6% and 25 mHz, respectively. The 
fundamental TVE and FE limits in the IEEE standard can also be fully 
met, and the computation time can meet the requirements of high 
reporting rate PMUs. Additionally, current samples recorded in an SSO 
event are used to demonstrate the real benefits of the proposed 
method. 

Index Terms—Digital filter, fundamental phasor, interharmonic 
phasor, subsynchronous oscillation, Taylor-Fourier multifrequency 
model. 

I. INTRODUCTION 

N recent years, subsynchronous oscillation (SSO) events have 
occurred frequently in many wind farms [1]. They are caused 

by the interaction between double-fed induction generators 
and series compensation-based transmission networks [2], [3]. 
SSOs can bring severe damages to power system equipment. 
For example, the electromagnetic effect in SSOs can break 
make turbine generator shafts [4]. Meanwhile, SSOs can result 
in abnormal operations of power systems. They are big threats 
to power system stability and security. As a result, it is of 
urgency and significance to identify and monitor SSOs for SSO 
mitigation equipment design and operation. 

Typically, when an SSO event occurs, a subsynchronous 
interharmonic (within [0, 50] Hz) and a supersynchronous 
interharmonic (within [50, 100] Hz) will be present 
simultaneously in voltages/currents [5], [6]. Their magnitudes 
and frequencies can be time-variant, and their frequencies are 

are symmetrical with respect to fundamental frequency [6]. In 
this case, measurement of interharmonic phasor and 
frequency becomes a very difficult problem. The 
interharmonics with close frequencies can have mutual 
interferences on their parameter measurement, and the 
dynamic behaviors of these parameters make it more difficult. 

Phasor measurement units (PMUs) are widely used in power 
systems for synchrophasor (called fundamental phasor in the 
following) estimation [7]. However, these instruments cannot 
obtain interharmonic parameter estimates. In China, PMU is 
also expected to play an important role in SSO identification 
and monitoring, i.e., measuring interharmonics within [10, 40] 
and [60, 90] Hz [8]. This is because most interharmonics caused 
by SSOs have frequencies within these two bands [9]. 
Concerning SSO identification and monitoring, the key is to 
obtain sub- and supersynchronous interharmonic phasors and 
frequencies for mitigation equipment operation [10]. The goal 
of this paper is to propose an interharmonic phasor and 
frequency estimator with high accuracy, low computational 
complexity (thus high reporting rate) and short latency. 

There are two kinds of sub-/supersynchronous 
interharmonic parameter estimation methods in literature: 1) 
fundamental phasor estimates-based methods and 2) signal 
field data-based methods. As for 1), two typical methods were 
proposed in [9] and [10] to identify SSOs. Nevertheless, they 
have an extremely long latency due to the long observation 
window, which reaches 1 s. [6] proposed a method to estimate 
SSO frequencies based on the fundamental phasor estimates. 
However, it cannot estimate sub-/supersynchronous 
interharmonic phasors. 

Concerning 2), a widely used tool is the discrete Fourier 
transform (DFT). However, it relies on a long observation 
window to get high frequency resolutions. When a short 
window is used, the spectrum of an interharmonic will be 
significantly interfered by the spectral leakage from 
fundamental and other interharmonics. In this way, large 
errors are unavoidable. The compressive sensing (CS)-DFT can 
suppress mutual interferences by using a multisine signal 
model [11]. However, this static phasor model-based method 
is not suitable for dynamic interharmonic parameter 
estimation. The CS of Taylor-Fourier multifrequency (CSTFM) 
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describes dynamic phasors based on the Taylor expansion 
model. [12]–[15]. It can obtain interharmonic phasor 
derivative estimates, and thus interharmonic phasors and 
frequencies. However, it relies on a large number of iterations 
to obtain these estimates. As a result, remarkable 
computations are needed, which is not suitable for high 
reporting rate PMUs. In order to deal with this problem, a fast 
version of the CSTFM (i.e., the fast-TFM) was proposed in [16]. 
The fast-TFM needs to precompute interharmonic and 
harmonic model frequencies based on the zero-padding DFT. 
When there are several components within [10, 90] Hz, the 
sub- or supersynchronous interharmonic model frequencies 
cannot be selected accurately due to the mutual interferences. 
This incorrect signal model will lead to large errors. Moreover, 
the systematic errors relating to model frequency accuracy 
have not been analyzed yet in [16]. In [1], a bandpass digital 
filter-based method was proposed for interharmonic 
parameter estimation. This method uses the 50cycle DFT to 
precompute interharmonic frequencies and then design filters. 
Obviously, this extremely long data window will lead to a long 
latency. 

In [17], an interharmonic phasor estimator (called the 
iterative-TFM in this paper) was proposed. It selected initial 
model frequencies based on the windowed DFT (WDFT) and 
modified them based on the phasor derivative estimates. In 
this paper, a significantly improved version of the iterative-TFM 
(called the improved iterative-TFM, I2TFM) is proposed to 
achieve two excellent properties. The first one is the strong 
harmonic suppression. Low-order harmonics are considered in 
the signal model to achieve a notch filter effect around these 
harmonic frequencies. Also, a window function is adopted to 
weight the samples for high-order harmonic suppression. The 
second one is the accurate selection of model frequencies. 
Systematic errors of the I2TFM are analyzed first. It is found 
that the key to high estimation accuracy is to select model 
frequencies as accurately as possible. The I2TFM uses the 
three-point interpolated DFT (IpDFT) [18] to accurately find 
initial model frequencies, and iteratively modifies them by 
frequency estimates. As a result, high accuracy is achieved in 
phasor and frequency estimation. Unlike the fast-TFM, a static 
harmonic phasor model is used in the I2TFM, which makes the 
model matrix significantly reduced. Besides, only three 
iterations are needed to modify model frequencies. Thus, the 
computation time is short enough to meet high reporting rate 
PMU requirements. Because the observation window is quite 
short, the reporting latency is also short. 

II. INTRODUCTION OF THE I2TFM 

In this section, the I2TFM is introduced. Firstly, the signal 
model is founded. Then, the least square method for phasor 
derivative estimation is proposed. Next, systematic errors of 
the proposed method are analyzed, and the key to high 
estimation accuracy is pointed out. Afterwards, the approach 
for accurate model frequency selection is proposed. Finally, the 

implementation steps of the proposed method are 
summarized. 

A. Signal Model 

As stated in section I, when an SSO occurs, a subsynchronous 
interharmonic and a supersynchronous interharmonic will be 
present in voltages/currents. Harmonics can also be present, 
especially in currents. In this way, the signal model can be 
designed as follows. 

 

where Re{·} denotes the operation of picking the real part of 
its argument; a1(t), asub(t), asup(t) and ah, with h = 2,...,H, are 
the amplitudes of fundamental, subsynchronous 
interharmonic, supersynchronous interharmonic and hth 
harmonic, respectively; φ1(t), φsub(t), φsup(t) and φh, with h = 
2,...,H, are the phases of fundamental, subsynchronous 
interharmonic, supersynchronous interharmonic and hth 
harmonic components, respectively; and f, fsub and fsup are the 
frequencies of fundamental, subsynchronous interharmonic 
and supersynchronous interharmonic, respectively. Please 
note that the harmonic amplitudes and phases are assumed as 
static values. Thus, the model matrix (see (6)) can be 
significantly reduced because of the simplified model on 
harmonics, which are assumed dynamic in [16]. Only low-order 
harmonics are considered in the signal model. High-order 
harmonics are suppressed by adopting a window function (see 
(7)). The computational complexity will be significantly 
reduced too. The sub- and supersynchronous interharmonic 
phasors are defined as 

 

According to the IEEE standard C37.118.1-2011 [19], a 
fundamental phasor (synchrophasor) is defined as a phasor 
referred to the nominal fundamental frequency f0, which is 
given by 

  (3) 

where   is the so called the raw 

fundamental phasor. Similarly,  is defined as the 
hth harmonic phasor. The Taylor expansion model is used to 
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describe raw dynamic fundamental phasor [20], which is given 
by 

where p1,k is the kth derivative of the phasor p1(t) at t = 0, and 
Tw is the length of the observation window. Interharmonic 
phasors psub(t) and psup(t) can also be modelled based on the 
Taylor series, and is truncated to the Lth and Zth order, 
respectively. Please note that the Taylor model for 
fundamental and interharmonics can be truncated to different 
orders of K, L and Z. In this way, (1) can be approximately 
expressed as 

 

B. Least Square Method 

Assume (1) is sampled at sampling rate fs = f0N0, where N0 is 
the sample number in one nominal cycle; and Nw samples are 

obtained in the observation window  . Please note 
that in order to make t = 0 at the center of the observation 

window, Nw should be an odd number.  
is the integer cycle of the observation window, where b·c 
denotes the operation of selecting the closest integer of its 
argument. After sampling, (5) can be rearranged as 

 

 

where p ∈ C(K+L+Z+3)+(H−1) is a column vector consisting of the 
phasor derivatives p1,k, psub,l, psup,z and harmonic phasor ph; p* 

∈ C(K+L+Z+3)+(H−1) is the conjugate column vector of p;

  is a matrix consisting of 

Nw samples of bases  ,   and 
ej2πhft; ψ  ∈ CNw×[(K+L+Z+3)+(H−1)] is the conjugate matrix of ψ; 
and s ∈ RNw is a column vector with Nw samples of s(t). 

The least square method can be used to estimate the matrix 
P (thus interharmonic and fundamental derivatives), and a 
window function is adopted to suppress higher order harmonic 
interferences, which is given by 

where W is a diagonal matrix generated by the window 
function, and H denotes the operation of Hermitian. In this 
paper, the fourth-order Kaiser window is adopted because of 
its good passband and stopband performances [21]. 

Accordingly, the zeroth-order phasor derivatives are the 
interharmonic phasors and raw fundamental phasor estimates, 
and the fundamental phasor can be obtained according to (3). 
According to [22], the subsynchronous interharmonic 
frequency can be estimated based on the phasor derivative 
estimates, which is given by 

  (9) 

where Im{·} denotes the operation of picking the imaginary 
part of its argument; and ∗ denotes the conjugate operator. 
Similarly, supersynchronous interharmonic and fundamental 

 

Fig. 1. Frequency response of the equivalent filter for psub,0 estimation. Model 
frequencies are set at f = 50 Hz, fsub = 25 Hz and fsup = 75 Hz. c = 8 is selected 
for illustration. (b) for frequency response around f = 25 Hz; (c) for frequency 
response around f = 50 Hz; and (d) for frequency response around f = 75 Hz. 

frequencies can be estimated like (9). Fundamental rate of 
change of frequency (ROCOF) can be estimated by [22] 

 
(10) 

C. Key to High Estimation Accuracy 

This section analyzes the systematic error of the I2TFM 
theoretically. Then the key to high accuracy is pointed out. 
Generally, the I2TFM can be seen as a bank of finite-
impulseresponse filters for phasor derivative estimation. For 
example, the equivalent filter hsub(n) (with n = 0,..,Nw−1) for 
psub,0 estimation is the time-inverse version of the 
corresponding row of matrix (ΨHWHWΨ)−1ΨHWHW [21]. 
Assume the frequency response of filter hsub(n) is Hsub(f). 
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Under steady-state conditions, the total vector error (TVE) 
upper bound of the equivalent filter is (see Appendix A) 

 

where   and   are the 
ratios of fundamental, supersynchronous interharmonic and 
hth harmonic magnitudes to subsynchronous interharmonic 
magnitude, respectively. Please note that under steady-state 
conditions, the sub-/supersynchronous interharmonic and raw 
fundamental phasors are static values. 

From Appendix A and (11), we can see that the 
subsynchronous interharmonic TVE (or systematic error) of the 
proposed estimator is affected by two factors: 1) passband 
performances, which are mainly determined by the passband 
gain Hsub(fsub); and 2) stopband performances, which mainly 
depend on the stopband gain, i.e., Hsub(−fsub), Hsub(f), Hsub(−f), 
etc. 

In practice, the actual sub-/supersynchronous interharmonic 
and fundamental frequencies are unknown. Thus, the model 

 

Fig. 2. Frequency estimates at each iteration. 10% sub- and supersynchronous 
interharmonics are added to a pure sine signal. fsub = 40 Hz, f = 49.3 Hz, fsup = 
60 Hz, K = 2, L = Z = 1 and c = 8 are selected for illustration. The initial model 
frequencies are placed at the zeroth iteration. The red continuous lines denote 
the actual frequencies. 

frequencies used to generate matrix Ψ may be not equal to the 
actual ones. According to Fig. 1(b) and (A5), when the actual 
subsynchronous interharmonic frequency is close to the model 
frequency, Hsub(fsub) → 1. When the actual supersynchronous 
interharmonic and fundamental frequencies are close to the 
corresponding model frequencies, Hsub(fsup) → 0, Hsub(f) → 0 
(see Fig. 1(c), (d) and (A5)). In addition, the frequency 
responses around negative model frequencies and harmonic 
frequencies have the same performances, e.g., Hsub(−fsub) → 0. 
In this case,  (or systematic error) → 0. Thus, the key 
to high estimation accuracy is to select model frequencies as 

accurately as possible. The closer the model frequencies are to 
the actual ones, the more ideal the filter’s performances are. 

D. Initial Model Frequency Selection and Modification 

At first, the Hanning window-based three-point IpDFT (see 
Appendix B) is used to estimate fundamental phasor and 
frequency [18]. Obviously, the three-point IpDFT is more 
accurate than the WDFT used in [17], and is more robust to 
interharmonic interferences than the two-point IpDFT. In 
addition, the three-point IpDFT is much lighter than the 
zeropadding DFT used in [16]. 

Then, these estimates are used to generate the fundamental 
and remove it from the original signal. Next, sub- and 
supersynchronous interharmonic frequencies are estimated by 
the Hanning window-based three-point IpDFT. Similarly, the 
three-point IpDFT is more robust to residual fundamental 
interferences than the two-point IpDFT. 

Please note that these initial model frequencies have errors 
because of the unavoidable interferences from other 
components. They are iteratively modified by the frequency 
estimates. At first, the initial model frequencies are used to 
generate matrix Ψ and get phasor derivative estimates. Then, 
these phasor derivative estimates are used to estimate 
frequencies according to (9). Finally, model frequencies are set 
equal to these frequency estimates and generate matrix Ψ. 
Iterations of the last two steps are needed to get accurate 
model frequency estimates. The number of iterations should 
be selected as a tradeoff between the accuracy and 
computations. Through a large number of simulations, we can 
conclude that only three iterations are needed to get a high 
accuracy (see Fig. 2). Moreover, the computation time will be 
short because of this small number of iterations. 

E. Implementation Steps 

The implementation steps of the I2TFM are summarized in 
TABLE I. The proposed method is organized into three parts: 1) 
initialization; 2) initial model frequency selection and 
modification; and 3) interharmonic and fundamental 
parameter estimation. Please note that steps 5 and 6 
correspond to the first iteration, and step 7 denotes the second 
and third iteration for model frequency modification. 

TABLE I 
IMPLEMENTATION STEPS OF THE I2TFM. 

1). Initialization 

1. Input data s(n) 
2. Initialize parameters H, K, L, Z and threshold q 
2). Initial model frequency selection and modification 
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1. Obtain fˆ and pˆ1 based on the three-point IpDFT 

 √  ˆ t} 
2. Generate estimated fundamental signal sˆ1 = 2Re{pˆ1ej2πf1 
3. Remove sˆ1 from the original one sr(n) = s(n) − sˆ1(n) 

4. Use the three-point IpDFT to obtain fˆsub and fˆsup (see Appendix B) 

5. Use fˆ, fˆsub and fˆsup to generate matrix Ψ for the I2TFM 

6. Obtain fˆ, fˆsub and fˆsup according to (9) 
7. Do step 5 and 6 two times for another 2 iterations. 
3). Interharmonic and fundamental phasor estimations 

1. Again, use fˆ, fˆsub and fˆsup to generate matrix Ψ for the I2TFM 

2. Obtain pˆ1, fˆ, ROCOFˆ , xˆ1, pˆsub, fˆsub, pˆsup and fˆsup according to 
(8), (9) and (3) 

III. COMPUTATIONAL BURDEN, REPORTING RATE AND LATENCY 

The PMU reporting rate is mainly determined by the 
computation time of its phasor estimation algorithm. In China, 
the PMU reporting rate (RR) is generally 50 frames per second 
(fps). Thus, PMU computation time needs to be smaller than 
1/50 s. In TABLE II, computations of the I2TFM in different steps 
are listed. As shown, the main computations of the I2TFM are 
in step 6, part 2) and step 2, part 3), i.e., in matrix pseudo-
inversion and phasor estimation. Assuming fs = 2000 Hz, K = 2, 
L = Z = 1 and H = 5, then the total floatingpoint operations are 
5245107 and 5875931 for c = 8 and 9 cycles, respectively. 

Texas Instruments Inc. provides a floating-point digital signal 
processor (DSP) TMS320C6713B with a 200-MHz clock rate 
[23]. It has an acceptable price and can perform up to 1200 
million floating-point operations per second (MFLOPS). If it is 
used in PMUs, the computation time will be 4.37 and 4.90 ms 
for an eight- and nine-cycle observation window, respectively. 
Obviously, they are much shorter than the upper bound (20 ms) 
for RR=50 fps. Moreover, the I2TFM can even be used for PMUs 
with the highest reporting rate of 100 fps [19], where the 
computation time needs to be shorter than 10 ms. 

TABLE II 
COMPUTATIONS OF THE I2TFM. γ = 2(K + L + Z + 3) + 2(H − 1) IS USED FOR 

EXPRESSION SIMPLIFICATION. THE LU DECOMPOSITION -BASED METHOD IS USED FOR 

MATRIX INVERSION. 

Part Step 
Computation Type 

cos, sin, ×, ÷ +, − 
2) 1 4Nw 4(Nw − 1) 

2 4Nw 0 
3 0 Nw 
4 8cNw 4c(Nw − 1) 
5 [12 + 2(K + L + Z) + 3H]Nw 0 

6 
(16 + 8γ2)Nw+ 

20 3 + 2γ2 − 2γ − 4 γ 
 3 3 

(4γ2 − 2γ + 12)Nw 
+γ3 + γ2 − 8γ − 8 

3) 

1 [12 + 2(K + L + Z) + 3H]Nw 0 

2 
(22 + 8γ2)Nw+ 

20 3 + 2γ2 − 2γ − 4 γ 
 3 3 

(4γ2 − 2γ + 18)Nw 
+γ3 + γ2 − 8γ − 14 

According to the IEEE standard [19], PMU latency is mainly 
determined by its observation window and computation time 
Tc. Because the I2TFM obtains phasor derivative estimates at 
its center window, its time delay is equal to half of the 

observation window, i.e.,  w. Then the total latency is 

. When an SSO occurs, it is expected to be identified 
as soon as possible. If the same parameters in section III are 
used, then the latency will be 84.37 and 94.90 ms for eightand 
nine-cycle observation windows, respectively. Obviously, they 
are much shorter than the latency of the method given in [1], 
which is longer than 500 ms. In the new IEEE standard [24], the 
reference estimator for M class PMUs is about nine cycles long 
(for RR=50 fps). Thus, the eight-cycle I2TFM’s latency is also 
shorter than the reference estimator. 

IV. ON THE INTERHARMONIC DETECTION THRESHOLD q AND DETECTION 

PROBABILITY 

In this paper, the interharmonic detection threshold q is set 
to 3% of the fundamental. When such a threshold is used, the 
detection probability for interharmonics with different 
magnitudes are different. A simulation test is done to count the 
detection probability. We assume the signal include the 
fundamental, subsynchronous interharmonic and 
supersynchronous interharmonic components. The 
fundamental frequency are set to the nominal value. The 
subsynchronous interharmonic frequency is set from 10 to 40 
Hz in step of 1 Hz. Accordingly, the supersynchronous 
interharmonic frequency is set from 90 to 60 Hz in step of -1 
Hz. The sub- and supersynchronous interharmonic magnitudes 
can be different, but we set them to the same value (from 4% 
to 150% of the fundamental in step of 1%) for better clarity. For 
a certain interharmonic frequency and magnitude, the initial 
phases of the three components are all randomly selected 
within [0, 2π) rad in 200 repeated runs. 

In Fig. 3, the detection probability of the I2TFM for 
interharmonics with different magnitudes are shown. For c = 8, 
only when the interharmonic magnitudes are 4% of the 
fundamental, the detection probability is a bit smaller than 
100%, i.e., 99.56%. In other conditions, the detection 
probabilities are all 100%. For a longer observation window (c 
= 9), the interharmonics can always be detected successfully. 
Such results show the I2TFM has good performances on 
interharmonic detection. 
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Fig. 3. Detection probability of the I2TFM for interharmonics with different 
magnitudes. The sub- and supersynchronous interharmonic magnitudes are 
both expressed as % of the fundamental ([4%, 150%]). 

V. PERFORMANCE TESTS 

In this section, several simulation tests and a practical 
example are carried out for the I2TFM performance evaluation. 
Basic performances and robustness to various uncertainty 
contributions, such as fundamental frequency deviation, 
interharmonic magnitude modulation, interharmonic 
frequency ramp and harmonic distortion, are tested in this 
paper. Other interharmonic parameter estimators can have 
large errors, especially when the two interharmonics have 
frequencies of 40 and 60 Hz. Thus, no other estimators are 
used to compare performances with the I2TFM. In order to 
demonstrate the real benefit of the I2TFM, a practical example 
is taken. The I2TFM parameters are set the same as those in 
section III. The phase of each component is set at 0 rad. The 
IEEE standard requirements on an out-of-band interference 
test are referred for fundamental phasor measurement [19], 
[24]. However, as far as we know, there are no references on 
interharmonic parameter measurement requirements. Each 
test are simulated over at least 1000 runs. 

A. Basic Performance Test 

This test is to evaluate the I2TFM’s performance under 
normal conditions. The sub- and supersynchronous 
interharmonic magnitudes are the same values, which are set 
from 5% to 150% of the fundamental in steps of 5%. The 
subsynchronous interharmonic frequency is varied from 10 to 
40 Hz in step of 1 Hz. Thus, the supersynchronous 
interharmonic frequency is set accordingly from 90 to 60 Hz in 
steps of 1 Hz. Please note that the sub-/supersynchronous 
interharmonic magnitude can be very great, sometimes even 
greater than the fundamental magnitude [5]. In this paper, 
interharmonic magnitudes are set at up to 150% of the 
fundamental. 

The maximum TVE, frequency error (FE) (all in absolute 
values in the following) and ROCOF error (RFE) (all in absolute 

values in the following) are shown in TABLE III. We can see that 
all errors are null. This is because the interharmonic 

TABLE III 
MAXIMUM TVES, FES AND RFES IN ALL CASES (NO NOISE) 

Comp. Parameter 
basic test 

c =8 c =9 

sub. 
max. TVE [%] 0.00 0.00 
max. FE [Hz] 0.00 0.00 

sup. 
max. TVE [%] 0.00 0.00 
max. FE [Hz] 0.00 0.00 

fund. 
max. TVE [%] 0.00 0.00 
max. FE [Hz] 0.00 0.00 

max. RFE [Hz/s] 0.00 0.00 
and fundamental model frequencies are modified by three 
iterations, and thus are almost equal to the actual ones. In this 
case, ideal performances can be obtained. The conclusion 
drawn in section II-D is well verified. 

In another test, additive wideband noise with a signal-
tonoise ratio SNR=70 dB is also added to the signal. Obviously, 
the maximum errors are obtained when fsub = 40 Hz and fsup = 
60. The maximum TVEs, FEs and RFEs under different 
interharmonic magnitude conditions are shown in Fig. 
4. When c = 8, the maximum TVEs and FEs of the sub- 
/supersynchronous interharmonic are well below 0.3% and 15 
mHz, respectively. Thus, the I2TFM can accurately estimate 
interharmonic phasors and frequencies in wide magnitude and 
frequency bands, i.e., interharmonic magnitudes within [5%, 
150%] of the fundamental, and subsynchronous interharmonic 
frequency within [10, 40] Hz. Because the interferences from 
wideband noise are larger in small magnitude interharmonics, 
they will have larger errors in phasor and frequency estimation. 
As for fundamental parameter estimation, the I2TFM can meet 
the IEEE standard requirements on TVE (1.3%) and FE (10 mHz) 
by using an eight-cycle window (RFE limit is suspended in the 
new IEEE standard [24]). 

More importantly, the nine-cycle I2TFM is generally more 
accurate than the eight-cycle window-based method, i.e., the 
estimation errors of all parameters can be reduced over a 
longer observation window. 

It is interesting that, with the increase of sub- and 
supersynchronous interharmonic magnitudes, the 
interharmonic TVEs and FEs become smaller, whereas the 
fundamental TVE, FE and RFE become larger. This is because 
when the interharmonic magnitudes increase, the initial 
interharmonic frequencies can be determined more accurately, 
whereas the interharmonic interferences on fundamental 
parameter estimation become larger. 

B. Robustness to Various Uncertainty Contributions 

In an SSO, there can be other uncertainty contributions to 
interharmonic and fundamental parameter estimation, such as 
fundamental frequency deviation, interharmonic amplitude 
modulations, interharmonic frequency ramp and harmonic 
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distortion. In this part, several test cases given below are 
considered to evaluate the I2TFM’s performances. The 
parameters without specification are selected the same as the 
second test of section V-A, i.e., 70-dB wideband noise is also 
considered. 

 

Fig. 4. Maximum TVEs, FEs and RFEs under different interharmonic magnitude 
conditions (SNR=70 dB). The sub- and supersynchronous interharmonic 
magnitudes are expressed as percentages of the fundamental. 

a) When an SSO occurs, the fundamental frequency 
maydeviate from the nominal value. For example, in a severe 
SSO event, the frequency of the western China grid dropped to 
49.91 Hz [9]. In [1], a 0.12-Hz deviation is considered for 
simulation. In this paper, we consider a maximum deviation of 
0.7 Hz (f = 49.3 Hz) for the severest conditions in China. 

b) In an SSO, interharmonic amplitudes can have modula-
tions. In this part, the modulation levels and frequencies of the 
two interharmonic components are both set at 15% of the 
interharmonic and 0.15 Hz as an example. 

c) Interharmonic frequencies can have linear ramps in 
anSSO. In this paper, the ramp rate is set at 0.02 Hz/s. In order 
to simulate the worst condition, the subsynchronous 
interharmonic frequency is set from 39 to 40 Hz in ramp rate 
of 0.02 Hz/s, and the supersynchronous interharmonic 
frequency is accordingly from 61 to 60 Hz in ramp rate of −0.02 
Hz/s. 

d) Harmonics can also be present in a voltage/current 

signal.In this part, a signal with 5% third harmonic and 3% fifth 
harmonic is used for test. 

The maximum TVEs, FEs and RFEs under the above test cases 
are shown in TABLE IV. By comparing with Fig. 4, a series of 
conclusions can be drawn. Fundamental frequency deviation 
and interharmonic frequency ramp can increase interharmonic 
TVEs and FEs. By contrast, interharmonic amplitude 
modulation and harmonic distortion have little impact on the 
interharmonic parameter estimation. In all cases, the 
maximum TVEs and FEs of both interharmonics are always 
below 0.6% and 25 mHz, respectively. Regarding fundamental 
parameter estimation, all these four disturbances have little 
contribution to its uncertainty. The TVEs and FEs can always 
fully meet the corresponding requirements of the IEEE 
standard. For all uncertainty contributions, the estimation 
errors of all parameters can also be reduced over a longer data 
window. 

 
C. A Practical Example 

In this section, we use a practical example to demonstrate 
the benefits of the proposed method. A series of current 
sampling data recorded by a fault recorder in an SSO event are 
used for the test, which are shown in Fig. 5(a). Its sampling 
frequency is 1200 Hz. From its spectrum (see Fig. 5(b)), we can 
see that a subsynchronous interharmonic (fsub ≈ 23 Hz) and a 
supersynchronous interharmonic (fsup ≈ 77 Hz) are present in 
the current signal. Their amplitudes are both about 5% of the 
fundamental. 

Because the actual values of all parameters are unknown, 
the Hanning-based three-point IpDFT is used to compare the 
performance with the I2TFM. The observation windows of the 
two methods are both eight cycles long. From Fig. 6 and 7, we 
can see that the sub- and supersynchronous interharmonics 

TABLE IV RESULTS UNDER DIFFERENT TEST CONDITIONS. SNR=70 dB 

Comp. Parameter 
a) fund. freq. dev. b) int. AM int. freq. ramp harm. dist. 
=8 =9 =8 =9 =8 =9 =8 =9 

sub. 
max. TVE [%] 0.45 0.21 0.33 0.11 0.46 0.21 0.33 0.19 

max. FE [mHz] 19 12 13 9.1 20 11 14 10 

sup. 
max. TVE [%] 0.29 0.15 0.28 0.14 0.52 0.20 0.34 0.14 

max. FE [mHz] 16 7.7 13 11 20 15 21 10 

fund. 

max. TVE [%] 0.16 0.06 0.18 0.13 0.23 0.11 0.13 0.06 
max. FE [mHz] 2.8 1.1 1.6 0.7 1.5 0.8 1.3 0.8 

max. RFE [Hz/s] 0.13 0.04 0.12 0.04 0.12 0.05 0.11 0.06 
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can be successively detected and monitored by the I2TFM. 
Moreover, the I2TFM’s interharmonic amplitude and frequency 
estimates are smoother, whereas the IpDFT’s estimates are 
rough and oscillating due to the interferences from 
fundamental and other components. The mean signalto-noise 
(i.e., original signal to the residual) ratios of the I2TFM and 
IpDFT is 90.85 dB and 24.34 dB, repectively. Such evidence 
indicates that the I2TFM is much more accurate than the IpDFT. 

 

Fig. 5. Current sampling data ((a)) recorded in an SSO event and its spectrum 
(b). 

 

Fig. 6. Sub- and supersynchronous interharmonic amplitude estimates of the 
I2TFM and IpDFT. 

 

Fig. 7. Sub- and supersynchronous interharmonic frequency estimates of the 
I2TFM and IpDFT. 

VI. CONCLUSION 

In this paper, an interharmonic phasor and frequency 
estimator is proposed for SSO identification and monitoring. 
Through systematic error analysis, we find that the key to high 
accuracy is to select model frequencies as accurately as 
possible. Based on the three-point IpDFT and an iteration 
scheme, the model frequencies are selected and iteratively 
modified for high accuracy. Simulation tests show that, by 
using an eight-cycle observation window, the maximum 
interharmnonic TVE and FE are always smaller than 0.6% and 
25 mHz, respectively. Meanwhile, the computation time is only 
4.37 ms, which can even meet the requirements of the highest 
reporting rate PMUs, i.e., RR=100 fps. The latency is 83.47 ms, 
which is shorter than the IEEE standard reference method for 
M class PMUs. Wideband noise, fundamental frequency 
deviation and interharmonic frequency ramp have the most 
significant impacts on interharmonic parameter estimation, 
whereas these effects can be reduced over a longer window. 
Regarding fundamental parameter estimation, the 
corresponding IEEE standard requirements can always be fully 
met. 

APPENDIX A  

PROOF OF (11) 

Under steady-state conditions, the sub-/supersynchronous 

interharmonic and raw fundamental phasors are all static 

values. In this way, the output of the filter hsub(n) on s(n) can 

be expressed as 

where ∗ denotes the linear convolution. Thus, the TVE of the 

equivalent filter is [25] 

  (A2) 
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shows the stopband responses of the filter; and  , 

  and   are the ratios of the 
subsynchronous interharmonic magnitude to the fundamental, 
supersynchronous interharmonic and hth harmonic 
magnitudes, respectively. Thus, the TVE upper bound is 

 

According to [26], when the model frequencies are equal to 
the actual ones, we can obtain 

 
APPENDIX B BRIEF INTRODUCTION OF THE THREE-POINT IPDFT 

The DFT of s(n) is 

where w(·) is the Hanning window; and m = 0,...,Nw − 1 is the 
bin number. The peak bin is found in bins from 0 to c − 1. If 
the peak magnitude is larger than a threshold q, a 
subsynchronous interharmonic will be considered in the 
signal model. The corresponding bin number is assumed to 
be M. Then a fractional compensation term δ can be 
computed by interpolating three bins M −1, M and M +1, 
which is given by 

  (B2) 

The subsynchronous interharmonic frequency, amplitude 
and phase can be estimated by 

Similarly, the supersynchronous interharmonic frequency can 
be obtained by finding the peak bin in bins from c + 1 to 2c and 
estimating frequency according to (B2) and (B3). Fundamental 
frequency, amplitude and phase can be obtained by finding the 
peak bin in bins from c−1 to c+1 and estimating the 
parameters based on the above equations. 
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