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Current tests of General Relativity (GR) remain confined to the scale of stellar systems 

or the strong gravity regime. A departure from GR on cosmological scales has been 

advocated [1] as an alternative to the Cosmological Constant Λ [2] to account for the 

observed cosmic expansion history [3]-[4]. However, such models yield distinct values for 

the linear growth rate of density perturbations and consequently for the associated galaxy 

peculiar velocity field. Measurements of the resulting anisotropy of galaxy clustering [5]-

[6] have thus been proposed as a powerful probe of the validity of GR on cosmological 

scales [7] but despite significant efforts [8]-[9], they suffer from systematic errors 

comparable to statistical uncertainties [10]. Here, we present the results of a novel 

forward-modelling approach, which fully exploits the sensitivity of the galaxy velocity 

field to modifications of GR. We use state-of-the-art, high-resolution N-body simulations 

of a standard GR (ΛCDM) [11] and a compelling 𝒇(𝑹) model [12] – one of GR’s simplest 

variants – to build simulated catalogues of stellar-mass-selected galaxies through a robust 

match to the Sloan Digital Sky Survey [13]. We find that 𝒇(𝑹)  fails to reproduce the 

observed redshift-space clustering on scales 1~10 Mpc/h. Instead, the standard ΛCDM 

GR model agrees impressively well with the data. This result provides strong 
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confirmation, on cosmological scales, of the robustness of Einstein's general theory of 

relativity. 

The simplest generalisation of GR is represented by the so-called 𝑓(𝑅) models, in which the 

Ricci scalar curvature, 𝑅, in the Einstein-Hilbert action is replaced by an arbitrary function of 

𝑅  (see Ref. [12] for a review). 𝑓(𝑅)  gravity adheres to all of the pivotal principles that 

underpin GR, such as the equivalence principle. It also predicts gravitational waves travelling 

at the speed of light, another feature of GR recently confirmed in a spectacular way by the 

multi-messenger gravitational wave event GW170817 [14]-[15]. As such, 𝑓(𝑅)  gravity is 

arguably the "least unnatural" and most compelling theory of gravity beyond Einstein’s GR. 

Moreover, 𝑓(𝑅) cosmological model includes a “screening mechanism”, which restores GR 

in dense environments, where strong constraints exist (see e.g. [16]). This means that deviations 

from GR, if any, can be detected only by measurements on cosmological scales, as those probed 

by galaxy surveys, where such screening is, in general, ineffective.   

However, a precise test of gravity from galaxy surveys is non-trivial. Usually, modifications 

of gravity are probed by measuring the linear growth of cosmic structure [7]. Structure growth 

induces large-scale peculiar velocities, i.e. galaxy coherent motions superimposed on the pure 

cosmological expansion. This adds a Doppler contribution to the measured cosmological 

redshift, which induces what we call redshift space distortions (RSD) [5]. A direct recovery of 

the linear growth rate from RSD is, however, impaired by large random velocities inside galaxy 

clusters and groups, resulting from the full non-linear gravitational evolution. Their effect can 

extend to fairly large scales, resulting in a complicated scale-dependent clustering signal (see 

e.g. [10] and references therein). The past decade saw significant progress in modelling these 

nonlinear effects (see e.g.[8]-[9] and references therein), leading to a number of independent 

measurements of the growth rate of structure at different redshifts (e.g. [17]-[19]). Still, 

systematic errors in such modelling remain comparable to the achieved precisions (~3-5%) [10] 

and it remains difficult to assess quantitatively how model-dependent assumptions globally 

affect the results.  
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Here we take an alternative route, which avoids most of the current difficulties. Rather than 

applying non-linear corrections to linear models of the growth of structure to match the data, 

we take a forward modelling approach that starts from the fully non-linear description of matter 

clustering provided by numerical N-body simulations of structure formation in standard and 

non-standard cosmologies. The key problem becomes then to associate self-consistently and 

unambiguously observed galaxies to dark-matter halos in the simulations. This is achieved 

using the so-called sub-halo abundance matching (SHAM) technique [20] (See Methods for 

details). Following the standard paradigm of galaxy formation, galaxies reside in DM halos 

(usually called sub-halos, as often embedded within more massive parent halos, as e.g. a group 

or a cluster). If a monotonic relation exists between a property of the sub-halo and a physical 

property of the galaxy, then there is a one-to-one match between simulated DM sub-halos and 

galaxies in a survey, selected according to that property. This implies, for example, that the 

clustering of sub-halos in a simulation can be directly and quantitatively compared to the 

measured clustering of a corresponding sample of galaxies. The relevant virtues of this 

approach are that: (a) there is no ambiguity regarding galaxy bias, which links the clustering 

(and RSD) of galaxy tracers to the underlying dark matter (DM) field; (b) non-linear clustering 

and motions are fully reproduced, up to the scales set by the mass resolution and volume of the 

simulation.    

To implement SHAM in practice, the key point is to identify the specific physical property of 

observable galaxies that monotonically (or with very small scatter) depends on a property of 

the host DM halo. State-of-the-art hydrodynamic simulations like EAGLE [21], in which 

dissipative processes and a comprehensive physical model of galaxy formation are included, 

show that a tight correlation (albeit with some scatter) exists between galaxy stellar mass (the 

total mass of a galaxy in stars) and the peak value of the maximum circular velocity over the 

subhalo's merger history, vpeak , which is a robust proxy for the maximum gravitational 

potential attained over the existence of a simulated sub-halo (See Methods for details).  

We adopt the SHAM technique in this work to make a quantitative comparison of redshift-
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space clustering measured from the Sloan Digital Sky Survey (SDSS) main galaxy sample [13] 

to the predictions of two simulations, built in the standard ΛCDM scenario and in an 𝑓(𝑅) 

cosmology. To construct our reference data sample, we use the New York University Value-

Added Galaxy Catalogue (NYU-VAGC) [22], which is an enhanced version of the SDSS Data 

Release 7 [13]. At a limiting magnitude 𝑟 ≤ 17.60 , this catalogue is highly complete and 

uniform over an area of 7732 deg2, including 542,432 galaxies with measured spectroscopy 

and a median distance of ~300 Mpc/h. From the observed redshift of spectral lines, redshift 

space distances are computed (note that given the low redshift of the sample, distances are only 

very mildly dependent on the assumed cosmology). From this catalogue we then build volume-

limited samples that are complete in stellar-mass (see Methods for details). Unlike luminosity, 

galaxy stellar mass is not directly obtained from the observed flux but needs to be derived from 

the fit of a stellar population synthesis model to multi-band photometric measurements (see. 

e.g. Ref. [23]). This procedure is prone to systematic errors (see e.g. Ref. [24] for a review). 

To mitigate these, we define our volume-limited samples in terms of a galaxy number density 

threshold, rather than applying a limit in stellar mass. As demonstrated in the Methods (and 

shown in Figure 2), if a sufficiently high-density sample is used, the impact of stellar mass 

systematic errors on clustering measurements is negligible. For this reason, our reference 

sample is defined by imposing a mean galaxy density ng = 1 × 10−2[Mpc/ℎ]−3  (see 

Supplementary Figure 1).  

This reference data catalogue is first matched to a simulation performed in the standard GR – 

ΛCDM scenario. Specifically, we choose the Small MultiDark Planck simulation (SMDPL) 

[11], which adopts a Planck cosmology with Ωm = 0.3071, ℎ =  0.6777, σ8 = 0.8228, ns =

0.96 [25]. The simulation uses 38403  dark matter particles in a box of 400Mpc/h side, 

giving a mass resolution of 9.6 × 107M⊙/ℎ. Dark matter halos and subhalos in our analyses 

are identified using the Rockstar halo finder [26]. The high mass resolution of this simulation 

is crucial for the application of the subhalo abundance matching technique. A satellite subhalo 

close to the centre of its parent halo may lose substantial mass due to tidal stripping. At an 

earlier time in the simulation, a massive halo can even be completely disrupted by tidal 
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stripping, such that at a later time it is no longer detectable. This leads to what in simulations 

have been called orphan galaxies [27], i.e. galaxies that may exist as baryonic objects today, 

but devoid of an identifiable DM sub-halo. Overlooking these objects in the simulation can 

under-estimate the predicted clustering on small scales [27]. In our case, based on Ref. [28] 

and given the high mass resolution of the SMDPL, our reference galaxy number density ng =

1 × 10−2[Mpc/ℎ]−3 guarantees that the fraction of orphan galaxies is less than 2.6%, which 

is a negligible contribution. Another technical issue is that in the SHAM approach, a scatter is 

usually added to the relation between vpeak and galaxy stellar mass (See Methods for details). 

This quantity essentially only affects the selection of subhalos near the sample mass threshold, 

which at the high number densities we have in our samples, has a limited impact. For this 

reason, in our SHAM implementation we avoid adding any scatter and, as a consequence, our 

model has no free parameters. 

Our SHAM prediction for 𝑓(𝑅) gravity is based on a second simulation, presented in Ref. 

[29], coupled to an effective halo technique [30]. This is necessary as the circular velocity 𝑣cir 

of a baryonic particle in a subhalo in 𝑓(𝑅) gravity is not directly related to the cold dark matter 

mass but to an effective mass defined through a modified version of the Poisson equation [30]  

∇2φ = 4πG𝑎2𝛿𝜌eff , 

with G being Newton's constant. The simulation has a mass resolution of 1.52 × 108M⊙/ℎ, 

i.e. comparable to that of the SMDPL simulation, which makes this the highest resolution 𝑓(𝑅) 

cosmological simulation to date. This is crucial for this kind of test, since the “screening 

mechanism”, which significantly affects the velocity field in 𝑓(𝑅) cosmology, can only be 

accurately explored if the resolution is sufficiently high (Methods for details). Although the 

computational cost of this kind of simulation limits the box size to 64Mpc/h, which misses the 

long-wavelength modes (large scales) of the density field, the simulation can still produce 

reliable predictions for the higher-order multipoles of clustering (see Supplementary Figure 5 

and Methods for details), which are the ones containing most of the velocity-field information 

and as such the most important quantities to test gravity. In any case, we further develop a self-

consistent correction for the missing large-scale modes, by building a test ΛCDM simulation 
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with the same box size (64Mpc/ℎ) and initial conditions as the 𝑓(𝑅) simulation. In this case, 

the differences between their respective multipoles arguably reflect only the different nature of 

gravity. The ratio of the multipoles for the two (big and small) ΛCDM simulations can then be 

used to re-normalise the corresponding 𝑓(𝑅) multipoles, such that they can be compared on 

an equal footing to the final SMDPL measurements. Details and robustness tests of this method 

are described in Methods.   

From the ΛCDM simulation, we build a SHAM mock survey that fully reproduces the survey 

mask, geometry and wide-angle effects, volume-limited to have a number density ng =

1 × 10−2[Mpc/ℎ]−3 (see Methods). We then compute the redshift-space two-point correlation 

function ξ(rσ, rπ)  for the 𝑓(𝑅)  and ΛCDM mock surveys and for the real data, using the 

standard Landy and Szalay estimator (see Methods); here rσ and rπ give the separation of 

galaxy pairs split into the directions perpendicular and parallel to the line-of-sight, respectively 

(see Methods). In Figure 1 we compare the measurement from the SDSS data with that of the 

ΛCDM mock sample. It is remarkable how well the data and the model agree, particularly on 

small scales in the highly non-linear regime. The corresponding two-dimensional ξ(rσ, rπ) for 

𝑓(𝑅) cosmology is much noisier due to the limited box size of the simulation; to reduce the 

noise and get a better statistical comparison with data, we compress the information into 

spherical harmonics moments, namely the monopole ξ0, quadrupole ξ2 and hexadecapole ξ4, 

as detailed in Methods. In the same section we also describe how we account for the well-

known effect of the SDSS spectrograph fibre collisions on very small scales, using the so-

called truncated multipoles (see Methods). The results are shown in Figure 2 for both ΛCDM 

and 𝑓(𝑅), compared to the SDSS measurements. As expected from Figure 1, the ΛCDM model 

is an excellent description also of the clustering multipoles, within 1σ statistical uncertainty 

of the observational measurements, given by the small error bars. The 𝑓(𝑅)  prediction, 

however, has a significantly smaller amplitude on small scales (see Methods for discussions); 

despite its relatively larger theoretical uncertainty, this corresponds to a more than 5-sigma 

discrepancy with the SDSS data on small scales (s < 6Mpc/ℎ), as shown by the shaded bars. 

The robustness of this result with respect to systematic errors in stellar mass estimators is also 
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indicated by different symbols: different stellar mass models yield consistent clustering for the 

corresponding mass-selected samples, indicating that they do not significantly change the rank-

order of the galaxies in the SHAM implementation (see also Supplementary Figure 3). 

Overall, these results show that when data and simulations are self-consistently matched with 

physically motivated and robustly tested forward modelling, the ΛCDM model in the 

framework of general relativity provides an impressively accurate description of both galaxy 

clustering and motions on small-scales. Conversely, a representative of the family of 𝑓(𝑅) 

models, such as the one considered here [31] is clearly ruled out. This incarnation of 𝑓(𝑅) is 

characterised by a free parameter fR0 = −10−6 and an index n=1. Such a small value of ⌊fR0⌋ 

makes this 𝑓(𝑅) model barely distinguishable from ΛCDM when using other cosmological 

probes, such as cluster counts or weak lensing [32]. Yet, the impact on the observed redshift-

space clustering is dramatic, as we can see from Figure 2. The sensitivity of the non-linear 

velocity field to modifications to the laws of gravity is remarkable [33]. Our result provides a 

strong confirmation on cosmological scales of Einstein's general theory of relativity, 

significantly reducing the appeal of a modification to gravity as a solution to the conundrum 

of the cosmic acceleration.     
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Figure 1 | The small-scale galaxy clustering measured from the SDSS in redshift-space, 

compared to a realisation of the standard ΛCDM model. The reference galaxy sample here 

is defined by imposing a threshold in galaxy stellar mass as to reach a mean galaxy density 

ng = 1 × 10−2[Mpc/ℎ]−3. The colour-coded contours show the amplitude of the two-point 

correlation function ξ(rσ, rπ) of a stellar-mass selected sample of galaxies from the SDSS-

NYU catalogue, as a function of the transverse rσ  and radial rπ  separation. The actual 

measurement for positive rσ and rπ is replicated over four quadrants to highlight deviations 

from circular symmetry, produced by galaxy peculiar velocities that add to cosmological 

expansion when we use galaxy redshifts as a proxy for distance. Without peculiar motions, the 

contours would be perfect circles. The dashed lines give the corresponding predictions of 

ΛCDM, obtained from a mock galaxy survey fully mimicking the real data, based on the 

SMDPL N-body simulation. Dark-matter halos in the simulation and galaxies have been 

matched through an implementation of Sub-Halo Abundance Matching (SHAM) without free 

parameters (no scatter). The ΛCDM predictions agree impressively well with the observations 

in redshift space, especially for the so-called "Fingers-of-God" feature at small rσ, i.e. the 

stretching of the contours along the line of sight produced by high-velocity galaxies in groups 
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and clusters. This highlights the advantage of our forward modelling approach using 

simulations to allow a comparison of galaxy clustering and motions for data and models into 

the fully non-linear regime.  
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Figure 2 | Multipoles of the redshift space two-point correlation 𝛏(𝐫𝛔, 𝐫𝛑) . Galaxy 

clustering predicted by standard ΛCDM (black solid line) and the 𝑓(𝑅) model (red solid line) 

are compared with the SDSS measurements (symbols with errors), in terms of the monopole 

ξ0 , quadrupole ξ2  and hexadecapole ξ4  (multiplied by the redshift space separation s for 

convenience). These were estimated using the "truncation" technique (see Methods). The 

monopole and hexadecapole lines have been shifted vertically as indicated, to ease 

visualization. As suggested by Figure 1, ΛCDM is in excellent agreement with observational 

measurements, while the 𝑓(𝑅) model is not. To test the robustness of this result with respect 

to different estimates of galaxy stellar mass, we compare three methods: a template-fit method 

[34] as adopted in the NYU catalogue with the SDSS model magnitudes (stars), the same, but 

using SDSS Petrosian magnitudes (circles), and a single-color method [35] (triangles). Clearly, 

changing the estimates of stellar mass does not change the results appreciably; this happens 

because different mass estimations approximately preserve the same rank-order of galaxies. 

Small error bars show the 1σ statistical error estimated using jack-knife re-sampling with 133 
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realizations, while the large shaded bars indicate a 5σ  statistical error. The black and red 

shaded corridors indicate the 1σ  uncertainty in the theoretical predictions of the two 

cosmological models.    
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Methods 

Observational data. Our analysis uses the New York University Value-Added Galaxy 

Catalogue (NYU-VAGC) [22], which is an enhanced version of the Sloan Digital Sky Survey 

(SDSS) main galaxy sample Data Release 7 [13]. Specifically, we use the NYU-VAGC 

bbright catalogue, which has a fairly homogenous r-band Petrosian magnitude limit of 𝑟 ≤

17.60  over the whole survey footprint. The catalogue covers an area of 7732 deg2 ; of 

these, 144 deg2 are masked due to bright stars. Galaxies in this catalogue are mainly located 

in a contiguous region in the north Galactic cap. We also include the three strips in the south 

Galactic cap, which account for about 10% of the total number of galaxies, for a total of 𝑁𝑡 =

594,307  photometrically selected galaxies. Of these, 𝑁𝑠 = 542,432  have a reliable 

spectroscopic redshift. All samples analysed here are limited to z > 0.02.  

Volume-limited samples complete in stellar mass. We follow the method proposed in Ref. 

[36] to construct volume-limited samples that are complete in stellar-mass. Since blue galaxies 

have a lower stellar mass-to-light ratio 𝑀∗ 𝐿⁄ , for a given stellar mass, a blue galaxy can be 

detected to a higher redshift than a red one (see Supplementary Figure 1). This implies that the 

flux limit of a flux-limited survey translates into a stellar mass limit M∗min(z) which is higher 

for red galaxies than for blue ones. As shown in the same figure, below that limit red galaxies 

disappear, and a sample naively selected in stellar mass would be biased towards blue objects. 

Clearly, if we choose a minimum mass limit defined as that corresponding to the detected 

object in the sample that has the most extreme red colour, all other (bluer) galaxies of the same 

stellar mass will be more luminous and so will also be in the sample. As such, the resulting 

sample will be statistically complete in stellar mass. In practice, the maximum stellar mass-to-

light ratio in the sample (corresponding, for what we just said, to the reddest objects) can be 

estimated from the data [36]. Supplementary Figure 2 shows the r-band stellar mass-to-light 

ratio of galaxies in the NYU catalogue for different stellar mass models (see next section). The 

solid lines are our estimates of the maximum stellar mass-to-light ratio as a function of the 

absolute r-band magnitude Mr, namely M∗min(Mr). The stellar mass limit, above which the 
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sample is complete in stellar mass, is then given by M∗min(Mrmax(z)), where Mrmax(z) is 

the maximum (i.e. faintest) r-band absolute magnitude Mr that can be seen at redshift z given 

an apparent flux limit mr. The solid curves in Supplementary Figure 1 show the mass limit 

M∗min(z) obtained in this way for different stellar mass models. The corresponding horizontal 

and vertical lines show stellar mass and redshift limits (zmax) for 6 volume-limited sub-samples 

that are complete in stellar-mass. 

Stellar mass estimate systematic uncertainties. Unlike luminosity, a galaxy’s stellar mass 

cannot be directly measured but has to be derived from a fit to its Spectral Energy Distribution 

(SED), using a stellar population synthesis model (e.g. Ref. [23]), a modelling process which 

is prone to systematic errors. There are two main sources of errors. One lies in the theoretical 

uncertainty, in particular in the choice of the stellar initial mass function (IMF) (see Ref. [24] 

for a review). Choosing a Chabrier [37] or Kroupa IMF [38], has a significant impact on the 

amplitude of the stellar mass function. The second major source of systematic uncertainty lies 

in the way the total flux of a galaxy is estimated from the imaging data. In SDSS, the aperture 

used to estimate the flux in all five photometric bands (u, g, r, i, z) is set by the galaxy surface 

brightness profile as measured in the r-band alone. This defines an r-band Petrosian radius rp. 

The total flux in all bands is then obtained by integrating out to twice this value, 2rp. This 

aperture is large enough to contain virtually all flux for objects with an exponential surface 

brightness profile. For objects with a de Vaucouleurs profile, however, this only typically 

includes 80% of the flux. As such, a significant fraction of light can be lost and SDSS Petrosian 

magnitudes tend to underestimate the total flux of galaxies with such a profile, a problem which 

is particularly acute for massive elliptical galaxies (see e.g. Ref. [39]). 

To mitigate these systematics, we define our galaxy samples in terms of their number densities, 

rather than through thresholds in stellar mass. The idea is to keep the rank-order of galaxies 

stable. Changes in the IMF shift the absolute value of a galaxy stellar mass, while not 

significantly changing its relative rank-order. Therefore, by selecting galaxies in terms of 

number densities, the choice of IMF has little impact on the selected samples and, most 
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importantly, does not perturb the rank-order in the sub-halo abundance matching.  

In addition, we use galaxy samples with a high mean number density, which has a valuable 

effect of reducing the impact of uncertainty (scatter) in the estimated stellar mass between 

different models. Although, as shown in Ref. [40], if the same stellar IMF is used, the overall 

distribution of the estimated stellar masses in the sample remains stable when changing the 

model, on a galaxy-by-galaxy basis there is still significant scatter. This scatter, however, only 

affects the sample definition near the mass threshold chosen. If the sample is very sparse, the 

fraction of objects going in and out of the sample due to scatter can be significant. However, if 

the mean number density of the selected samples is sufficiently high, this fraction will be small 

compared to the bulk of the sample.  

We test directly the effectiveness of such a strategy by applying three different stellar mass 

models to our galaxy samples. The first one is the default model used in the NYU catalogue, 

which is based on the five-band SDSS Petrosian photometry and a fit to templates from a stellar 

population synthesis model [34]. The template fit yields the galaxy stellar mass-to-light ratio 

𝑀∗ 𝐿⁄ , and the stellar mass can then be obtained by multiplying by its luminosity. In order to 

address the impact of the fixed r-band aperture on the estimated stellar mass, we adopt the 

same template fitting method, but use the SDSS model magnitudes, instead of the Petrosian 

ones. The former are obtained by fitting the (Point-Spread-Function convolved) exponential 

and de Vaucouleurs profiles to a galaxy and then adopting the one giving the best χ2 . In 

contrast to the SDSS Petrosian magnitudes, SDSS model magnitudes better account for the loss 

of flux due to the fixed aperture. Finally, we also consider a third model based on a single-

colour method, following [35]. In this case, the stellar mass is given by 

log10(M∗/[ℎ−2M⊙]) = −0.406 + 1.097[ (g − r)0.0 ] − 0.4( Mr − 5 log10 ℎ − 4.640.0 ), 

where Mr − 5 log10 ℎ0.0  is the absolute magnitude that is K-corrected and evolution corrected 

to redshift zero, as 

 Mr − 5 log10 ℎ = mr − DM(z)0.0 − k0.0(z) + 1.62z.  

Here k0.0(z) is the K-correction to redshift zero and DM(z) is the distance modulus 
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DM(z) ≡ 5 log10(𝐷𝐿/[Mpc/ℎ]) + 25  , 

with 𝐷𝐿 being the luminosity distance in Mpc/h. Note that in this estimator, the stellar mass is 

only explicitly dependent on the rest-frame (g − r)0.0  colour and magnitude. It is also important 

to note that this single-colour estimator implicitly assumes the Kroupa IMF [38], while the 

default NYU catalogue uses the Chabrier IMF [37]. Supplementary Figure 2 compares the 

stellar mass-to-light ratio obtained for the three different models. Panel b shows the significant 

differences between the single-colour estimator and the photometric template-fit method: 

estimated stellar masses differ not only on a galaxy-by-galaxy basis, but also in the resulting 

global 𝑀∗ 𝐿⁄  relation.  

Two-point correlation function estimators. To estimate the redshift-space two point 

correlation function ξ(rσ, rπ)  [41] (where  rσ  and rπ  are the separations of galaxy pairs 

perpendicular and parallel to the line-of-sight direction, respectively), we use the well-known 

Landy and Szalay estimator [42]. To reveal deviations from isotropy, ξ(rσ, rπ)  can be 

conveniently expanded in terms of Legendre polynomials, as 

ξ𝑙(𝑠) =
2𝑙+1

2
∫ 𝑑𝜇𝜉(𝑠, 𝜇)𝑃𝑙(𝜇)

1

−1
, 

where Pl(μ)  is the Legendre polynomial of order l , s = √rσ
2 + rπ

2  and  μ =  rπ/s . In 

Supplementary Figure 3 we plot the monopole ξ0 , quadrupole ξ2  and hexadecapole ξ4  of 

ξ(rσ, rπ)  measured from different galaxy samples with varying mean densities (different 

colours) and based upon different stellar mass models (different line styles). For samples with 

very low mean densities, such as ng = 5 × 10−4[Mpc/ℎ]−3 and ng = 1 × 10−3[Mpc/

ℎ]−3(cyan and magenta groups of lines), the systematic errors in stellar mass estimates do affect 

the resulting galaxy clustering. This is precisely the effect due to a significant fraction of objects 

in the sample, with stellar mass close to the mass selection threshold, that can move in or out 

of the sample depending on the method used to estimate their masses. However, this effect is 

minimised for much denser samples, corresponding to ng = 5 × 10−3[Mpc/ℎ]−3 and ng =

1 × 10−2[Mpc/ℎ]−3(yellow and olive), with the clustering properties remaining substantially 

unchanged with respect to the mass estimator used.  



 

20 
 

In addition, in SHAM (see next section), with a higher mean density we move further down 

the galaxy stellar mass function, thus increasing the fraction of satellite galaxies, i.e. the 

population dominating non-linear RSD effects. This population of high-speed satellites is also 

expected to be free of the so-called velocity bias, which can be a potential issue for central 

galaxies [43]. For this reason, for our reference sample we choose ng = 1 × 10−2[Mpc/ℎ]−3, 

which is dense and also has a large enough volume to allow a robust clustering measurement.   

Sub-halo abundance matching. The SHAM method is based on the simple assumption that 

there is a monotonic relationship between a property of dark matter sub-halos and a property 

of the corresponding galaxies. Usually, these are identified respectively with the subhalo 

circular velocity (as a proxy for the self-gravity of the halo) and the galaxy total stellar mass. 

In its original form [44], the actual maximum circular velocity of subhalos measured in the 

simulation (hereafter 𝑣max ) was used. In this case, however, it has been shown that the 

corresponding SHAM catalogue of galaxies under-predicts the observed clustering on small 

scales [44]. The reason is that, in contrast to its more tightly bound stellar component, the gas 

component and dark matter halo of a galaxy can easily be disrupted by the tidal field of a nearby 

or parent massive halo. A better proxy is shown to be provided by the subhalo’s maximum 

circular velocity at the epoch of accretion (hereafter 𝑣acc), before this disruption happens [45]. 

This allows us to recover, e.g., galaxies associated with sub-halos in the central region of a host 

halo. Even better results are obtained if one uses the peak value of the maximum circular 

velocity over the sub-halo’s merger history [46] (hereafter 𝑣peak). The reason for this is that at 

the epoch of 𝑣peak , the subhalo has the strongest binding force and, hence, is most stable 

against tidal stripping. One thus expects its properties to be more tightly correlated with the 

galaxy stellar mass at this epoch. However, as shown in [47], during the lifetime of a subhalo, 

𝑣peak could sometimes show spikes, which might not reflect its typical status during most of 

its existence. This analysis, based on the state-of-the-art hydrodynamical simulation EAGLE 

[21], shows that the strongest correlation with galaxy stellar mass is obtained by using the 

highest value of the circular velocity satisfying a relaxation criterion (hereafter 𝑣relax). At the 

same time, however, 𝑣relax is shown to be only marginally better than 𝑣peak in reproducing 
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the simulated galaxy clustering. Furthermore, baryonic effects are shown to introduce only a 

small perturbation in a 𝑣peak ranked halo catalogue and have a limited impact on the positions 

of dark matter halos. This results in an overall accuracy in the predicted redshift-space galaxy 

clustering that is better than 10% above 1Mpc/ℎ, when using a 𝑣peak ranked halo catalogue 

in building the SHAM [47].     

Numerical stability of SHAM predictions. The SHAM method is based on sub-halos and 

their merger histories, which are in turn derived from high-resolution N-body simulations. It 

is, therefore, important to test the robustness of SHAM predictions against different N-body 

codes, halo finders and methods of constructing halo merger trees. In order to do this, we 

perform a test simulation with 10243 dark matter particles in a box of 150 Mpc/h side. In our 

test simulation, rather than using the GADGET code [48] as adopted in the SMDPL simulation, 

we instead use RAMSES [49]. RAMSES uses a multigrid relaxation method for solving the 

Poisson equation, which is different from the Tree-PM method used in GADGET. Moreover, 

we use the Amiga Halo Finder (AHF) [50] to identify halos and construct the halo merger tree 

using the MERGERTREE code which is a part of the AHF package. Supplementary Figure 4 

compares the multipoles of the two-point correlation function of our test simulation (dashed 

lines) to those obtained from the SMDPL simulation (solid lines). In both cases, the multipoles 

are estimated using the distant observer approximation (see Survey geometry and wide-angle 

effects). Despite the significant differences in the numerical methods used, the two simulations 

yield very similar predictions for the clustering of derived SHAM galaxies, when a large 

enough number density, ng = 1 × 10−2[Mpc/ℎ]−3, is adopted, as in the main paper. 

SHAM predictions in f(R) gravity. Unlike in the ΛCDM case, the circular velocity 𝑣cir of a 

baryonic particle in a sub-halo in 𝑓(𝑅) gravity is not directly related to the true cold dark 

matter mass of the sub-halo but to an effective mass which is defined through a modified 

version of the Poisson equation  

∇2φ = 4πG𝑎2𝛿𝜌eff 

with G being Newton's constant [30]. The effective energy density 𝜌eff , by definition, 
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incorporates all the effects of modified gravity. The circular velocity is then given by 𝑣cir
2 (𝑟) =

𝐺𝑀eff(<𝑟)

𝑟
 where 𝑀eff(< 𝑟) is the effective mass enclosed within radius 𝑟 for a dark matter 

halo. In practice, it is more convenient to calculate the circular velocity for each dark matter 

halo in an 𝑓(𝑅)  simulation using the effective halo catalogue technique, described in Ref. 

[30][51].  

The 𝑓(𝑅) simulation used in our analyses is the one described in Ref. [29]. The simulation has 

5123 dark matter particles within a box of 64Mpc/ℎ a side; this allows us to reach a mass 

resolution of 1.52 × 108M⊙/ℎ , which represents the highest resolution cosmological 

simulation to date for such an 𝑓(𝑅)  model [31]. However, due to its limited box size, the 

predicted galaxy clustering cannot be directly compared to observations, since missing long-

wavelength modes on scales larger than the box size also have an effect on small-scale 

clustering. To overcome this, we ran a further ΛCDM simulation with the same box size and – 

most importantly – the same initial conditions as the 𝑓(𝑅)  simulation. This allows a 

comparison of the small-scale behaviour of the two models on equal footing: the missing long-

wavelength Fourier components on scales larger than the box size will be, by construction, the 

same for the two simulations. As such, we expect the ratio of the two-point correlation function 

multipoles (monopole ξ0 , quadrupole ξ2  and hexadecapole ξ4 ) of the SHAM galaxy 

catalogues built from these two simulations to be virtually independent of the box size and 

reflect only the differences between the intrinsic gravity models. Thus, in practice, the full 

𝑓(𝑅) predictions to be compared to the full SMDPL (Figure 2) are obtained as  

(ξ0,2,4
𝑓(𝑅)

)
True

= (
ξ0,2,4

𝑓(𝑅)

ξ0,2,4
ΛCDM)

64Mpc/h

ξ0,2,4
SMDPL = (ξ0,2,4

𝑓(𝑅)
)

64Mpc/h

ξ0,2,4
SMDPL

(ξ0,2,4
ΛCDM)

64Mpc/h

, 

where ξ0,2,4
𝑓(𝑅)

  and ξ0,2,4
ΛCDM  are obtained from the 64Mpc/ℎ  box simulations as shown in 

Supplementary Figure 5.  

From this figure we can see that the box size affects mainly the monopole ξ0 , while the 

quadrupole ξ2 and hexadecapole ξ4 are essentially preserved. This is very important, beyond 
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any correction we may apply, as the latter are the quantities that specifically measure the 

deviation from an isotropic distribution produced in redshift-space by the peculiar velocities of 

galaxies (if there were no peculiar velocities, there would be no RSD effects and only the 

monopole would be non-zero). As such, higher order multipoles are, in the first place, less 

sensitive to the underlying real-space positions of galaxies. This is particularly true on small 

scales, where the RSD effects are dominated by random motions of high speed galaxies, in 

contrast with the coherent motion of galaxies on large scales. They thus contain most of the 

velocity-field information and are the most robust quantities to test gravity. In view of this, we 

further remark that in this kind of comparison the leading consideration for an 𝑓(𝑅) simulation 

is its mass resolution, rather than the box size: the strength of gravity and the velocity field are 

significantly affected by the 𝑓(𝑅)  “screening mechanism”, which can only be accurately 

explored if the mass resolution is sufficiently high, as in our simulation. 

The “screening mechanism” plays an important role in SHAM predictions for 𝑓(𝑅) gravity. 

Very massive main (distinct) halos in 𝑓(𝑅) gravity are usually screened. Subhalos in these 

main halos would feel the same strength of gravity as in standard gravity. However, less 

massive main (distinct) halos are usually unscreened, so that subhalos with similar (or even 

slightly smaller) true dark matter mass can have higher circular velocities due to enhanced 

gravity. As in SHAM we select subhalos using circular velocity (which is related to the 

effective density field and is tightly correlated to a galaxy’s stellar mass in the processes of 

galaxy formation), the subhalos in the less massive unscreened main (distinct) halos will be 

selected. For a fixed number density of halos, this leads to the relatively weaker clustering of 

SHAM predictions in 𝑓(𝑅) gravity, which is in contrast with the ΛCDM case (see Figure 2 

in the main text and also see Ref. [51]). 

Survey geometry and wide-angle effects. Given the significantly different box sizes between 

the SMDPL and our 𝑓(𝑅)  simulations, implementing redshift-space effects on their 

corresponding SHAM catalogues of artificial galaxies requires two different approaches. 

Specifically, in the case of the SMDPL, given its large volume, we can build realistic SHAM 
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mock surveys that fully reproduce the geometry and angular mask of the real SDSS data. But 

for the 𝑓(𝑅)  simulation, due to its limited box size, a more idealised approximation has 

necessarily to be used. In this section we test the robustness of the approach we used to 

implement redshift-space effects in the 𝑓(𝑅)  simulation and clearly identify the range of 

scales where the 𝑓(𝑅)  measurements can be compared on an equal footing to the LCDM 

simulation predictions and the real data.   

Our "standard cosmology" ΛCDM simulated galaxy sample is built from the very large box of 

the SMDPL simulation [11]. In this case, we can construct a full-sky SHAM mock SDSS 

survey that reproduces the SDSS data selection function without introducing simplifying 

assumptions. We collate 8 replicas of the box and place the observer at the centre of this super-

box. Redshift distortion effects are then obtained for each SHAM galaxy by projecting its 

velocity along the line-of-sight to the observer. Note that the large box size of the SMDPL 

simulation would be by itself sufficient for our purposes, given that we are only interested in 

small scales (< 20 Mpc/h). However, combining 8 replicas we can more easily accommodate 

the irregular geometry of the real SDSS data. This is an important check, as our SDSS volume-

limited samples are in general fairly shallow and characterised by an irregular geometry. Their 

median redshift is only around z~0.1, i.e. ~250Mpc/ℎ in a standard ΛCDM cosmology with  

Ωm = 0.3, with a large fraction of the galaxies closer than this distance.  

As anticipated, such an approach is not possible for an 𝑓(𝑅)  cosmology. Compared with 

ΛCDM ones, 𝑓(𝑅) simulations are rather expensive, typically requiring 20 times more CPU 

time than a ΛCDM simulation with the same box size and mass resolution. This severely limits 

the maximum box achievable for an 𝑓(𝑅) simulation with sufficiently high mass resolution, 

given the current state-of-the-art in super-computers. As such, it is currently not possible to 

build an 𝑓(𝑅) SHAM mock sample that is large enough to accommodate the volume of a 

survey like the SDSS we are using here. Given this situation, to analyse RSD effects in an 

𝑓(𝑅)  cosmology, we adopt the commonly used approach known as the distant observer 

approximation. This is the assumption originally adopted to derive the classic linear model of 
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RSD [5], which assumes that the box is at such a large distance, compared to its size, that both 

sides of the box along one direction can be considered parallel to the line-of-sight. This 

approach was used to produce the results of Supplementary Figures 4 and 5, as explicitly 

indicated by the label. These figures are fully self-consistent as we are comparing quantities 

from simulated samples treated in the same way (e.g. placed at the same, large distance). We 

test the robustness of this approximation against the geometry of our specific SDSS samples 

by applying both approaches to the SMDPL simulation. The comparison of the two outcomes 

is shown in Supplementary Figure 6. Again, there are some noticeable effects on the monopole 

ξ0; however, over the range 2~10 Mpc/h both the quadrupole and the hexadecapole (i.e. the 

two most important statistics in our gravity test), show little difference between the two ways 

of implementing the RSD effects, indicating that our comparisons of RSD effects in the 𝑓(𝑅)  

and ΛCDM SHAM catalogues with the corresponding SDSS data are robust. 

Fibre collisions mitigation. In the SDSS twin multi-object fibre spectrographs on the 2.5 m 

aperture Sloan Telescope at Apache Point Observatory, two fibres cannot be placed closer than 

55′′ on the spectroscopic plate in the same observation, due to the physical size of the fibre 

plugger [52]. Thus, any two galaxies separated by 55′′  or less cannot be observed 

simultaneously. In the SDSS observing strategy, this effect is alleviated by increasing the 

overlaps of adjacent tiles, such that close pairs can be targeted from different observations in 

the overlaps. However, there are still about 7% of the galaxies in close angular pairs that do 

not have a measured redshift in the survey. These missing fibre-collided pairs of galaxies 

introduce a systematic effect on two-point statistics, which cannot be simply accounted for 

through a homogeneous weighting, since the missing objects are not randomly distributed. One 

way to correct for this is to use an angular weight based on the ratio, as a function of separation, 

of the numbers of observed pairs to the total number of targets in the original survey parent 

catalogue [53]. This method works for a flux-limited sample, but cannot be directly generalized 

to sub-samples, such as volume-limited ones, at least without any assumptions [43]. A better 

way, which we adopt here, is – rather than using the conventional multipole expansion – to 

adopt the so-called truncated multipoles as proposed in [43] and [54]. These are defined as 
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ξl(𝑠) =
2l+1

2
∫ dμW(s, μ)ξ(s, μ)Pl(μ)

1

−1
, 

where W(s, μ) is a mask used to exclude the unreliable small-scale measurements from the 

integration 

W(s, μ) = {
1, rσ ≥ 0.2Mpc/ℎ
0, rσ < 0.2Mpc/ℎ

 . 

The choice of the truncation scale of 0.2Mpc/ℎ is very conservative, since at the maximum 

redshift of our galaxy data ( z~0.1  for the ng = 1 × 10−2[Mpc/ℎ]−3  sample), the fibre 

angular scale of 55′′ corresponds to rσ~0.08Mpc/h. Note also that the mask W(s, μ) is used 

only to obtain the multipoles of ξ(s, μ). The two-dimensional correlation function ξ(s, μ), in 

the first place, is calculated in the usual way, using galaxy pairs from all scales. This is 

important, because the missing galaxies in close pairs do impact clustering on large scales as 

well. However, the missing power on large scales can be corrected for by properly down-

weighting randoms, as implemented in our estimate of ξ(s, μ).  

Data Availability. The data that support the plots within this paper and other findings of this 

study are available from the corresponding author upon reasonable request.  
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Supplementary Figure 1. | The distribution of stellar masses as a function of redshift for 

the SDSS sample, comparing three different estimators. The colour of each point 

corresponds to the galaxy rest-frame (g − r)0.0   colour (given by the side bar); the labels 

indicate the different methods used to compute stellar masses in each of the three panels, as 

described in the text (Methods). Vertical and horizontal solid lines give the redshift and stellar 

mass limits for the volume-limited samples explored in our work. In all cases, they are limited 

by the solid curved line, which describes the lower completeness limit in stellar mass that has 

been estimated for each redshift. As discussed in the text, red objects start disappearing first 

when moving below this limit.   
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Supplementary Figure 2. | The relationship between stellar mass 𝑴∗ and luminosity in 

the r-band (𝑴𝒓) for our SDSS galaxy sample, varying the stellar mass estimator. (a): 

results when using Petrosian and SDSS Model magnitudes. Due to the fixed r-band aperture, 

Petrosian magnitudes tend to underestimate the total flux for galaxies characterised by a de 

Vaucouleurs surface brightness profile (i.e. early types). SDSS Model magnitudes partly 

account for these differences. The two types of magnitude yield very similar results for low 

stellar mass galaxies, but noticeable differences emerge for massive galaxies. (b): same plot 

now comparing the single-colour method (Yang07) and the template-fit method. Here 

differences appear not only on an object-by-object basis, but also in the overall distribution: 

overall, stellar mass estimates using the Yang07 model are much higher than in the default 

NYU catalogue. Note that the former model assumes a Kroupa IMF, while the NYU catalogue 

adopts a Chabrier IMF. The solid lines in both panels give our estimates of the maximum stellar 

mass-to-light ratio as a function of the absolute r-band magnitude Mr (see text in Methods). 
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Supplementary Figure 3. | The impact of stellar mass systematic errors on the clustering 

of mass-selected samples. From top to bottom, the three groups of lines give the measured 

(un-truncated) monopole ξ0, quadrupole ξ2 and hexadecapole ξ4 of the redshift space two-

point correlation function ξ(rσ, rπ), for galaxy samples selected by imposing different mean 

number densities (corresponding essentially to different mass thresholds, as described in the 

text), described by different colours. The monopole and hexadecapole lines have been shifted 

vertically as indicated, to ease visualization. Different line styles show the impact of using 

different stellar mass models to obtain stellar masses. For higher-mass, sparser samples (i.e. 

low number densities such as ng = 5 × 10−4[Mpc/ℎ]−3and ng = 1 × 10−3[Mpc/ℎ]−3, blue 

and magenta lines) this has a noticeable effect on the measured clustering. However, for denser 

samples (ng = 5 × 10−3[Mpc/ℎ]−3 and ng = 1 × 10−2[Mpc/ℎ]−3, yellow and olive lines), 

the effect is much less significant and the multipoles in redshift space are virtually independent 

of the mass model adopted, which is what we want to obtain a robust test of the gravity models. 

Our cosmological analysis is thus performed by matching the halos in the simulation to the 

SDSS mass-selected sample with ng = 1 × 10−2[Mpc/ℎ]−3. 
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Supplementary Figure 4. | The numerical convergence of SHAM predictions for 𝚲𝐂𝐃𝐌. 

We demonstrate here the robustness of our clustering predictions against changes in both the 

N-body code and the halo finder. The solid lines give the two-point correlation function 

multipoles for our reference SHAM sample with ng = 1 × 10−2[Mpc/ℎ]−3 built from the 

SMDPL simulation; the dashed lines give the same statistics for a sample built from an 

independent simulation with the same cosmology. This test simulation has been run using the 

RAMSES code and includes 10243 dark matter particles in a box of 150 Mpc/h along one 

side. Sub-halos are then identified using a different code, namely the Amiga Halo Finder (AHF) 

and merger trees are constructed using the MERGERTREE code which is a part of the AHF 

package (see text in Methods). Despite the significant differences in the numerical methods 

used, this test shows that for a sample with high number density, such as the one we use in the 

main paper, the two simulations yield very similar SHAM predictions for the clustering in 

redshift-space (the monopole and hexadecapole lines have been shifted vertically as indicated, 

to ease visualization).  
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Supplementary Figure 5. | The robustness of small-scale redshift-space clustering against 

the simulation box size. Redshift-space multipoles from the SMDPL simulation used in the 

main paper (black line), are compared to the same statistics measured from a ΛCDM simulation 

(blue line) with the same initial conditions and box size as our state-of-the-art 𝑓(𝑅) simulation 

(shown by the red line). The monopole and hexadecapole lines have been shifted vertically as 

indicated, to ease visualization. The shaded regions give the 1σ  uncertainty around the 

expectation value, derived from 500 realizations with line-of-sight along different directions 

of the simulation box. The comparison of the black and blue lines shows that the lack of long-

wavelength modes due to the small box size has a strong impact on the monopole ξ0, which 

shows a significant deficit of power for all scales larger than ~1 Mpc/h. Remarkably, however, 

the higher order multipoles from the two ΛCDM simulations are in very good agreement within 

the scatter, indicating a negligible impact on the quadrupole ξ2 and hexadecapole ξ4 of the 

missing long-wavelength modes. This is crucial for our conclusions, as these are the quantities 

containing most of the velocity-field information and, as such, providing the most robust test 

of gravity (see text in Methods).   



 

35 
 

 

Supplementary Figure 6. | The robustness of our tests to wide-angle effects. The multipoles 

of the two-point correlation function ξ(rσ, rπ) are compared for the two cases in which the 

parallel approximation (dashed lines, see text) or a fully realistic SDSS-like mock survey are 

used. The monopole and hexadecapole lines have been shifted vertically as indicated, to ease 

visualization. Although there are noticeable effects on the monopole ξ0, over the range 2~10 

Mpc/h both the quadrupole and the hexadecapole (i.e. the two most important statistics in our 

gravity test), show little difference between the two ways of implementing redshift space 

effects. This indicates the range where the parallel approximation, which had to be adopted for 

the 𝑓(𝑅) simulation (and for the tests of the two previous figures), can be safely compared 

with a fully realistic description as in the ΛCDM mock samples and, obviously, in the real data.  


