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The Near-Bipartiteness problem is that of deciding whether or not the vertices of a 
graph can be partitioned into sets A and B , where A is an independent set and B
induces a forest. The set A in such a partition is said to be an independent feedback 
vertex set. Yang and Yuan proved that Near-Bipartiteness is polynomial-time solvable for 
graphs of diameter 2 and NP-complete for graphs of diameter 4. We show that Near-

Bipartiteness is NP-complete for graphs of diameter 3, resolving their open problem. 
We also generalise their result for diameter 2 by proving that even the problem of 
computing a minimum independent feedback vertex is polynomial-time solvable for graphs 
of diameter 2.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A graph is near-bipartite if its vertex set can be parti-
tioned into sets A and B , where A is an independent set 
and B induces a forest. The set A is said to be an inde-
pendent feedback vertex set and the pair (A, B) is said to be 
a near-bipartite decomposition. This leads to the following 
two related decision problems.

✩ This paper received support from EPSRC (EP/K025090/1), London 
Mathematical Society (41536), the Leverhulme Trust (RPG-2016-258) and 
Fondation Sciences Mathématiques de Paris. The hardness result (Theo-
rem 4) of this paper has been announced in an extended abstract of the 
Proceedings of MFCS 2017 [4].
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Near-Bipartiteness

Instance: a graph G .
Question: is G near-bipartite (that is, does G have an 

independent feedback vertex set)?

Independent Feedback Vertex Set

Instance: a graph G and an integer k ≥ 0.
Question: does G have an independent feedback ver-

tex set of size at most k?

Setting k = n shows that the latter problem is more gen-
eral than the first problem. Thus, if Near-Bipartiteness is
NP-complete for some graph class, then so is Independent 
Feedback Vertex Set, and if Independent Feedback Vertex 
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Set is polynomial-time solvable for some graph class, then 
so is Near-Bipartiteness.

Note that every near-bipartite graph is 3-colourable, 
that is, its vertices can be coloured with at most 
three colours such that no two adjacent vertices are 
coloured alike. The problems 3-Colouring [11] and Near-

Bipartiteness [6] (and thus Independent Feedback Ver-

tex Set) are NP-complete. However, their complexities 
do not necessarily coincide on special graph classes. 
Grötschel, Lovász and Schrijver [10] proved that Colouring

is polynomial-time solvable for perfect graphs even if the 
permitted number of colours k is part of the input. How-
ever, Brandstädt et al. [5] proved that Near-Bipartiteness

remains NP-complete for perfect graphs. The same authors 
also showed that Near-Bipartiteness is polynomial-time 
solvable for P4-free graphs.

Yang and Yuan [16] proved that Near-Bipartiteness

also remains NP-complete for graphs of maximum de-
gree 4. To complement their hardness result, Yang and 
Yuan [16] showed that every connected graph of maxi-
mum degree at most 3 is near-bipartite except the com-
plete graph K4 on four vertices. This also follows from 
a more general result of Catlin and Lai [8]. Recently 
we gave a linear-time algorithm for finding an indepen-
dent feedback vertex set in a graph of maximum degree 
at most 3 [4], and also proved that Near-Bipartiteness

is NP-complete even for line graphs of maximum de-
gree 4 [3]. It is also known that Near-Bipartiteness is
NP-complete for planar graphs; this follows from a result 
of Dross, Montassier and Pinlou [9]; see the arXiv version 
of [4] for details.

Tamura, Ito and Zhou [15] proved that Independent 
Feedback Vertex Set is NP-complete for planar bipar-
tite graphs of maximum degree 4 (note that Near-

Bipartiteness is trivial for bipartite graphs). They also 
proved that Independent Feedback Vertex Set is linear-
time solvable for graphs of bounded treewidth, chordal 
graphs and P4-free graphs (the latter result generalising 
the result of [5] for Near-Bipartiteness on P4-free graphs). 
In [3] we proved that finding a minimum independent 
feedback vertex set is polynomial-time solvable even for 
P5-free graphs. We refer to [1,13] for FPT algorithms with 
parameter k for finding an independent feedback vertex set 
of size at most k.

The distance between two vertices u and v in a graph G
is the length (number of edges) of a shortest path be-
tween u and v . The diameter of a graph G is the maxi-
mum distance between any two vertices in G . In addition 
to their results for graphs of bounded maximum degree, 
Yang and Yuan [16] proved that Near-Bipartiteness is 
polynomial-time solvable for graphs of diameter at most 2
and NP-complete for graphs of diameter at most 4. They 
asked the following question, which was also posed by 
Brandstädt et al. [5]:

What is the complexity of Near-Bipartiteness for graphs of di-
ameter 3?

Our results. We complete the complexity classifications 
of Near-Bipartiteness and Independent Feedback Ver-

tex Set for graphs of bounded diameter. In particular, 
we prove that Near-Bipartiteness is NP-complete for 
graphs of diameter 3, which answers the above question. 
We also prove that Independent Feedback Vertex Set is 
polynomial-time solvable for graphs of diameter 2. This 
generalises the result of Yang and Yuan [16] for Near-

Bipartiteness restricted to graphs of diameter 2.

Theorem 1. Let k ≥ 0 be an integer.

(i) If k ≤ 2, then Independent Feedback Vertex Set (and 
thus Near-Bipartiteness) is polynomial-time solvable for 
graphs of diameter k.

(ii) If k ≥ 3, then Near-Bipartiteness (and thus Independent 
Feedback Vertex Set) is NP-complete for graphs of diam-
eter k.

We prove Theorem 1 (i) in Section 2. Yang and Yuan [16]
proved their result for Near-Bipartiteness by giving a 
polynomial-time verifiable characterisation of the class of 
near-bipartite graphs of diameter 2. We use their charac-
terisation as the starting point for our algorithm for In-

dependent Feedback Vertex Set. In fact our algorithm not 
only solves the decision problem but even finds a mini-
mum independent feedback vertex set in a graph of diam-
eter 2.

We prove Theorem 1 (ii) in Section 3 by using a con-
struction of Mertzios and Spirakis [12], which they used 
to prove that 3-Colouring is NP-complete for graphs of 
diameter 3. The outline of their proof is straightforward: 
a reduction from 3-Satisfiability that constructs, for any 
instance φ, a graph Hφ that is 3-colourable if and only 
if φ is satisfiable. We reduce 3-Satisfiability to Near-

Bipartiteness for graphs of diameter 3 using the same 
construction, that is, we show that Hφ is near-bipartite if 
and only if φ is satisfiable. As such, our result is an obser-
vation about the proof of Mertzios and Spirakis, but, owing 
to the intricacy of Hφ , this observation is non-trivial to ver-
ify. In Section 3 we therefore repeat the construction and 
describe our reduction in detail, though we rely on [12]
where possible in the proof.

2. Independent feedback vertex set for diameter 2

In this section we show how to compute a minimum 
independent feedback vertex set of a graph of diameter 2
in polynomial time. As mentioned, our proof relies on a 
known characterisation of near-bipartite graphs of diame-
ter 2 [16]. In order to explain this characterisation, we first 
need to introduce some terminology.

Let G = (V , E) be a graph and let X ⊆ V . Then the 
2-neighbour set of X , denoted by A X , is the set that consists 
of all vertices in V \ X that have at least two neighbours 
in X . A set I ⊆ V is independent if no two vertices of I
are adjacent. For u ∈ V , we let G − u denote the graph ob-
tained from G after deleting the vertex u (and its incident 
edges). A graph is complete bipartite if its vertex set can be 
partitioned into two independent sets S and T such that 
there is an edge between every vertex of S and every ver-
tex of T . If S or T has size 1, the graph is also called a 
star.
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Fig. 1. The graph G , which consists of the vertex u and the independent 
sets S1 ∪ S2 and T1 ∪ T2. Dashed lines indicate edges that are not present. 
Edges between vertices of S1 and vertices of T1 are not drawn, as such 
edges may or may not exist.

Theorem 2 ([16]). A graph G = (V , E) of diameter 2 is near-
bipartite if and only if one of the following two conditions holds:

(i) there exists a vertex u such that G − u is bipartite; or
(ii) there exists a set X, 4 ≤ |X | ≤ 5, such that (A X , V \ A X ) is 

a near-bipartite decomposition.

As noted in [16], Theorem 2 can be used to solve Near-

Bipartiteness in polynomial time for graphs of diameter 2, 
as conditions (i) and (ii) can be checked in polynomial 
time. However, Theorem 2 does not tell us how to deter-
mine the size of a minimum independent feedback vertex 
set.

In order to find a minimum independent feedback ver-
tex set, we will distinguish between the two cases of The-
orem 2. This leads to two corresponding lemmas.

Lemma 1. Let G = (V , E) be a near-bipartite graph of diame-
ter 2 that contains a vertex u such that G − u is bipartite. Then 
it is possible to find a minimum independent feedback vertex set 
of G in polynomial time.

Proof. Note that G is connected, as G has diameter 2. We 
can partition V \ {u} into four independent sets S1, S2, T1, 
T2 (some of which might be empty) such that

(i) S1 ∪ S2 and T1 ∪ T2 form bipartition classes of G − u;
(ii) u is adjacent to every vertex of S1 ∪ T1; and

(iii) u is non-adjacent to every vertex of S2 ∪ T2.

Moreover, as G has diameter 2, it follows that given a ver-
tex of S2 (respectively, T2) and a vertex of T1 ∪ T2 (respec-
tively, S1 ∪ S2), these two vertices must either be adjacent 
or have a common neighbour. As the latter is not possible, 
we deduce that

(iv) every vertex of S2 is adjacent to every vertex of T1 ∪
T2, and every vertex of T2 is adjacent to every vertex 
of S1 ∪ S2 (see also Fig. 1).

A (not necessarily proper) 2-colouring of the vertices of 
a graph is good if the vertices coloured 1 form an indepen-
dent set and the vertices coloured 2 induce a forest. The 
set of vertices coloured 1 in a good 2-colouring is said to 
be a 1-set and is, by definition, an independent feedback 
vertex of G . A good 2-colouring of G is optimal if its 1-set 
is of minimum possible size among all good 2-colourings. 
Our algorithm colours vertices one by one with colour 1
or 2 to obtain a number of good 2-colourings. We will es-
tablish that our approach ensures that at least one of our 
good 2-colourings is optimal. Therefore, as our algorithm 
finds different good 2-colourings, it only needs to remem-
ber the smallest 1-set seen so far. We note that G certainly 
has good 2-colourings as, for example, we can let either 
S1 ∪ S2 or T1 ∪ T2 be the set of vertices coloured 1.

We say that an edge is a 1-edge if both its end-points 
have colour 1 and say that a cycle of G is a 2-cycle if 
all its vertices have colour 2. Our algorithm will consist 
of a number of branches depending on the way we will 
colour the vertices of G . Whenever we detect a 1-edge or a 
2-cycle in a branch, we can discard the branch as we know 
that we are not going to generate a good 2-colouring. 
Before we describe our algorithm, we first prove the fol-
lowing claim. Here, we say that an independent set I is a 
twin-set if every vertex of I has the same neighbourhood.

Claim 1. Let I be a twin-set. In every optimal 2-colouring, at 
least |I| − 1 vertices of I obtain the same colour.

We prove Claim 1 as follows. If |I| = 1, the claim is trivial. 
Suppose |I| ≥ 2 and let J be the neighbourhood of the ver-
tices of I . Note that J is non-empty since |I| ≥ 2 and G is 
connected. Let c be an optimal 2-colouring of G . If c gives 
colour 1 to a vertex of J , then every vertex of I must re-
ceive colour 2. Now suppose that c gives colour 2 to every 
vertex of J . If | J | = 1, then c colours every vertex of I with 
colour 2, as doing this will not create a 2-cycle. If | J | ≥ 2
then, in order to avoid a 2-cycle, at least |I| − 1 vertices 
of I must be coloured 1. This proves Claim 1.

By (i), (iii), (iv), we find that S2 and T2 are twin-sets. Let Z
be the set of isolated vertices in the subgraph of G in-
duced by S1 ∪ T1. Then by (i), (ii), (iv), the neighbourhood 
of every vertex in Z ∩ S1 (respectively, Z ∩ T1) is T2 ∪ {u}
(respectively, S2 ∪ {u}). So Z ∩ S1 and Z ∩ T1 are twin-sets.

We choose one vertex from each non-empty set in 
{S2, T2, Z ∩ S1, Z ∩ T1} and let W be the set of chosen 
vertices. Note that the choice of the vertices in W can 
be done arbitrarily, since all four of these sets are twin-
sets. We now branch by giving all vertices in S2 \ W the 
same colour, all vertices in T2 \ W the same colour, all 
vertices in (Z ∩ S1) \ W the same colour and all vertices in 
(Z ∩ T1) \ W the same colour. We then branch by colouring 
the at most four vertices of W with every possible com-
bination of colours. Hence the total number of branches is 
at most 28. We discard any branch that yields a 1-edge or 
2-cycle. Let S ′

1 = S1 \ Z and T ′
1 = T1 \ Z . For each remaining 

branch we try to colour the remaining vertices of G , which 
are all in S ′

1 ∪ T ′
1 ∪ {u}, and keep track of any minimum 

1-set found. In the end we return a 1-set of minimum size 
(recall that G has at least two 1-sets).

For any remaining branch we do as follows. We first 
give colour 1 to u. Then every vertex of S ′ ∪ T ′ must get 
1 1
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colour 2. If this does not yield a 1-edge or 2-cycle, we ob-
tain a 1-set, which we remember if it is the smallest one 
found so far.

We now give colour 2 to u. If u was the only remaining 
vertex, we check for the presence of a 1-edge or a 2-cycle, 
and if none is present, we remember the 1-set found if it is 
the smallest one found so far. Otherwise, we let D1, . . . , Dr

for some integer r ≥ 1 be the connected components of 
the (bipartite) graph induced by S ′

1 ∪ T ′
1. As these vertices 

do not belong to Z , each Di contains at least one edge. 
Moreover, each Di is bipartite. For i ∈ {1, . . . , r}, we denote 
the two non-empty bipartition classes of Di by D1

i and D2
i

such that |V (D1
i )| ≤ |V (D2

i )|. The following claim is crucial.

Claim 2. For i ∈ {1, . . . , r}, we must either colour all vertices 
of D1

i with colour 1 and all vertices of D2
i with colour 2, or vice 

versa.

We prove Claim 2 as follows. Suppose that D1
i contains a 

vertex with the same colour as a vertex of D2
i . As Di is 

connected and bipartite, this means that Di contains an 
edge v w whose end-vertices are either both coloured 1 or 
coloured 2. In the first case, we obtain a 1-edge. In the 
second case the vertices u, v and w form a 2-cycle in G . 
Hence we must use colours 1 and 2 for different partition 
classes of Di . This proves Claim 2.

We now proceed as follows. First suppose that S2 ∪ T2 is 
non-empty. If we coloured a vertex in S2 (respectively T2) 
with colour 1, then every vertex in T ′

1 (respectively S ′
1) 

must be coloured 2 and therefore every vertex in S ′
1 (re-

spectively T ′
1) must be coloured 1 by Claim 2. Again, in 

this case we discard the branch if a 1-edge or 2-cycle is 
found; otherwise we remember the corresponding 1-set if 
it is the best set found so far. In every other case, we must 
have coloured every vertex of non-empty set S2 ∪ T2 with 
colour 2. Without loss of generality, assume that there is 
a vertex s ∈ S2 that is coloured 2. Then at most one ver-
tex of T ′

1 may have colour 2, as otherwise we obtain a 
2-cycle by involving the vertices s and u. We branch by 
guessing this vertex and then colouring it either 1 or 2, 
while assigning colour 1 to all other vertices of T ′

1. Then 
the only vertices with no colour yet are in S ′

1, but their 
colour is determined by the colours of the vertices in T ′

1
due to Claim 2.

We are left to deal with the case where S2 ∪ T2 = ∅. 
Claim 2 tells us that we must either give every vertex 
of D1

i colour 1 and every vertex of D2
i colour 2, or vice 

versa. For i ∈ {1, . . . , r} we give colour 1 to every vertex of 
every D1

i ; as |V (D1
i )| ≤ |V (D2

i )|, this is the best possible 
good 2-colouring for this branch.

The correctness of our algorithm follows from the fact that 
we distinguish all possible cases and find a best possible 
good 2-colouring (if one exists) in each case. Note that it 
takes polynomial time to find the sets S1, S2, T1 and T2. 
Moreover, the number of branches is O (n) and each branch 
can be processed in polynomial time, as we only need to 
search for a 1-edge or 2-cycle. Hence our algorithm runs 
in polynomial time. �
Lemma 2. Let G = (V , E) be a near-bipartite graph of diame-
ter 2 that contains no vertex u such that G − u is bipartite. Then 
it is possible to find a minimum independent feedback vertex 
of G in polynomial time.

Proof. As G is near-bipartite, it has an independent feed-
back vertex set. Let A be a minimum independent feed-
back vertex set. We claim that G contains a set of ver-
tices X of size 4 ≤ |X | ≤ 5 such that A X = A. This would 
immediately give us a polynomial-time algorithm. Indeed, 
it would suffice to check, for every set X of size 4 ≤ |X | ≤
5, whether (A X , V \ A X ) is a near-bipartite decomposition 
and to return a set A X of minimum size that satisfies this 
condition. This takes polynomial time.

To prove the above claim we will follow the same line 
of reasoning as in the proof of Theorem 2. However, our 
arguments are slightly different, as we need to prove a 
stronger statement.

Let B = V \ A and let F be the subgraph of G induced 
by B . By definition, F is a forest, so all of its connected 
components are trees.

We will first consider the case where F has a con-
nected component T of diameter at least 3. Let P be 
a longest path in the tree T on vertices v1, . . . , v p in 
that order. As T has diameter 3, we find that p ≥ 4. If 
p ≤ 5, then we let X = {v1, . . . , v p}. If p ≥ 6, then we 
let X = {v1, v2, v p−1, v p}. We will show that A = A X . Let 
u ∈ A. As G has diameter 2 and A is an independent set, 
u is adjacent to v1 or to a neighbour v∗ of v1 in B . In 
the latter case, if v∗ �= v2 then v∗ must have a neighbour 
in {v2, . . . , v p}, otherwise we have found a path that is 
longer than P , but in this case B contains a cycle, a con-
tradiction. Hence, u has at least one neighbour in {v1, v2}, 
and similarly, u has at least one neighbour in {v p−1, v p}. 
So A ⊆ A X . Now suppose u ∈ A X . Note that u �= v3 due 
to our choice of X . Then the subgraph of G induced by 
V (P ) ∪ {u} contains a cycle. Hence u must belong to A. So 
A X ⊆ A. We conclude that A = A X .

We now consider the case where every connected com-
ponent of F has diameter at most 2. Such components 
are either isolated vertices or stars (we say that the lat-
ter components are star-components and that their non-leaf 
vertex is the star-centre; if such a component consists of a 
single edge, we arbitrarily choose one of them to be the 
star-centre). If F contains no star-components, then G is 
bipartite and therefore G −u is bipartite for every vertex u, 
a contradiction. If F contains exactly one star-component, 
then by choosing u to be the star-centre we again find 
that G − u is bipartite. Hence F contains at least two star-
components D1 and D2. For i = 1, 2, let vi be the star-
centre and let wi be a leaf in Di .

We choose X = {v1, v2, w1, w2} and show that A = A X . 
Let u ∈ A. As G has diameter 2 and A is an indepen-
dent set, u is either adjacent to w1 or to a neighbour 
of w1 in B . If this neighbour is not v1, then D1 is not a 
star-component, a contradiction. Hence, u has at least one 
neighbour in {v1, w1}, and similarly, u has at least one 
neighbour in {v2, w2}. So A ⊆ A X . Now suppose u ∈ A X . 
Then X ∪ {u} induces either a connected subgraph of G
that contains both D1 and D2 (and is therefore not a star-
component) or a subgraph with a cycle. Hence u must 
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Fig. 2. The constraint graph J .

belong to A. So A X ⊆ A. We conclude that A = A X . This 
completes the proof of our claim and thus the proof of the 
lemma. �

We are now ready to prove the main result of this sec-
tion.

Theorem 3. The problem of finding a minimum independent 
feedback vertex set of a graph of diameter 2 can be solved in 
polynomial time.

Proof. Let G be an n-vertex graph of diameter 2. We first 
check in polynomial time whether G contains a vertex u
such that G − u is bipartite. If so, then we apply Lemma 1. 
If not, then we check in polynomial time whether G con-
tains a set X of size 4 ≤ |X | ≤ 5 such that (A X , V \ A X ) is a 
near-bipartite decomposition. If so, then G is near-bipartite 
and we apply Lemma 2. If not, then G is not near-bipartite 
due to Theorem 2. �

We note that the running time of the algorithm in The-
orem 3 is determined by the time it takes to find and 
process each set X of size 4 ≤ |X | ≤ 5. This takes O (n7)

time, as checking the existence of a set X takes O (n5) time 
using brute force, determining the 2-neighbour set A X

takes O (n) time and checking if (A X , V \ A X ) is a near-
bipartite decomposition takes O (n2) time.

3. Near-bipartiteness for diameter 3

In this section we prove that Near-Bipartiteness is
NP-complete for graphs of diameter 3. In order to prove 
this, we use a construction of Mertzios and Spirakis [12]. 
To introduce this construction, we first consider the con-
straint graph J defined in Fig. 2.

Lemma 3. Let X be a subset of {X1, X2, X3} ⊂ V ( J ) containing 
at most two vertices. Then there exists a near-bipartite decom-
position (A, B) of J such that, for 1 ≤ p ≤ 3, Xp ∈ A if and only 
if Xp ∈ X.

Proof. Noting the automorphic equivalence of X2 and X3, 
it is sufficient to consider the following two cases. If X is 
a subset of {X1, X2}, let A = X ∪ {Y6, Y7}. If X = {X2, X3}, 
let A = {X2, X3, Y4}. �

Notice that there is no near-bipartite decomposi-
tion (A, B) of J with {X1, X2, X3} ⊆ A. Combined with the 
above lemma, this gives an idea of how this will be used 
later. The vertices X1, X2 and X3 will represent literals in 
a clause of an instance of 3-Sat and membership of A will 
indicate that a literal is false: thus A can be extended to 
a near-bipartite decomposition except when every literal is 
false. (In [12], a weaker result was shown: one can always 
find a 3-colouring of J such that members of a chosen 
proper subset of {X1, X2, X3} belong to the same class and 
excluded members do not belong to that class.)

Let φ be an instance of 3-Sat with m clauses C1, . . . , Cm

and n variables v1, . . . , vn . We may assume that each 
clause has three distinct literals. For a clause Ck in φ, we 
describe a clause graph Ck , illustrated within Fig. 3. We 
think of Ck as an array of n + 5m + 1 rows and eight 
columns. In each row except the last, every (row,column) 
position contains exactly two vertices, which we refer to 
as the true vertex and the false vertex, and we say that 
these two vertices are mates. The first n rows form the 
variable block of the graph and we think of row i as repre-
senting the variable vi . The next 5m rows are made up 
of m clause blocks Ck,1, Ck,2, . . . , Ck,m , each of five rows. 
Every true vertex of the variable and clause blocks is 
joined by an edge to every false vertex in the same row 
except its mate. Hence the vertices of each row induce 
a complete bipartite graph minus a matching. In the fi-
nal row, each column contains a single vertex, and each 
of these vertices is joined by an edge to every other 
vertex in the same column. We call this row the dom-
inating block. We complete the definition of the clause 
graph by describing how we add further edges so that it 
contains the constraint graph J as an induced subgraph. 
Let the literals of Ck be x�1 , x�2 , x�3 . We choose vertices 
from the first three columns of the variable block of Ck

that we will denote Xk
1, X

k
2, X

k
3 to represent the literals. 

If x�p is the variable vi , then we choose as Xk
p a vertex 

from row i and column p, and choose the true vertex 
if the literal is positive and the false vertex if the lit-
eral is a negated variable. For p ∈ {4, . . . , 8}, let Y k

p be 
the true vertex from the (p − 3)th row and pth column 
of the clause block Ck,k . Finally add the ten edges {Xk

1Y k
4,

Xk
2Y k

5, Xk
2Y k

8, Xk
3Y k

6, Xk
3Y k

7, Y k
4Y k

5, Y k
4 Y k

6, Y k
5 Y k

7, Y k
6 Y k

8, Y k
7 Y k

8} so 
that {Xk

1, X
k
2, X

k
3, Y

k
4, Y k

5, Y k
6, Y k

7, Y k
6} induces the constraint 

graph J . Note that each vertex in the dominating block has 
only one neighbour in the constraint graph.

We now define the graph Hφ . It contains:

– the disjoint union of clause graphs Ck , 1 ≤ k ≤ m (we 
think of the clause graphs as being arranged side-by-
side, so that they form an array of n + 5m + 1 rows 
and 8m columns),

– edges from each true vertex of each clause graph to 
each false vertex in the same row of other clause 
graphs, and

– an additional vertex v0 joined to each vertex in the 
dominating block of each clause graph.

Note that each column of Hφ contains exactly one ver-
tex that is in a constraint graph J and the only rows that 
contain more than one such vertex are those in the vari-
able block.
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Fig. 3. The graph Hφ with the focus on one of the constituent clause graphs Ck , where Ck = {v1 ∨ v3 ∨ v2}. The edges shown in the figure between vertices 
in different columns are those of the induced constraint graph.
Lemma 4 ([12, Lemma 2]). For an instance φ of 3-Sat, Hφ has 
diameter 3.

Note that in [12], Lemma 2 proves the bound on the 
diameter for a graph that is a spanning subgraph of Hφ

which is, of course, sufficient for an upper bound for the 
diameter of Hφ and it is easy to see that the diameter is 
not less than 3. We note also that Hφ does not contain 
any triangles or any vertices that are siblings (two vertices 
are siblings if the neighbourhood of one is a subset of the 
neighbourhood of the other) so Near-Bipartiteness is also
NP-complete for such instances.

Theorem 4. Near-Bipartiteness is NP-complete for graphs of 
diameter at most 3.
Proof. We prove that 3-Sat can be polynomially-reduced 
to Near-Bipartiteness by showing that φ is satisfiable if 
and only if Hφ has a near-bipartite decomposition (A, B).

(⇒) Suppose that φ has a satisfying assignment. Let v0
be in A, and let the vertices of all the dominating blocks 
be in B . If the variable vi is true, then let B contain all 
the true vertices of row i of the variable blocks of each 
clause graph. Otherwise let B contain the false vertices. In 
each case, let A contain the mates of these vertices. Con-
sider the constraint graph that is an induced subgraph of 
each clause graph. The vertices X1, X2 and X3 have been 
assigned to either A or B with at most two, representing 
false literals, belonging to A. By Lemma 3, we can assign 
the remaining vertices of the subgraph (which are all true 
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vertices of clause blocks) to A and B such that on the sub-
graph they form a near-bipartite decomposition. When we 
assign a true vertex of a clause block to A or B , we assign 
all other true vertices in the same row of Hφ to the same 
set and assign their mates to the other set. As each row of 
the clause blocks contains only one vertex in a constraint 
graph, this process assigns every vertex in Hφ to exactly 
one of A and B , and we have assigned every vertex of Hφ

to A or B .
It is immediately clear that A is an independent set. We 

must show that B contains no cycles. We know that B con-
tains all the vertices of the dominating blocks and, in each 
row, either all the true vertices or all the false vertices. 
Thus if B contains a cycle then all the vertices of the cycle 
belong to the same clause graph (the only edges going be-
tween distinct clause graphs are those joining true vertices 
to false vertices in the same row). Let G B be a subgraph 
of a clause graph induced by vertices of B . Then each 
true and false vertex not in the constraint graph has de-
gree 1 (due to the edge joining it to the dominating block), 
and each vertex in the dominating block has at most one 
neighbour with degree more than 1 (since it only has one 
neighbour in the constraint graph). Thus if G B contains a 
cycle then it belongs to the constraint graph, contradicting 
how A and B were chosen.

(⇐) Suppose A and B form a near-bipartite decomposi-
tion of Hφ . Then B can be decomposed into two indepen-
dent sets, and these, along with A, can be considered a 
3-colouring. In [12, Theorem 5], it is shown that if Hφ has 
a 3-colouring, then φ is satisfiable. �
4. Conclusions

We completed the computational complexity classi-
fications of Near-Bipartiteness and Independent Feed-

back Vertex Set for graphs of diameter k for every in-
teger k ≥ 0. We showed that the complexity of both 
problems jumps from being polynomial-time solvable to
NP-complete when k changes from 2 to 3.

We recall that near-bipartite graphs are 3-colourable. 
Interestingly, the complexity of 3-Colouring for graphs of 
diameter k has not yet been settled, as there is one re-
maining case left, namely when k = 2. This is a notorious 
open problem, which has been frequently posed in the lit-
erature (see, for example, [2,7,12,14]). We note that the 
approach of solving Near-Bipartiteness and Independent 
Feedback Vertex Set for graphs of diameter 2 does not 
work for 3-Colouring. For instance, we cannot bound the 
size of the set X in Lemma 2 if we drop the condition that 
the union of two colour classes must induce a forest.
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