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Abstract. We prove that an embedded cobordism between manifolds with boundary can
be split into a sequence of right product and left product cobordisms, if the codimension of
the embedding is at least two. This is a topological counterpart of the algebraic splitting
theorem for embedded cobordisms of the first author, A. Némethi and A. Ranicki. In the
codimension one case, we provide a slightly weaker statement.

We also give proofs of rearrangement and cancellation theorems for handles of embedded
submanifolds with boundary.

1. Introduction

We investigate the Morse theory of embedded cobordisms of manifolds with bound-
ary. An embedded cobordism (Z,Ω) is a cobordism Ω between two manifolds Σ0

and Σ1 in Z × [0, 1], where Σi = Ω ∩ (Z × {i}) for i = 0, 1. Both Σ0 and Σ1 can
have nonempty boundary, and ∂Ωr(Σ0 ∪ Σ1) can also be nonempty. By a small
perturbation it can be arranged that the projection map F : Z × [0, 1] → [0, 1]
restricts to a Morse function f on Ω.

An instance of an embedded cobordism is when there are embeddings of two
closed (n − 2)-dimensional manifolds N0 and N1 into Z = Sn. That is, N0 and
N1 are two non-spherical links in Sn, there is a cobordism between the two links
and Σ0,Σ1 are Seifert surfaces for N0 and N1 respectively. A Pontrjagin–Thom
construction guarantees the existence of Ω with the properties above. Morse theory
can be used to study the relation between Seifert forms associated with Σ0 and Σ1;
see [BNR12a].

Morse theory for manifolds with boundary was studied in the 1970s, by [Bra74]
and [Haj81] independently. Recently, it was rediscovered by [KM07] in the context
of Floer theory, and since then many articles about Morse theory for manifolds
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with boundary have appeared; see for instance [Lau11, Blo12, BNR12b]. A re-
cent application of it is the rapidly developing theory of bordered Heegaard Floer
homology; compare [LOT11].

Morse functions on manifolds with boundary have three types of critical point:
interior, boundary stable and boundary unstable. A boundary critical point is
stable or unstable according to whether the ascending or descending submanifold
of the critical point lies in the boundary (see Definition 2.7 for more details).

The main result of this paper is the following theorem which shows that the
critical points of an embedded cobordism of manifolds with boundary can be split
i.e. pushed to the boundary, where they become two boundary critical points,
when the codimension is at least two. Thus the cobordism can be expressed as
a cobordism with only boundary critical points. This theorem is the topological
counterpart of [BNR12a, Main Theorem 1]. As in [BNR12b], boundary stable
critical points correspond to the addition of left half-handles and boundary unstable
critical points correspond to the addition of right half-handles.

Theorem 6.12 (Global Handle Splitting Theorem). Let (Z,Ω) be an embedded
cobordism such that Ω ⊂ Z × [0, 1] has codimension 2 or more. Suppose that
Ω, Σ0 and Σ1 have no closed connected components. Then there exists a map
F : Z×[0, 1] → [0, 1], which is homotopic through submersions (see Definition 2.15)
to the projection onto the second factor, such that Ω can be expressed as a union:

Ω = Ω−1/2 ∪ Ω0 ∪ Ω1/2 ∪ Ω1 ∪ Ω3/2 ∪ · · · ∪ Ωn+1/2 ∪ Ωn+1,

where Ωi = Ω ∩ F−1([(2i + 1)/(2n + 4), (2i + 2)/(2n + 4)]) and

• Ω−1/2 is a cobordism given by a sequence of index 0 handle attachments;
• if i ∈ {0, . . . , n}, then Ωi is a right product cobordism given by a sequence
of elementary index i right product cobordisms;

• if i + 1/2 ∈ {1, . . . , n + 1}, then Ωi is a left product cobordism given by a
sequence of elementary index i+ 1/2 left product cobordisms;

• Ωn+1 is a cobordism given by a sequence of index n+1 handle attachments.

We refer to Definition 2.11 for a simple explanation of elementary index i right/left
product cobordisms. A more detailed description is given in [BNR12b, Section 2],
or [Haj81, Blo12].

The case of codimension one is stated in Theorem 6.13. Due to problems with
rearrangement of handles in codimension one, the results in codimension one are
slightly weaker, for example we were unable to guarantee that index 1 and n handles
split (see Proposition 6.11). Nevertheless the flavour of the result is similar to the
result in higher codimensions stated above.

Remark 1.1. Note that Theorem 6.12 is not just a corollary of the rearrangement
theorem (Theorem 4.7 below) and the embedded analogue of the Thom-Milnor
theorem that Ω can be expressed as a union Ω′

1 ∪ . . .Ω
′

k, where Ω′

k is a cobordism
corresponding to a single critical point (interior or boundary).

The proof of Theorem 6.12 is more difficult, due to the requirement that all
the interior critical points of non-extremal indices are absent. Being able to push
interior critical points of non-extremal indices to the boundary is important when
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one wants to compare the Seifert forms as in [BNR12a]. Further explanation is
given after the statement of Theorem 6.13.

We also give results detailing when critical points of Morse functions on em-
bedded manifolds with boundary can be rearranged and cancelled. These folklore
results have been stated in the literature in the case of embedded manifolds with
empty boundary, but we could not find detailed proofs.

The statements and proofs are new in the case of embedded manifolds with
boundary. The rough idea is to adapt arguments of Milnor for the absolute case of
closed manifolds, from [Mil63, Mil65], and to understand ascending and descending
membranes (Definition 3.7), which appeared in the papers of B. Perron [Per75]
and R. Sharpe [Sha88]. Intersections involving these membranes can obstruct the
rearrangement and cancellation of critical points of Morse functions on embedded
manifolds, in cases when the operation could be performed in the absolute setting.

In order to state our rearrangement theorem we use the following definition.

Definition 1.2. A configuration Ξ of the critical points of an embedded cobordism
(Z,Ω) is an assignment of a value Ξ(zi) ∈ (0, 1) to each critical point zi of f .

An admissible configuration is a configuration satisfying the following conditions:

(A1) if z, w are critical points with indices k, l with k < l, then Ξ(z) < Ξ(w);
(A2) if z, w have the same index k and if z is boundary stable and w is boundary

unstable, then Ξ(z) < Ξ(w).

Next we state our rearrangement theorem, which in the case that the codi-
mension is at least two, essentially says that any admissible configuration can be
realised.

Theorem 4.7 (Global Rearrangement Theorem). Suppose (Z,Ω) is a cobordism.
Given an admissible configuration Ξ of the critical points of f , if codim(Ω ⊂ Z ×
[0, 1]) > 2, there exists a function G : Z × [0, 1] → [0, 1] without critical points,
homotopic through submersions to F (Definition 2.15), which restricts to a Morse
function g : Ω → [0, 1], such that g restricted to the critical points agrees with Ξ
(the type and index of each critical point is preserved).

Results on rearrangement in codimension one are given in Theorem 4.9.
The cancellation theorem is as follows; here there are no codimension restrictions.

Theorem 5.1 (Elementary Cancellation Theorem). Let (Z,Ω) be a cobordism. Let
z and w be critical points of f of indices k and k + 1, of the same type (i.e. either
both interior, or both boundary stable, or both boundary unstable). Suppose that ξ is
an embedded gradient-like vector field, which is Morse–Smale (Definition 4.3), and
that there exists a single trajectory γ of ξ connecting z with w. If z, w are interior
critical points, we require that γ ⊂ Ω. If z, w are boundary critical points, then
we require that γ ⊂ Y . Furthermore, suppose that there are no broken trajectories
between z and w.

Then, for any neighbourhood U of γ, there exists a vector field ξ′ on Z × [0, 1],
agreeing with ξ away from U , non-vanishing on U , and a function F ′ : Z× [0, 1] →
[0, 1] such that f ′ = F ′|Ω has the same critical points as f with the exception of z
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and w, which are regular points of f ′, and such that ξ′ is an embedded gradient-like
vector field with respect to F ′ (Definition 3.2).

Organisation of the paper

Section 2 reviews Morse theory for manifolds with boundary and gives the defi-
nitions and terminology that we will use throughout the paper. The Embedded
Morse Lemma 2.17 is also proven.

Section 3 introduces the notion of embedded gradient-like vector fields, defines
membranes, and develops embedded Morse theory. Section 3.1 shows how to re-
cover a Morse function from an embedded gradient-like vector field. The Embedded
Isotopy Lemma 3.12 is proved in Section 3.2.

Section 4 deals with rearrangement of critical points. Section 4.1 proves the Ele-
mentary Rearrangement Theorem 4.1, Section 4.2 looks at the dimensions of trans-
verse intersections of membranes, and Section 4.3 gives the Global Rearrangement
Theorem 4.7.

Section 5 looks at cancellation of critical points; the Elementary Cancellation
Theorem 5.1 is proven in Section 5.1.

Section 6 proves our main result, concerning the pushing of interior critical points
to the boundary, splitting a handle into two half-handles. The Elementary Handle
Splitting Theorem 6.1 is proven in Section 6.1 and the Global Handle Splitting
Theorem 6.12 is proven in Section 6.3.
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2. Review of Morse theory for manifolds with boundary

2.1. The absolute case

We begin by recalling various definitions from [BNR12b] for absolute cobordisms,
i.e. we are not considering cobordism of embedded submanifolds yet.

Definition 2.1. An (n+ 1)-dimensional cobordism of manifolds with boundary is
a triple (Ω,Σ0,Σ1), where Ω is a manifold with boundary, dimΩ = n+ 1, Σ0 and
Σ1 are codimension 0 submanifolds of ∂Ω and

• the boundary of Ω decomposes as a union ∂Ω = Σ0 ∪ Y ∪ Σ1 for some
n-dimensional manifold with boundary Y ;

• we have ∂Σ0 = Σ0 ∩ Y =: N0, ∂Σ1 = Σ1 ∩ Y =: N1 and ∂Y = N0 ∪N1. In
other words, Y is a cobordism between N0 and N1.

A schematic diagram is shown in Figure 1.
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ΩΣ0 Σ1

N0 N1Y

Figure 1. An embedded cobordism.

In many cases it is useful to assume that Ω is manifold with corners, i.e. near
N0 ∪N1 it is locally modelled on R

2
>0×R

n−1. Thus, tubular neighbourhoods of Y ,
Σ0 and Σ1 are diffeomorphic to Y × [0, 1), Σ0 × [0, 1) and Σ1 × [0, 1) respectively.

Definition 2.2. A cobordism (Ω,Σ0,Σ1) is a right product if Ω ∼= Σ1 × [0, 1]. It is
called a left product if Ω ∼= Σ0 × [0, 1].

We remark that neither right nor left product cobordisms are necessary trivial.
We now recall a definition from [KM07].

Definition 2.3. Let (Ω,Σ0,Σ1) be a cobordism. A function f : Ω → [0, 1] is called
a Morse function if f−1(0) = Σ0, f

−1(1) = Σ1, all the critical points of f which
lie in the interior Int Ω are nondegenerate (the Hessian matrix is non-singular),
fY := f |Y is a Morse function on Y and, furthermore, for each y ∈ Y such that
df(y) 6= 0 we have

(2.4) ker df(y) 6⊂ TyY.

Remark 2.5. Our notation differs from that of [BNR12b] in two places. First,
we use small f to denote the Morse function on Ω (the capital F is reserved for
another function). Furthermore we write N0 and N1 instead of M0 and M1, since
M is reserved for the membrane: see Definition 3.7 below.

In [KM07] and [BNR12b], condition (2.4) was replaced by a condition on the
gradient of f , so apparently depending on a choice of a metric. The definition that
we use does not involve choosing a Riemannian metric. The next lemma shows
that the two points of view are interchangeable.

Lemma 2.6 (see [BNR12b, Lemma 1.7]). If f satisfies (2.4) at each y ∈ Y , then
there exists a Riemannian metric on Ω such that ∇f is everywhere tangent to Y .

From now on, given a Morse function M we shall assume that there is a Rie-
mannian metric chosen so that ∇f is everywhere tangent to Y .

Let us now consider a critical point z ∈ Ω of f . If z ∈ IntΩ, we shall call it
an interior critical point. If z ∈ Y , then we shall call it a boundary critical point.
Obviously, a boundary critical point is also a critical point of the restriction f |Y .
There are two types of boundary critical points. The classification depends on
whether the flow of ∇f near z repels or attracts in the direction of the normal to
the boundary. More precisely, we have the following definition.
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Definition 2.7. A boundary critical point z is called boundary stable if TzY con-
tains the tangent space at z to the unstable manifold of z. If TzY contains the
tangent space at z to the stable manifold of z, then z is called boundary unstable.

Definition 2.8. The index of a boundary critical point z is the dimension of the
stable manifold of z.

Remark 2.9. If z ∈ Y is a boundary stable critical point of index k, then it is a
critical point of f |Y , but of index k − 1.

The change in the topology of the set f−1([0, x]) as x crosses the critical value
corresponding to a boundary critical point is described in detail in [BNR12b, Sec-
tion 2.4]. See also [Haj81, Blo12].

Proposition 2.10. Let (Ω,Σ0,Σ1) be a cobordism. Assume that there exists a
Morse function f : Ω → [0, 1] such that f has only boundary stable (respectively,
boundary unstable) critical points. Then (Ω,Σ0,Σ1) is a left product cobordism
(respectively, right product cobordism).

Definition 2.11. A cobordism (Ω,Σ0,Σ1) is called an elementary index i right
product cobordism, (respectively an elementary index i left product cobordism) if
there exists a Morse function f : Ω → [0, 1], that has a single critical point, this
critical point has index i and is boundary unstable (respectively boundary stable).

The previous definition is the analogue in the boundary case of a single index i
handle attachment corresponding to an interior critical point. The topological
meaning is explained in detail in [BNR12b, Section 2] and in [Haj81]. We also
refer to [BNR12a] for the study of homological properties of elementary right/left
product cobordisms.

2.2. The embedded case

We shall now set up the notation for the embedded case.

Definition 2.12. A quadruple (Z,Ω,Σ0,Σ1) is called an embedded cobordism if Z
is a closed manifold, (Ω,Σ0,Σ1) is a cobordism and Ω is embedded in Z × [0, 1] in
such a way that Ω ∩ Z × {0} = Σ0 and Ω ∩ Z × {1} = Σ1 and Ω is transverse to
Z × {0, 1}. The codimension of the embedding is the quantity

dimZ − dimΣ0 = dimZ − dimΩ + 1.

An embedded cobordism is nondegenerate if the function F : Z × [0, 1] → [0, 1]
given by projection onto the second factor restricts to a Morse function on Ω.

Every embedded cobordism can be modified by a C2-small perturbation to a
nondegenerate one. From now on we shall assume that all embedded cobordisms
are nondegenerate.

Moreover, whenever we write (Z,Ω) as a cobordism, we understand the whole
structure: the cobordism Ω is actually (Ω,Σ0,Σ1), Y = cl(∂Ωr(Σ0 ∪Σ1)), F : Z ×
[0, 1] → [0, 1] is a function without critical points and f = F |Ω. We will usually
denote m = dimZ and n+ 1 = dimΩ.
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Remark 2.13. The whole theory could be developed in a more general setting,
with Z × [0, 1] replaced by a compact (m+1)-dimensional manifold X, and F also
allowed to have Morse critical points in XrΩ. The special case X = Z × [0, 1] is
more transparent, and making the generalisation is straightforward.

Definition 2.14. Let (Z,Ω) be an embedded cobordism. The function f : Ω →
[0, 1] given by f = F |Ω is called the underlying Morse function.

We shall need one more notion.

Definition 2.15. For a cobordism (Z,Ω) the family Ft of functions from Z ×
[0, 1] → [0, 1] is called a (nondegenerate) homotopy through submersions if:

(i) for any t, Ft(Z × {0}) = 0, Ft(Z × {1}) = 1 and Ft does not have any
critical points on Z × [0, 1];

(ii) there exists a (possibly empty) finite set {t1, . . . , tk} ⊂ (0, 1) such that if
t 6∈ {t1, . . . , tk}, then Ft restricts to a Morse function on Ω.

We will now choose a special metric on Z × [0, 1], which will be used later.

Lemma 2.16. For any two open subsets V ⊂ U ⊂ Z× [0, 1], such that V contains
all the critical points of f and V ⊂ U , and for any Riemannian metric g on U
there exists a Riemannian metric h on Z × [0, 1] such that we have

∇f(x) = ∇F (x) for any x ∈ ΩrU.

Here we understand that ∇f is computed using the metric on Ω induced from the
metric on Z × [0, 1] (recall that f = F |Ω). Furthermore, if y ∈ Y , we may assume
that ∇f(y) ∈ TyY . Finally, the new metric agrees with g on V .

Proof. We split the complement of U into three cases: away from Ω, in ΩrY and
finally in Y .

For each point x ∈ Z× [0, 1]r(U ∪Ω) we choose a ball Bx with centre x, disjoint
from Ω ∪ V and an arbitrary metric hx on Bx.

Now we consider x ∈ Ωr(U ∪ Y ). Let m := dimZ + 1. Choose a ball
Bx which is disjoint from V ∪ Y , such that there is a local coordinate system
(x1, . . . , xk, xk+1, . . . , xm) in Bx, centred on x, in which Ω ∩ Bx = {xk+1 = · · · =
xm = 0}. As Bx does not contain any critical points of f , we may assume that
∂F
∂x1

(z) 6= 0 for all z ∈ Bx; we potentially need to relabel the coordinate system

(and/)or take a smaller ball for Bx.
Let us assume for now that ∂F

∂x1
(z) > 0 for all z ∈ Bx. Choose an m × m

matrix M(z) such that M1j(z) = Mj1(z) = ∂F
∂xj

(z) for j = 1, . . . ,m, with all

other entries chosen so that M(z) is positive definite and depends smoothly on
z. This can be always achieved, since M11 > 0. The matrix M determines a
metric on Bx, with respect to the standard basis {∂/∂xi | i = 1, . . . ,m} for TzZ
induced by the coordinate system. This metric is denoted hx, and using this
metric we have ∇F = (1, 0, . . . , 0) ∈ TzΩ. (If ∂F

∂z < 0 we get a metric such
that ∇F = (−1, 0, . . . , 0).) To see this recall that ∇F is the unique vector field
v such that hx(vz, ·) = dFz ∈ T ∗

z Z. Then observe that for any tangent vector
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[
a1 . . . am

]T
∈ TzZ we have:

[
1 0 . . . 0

]


M11 . . . M1m
... ∗ ∗

Mm1 ∗ ∗






a1
...
am


 =

m∑

i=1

ai
∂F

∂xi
= dF



a1
...
am


 ,

where we have omitted the point z ∈ Z from the notation. By functoriality, ∇f
is the image of the orthogonal projection of ∇F onto TzΩ. In particular, for any
z ∈ Bx ∩ Ω, we have ∇f(z) = ∇F (z).

If x ∈ YrU , we use the same argument to construct a metric hx on a ball Bx,
where we assume that Bx ∩ V = ∅. This time we assume additionally that the
coordinate system on Bx is chosen so that Y = Ω ∩ {xk = 0}. Then we have
∂F
∂xj

(0, . . . , 0) 6= 0 for some j ∈ {1, . . . , k − 1}, for otherwise either y is a critical

point of f , or the condition (2.4) is violated. Then we choose a matrixM(z) on (an
again potentially smaller) Bx, which in turn induces a metric hx on Bx, similarly
to the case above, in such a way that for all z ∈ Bx ∩ Ω we have ∇f(z) = ∇F (z)
and, if additionally z ∈ Y , then ∇f(z) ∈ TzY .

The balls Bx, where x runs through all points in Z × [0, 1]rU , together with
U constitute an open covering of Z × [0, 1], which is compact. Let φU , φx for
x ∈ Z × [0, 1]rU be a partition of unity subordinate to this covering. We define a
metric h = φU · g +

∑
x φx · hx. It has all the desired properties. �

We conclude the section with a standard but fundamental result.

Lemma 2.17 (Embedded Morse lemma). Assume that p ∈ Ω is a critical point
of f of index k. Then there exist local coordinates x1, . . . , xn+1, y1, . . . , ym−n in
Z × [0, 1] centred at p, such that in these coordinates:

F (x1, . . . , xn+1, y1, . . . , ym−n) = −x21−x
2
2−· · ·−x2k+x

2
k+1+ · · ·+x2n+1+y1+F (p),

and such that moreover:

• if p is an interior critical point, then the intersection of Ω with this coordi-
nate system is given by

{y1 = · · · = ym−n = 0};

• if p is a boundary stable critical point, then Ω is given by

(2.18) {y1 = · · · = ym−n = 0} ∩ {x1 > 0};

• if p is a boundary unstable critical point, then Ω is given by

(2.19) {y1 = · · · = ym−n = 0} ∩ {xn+1 > 0}.

Proof. First let us consider the case that p is an interior critical point. The
Morse lemma (see e.g. [Mil63, Lemma 2.2]) says that there exist local coordinates
x1, . . . , xn+1 on an open neighbourhood V ⊂ Ω such that f = F |Ω is equal to
F (0)−x21−x

2
2−· · ·−x2k+x

2
k+1

+ · · ·+x2n+1. Let ỹ1, . . . , ỹm−n be local coordinates
in the normal bundle of V in Z × [0, 1]. Then x1, . . . , xn+1, ỹ1, . . . , ỹm−n form a
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local coordinate system in Z × [0, 1] in a neighbourhood of p. By a linear change
we may assume that ∂F

∂ỹj
= 0 if j > 1. Let us define

y1 := F (x1, . . . , xn+1, ỹ1, . . . , ỹm−n)− (−x21 − x22 − · · ·+ x2k+1 + · · ·+ x2n+1)− F (p)

and yj := ỹj for j = 2, . . . ,m− n. Consider now the map of open neighbourhoods
of Rm+1 given by

Φ: (x1, . . . , xk+1, ỹ1, . . . , ỹm−n) 7→ (x1, . . . , xk+1, y1, y2, . . . , ym−n).

The derivative of Φ at 0 is diagonal and nondegenerate, hence Φ is a local diffeomor-
phism by the inverse function theorem. Furthermore, the set {y1 = · · · = ym−n =
0} is invariant under Φ. The import of these two facts is that (x1, . . . , ym−n)
forms a local coordinate system near p ∈ Z × [0, 1]. In this system Ω is given by
{y1 = · · · = ym−n = 0} and F has the form as described in the statement.

The proof in the case of boundary critical points is analogous. Using [BNR12b,
Lemma 2.6] we find local coordinates on Ω such that (2.18) or (2.19) is satisfied.
Then we extend this coordinate system as in the case of an interior critical point.
We leave filling in further details. �

3. Embedded gradient-like vector fields

We need to develop the theory of embedded gradient-like vector fields in order to
prove our subsequent results on rearrangement, cancellation and splitting.

We will soon introduce a notion of gradient-like vector fields for embedded sub-
manifolds. First let us recall the definition of a gradient-like vector field for mani-
folds with boundary.

Definition 3.1 (Compare [BNR12b, Definition 1.5]). Let (Ω,Σ0,Σ1) be a cobor-
dism, and let f be a Morse function. We shall say that a vector field ξ on Ω is
gradient-like with respect to f , if the following conditions are satisfied:

(a) ξ · f := df(ξ) > 0 away from the set of critical points of f ;
(b) if p is a critical point of f of index k, then there exist local coordinates

x1, . . . , xn+1 in a neighbourhood of p, such that

f(x1, . . . , xn+1) = f(p)− (x21 + · · ·+ x2k) + (x2k+1 + · · · + x2n+1)

and

ξ = (−x1, . . . ,−xk, xk+1, . . . , xn+1) in these coordinates.

(b’) Furthermore, if p is a boundary critical point, then the above coordinate
system can be chosen so that Y = {xj = 0} and Ω = {xj > 0} for some
j ∈ {1, . . . , n + 1}.

(c) The vector field ξ is tangent to Y on all of Y .

Now let us define an analogue for embedded cobordisms. Observe that we cannot
simultaneously assume that ξ · F > 0 away from the critical points of F and that
ξ is everywhere tangent to Ω, because these two conditions are mutually exclusive
if f = F |Ω has critical points. The vector field that we define below has a critical
point at each critical point of f . The following definition comes from R. Sharpe’s
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paper [Sha88, page 67] and turns out to provide a very useful analytic language for
studying embedded cobordisms.

Definition 3.2. Let (Z,Ω) be an embedded cobordism, with F : Z× [0, 1] → [0, 1]
the projection and the underlying Morse function f . A vector field ξ on Z × [0, 1]
is an embedded gradient-like vector field with respect to F if:

(a) for any x ∈ Z × [0, 1] which is not a critical point of f , we have (ξ · F )x =
dFx(ξx) > 0;

(b) for any x ∈ Ω we have ξx ∈ Tx(Ω), and for any y ∈ Y we have ξy ∈ TyY ;
(c) for any p ∈ Ω such that df(p) = 0, there exists an open subset U ⊂ Z×[0, 1]

with a choice of local coordinates (x1, . . . , xn+1, y1, . . . , ym−n) centred at p
such that U ∩ Ω is given by {y1 = · · · = ym−n = 0} (if p is a boundary
critical point, than U ∩Ω = {x1 > 0, y1 = . . . = ym−n = 0} and Y = {x1 =
y1 = . . . = ym−n = 0}), ξ in these local coordinates has the form

(3.3) (−x1,−x2, . . . ,−xk, xk+1, . . . , xn+1, (y
2
1 + · · ·+ y2m−n), 0, . . . , 0)

and

(3.4) F (x1, . . . , ym−n) = F (p)− x21 − · · · − x2k + x2k+1 + · · ·+ x2n+1 + y1.

Note that

dF (ξ) =

n+1∑

i=1

2x2i +

m−n∑

ℓ=1

y2ℓ

so that (a) and (c) are consistent.
We have the following result.

Proposition 3.5. For any cobordism (Z,Ω) there exists an embedded gradient-like
vector field.

For the convenience of the reader we present a straightforward proof.

Proof. Let p1, . . . , pr be the critical points of F |Ω. For each j ∈ {1, . . . , r} we choose
an open neighbourhood U ′

j in Z× [0, 1] such that the Embedded Morse Lemma 2.17
holds; i.e. there exist coordinates of a special form as set out in that lemma. We
choose Uj to be a neighbourhood of pj such that Uj ⊂ U ′

j . Furthermore, let V be

an open subset of Z × [0, 1] such that V ∪
⋃
U ′

j = Z × [0, 1] and Uj ∩ V = ∅ for

any j ∈ {1, . . . , r}. Let φV , φ1, . . . , φr be a partition of unity subordinate to the
covering V ∪

⋃
U ′

j. In particular φj |Uj
≡ 1.

Choose a Riemannian metric on any Uj such that the local coordinates x1, . . . , xn+1,
y1, . . . , ym−n are orthogonal. By Lemma 2.16 there exists a Riemannian metric on
Z × [0, 1] such that ∇F (x) is tangent to Ω for all x ∈ ΩrV and ∇F (x) is tangent
to Y for all x ∈ YrV .

We define a vector field on V by ξV = ∇F and ξj on U ′

j by the explicit formula

(3.3). Then ξ = φV ξV +
∑
φjξj is a vector field on Z× [0, 1] which, by construction,

satisfies the desired properties. �

We remark that ξ has a critical point at each critical point p of f . This is not
a Morse critical point, because the coordinate corresponding to y1 vanishes up to
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order 2. Nevertheless, we have well-defined stable and unstable manifolds of ξ
at p, which we now discuss. The following lemma is a consequence of the local
description of a critical point.

Lemma 3.6. In a neighbourhood of a critical point, in local coordinates as in
Definition 3.2, the stable manifold is given by

{xk+1 = · · · = xn+1 = 0, y2 = · · · = ym−n = 0, y1 < 0}.

The unstable manifold is given by

{x1 = · · · = xk = 0, y2 = · · · = ym−n = 0, y1 > 0}.

The intersection of a stable manifold (respectively: unstable manifold) with a level
set F−1(p−ε), for ε > 0 sufficiently small (respectively: with a level set F−1(p+ε))
is a k-dimensional disc (respectively: (n+1− k)-dimensional disc). The boundary
of the disc is the stable manifold of ξ|Ω (respectively: the unstable manifold of ξ|Ω).

The following terminology is essentially due to B. Perron [Per75].

Definition 3.7. Let p be a critical point of f . The ascending membrane Mu
p is

the unstable manifold of p with respect to ξ. The descending membrane M s
p is the

stable manifold of p with respect to ξ.

From now on, when speaking of a stable and unstable manifold of ξ, we will
understand a stable and unstable manifold of ξ|Ω, since we will use the term mem-
brane of Definition 3.7 for the ambient version.

3.1. Integrating the vector field to recover the Morse function

Starting with a Morse function F and a gradient-like vector field ξ, we might wish to
alter the vector field ξ to ξ′, and the altered vector field ξ′ may then not necessarily
be a gradient-like vector field for F . Under some conditions we shall be able to
find a function F ′, such that ξ′ is a gradient-like vector field with respect to F ′.
This is the idea of the Vector Field Integration Lemma 3.10 below.

We remark that in this paper Integration Lemma 3.10 is only used in the proof
of Elementary Cancellation Theorem 5.1. We present the Integration Lemma sepa-
rately since we think it is of interest independently from the cancellation theorem.

Before stating and proving the Vector Field Integration Lemma, first we need to
introduce some more terminology. Part (a) of the next definition is standard.

Definition 3.8. Let ξ be a smooth vector field Z × [0, 1].

(a) A trajectory is a map γ : A → Z × [0, 1], where A is a connected subset of
R, such that d

dtγ(t) = ξ(γ(t)). We will always assume that A is maximal,
i.e. γ cannot be extended over a larger subset of R. Note that, up to
reparametrisation, that is changing t to t+ a for some a ∈ R, exactly one
trajectory of ξ passes through a given point of Z × [0, 1].

(b) A broken trajectory is a union of trajectories γ1, . . . , γs such that for any
j = 1, . . . , s− 1 we have limt→∞ γj(t) = limt→−∞ γj+1(t). These limits are
critical points of ξ.
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Note that there is no mention of the function F in the next definition, which
introduces the notion of an almost gradient-like vector field. In Lemma 3.10 we will
see that an almost gradient-like vector field with one extra assumption is sufficient
to be able to recover a Morse function with respect to which the vector field is an
embedded gradient-like vector field.

Definition 3.9. A vector field ξ on Z × [0, 1] is called almost gradient-like if it
satisfies the following conditions:

(AG1) ξ is tangent to Ω and to Y ;
(AG2) ξ has no critical points on Z× [0, 1]rΩ and no critical points on Z×{0, 1};
(AG3) ξ has finitely many critical points on Ω. For each critical point z of ξ, there

exist local coordinates near z, denoted by x1, . . . , xn+1, y1, . . . , ym−n such
that Ω in the local coordinates is given by y1 = · · · = ym−n = 0 (if z belongs
to Y , there is one more equation, namely x1 > 0) and there is an index k
such that in these local coordinates ξ has the form as in (3.3):

(−x1,−x2, . . . ,−xk, xk+1, . . . , xn+1, (y
2
1 + · · ·+ y2m−n), 0, . . . , 0); and

(AG4) if a trajectory γ(t) does not hit Z × {0}, then limt→−∞ γ(t) exists (and by
standard arguments observing that limt→−∞ γ′(t) = 0 it is a critical point
of ξ). Likewise, if γ(t) does not hit Z × {1}, then limt→+∞ γ(t) exists.

If ξ is an embedded gradient-like vector field, then it is easy to see that it is
an almost gradient-like vector field. Given an almost gradient-like vector field ξ it
is possible that there does not exist any function F with respect to which ξ is an
embedded gradient-like vector field. For example, the conditions (AG1)–(AG4) do
not exclude the possibility that there exist a broken trajectory starting and ending
at the same point. As next result shows, this is the only obstruction.

Lemma 3.10 (Vector Field Integration Lemma). Suppose that ξ is an almost
gradient-like vector field such that there are no broken trajectories starting and
ending at the same point. Then there exists a smooth function F without critical
points on Z× [0, 1] such that ξ is an embedded gradient-like vector field with respect
to F .

Proof. Let z1, . . . , zs be the critical points of ξ. We introduce a partial order relation
on the critical points, namely we say that zi < zj if there is at least one broken
trajectory starting at zi and ending at zj . The assumption of the lemma guarantees
that this is a partial order. Let us relabel the critical points so that if i < j, then
we cannot have zj < zi. This relabelling is, in general, not unique. The proof of
Lemma 3.10 continues after the statement and proof of Lemma 3.11.

Lemma 3.11. There exist open neighbourhoods V1, . . . , Vs of z1, . . . , zs such that
for any i 6 j, there is no trajectory which leaves Vj and then enters Vi.

Proof of Lemma 3.11. The proof follows the ideas of [Mil65, Assertion 1, page 50].
Suppose that the statement is false. That is, suppose that for all open neighbour-
hoods V1, . . . , Vs there exists i 6 j and a trajectory which leaves Vj and later enters
Vi.



EMBEDDED MORSE THEORY 13

Let U i
0 be a coordinate neighbourhood of zi from (AG3) of Definition 3.9. For

r > 1 we define U i
r = {x21+ · · ·+x2n+1+ y

2
1 + · · ·+ y2m−n 6 ε

r} for some ε sufficiently

small (so that U i
1 ⊂ U i

0).
Now suppose that there are indices i, j, with i 6 j and, for all r, that there is a

trajectory γr going from U j
r to U i

r. Let us choose a maximal j such that this holds.

Working in local coordinates we convince ourselves that γr must intersect ∂U j
1 and

∂U i
1. Let w

1
r be a point where γr leaves ∂U j

r , and let w2
r be the point where γr hits

∂U j
1 after leaving ∂U j

r . Let w3
r be the point where γr hits ∂U i

r for the first time
after w2

r .

Since all points w2
r , r = 2, 3, . . . belong to the sphere ∂U j

1 , up to passing to a

subsequence we can assume w2
r converges to a point w0 ∈ ∂U j

1 . Let γ0 be the
trajectory through w0. We claim that limt→−∞ γ0(t) = zj . To see this, observe

that for any l > r the trajectory through w2
l hits ∂U j

r in the past. As w2
l → w0 and

∂U j
r is closed, we infer that γ0 hits ∂U j

r in the past as well. But r was arbitrary,
so there exists a sequence tk converging to −∞, such that γ0(tk) → zj . By (AG4),
γ0 is a trajectory starting from zj . We do not claim that γ0 ends in zi, because the
sequence of trajectories γr can converge to a broken trajectory, a part of which is
γ0.

To complete the proof, let us look at limt→+∞ γ0(t). Observe that the time which
the trajectory γr takes to go from w2

r to w3
r goes to infinity as r → ∞ (because the

speed of the vector field near critical points is very small). Therefore, γ0(t) exists
for any t > 0; in particular γ0 cannot hit Z × {1}. By (AG4), limt→+∞ γ0(t) = zk
for some k ∈ {1, . . . , s}. This means that k > j.

Consider now neighbourhoods Uk
r as defined above. As lim γ0(t) = zk, it follows

that γ0 hits all the boundaries ∂Uk
r . If we fix r, it follows that for l sufficiently

large γl hits ∂U
k
r as well. We can now relabel the trajectories so that γr hits ∂Uk

r

and then U i
r i.e. we want a trajectory which hits ∂Uk

p to have index p; this may
involve passing to a further subsequence in the γr. Then the sequence {γr}r>1 may
be considered as a sequence of trajectories coming close to zk first, and then to zi.
But we assumed that j is the maximal index for which this is possible, and k > j,
so we obtain a contradiction. �

We resume the proof of Lemma 3.10. Let us now choose open neighbourhoods
V1, . . . , Vs of z1, . . . , zs as given to us by Lemma 3.11. We define a function F to
be equal to −x21 − · · · − x2k + x2k+1

+ · · ·+ x2n+1 + y1 + j/(s + 1) on V j, where the
signs agree with the signs in (AG3). In particular, F (zj) = j/(s + 1). For the

sake of completeness we define V 0 := Z × {0} and V s+1 := Z × {1}. We also put
F (V 0) = 0 and F (V s+1) = 1.

Now let us choose any point z ∈ Z× [0, 1]r
⋃
V j . Let γ be a trajectory through

z. Reparametrise γ so that γ(0) = z. By (AG4) there exists a, b ∈ R, −a < 0 < b
such that γ(−a) ∈ V i, γ(b) ∈ V j for some i, j, and γ(−a, b) does not intersect
V1 ∪ · · · ∪ Vs. By Lemma 3.11 we have i < j. Then we define

F (z) =
b

a+ b
F (γ(−a)) +

a

a+ b
F (γ(b)).
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Since F (γ(−a)) < F (γ(b)) (because i < j), the function F increases along γ. Thus
ξ · F (z) > 0.

In general, the function F is a continuous, piecewise smooth function with all
non-smooth points lying on ∂V1 ∪ · · · ∪ ∂Vs. The function F satisfies ξ · F (z) > 0
for z ∈ Vjr{zj} and whenever ξ · F (z) is well-defined. Therefore, we can slightly
perturb F to a smooth function, which still satisfies ξ ·F > 0 away from z1, . . . , zs.

�

3.2. The embedded isotopy lemma

Next we are going to sketch a proof of the embedded analogue of the Isotopy Lemma
of [Mil65, Lemma 4.7].

Lemma 3.12 (Embedded Isotopy Lemma). Let (Z,Ω) be an embedded cobordism.
Suppose that there are two level sets a, b ∈ [0, 1] with a < b such that f has no
critical points on Ω ∩ f−1[a, b]. Let ξ be an embedded gradient-like vector field.
Assume additionally that there is a diffeomorphism h of the triple (Z,Ω∩f−1(b), Y ∩
f−1(b)) to itself which is isotopic to the identity.

Then there exists an embedded gradient-like vector field ξ′, agreeing with ξ away
from F−1(a, b), such that ψ′ = h ◦ ψ, where ψ and ψ′ are the diffeomorphisms

ψ,ψ′ : (Z,Ω ∩ f−1(a), Y ∩ f−1(a)) −→ (Z,Ω ∩ f−1(b), Y ∩ f−1(b))

induced by the flows of the vector fields ξ and ξ′ respectively.

Proof. We follow [Mil65, Proof of Lemma 4.7]. Let ht, t ∈ [a, b] be an isotopy of
the triple (Z,Ω∩ f−1(b), Y ∩ f−1(b)) so that ha is the identity and hb = h. We also
assume that ht does not depend on t for t close to a and b. Let H : Z × [a, b] →
Z × [a, b] be given by (x, t) → (ht(x), t). Define a diffeomorphism Ψ: Z × [a, b] →
Z × [a, b] by integrating the flow of ξ; that is, if we take a point (x, t) ∈ Z × [a, b],
there is a trajectory of ξ passing through that point. This trajectory hits a point
(x′, a) ∈ Z × {a}. We define Ψ(x, t) = (x′, t). It is easy to check that Ψ is a
diffeomorphism. Now let Φ := Ψ−1 ◦H ◦ Ψ: Z × [a, b] → Z × [a, b] and we define
ξ′ := Φ∗(ξ) on Z × [a, b]. Since H is the identity near Z × {a, b}, we infer that Φ
is the identity near Z × {a, b}, and hence ξ′ agrees with ξ in a neighbourhood of
Z ×{a, b}. We extend ξ′ to Z × [0, 1] by making ξ′ equal to ξ on Z × ([0, a]∪ [b, 1])

By definition, the flow of ξ′ induces a diffeomorphism of the triple (Z ×{a},Ω∩
f−1(a), Y ∩ f−1(a)) to (Z,Ω ∩ f−1(b), Y ∩ f−1(b)), which is equal to h ◦ ψ. Note
that, by construction, ξ′ is tangent to Ω at all points in Ω∩ f−1[a, b] and is tangent
to Y on Y ∩ f−1[a, b]. �

4. Rearrangement of critical points

The aim of this section is to prove the Elementary and Global Rearrangement
Theorems, in Sections 4.1 and 4.3 respectively.
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4.1. The embedded elementary rearrangement theorem

The rearrangement theorem in the embedded case is stated or proved in many
places, like [GS99, Per75, Rou70, Sha88]. For the convenience of the reader, and
because we would also like to deal with boundary critical points, we present a proof.

Theorem 4.1 (Elementary Rearrangement Theorem). Let (Z,Ω,Σ0,Σ1) be an
embedded cobordism and let f be the underlying Morse function. Suppose that f
has exactly two critical points z1 and z2 with f(z1) < f(z2). Let ξ be an embedded
gradient-like vector field. For i = 1, 2, let Mu

i ⊂ Z × [0, 1] (respectively: M s
i ⊂

Z×[0, 1]), be the ascending membrane of zi (respectively: the descending membrane)
under the flow of ξ. If

Mu
1 ∩M s

2 = ∅,

then for any two values a, b ∈ [0, 1] there exists a function G : Z × [0, 1] → [0, 1]
such that

(E1) G has no critical points;
(E2) G(z1) = a and G(z2) = b;
(E3) The restriction g := G|Ω is Morse. It has two critical points, z1 and z2 with

the same type as f .

Remark 4.2. We note that the new Morse function G can be chosen so that there
is a nondegenerate homotopy through submersions between G and the old Morse
function F .

Proof. The proof goes along similar lines to [Mil65, Section 4] (see also [BNR12b,
Proposition 4.1]). We define K1 =Mu

1 ∪M
s
1 and K2 =Mu

2 ∪M
s
2 . The emptiness of

Mu
1 ∩M

s
2 implies thatK1∩K2 = ∅. Let T1 = K1∩Z×{0} and T2 = K2∩Z×{0}. We

see that T1 and T2 are not empty, because dimM s
1 ,dimM s

2 > 1. Also T1 ∩ T2 = ∅.
Let W1 ⊃ T1 and W2 ⊃ T2 be two disjoint open subsets of Z × {0}. Let

µ : Z × {0} → [0, 1] be a smooth function, such that µ(W1) = 0 and µ(W2) = 1.
We extend µ to Z × [0, 1] as follows: if x ∈ K1, we put µ(x) = 0; if x ∈ K2, we put
µ(x) = 1. If x 6∈ (K1 ∪K2), then the trajectory of ξ through x hits Z × {0} in a
unique point y ∈ Z × {0}. Then we define µ(x) := µ(y). This definition implies in
particular that µ is constant along all the trajectories of ξ.

Following Milnor we choose a smooth function Ψ: [0, 1]×[0, 1] → [0, 1] satisfying:

• ∂Ψ
∂x (x, y) > 0 for all (x, y) ∈ [0, 1] × [0, 1];

• there exists δ > 0, such that Ψ(x, y) = x for all x ∈ [0, δ] ∪ [1 − δ, 1] and
y ∈ [0, 1];

• for any s ∈ (−δ, δ) we have Ψ(f(z1)+s, 0) = a+s and Ψ(f(z2)+s, 1) = b+s.

We now define
G(x) := Ψ(F (x), µ(x)) and g := G|Ω.

Observe that by the chain rule

ξ ·G = dG(ξ) =
(∂Ψ
∂x

dF +
∂Ψ

∂y
dµ

)
(ξ) =

∂Ψ

∂x
ξ · F +

∂Ψ

∂y
ξ · µ.

Since µ is constant on the trajectories of ξ, we have ξ · µ = 0. As ∂Ψ
∂x > 0 and ξ

is an embedded gradient-like vector field, we see that ξ ·G(x) > 0 with equality if
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and only if x is a critical point of f . On the other hand by the definition of Ψ we
have that, near a critical point of f , the function G is equal to F plus a constant.
Hence G has no critical points. We compute that by construction G(z1) = a and
G(z2) = b:

G(z1) = Ψ(F (z1), µ(z1)) = Ψ(F (z1), 1) = Ψ(f(z1), 1) = a;

G(z2) = Ψ(F (z2), µ(z2)) = Ψ(F (z2), 1) = Ψ(f(z2), 1) = b.

Now, to check that (E3) is still satisfied, let x ∈ Ω. We have g(x) = Ψ(f(x), µ(x)).
As µ is everywhere tangent to Ω, we can repeat the above argument to show that
ξ · g > 0, with equality only at the critical points of f . Since g− f is constant near
critical points, the types of the critical points are the same.

Finally consider x ∈ Y , such that x is not a critical point of f . Then ξ is tangent
to TxY by definition and ξ · g > 0 as g is just the restriction of G. This means that
dg(ξ) > 0, and in particular that TxY 6⊂ ker dg. Thus, as required, g is a Morse
function in the sense of Definition 2.3. �

It is easy to see that the argument of Theorem 4.1 can be repeated if f has more
critical points and suitable intersections of stable/unstable manifolds are empty.
This is made precise in Theorem 4.7 below.

4.2. The embedded Morse–Smale condition

In the following we write M s(z) (respectively Mu(z)), to denote the descending
and ascending membranes of the critical point z. We write W s(z) and W u(z) to
denote the stable and the unstable manifolds of ξ|Ω, with W s(z),W u(z) ⊂ Ω. If
z is a boundary critical point, we denote by W s

Y (z) and W u
Y (z), respectively the

stable and unstable manifold of the vector field ξ restricted to Y .

Definition 4.3. The vector field ξ satisfies the embedded Morse–Smale conditions
if for any two critical points z1 and z2 of f , the intersections ofM

s(z1) withM
u(z2)

are transverse in Z×[0, 1]rΩ, the intersections ofW s(z1) andW
u(z2) are transverse

in ΩrY and the intersections of W s
Y (z1) with W

u
Y (z2) are transverse in Y .

Lemma 4.4. For every embedded gradient-like vector field ξ there exists a C2-small
perturbation ξ′ which satisfies the embedded Morse–Smale condition.

Sketch of proof. This is a standard result combining the fact that the transversality
condition is open (see [Arn83, Section 29]) together with Lemma 3.12. We leave
the details to the reader. �

We show, in table form, the dimensions of stable and unstable manifolds of a
critical point. In Table 1, we assume that z is a critical point of Ω of index k, and
we recall that dimΩ = n+ 1. Also recall that the index of a critical point z is the
dimension of its stable manifold W s(z).

We remark that the intersection of the stable manifold of one point with the
unstable manifold of another, unless empty, must have dimension at least one.
Therefore, the embedded Morse–Smale condition (Definition 4.3) yields the follow-
ing result.
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Type of z M s
rΩ Mu

rΩ W s
rY Wu

rY W s

Y
Wu

Y

interior k + 1 n+ 2− k k n+ 1− k ∅ ∅
bdy. stable k + 1 n+ 2− k k ∅ k − 1 n+ 1− k
bdy. unstable k + 1 n+ 2− k ∅ n+ 1− k k n− k

Table 1. Dimensions of various stable and unstable manifolds.
Here ∅ means that the corresponding manifold is empty, as does
dimension −1.

Proposition 4.5. Let z and w be two critical points of f of indices k and l re-
spectively. Let m := dimZ. Suppose that ξ satisfies the embedded Morse–Smale
condition. Then the intersection Mu(z) ∩M s(w) is empty if at least one of the
following conditions hold:

• k = l, m > n + 2 and either z is not a boundary stable critical point or w
is not a boundary unstable critical point;

• k > l and m > n+ 1;
• z is an interior critical point, w is boundary unstable and l−k 6 m−n−2;
• z is a boundary stable critical point, w is interior and l − k 6 m− n− 2.

Proof. In each case, the proof follows by checking that each of

dim(Mu(z)rΩ) + dim(M s(w)rΩ) 6 m+ 1,

dim(W u(z)rY ) + dim(W s(w)rY ) 6 n+ 1

and

dimW u
Y (z) + dimW s

Y (w) 6 n

are satisfied. �

4.3. The embedded global rearrangement theorem

As a corollary of Proposition 4.5, we obtain the following global rearrangement
theorem. In codimension 2 or more, as in Theorem 4.7, this is the standard re-
arrangement theorem. In codimension 1 the situation is more complicated and will
be addressed in Theorem 4.9.

The next definition was already given in the introduction; for the convenience
of the reader we recall it here.

Definition 4.6. A configuration Ξ of the critical points of an embedded cobordism
(Z,Ω) is an assignment of a value Ξ(zi) ∈ (0, 1) to each critical point zi of f .

An admissible configuration is a configuration satisfying the following conditions:

(A1) if z, w are critical points with indices k, l with k < l, then Ξ(z) < Ξ(w);
(A2) if z, w have the same index k and if z is boundary stable and w is boundary

unstable, then Ξ(z) < Ξ(w).

The Global Rearrangement Theorem says that any admissible configuration can
be realised by changing the Morse function.
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Theorem 4.7 (Global Rearrangement Theorem). Suppose (Z,Ω) is a cobordism.
Given an admissible configuration Ξ of the critical points of f , if codim(Ω ⊂ Z ×
[0, 1]) > 2, there exists a function G : Z × [0, 1] → [0, 1] without critical points,
homotopic through submersions to F , which restricts to a Morse function g : Ω →
[0, 1], such that g restricted to the critical points agrees with Ξ (the type and index
of each critical point is preserved).

Remark 4.8. If z, w have the same index k, both critical points are boundary
stable, both are boundary unstable or at least one of them is interior, then we can
have g(z) < g(w), g(z) = g(w) or g(z) > g(w), as we please, provided condition
(A2) is satisfied.

For example, if we have three critical points z, w and v of index k, where z is
boundary stable and w is boundary unstable and v is interior, then in general we
cannot arrange that g(z) > g(v) and g(v) > g(w) simultaneously, since this would
violate (A2).

Proof of Theorem 4.7. First apply Theorem 4.1 to arrange the critical points to
satisfy (A1): by the second bullet point of Proposition 4.5 this is always possible.
Now critical points of the same index can be arranged into any chosen order that
satisfies (A2), by the first bullet point of Proposition 4.5 and further applications
of Theorem 4.1. �

The conclusions of Theorem 4.7 do not hold in codimension 1, since critical
points of the same index cannot in general be rearranged. Instead we have the
following weaker result.

Theorem 4.9. Suppose that Z,Ω and f are as in Theorem 4.7, but codim(Ω ⊂
Z × [0, 1]) = 1. Then there exists a function G : Z × [0, 1] → [0, 1] without critical
points, which restricts to a Morse function g : Ω → [0, 1] having the same critical
points as f , but the critical values satisfy:

(A1’) if z, w are critical points with indices k, l with k < l, then g(z) < g(w).

5. Cancellation of critical points

In the absolute case, two critical points of indices k and k + 1 can be cancelled
if there is a single trajectory of a Morse–Smale gradient-like vector field between
them. The situation is slightly more complicated in the embedded case. We present
a result which is stated in [Per75, Lemma 2.9] and [Rou70, Lemma 5]. For the
convenience of the reader we sketch the proof. The proof also makes crucial use of
Vector Field Integration Lemma 3.10.

Note that if we have critical points z, w with indices k, k + 1 respectively, then
we can assume that g(z) < g(w), by Theorem 4.7 in the case that the codimension
is 2 or more, and Theorem 4.9 in the codimension 1 case.

5.1. The embedded elementary cancellation theorem

Theorem 5.1 (Elementary Cancellation Theorem). Let (Z,Ω) be a cobordism. Let
z and w be critical points of f of indices k and k + 1, of the same type (i.e. either
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both interior, or both boundary stable, or both boundary unstable). Suppose that ξ is
an embedded gradient-like vector field, which is Morse–Smale (Definition 4.3), and
that there exists a single trajectory γ of ξ connecting z with w. If z, w are interior
critical points, we require that γ ⊂ Ω. If z, w are boundary critical points, then
we require that γ ⊂ Y . Furthermore, suppose that there are no broken trajectories
between z and w.

Then, for any neighbourhood U of γ, there exists a vector field ξ′ on Z × [0, 1],
agreeing with ξ away from U , non-vanishing on U , and a function F ′ : Z× [0, 1] →
[0, 1] such that f ′ = F ′|Ω has the same critical points as f with the exception of z
and w, which are regular points of f ′, and such that ξ′ is an embedded gradient-like
vector field with respect to F ′.

Remark 5.2.

(1) In particular note that the assumptions on a single trajectory and the lack
of broken trajectories imply that the intersections of the interiors of the
membranes IntMu(z) ∩ IntM s(w) is empty. In codimension 3 or more,
such disjointness can always be arranged by general position and Table 1:
(n+2−k)+(k+1+1) = n+4 6 m+1 whenm > n+3. This can be viewed
as the main reason why “concordance implies isotopy” in codimension 3 or
more [Hud70]. When the codimension is 1 or 2 there are obstructions from
membrane intersections.

(2) Unlike Milnor [Mil65, Theorem 5.4], we do not assume that z and w are the
only critical points in f−1[f(z), f(w)]. The assumption is replaced by the
lack of broken trajectories. The statement is equivalent to that of Milnor
in the absolute case, or in the embedded case with codimension 2 or more,
since the critical points can be rearranged to achieve Milnor’s assumption.
It can be shown that it is also equivalent in the case of codimension 1, but
since rearrangement of critical points of the same index is in general not
possible in codimension 1, it is nice to be able to separate rearrangement
and cancellation.

(3) The new Morse function F ′ : Z × [0, 1] → [0, 1] can be chosen so as to be
homotopic through submersions to F .

Proof of Theorem 5.1. Milnor’s approach works with a few modifications to adapt
it to the embedded case and the possibility of additional critical points between z
and w. The proof of Theorem 5.1 proceeds by way of Lemmas 5.3, 5.4 and 5.7,
and will take the remainder of this section.

Lemma 5.3 (c.f. [Mil65, Assertion 1, page 50]). Let γ be as in Theorem 5.1. For
any open set U1 ⊂ Z × [0, 1], such that γ ⊂ U1, there exists another open set U2

with γ ⊂ U2 ⊂ U1 such that any trajectory of ξ which starts in U2 and leads out of
U1 never goes back to U2.

Proof of Lemma 5.3. The proof resembles that of Lemma 3.11 above, hence we
do not give all the details. The idea is that a trajectory which leaves and then
returns will imply the existence of another trajectory between z and w, or a broken
trajectory, both of which are assumed in the hypothesis of Theorem 5.1 not to
exist.
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Suppose the statement is false. That is, there exists an open set U1 with γ ⊂ U1

such that for all U2 with γ ⊂ U2 ⊂ U1 there is a trajectory which starts in U2, leaves
U1, and then later returns to U2. Then there exist sequences of points {w1

r}r>1,
{w2

r}r>1 and {w3
r}r>1 and a sequence of trajectories {γr}r>1, such that w1

r and w3
r

approach γ as r → ∞, w2
r ∈ ∂(cl(U1)) and γr is a trajectory going first through w1

r ,
then through w2

r and finally through w3
r . By choosing successively smaller open

neighbourhoods U r
2 we obtain trajectories γr from our assumption, and then can

choose w1
r , w

3
r ∈ U r

2 ∩ γr.
Since ∂(clU1) is compact, we may assume that w2

r converges to a point w0 (as
in the proof of Lemma 3.10 we may need to pass to a subsequence). Furthermore,
as w1

r and w3
r come very near γ, we can move w3

r along γr to ensure that w3
r → w.

Likewise, we may assume that w1
r → z.

Consider γ0, the trajectory through w0. Since, for any neighbourhood of z, there
exist r0 such that for all r > r0, γr enters this neighbourhood, we would like to
claim that γ0 starts at z. Similarly, we would like to claim that γ0 ends at w. This
is true under the assumption that there are no critical points in F−1(F (z), F (w)).

In the general case, the sequence of trajectories γ1, . . . , γr, . . . either converges to
a trajectory γ0 (and then γ0 is another trajectory between z or w by the arguments
as above) or to a broken trajectory; see e.g. [BH04, Corollary 6.23]. This broken
trajectory is a broken trajectory between z and w, by our assumptions on the limits
of w1

r and wr
3. This contradicts the assumptions of the Elementary Cancellation

Theorem 5.1, namely that there is a single trajectory joining z to w, and no broken
trajectories. �

We continue with the proof of Theorem 5.1. Let Uz and Uw be open neighbour-
hoods of z and w respectively, such that the Embedded Morse Lemma holds for
them. Define Uzw to be the set of points x ∈ Z × [0, 1]r(Uz ∪ Uw) such that the
trajectory through x hits Uz in the past and Uw in the future. Shrink Uz and Uw if
needed, in order to guarantee that Uzw, Uz, Uw ⊂ U . Indeed, if V2 is defined to be
the set U2 given by Lemma 5.3, with U1 = U , and we take Uz, Uw ⊂ V2, then any
trajectory from Uz to Uw must be contained in U . The vector field ξ flows from Uz

to Uw.
The next result is an analogue of [Mil65, Assertion 6, page 55]. We state it in

the case that z and w are interior critical points; see Remark 5.6 below for the
boundary case.

Lemma 5.4. It is possible to change the vector field ξ, inside Uzw, to a vector field
ξ1, which is still a gradient-like vector field for F , and flows from Uz to Uw (that
is, a trajectory of ξ1 through a point p in Uzw hits Uz in the past and Uw in the
future) such that there is a smaller neighbourhood U1 ⊂ Uz ∪ Uw ∪ Uzw containing
γ and a coordinate system on U1 given by x1, . . . , xn+1, y1, . . . , ym−n such that z =
(0, . . . , 0), w = (1, 0, . . . , 0), Ω ∩ U1 = {y1 = · · · = ym−n = 0} and ξ has the
following form:

(5.5) (v(x1),−x2, . . . ,−xk+1, xk+2, . . . , xn+1, y
2
1 + · · ·+ y2m−n, 0, . . . , 0),

where v is a smooth function positive on (0, 1), negative away from [0, 1] and such
that v(x) = x (respectively: v(x) = 1 − x) in a neighbourhood of 0 (respectively:
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in a neighbourhood of 1). The coordinate systems on U and Uz, Uw agree (up to
shifting x1 by +1 on Uw).

Remark 5.6. If z and w are boundary critical points then the statement of
Lemma 5.4 should be changed as in [BNR12b, Proposition 5.2]. Namely, the local
coordinates system should be such that Ω = {x1 > 0, y1 = . . . = ym−n = 0},
z = (0, . . . , 0), w = (0, 1, 0, . . . 0) and ξ should be of the form

(ǫx1, v(x2),−x3, . . . ,−xk+1,−ǫxk+2, xk+3, . . . , xn+1, y
2
1 + . . .+ y2m−n, 0, . . . , 0),

where ǫ = 1 for boundary unstable and ǫ = −1 for boundary stable critical points.

Sketch of proof of Lemma 5.4. The proof is analogous to the proof of Assertion 6
in [Mil65]. It consists of looking at the map h between ∂Uz∩∂Uzw and ∂Uw∩∂Uzw

induced by the flow of ξ. One writes it in coordinates of Uz and Uw. If this is
the identity, we can extend the coordinates from Uz to Uzw using the flow of ξ,
and the coordinate systems on Uz, Uw and Uzw match together. Otherwise, we
change h by an isotopy so that it is the identity near the origin and use Embedded
Isotopy Lemma 3.12. We omit the details, which are a straightforward but tedious
generalisation of Milnor’s approach. �

We resume the proof of Theorem 5.1. Observe that changing the vector field from
ξ to ξ1 does not create any broken trajectories between z and w, so Lemma 5.3 holds
for ξ′. We now take U1 to be the set given by Lemma 5.4, and apply Lemma 5.3
to U1. Let U2 be the open set which is the output of Lemma 5.3, and choose
a still smaller neighbourhood U3 of γ. Let C be the supremum of v(x1) on U3.
Let ψ be a cut-off function, which is 1 on U3 and 0 outside of U2. We define
ξ′ = ξ1− (C+1)ψ∂x1

. The vector field ξ′ now has no zeros on U3, because the first
coordinate of ξ′ is negative. On (U2rU3) ∩ Ω, at least one of the ∂xj

coordinates
of ξ′ is non-zero and on (U2rU3)rΩ, the coordinate ∂y1 is non-zero. So in fact, ξ′

has critical points z and w removed. We want to show that ξ′ is a gradient-like
vector field of some function. We will need the following result.

Lemma 5.7. Any trajectory γ′ through a point u ∈ U2 leaves U1 in the past and
in the future.

Proof. This statement is from [Mil65, Assertion 2, page 51] and its proof is com-
pletely analogous. �

We can now finish the proof of Theorem 5.1. By Lemma 5.7 and Lemma 5.3
a trajectory passing through U2 remains there only for a finite time and does not
go back. In particular, changing ξ to ξ′ does not introduce any “circular” broken
trajectories. Furthermore the fact that any trajectory only stays in U2 for finite
time implies that ξ′ has property (AG4).

By Lemma 3.10, ξ′ is a gradient-like vector field of some function F ′ without
critical points. �
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6. Splitting of critical points

The aim of this section is to prove the Elementary and Global Handle Splitting
Theorems, in Sections 6.1 and 6.3 respectively.

We begin by showing that a single interior handle can be split into two half-
handles; that is, an interior critical point can be pushed to the boundary and
exchanged for one boundary stable critical point and one boundary unstable critical
point. Then we investigate when this theorem can be applied to split all of the
interior handles simultaneously. In codimension at least two, this can be achieved;
in codimension one we have a partial result.

6.1. The embedded elementary handle splitting theorem

The following result holds for any positive codimension.

Theorem 6.1 (Elementary Handle Splitting Theorem). Let (Z,Ω) be an embedded
cobordism with F : Z×[0, 1] → [0, 1] a projection and f = F |Ω the underlying Morse
function. Suppose that f = F |Ω has a single interior critical point at z with index
k ∈ {1, . . . , n}, f(z) = 1

2
and suppose that z can be connected to the set f−1(1/2)∩Y

by a smooth path γ contained entirely in f−1(1/2). Then, for any neighbourhood
of γ in Z × [0, 1], there exists a function G : Z × [0, 1] → [0, 1], homotopic through
submersions (Definition 2.15) to F , agreeing with F away from that neighbourhood,
such that G has no critical points and g := G|Ω has two boundary critical points zs

and zu of index k and no interior critical points, where zs is boundary stable, zu is
boundary unstable and there is a single trajectory of ∇g on Y going from zs to zu.

Proof. The proof is an extension of argument in the proof of [BNR12b, Theorem
3.1]. First, by [BNR12b, Proposition 3.5] there exists ρ > 0 and a “half-disc”
U ⊂ Ω with γ ⊂ U with local coordinates (x, y, ~u), for x ∈ [0, 3 + ρ), |y| < ρ and
||~u||2 < ρ2, such that the coordinates of the critical point are z = (1, 0, . . . , 0) and
f has the form

y3 − yx2 + y +
1

2
+ ~u2.

Here we write ~u = (u1, . . . , un−1), ||~u||
2 =

∑
u2j and ~u2 =

∑
ǫju

2
j , where ǫj = ±1

depending on the index of the critical point z.
We thicken U in Z × [0, 1] to a “half-disc” W ⊂ Z × [0, 1] of dimension m + 1

(i.e. codimension 0 in Z × [0, 1]). Choose U and W small enough so that they lie
inside the neighbourhood of γ referred to in the proof of Theorem 6.1. Now W is
diffeomorphic to a product U × (−ρ, ρ)m−n, which means that there exists a map
~w : W → (−ρ, ρ)m−n, ~w = (w1, . . . , wm−n), so that U = {w1 = · · · = wm−n = 0}
and the collection of functions (x, y, ~u, ~w) forms a local coordinate system on W .
In this way we identify W with [0, 3 + ρ)× (−ρ, ρ)n+1.

Lemma 6.2. There exists a sign ǫ ∈ {±1}, a choice of index r ∈ {1, . . . ,m − n},
real numbers ϑ, τ ∈ (0, ρ/2) and a smooth function Fφ : Z× [0, 1] → [0, 1], such that
Fφ|Ω = F |Ω, Fφ agrees with F away from [0, 3 + ϑ]× [−2ϑ, 2ϑ]n × [−τ, τ ]m−n ⊂W

and for any v ∈ [0, 3 + ϑ]× [−ϑ, ϑ]n × {0} we have ǫ
∂Fφ

∂wr
(v) > 0.
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Proof. As z is not a critical point of F (only of F |Ω), there exists an integer r ∈
{1, . . . ,m − n} such that ∂F

∂wr
(z) 6= 0. We choose ǫ so that ǫ ∂F

∂wr
(z) > 0. By

continuity of ∂F
∂wr

there exists ϑ > 0, ϑ < ρ/2, such that ǫ ∂F
∂wr

(v) > 0 whenever

v ∈ [1− ϑ, 1 + 2ϑ]× [−ϑ, ϑ]m. Define:

A = ([0, 1 − ϑ] ∪ [1 + 2ϑ, 3 + ϑ])× [−ϑ, ϑ]n ⊂ U ⊂ Ω;

A′ = ([0, 1 − ϑ/2] ∪ [1 + ϑ, 3 + ϑ])× [−2ϑ, 2ϑ]n ⊂ U ⊂ Ω.

Note that A ⊂ A′. We choose τ such that 0 < τ < ϑ and define

p1 = 2 sup

{
−ǫ

∂F

∂wr
(v) : v ∈ A

}

p2 =
1

2
inf

{∣∣∣∣
∂F

∂y
(v)

∣∣∣∣ : v ∈ A′ × [−τ, τ ]m−n ⊂W

}
.

If p1 < 0 no changes are needed and the proof is finished. If p1 = 0, we redefine
p1 to be a very small positive number. As for v ∈ A′ we have ∂F

∂y (v) 6= 0 by direct

computation, for τ small enough we have p2 > 0. We assume that

τ <
p2ϑ

2p1
.

If this is not true at first then choose a smaller τ ; this lowers the left hand side
and cannot lower the right hand side, since only p2 depends on τ and lower τ
cannot lower p2. Now choose a cut-off function φ1 : Z × [0, 1] → [0, 1] with support

contained in A′ × [−τ, τ ]m−n such that
∣∣∣∂φ1

∂y

∣∣∣ < 2
ϑ and φ1|A = 1. We define now

(6.3) Fφ = F + ǫp1wrφ1(x, y, ~u, ~w).

This function agrees with F on Z× [0, 1]r(A′× [−τ, τ ]n−m) and on A′ (because on
U we have wr = 0). Furthermore, for v ∈ A,

ǫ
∂Fφ

∂wr
(v) = ǫ

∂f

∂wr
(v) + p1 > 0,

so ǫ
∂Fφ

∂wr
> 0 everywhere on [0, 3 + ϑ] × [−ϑ, ϑ]n ⊂ U . To show that Fφ has no

critical points in A′ × [−τ, τ ]m−n we compute
∣∣∣∣
∂Fφ

∂y

∣∣∣∣ >
∣∣∣∣
∂F

∂y

∣∣∣∣−
∣∣∣∣p1wr

∂φ1
∂y

∣∣∣∣ > 2p2 − p1
p2ϑ

2p1

2

ϑ
= p2 > 0.

�

Given Lemma 6.2 we write F instead of Fφ. Define

W0(t) := [0, 3 + ρ]× [−ρ, ρ]n × [−t, t]n−m.

Furthermore define

p3(t) := inf

{
ǫ
∂f

∂wr
(v) : v ∈W0(t)

}
.
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For t small enough, by continuity of ∂f
∂wr

we have that p3(t) > 0. Choose ς > 0 to be

such a t and satisfying ς < τ , where τ is from Lemma 6.2. Now fix p3 := p3(ς) > 0,
and choose η < ϑ, where ϑ is also from Lemma 6.2, satisfying

η <
ςp3
4
.

Let δ > 0 be very small. Let us choose a function b : U → [0, 1] as in [BNR12b,
Equation (3.7)]. Let φ2 : [−ς, ς] → [0, 1] be a cut-off function, with φ2 ≡ 1 near 0
and |φ′2(s)| <

2

ς for all s ∈ [−ς, ς] (we use the notation φ2 to avoid confusion with

φ from [BNR12b, Equation (3.7)]). Define

W1 := [0, 3 + η]× [−η, η]n × [−ς, ς]n−m.

Note that W1 ⊂W0(ς). By analogy with [BNR12b, Equation (3.8)], we define

G(v) =

{
F (v) if v 6∈W1

F (v)− φ2 (||~w||) (1 + δ)b(x, y, ~u)y if v = (x, y, ~u, ~w) ∈W1,

where ||~w|| is the Euclidean norm of the vector ~w.
Since φ2(0) = 1, on g := G|Ω agrees with the function g from [BNR12b, Theorem

3.1], so the properties of the critical points of g from the statement of the present
theorem are satisfied. The last condition that we need to ensure holds is that G
has no critical points on W0. But now |(1 + δ)b| < 2, so

∣∣∣∣
∂

∂wr
(φ2 (||~w||) (1 + δ)b(x, y, ~u))

∣∣∣∣ <
4

ς
.

Now |y| 6 η < p3ς
4
, hence ǫ ∂g

∂wr
> 0.

Finally we note that the passage from F to Fφ and then from Fφ to G can be
obtained by a nondegenerate homotopy through submersions; one simply writes
Ft = F + tǫp1wrφ1(x, y, ~u, ~w) for t ∈ [0, 1] and similarly in the definition of G.
Thus the functions F and G are homotopic through submersions as claimed. �

6.2. Moving many critical points at once

Now we pass to the problem of moving all the critical points of a cobordism to the
boundary at once. Checking the condition that each critical point of f can be joined
to the boundary by a curve lying entirely in one level set of f is rather complicated.
We shall show that this is possible. We would mostly like to repeat the procedure
from [BNR12b, Section 4.5]. However in the embedded case we cannot, in general,
cancel pairs of 0 and 1 handles, in such a way that we preserve the isotopy class of
Ω, if the codimension is 1 or 2. Therefore the notion of a technically good function
(see [BNR12b, Definition 4.8]) is not suitable for our present purpose. We need to
modify the reasoning and replace the notion of a technically good function with a
more convenient notion.

Definition 6.4. A function f : Ω → [0, 1] is called technically still acceptable if
there exist non-critical values a, b, c, d of f with 0 < a < c < d < b < 1 such that
the critical points of f are distributed in the following way. For n > 1:
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(TSA1) The inverse image f−1[0, a] contains all critical points of index 0 and all
boundary stable critical points of index 1. It does not contain any other
critical points.

(TSA2) The inverse image f−1[a, c] contains all interior critical points of index 1
and no other critical points.

(TSA3) The inverse image f−1[d, b] contains all interior critical points of index n
and no other critical points.

(TSA4) The inverse image f−1[b, 1] contains all critical points of index n + 1 and
all boundary unstable critical points of index n. It does not contain any
other critical points.

(TSA5) The interior critical points of index 1 lie on a single level set f−1(ρ) and
the interior critical points of index n lie on a single level set f−1(ρ′).

If dimΩ = 2, so n = 1, then for compatibility we modify the conditions (TSA1)–
(TSA5). Namely we define d = a, b = c, and we have 0 < a < c < 1, so that [c, d]
is undefined. We assume that the interior critical points of index 1 lie in f−1(ρ) for
some ρ ∈ [a, c]. Furthermore, critical points of index 0 are in f−1[0, a], as well as
boundary stable critical points of index 1; critical points of index 2 and boundary
unstable critical points of index 1 are in f−1[c, 1].

We point out that we do not assume that there are no pairs of critical points
that could be cancelled (i.e. which are joined by a single trajectory, and no broken
trajectories, of the gradient-like vector field, are of the same type and have indices
k, k+1 for some k), and also we do not assume that the critical points whose indices
are between 2 and n− 1 are ordered. By Theorem 4.7 we can always assume that
the function f is technically still acceptable in codimension two or more. We have
the following analogue of [BNR12b, Proposition 4.11].

Proposition 6.5. Suppose that neither Ω, Σ0, nor Σ1 have closed connected com-
ponents. If codimΩ ⊂ Z × [0, 1] > 2 and f is technically still acceptable, then we
can rearrange F so that each interior critical point z of f = F |Ω of index 1, . . . , n
can be joined to the boundary by a curve lying entirely in f−1(f(z)).

Beginning of the proof of Proposition 6.5. We shall follow the proof of [BNR12b,
Proposition 4.11]. In particular we shall use several lemmas from that paper.
The majority of the proof of Proposition 6.5 will be contained in Lemmata 6.6
through 6.10.

Observe that in the present case the interval [c, d] does not contain the critical
value of any interior critical point with index 1 or n. First we shall prove that for
any y ∈ [c, d], the inverse image f−1(y) has no closed connected components, then
we shall work with f−1[a, c] and f−1[b, d].

Let us recall the following lemmas from [BNR12b]. All the proofs are given
in that article; we indicate how they can be modified for our embedded case as
necessary.

Lemma 6.6 (see [BNR12b, Lemma 4.13]). Let x, y ∈ [0, 1] with x < y. If Ω′ is a
connected component of f−1[x, y] then either Ω′∩Y = ∅, or for any u ∈ [x, y]∩ [c, d]
we have f−1(u) ∩ Ω′ ∩ Y 6= ∅.
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Lemma 6.7 (see [BNR12b, Lemma 4.14]). For any x ∈ [c, 1] the set f−1[0, x]
cannot have a connected component disjoint from Y .

Proof of Lemma 6.7. The proof in [BNR12b] relies on having cancelled all possible
pairs of critical points of indices 0 and 1. We present a modification of that proof
which does not assume this.

Suppose for a contradiction that Ω′ is a connected component of f−1[0, x] such
that Ω′ ∩ Y = ∅. Let Ω1 be the connected component of Ω which contains Ω′. If
Ω1 ∩ Y = ∅, then either ∂Ω1 = ∅ or ∂Ω ⊂ Σ0 ∪ Σ1. In the first case Ω1 is a closed
connected component of Ω. In the second either Σ0 or Σ1 has a closed connected
component. This contradicts the hypothesis of Proposition 6.5. The contradiction
implies that Ω1 ∩ Y 6= ∅. By Lemma 6.6, f−1(x) ∩ Ω1 ∩ Y 6= ∅. In particular
Ω′′ := (f−1[0, x] ∩ Ω1)rΩ′ is not empty.

Now, Ω′′ and Ω′ are both subsets of a connected space Ω1. Thus, there must be
a critical point z ∈ Ω1, of index 1, which joins Ω′ to Ω′′. We have that f(z) > x.
As the connected component of f−1[0, f(z)) containing Ω′ has empty intersection
with Y (by Lemma 6.6), z must be an interior critical point.

Up until now we were following the proof of [BNR12b, Lemma 4.14]. Now we use
a different argument. Namely, as x > c, f(z) > c as well. But the property (TSA2)
implies that there cannot be any interior critical points of index 1 in f−1[c, 1]. This
contradiction finishes the proof of the lemma. �

Lemma 6.8 (see [BNR12b, Lemma 4.16]). Let y ∈ [c, d] be chosen so that there
are no interior or boundary unstable critical points of index n with critical values
in [c, y). Then f−1(y) has no closed connected components.

Observe that in the present situation, (TSA3) implies that the assumption to
Lemma 6.8 are automatically satisfied for y = d. Hence we get the following result.

Lemma 6.9. For any y ∈ [c, d] the set f−1(y) has no closed connected components.

We are going to deal with the set f−1(y) for y ∈ [a, c]. The case y ∈ [d, b] is
symmetric. The following lemma holds for n > 1 and n = 1, although the proof in
the two cases is different.

Lemma 6.10. The interior critical points of f of index 1 can be rearranged, without
changing f away from f−1[a, c], so that each critical point z of index 1 can be
connected to the boundary of Y with a curve lying entirely in f−1(z).

Proof. The proof follows [BNR12b, proof of Proposition 4.11, case n = 1] with a
small modification. Suppose n > 1.

Observe that f−1(c) has no closed connected components by Lemma 6.9. The
interior critical points of index 1 all lie originally on the level set f−1(ρ) by (TSA5),
for some ρ ∈ [a, c]. It follows that f−1(ρ) has no closed connected components, in
fact f−1(ρ) arises from f−1(c) by contracting each intersection W u(z) ∩ f−1(c) to
a point, where z ranges through all interior critical points of index 1.

Now we proceed by induction, as in [BNR12b]. Assume that the interior critical
points of index 1 are z1, . . . , zk. Let us choose a1, . . . , ak such that a < a1 < · · · <
ak < ρ (this is different from [BNR12b]). Choose a critical point z ∈ f−1(ρ) which
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can be connected to Y by a curve γ staying in f−1(ρ) and not intersecting other
critical points. Assume that this is z1. Then we rearrange the critical points, so
that f(z1) = a1 and the position of other critical points is not changed. We claim
that f−1(ρ) still has no closed connected components. This is so, because if n > 1
a 1-handle does not increase the number of connected components. Hence we find
again a critical point in f−1(ρ), which we call z2, that can be connected to Y by a
curve lying entirely in f−1(ρ) omitting z3, . . . , zk. We move z2 to the level a2.

After finite number of moves we complete the proof.

The n = 1 case is slightly more difficult, because the number of connected
components of the level set can increase or decrease depending on whether the
ascending sphere S0 belongs to a single connected component of f−1(a), or to
two components. We will use the following trick. As before let the critical points
be z1, . . . , zk. Let us choose numbers a1, . . . , ak, c1, . . . , ck such that a < a1 <
· · · < ak < ρ < ck < · · · < c1 < c. Recall that f−1(ρ) has no closed connected
components. Let us again choose a critical point (we relabel the critical points so
that this is z1), which can be connected to Y in the level set of f−1(ρ) by a curve
omitting all other critical points. We have two cases: either z1 is attached to two
separate connected components of f−1(a), then we move it to the level a1; or z1
is attached to a single connected component, and then we move z1 to the level set
of c1. In both cases, it still holds that f−1(ρ) has no closed connected component.
We can thus find a critical point in f−1(ρ) (we will call it z2) that can be connected
to the Y by a path in f−1(ρ) omitting other critical points. We move it to the
level set a2 or c2 as above. The procedure is then repeated inductively with the
remaining critical points. �

Conclusion of the proof of Proposition 6.5. For n > 1, by Lemma 6.9 f−1(y)
has no closed connected components for any y ∈ [c, d]. Hence all interior critical
points of index 2, . . . , n− 1 can be connected to the boundary by a curve lying in
the corresponding level set. The case of interior critical points of index 1 is dealt
with in Lemma 6.10. The same lemma also deals with the case of critical points of
index n− 1 by applying it to 1− f ; the proof for n > 1 is finished.

For n = 1 we use only Lemma 6.10. �

If the codimension of the embedding is one we have the following partial result.

Proposition 6.11. Suppose that neither Ω, Σ0, nor Σ1 have closed connected com-
ponents and codimΩ ⊂ Z × [0, 1] = 1. Then we can change F by a rearrangement
so that each critical point z of f = F |Ω of index 2, . . . , n − 1 can be joined to the
boundary by a curve lying entirely in the level set f−1)(f(z)).

Proof. By Theorem 4.9 (Global Rearrangement Theorem in codimension one) we
rearrange F so that if z and w are critical points of f = F |Ω and the index of z is
smaller than the index of w, then F (z) < F (w). In particular we can choose c < d
such that F−1[c, d] contains all critical points of f of indices between 2 and n − 1
inclusive, and only those critical points.

Now Lemmata 6.6, 6.7 and 6.8 hold in this case, because the codimension as-
sumption is never used in the proofs. �
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6.3. The embedded global handle splitting theorem

Now we are going to prove one of the main results of the present paper, which is
the topological counterpart of [BNR12a, Main Theorem 1].

Theorem 6.12 (Global Handle Splitting Theorem). Let (Z,Ω) be an embedded
cobordism such that Ω ⊂ Z × [0, 1] has codimension 2 or more. Suppose that
Ω, Σ0 and Σ1 have no closed connected components. Then there exists a map
F : Z × [0, 1] → [0, 1], which is homotopic through submersions to the projection
onto the second factor, such that Ω can be expressed as a union:

Ω = Ω−1/2 ∪ Ω0 ∪ Ω1/2 ∪ Ω1 ∪ Ω3/2 ∪ · · · ∪ Ωn+1/2 ∪ Ωn+1,

where Ωi = Ω ∩ F−1([(2i + 1)/(2n + 4), (2i + 2)/(2n + 4)]) and

• Ω−1/2 is a cobordism given by a sequence of index 0 handle attachments;
• if i ∈ {0, . . . , n}, then Ωi is a right product cobordism given by a sequence
of elementary index i right product cobordisms;

• if i + 1/2 ∈ {1, . . . , n + 1}, then Ωi is a left product cobordism given by a
sequence of elementary index i+ 1/2 left product cobordisms;

• Ωn+1 is a cobordism given by a sequence of index n+1 handle attachments.

Proof. The proof follows the line of [BNR12b, Theorem 4.18] with the exception
that we cannot in general assume that the original underlying Morse function has
only boundary stable critical points.

By the Global Rearrangement Theorem (Theorem 4.7) we can rearrange the
critical points of f so that the boundary stable critical points of index k have
critical value 3k+1

3n+6
, interior critical points of index k are on the level 3k+2

3n+6
and

boundary unstable critical points of index k are on the level 3k+3

3n+6
. We point out

that there are no boundary unstable critical points of index n + 1, nor boundary
stable critical points of index 0 (see Remark 2.9).

After such rearrangements, the function f is technically still acceptable. By
Proposition 6.5 we can join each interior critical point of index 1, . . . , n to the
boundary by a curve lying in a level set of f . Then, by Theorem 6.1 we can move
these interior critical points to the boundary and split into boundary stable and
unstable critical points. After this, the critical points are organized so that first
come (this means that the value of f at the corresponding points is the smallest)
interior index 0 critical points, then boundary unstable index 0, then boundary
stable index 1, boundary unstable index 1 and so on. Finally we have boundary
unstable critical points of index n, boundary stable critical points of index n + 1
and interior critical points of index n+ 1.

We can now choose noncritical values of f , 0 = f0 < f1 < f2 < · · · < f2n+4 = 1
in such a way that f−1[0, f1] contains only the interior critical points of index
0, f−1[f2i+1, f2i+2] contains the boundary unstable critical points of index i for
i = 0, . . . , n, f−1[f2i, f2i+1] contains the boundary stable critical points of index i
for i = 1, . . . , n + 1 and f−1[f2n+3, f2n+4] contains only the interior critical points
of index n + 1. We define Ωi := f−1[f2i+1,2i+2] (we can rescale the function F so

that fj =
j

2n+4
). �
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In the codimension one case, the situation is much more complicated. First,
the rearrangement theorem does not work in general. Since we are not allowed to
switch the position of critical points of the same index, the method of proof used
for Proposition 6.5 for the interval [a, c] does not work. For the moment we can
prove the following result.

Theorem 6.13. Let (Z,Ω) be a codimension one embedded cobordism, where Ω,
Σ0 and Σ1 have no closed connected components. Then the cobordism (Z,Ω) can
be split into cobordisms Ω0,Ω1, . . . ,ΩM for some M > 0, where Ω0 contains only
critical points of index 0 and 1 (of all possible types), ΩM has only critical points
of index n and n + 1 and for i = 1, . . . ,M − 1, the cobordism Ωi is either a left
product or a right product cobordism, and the index of critical points in Ωi is less
than or equal to the index of the critical points in Ωj whenever 1 < i < j < M .

We remark that the statement is vacuous if dimΩ = 2.

Proof. By Theorem 4.9 we can rearrange critical points so that the critical points
of index 0 come first, followed by the critical points of index 1, then those of index
2, and so on. Recall that we cannot, in general, rearrange critical points so that
boundary unstable critical points come after other critical points of the same index.
Notwithstanding, there exist c, d with 0 < c < d < 1 such that f−1[c, d] contains
critical points of indices between 2 and n− 1 and no other. We can already define
Ω0 = f−1[0, c] and ΩM = f−1[d, 1]. Now by Proposition 6.11 we can connect each
interior critical point of index k, k = {2, . . . , n− 1} to the boundary Y by a curve
lying entirely in a level set of f . Hence we can apply Theorem 6.1 to split the
critical point. Now we define cobordisms Ω1, . . . ,ΩM−1 by the condition that each
contains exactly one critical point of f . �

The codimension 1 case, although the most difficult, is also very important in
applications; see [BNR12a]. We conclude the section with a rough description of
how Theorem 6.13 can replace [BNR12a, Main Theorem 1] in the proof of [BNR12a,
Main Theorem 2]. The former states that relative algebraic cobordisms are alge-
braically split. The latter states that isotopic knots have S-equivalent Seifert forms
and that H-cobordant knots have H-equivalent Seifert forms (we refer to [BNR12a]
for the definitions).

Suppose Z = S2k+1 is a sphere and N0, N1 are (2k − 1)-dimensional closed
oriented submanifolds of Z with Seifert surfaces Σ0 and Σ1 respectively. The Seifert
forms are defined on the torsion–free parts of Hk(Σ0,Z) and Hk(Σ1,Z). Suppose
N0 and N1 are cobordant as submanifolds of Z× [0, 1], for example if the knots are
isotopic or concordant. We want to compare the Seifert forms related to Σ0 and
Σ1. To this end, we find a (2k + 1)-dimensional manifold Ω ⊂ Z × [0, 1], such that
∂Ω = Σ0 ∪ Y ∪ Σ1, where Y is the cobordism between N0 and N1. The changes
between the Seifert forms related to Σ0 and Σ1 can be studied by splitting the
cobordism Ω into simple pieces, and looking at change corresponding to each piece.
If the piece consists of a handle attachment of index s 6= k, k + 1, then the Seifert
form is unchanged; see [Lev70]. The action occurs in the middle dimensions k
and k+1. The Seifert form can change, but it is much easier to control the change
if the cobordism corresponds to a half-handle attachment (that is, it corresponds
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to crossing a boundary critical point) and not a handle attachment (corresponding
to crossing an interior critical point). So to prove [BNR12a, Main Theorem 2],
one wants to move all interior critical points of index k, k + 1 to the boundary.
By Theorem 6.13, this is possible if k ≥ 2, so in any dimension past the classical
dimension k = 1, Z = S3. Of course, in the classical case, the theorem that isotopy
of knots implies S-equivalence of Seifert matrices, and that Seifert matrices of
concordant knots are algebraically concordant, was known long before [BNR12a].
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