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1 Introduction

Production of vector boson pairs at the LHC is an important process for a variety of reasons.

They include interesting checks of the Standard Model, searches for anomalous vector bo-

son couplings and studies of a dominant background to Higgs boson production. Since the

vector boson pair production cross-section is currently known to next-to-next-to-leading

order (NNLO) in perturbative QCD [1, 2], it is tempting to conclude that theoretical under-

standing of this process is already good enough and further improvements are unnecessary.

Unfortunately, such a conclusion would be premature.

Indeed, since production of vector boson pairs occurs predominantly through the an-

nihilation of quark-antiquark pairs, the one-loop gluon fusion matrix element contributes

to pp → V1V2 cross-section at NNLO for the first time. The increase in the pp → V1V2
total cross-section caused by the gluon fusion contribution is not very large — it is about

five percent in case of the W+W− final state [2]. However, this gluon fusion contribution

is somewhat larger than the theoretical uncertainty in the production cross section, as

estimated in recent NNLO QCD computations [1, 2]. Therefore, for these uncertainty es-

timates to be valid, the current calculations of the gluon fusion contribution to pp→ V1V2
must be accurate to 30−50 percent. As we explain in the next paragraph, it is conceivable

that this is not the case. In addition, the relevance of the gluon-fusion contribution strongly

depends on the applied cuts and selection criteria. For example, typical cuts used by AT-

LAS and CMS in Higgs bosons searches increase the fraction of gg → V1V2 contribution to

the background cross-section to O(10%) [3]. With more aggressive cuts, this fraction can

increase to an astounding 30%, as shown for instance in ref. [4]. Good theoretical control

of the gluon fusion process becomes very important in this case.

Since the gluon fusion contribution may play an important role in four-lepton produc-

tion at hadron colliders, it is important to realize that radiative corrections to gg → V1V2
can naturally be large. Indeed, gg → V1V2 is a process where an initial state with large

color charge annihilates into a colorless final state. NLO QCD radiative corrections com-

puted for similar processes, such as gg → H, gg → HH, gg → HZ and gg → γγ [5–8]
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turned out to be as large as 50 − 100 percent. Therefore, to fully control the gluon fusion

contribution to vector boson pair production, NLO QCD corrections to gg → V1V2 need

to be calculated. The first step in this direction is the calculation of the two-loop (next-to-

leading order) scattering amplitude gg → V1V2. Once the two-loop scattering amplitude

becomes available, it will be possible to compute the gluon fusion contribution to vector

boson pair production cross-section through NLO in perturbative QCD by supplementing

it with the real emission contribution gg → V1V2 + g.

The goal of the present paper is to present a calculation of the gg → V1V2 helicity

amplitudes mediated by loops of massless quarks. We choose to work within the massless

approximation because in this case all the relevant two-loop integrals are known [9–12]1 and

because in many cases massless quarks provide significant fraction of the full amplitude.

We note, however, that there are phenomenological situations where top quark loops are

important contributors to gg → V1V2 [15]; our calculation is not applicable to those cases

since for top quarks the massless approximation is obviously invalid. We note in this regard

that a proper treatment of massive quarks in loop-mediated processes is an important and

difficult problem whose solution is not known at the moment. We therefore start with the

massless quark contribution to the gluon fusion process gg → V1V2 which, at the very least,

will allow an informed estimate of the magnitude of NLO QCD corrections. Our result can

then be supplemented with the contribution of the massive top quark loop once it becomes

available. First steps in that direction where recently reported in refs. [16].

The remainder of the paper is organized as follows. In section 2 we discuss the set-

up of the calculation and the parametrization of the gg → V1V2 amplitude. In section 3

we describe numerical implementation and checks of the calculated amplitudes and present

some numerical results. We conclude in section 4. Finally, we note that many aspects of the

calculation that we report here are similar to what we described in ref. [17]; nevertheless we

believe that there are essential differences in the calculation of qq̄ → V1V2 [12, 17] and gg →
V1V2 amplitudes at two loops to warrant a discussion of the latter in a separate publication.

2 The set up of the computation

We consider the process g(p1)g(p2) → (V ∗1 (p3) → l(p5)l̄(p6))(V
∗
2 (p4) → l(p7)l̄(p8)). We

work in the approximation where quarks of the first two generations are massless and

quarks of the third generation are neglected. The CKM matrix is taken to be an identity

matrix. We write the matrix element as

M(λ1, λ2, λ5, λ7) = i

(
gW√

2

)4

δa1a2D3D4C
λ7
l,V2

Cλ5l,V1ε
µ
3 (λ5)ε

ν
4(λ7) CV1V2 Aµν(pλ11 , p

λ2
2 ; p3, p4),

(2.1)

where a1,2 are the color indices of the incoming gluons, gW = e/ sin θW is the SU(2) weak

coupling, Di = 1/(p2i −m2
Vi

+ imViΓVi) is the Vi-boson propagator, λ1,2, λ5, λ7 are helicities

of the incoming gluons and outgoing leptons, Cλ7l,V2C
λ5
l,V1

are helicity-dependent couplings of

vector bosons to leptons, and ε3,4 are matrix elements for leptonic decays of V1 and V2 that

1For earlier results in the case of equal-mass vector bosons, see [13, 14].
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we will specify shortly. The factor CV1V2 involves sums of couplings of virtual fermions to

gauge bosons.

We now give these couplings explicitly. The couplings of electroweak vector bosons to

external leptons read

CL,Rγ = −
√

2Ql sin θW , CL,Rl,Z =
1√

2 cos θW
(Vl ±Al) , CλlW+ = CλlW− = δλL. (2.2)

Here, Ve = −1/2 + 2 sin2 θW , Vν = 1/2, Ae = −1/2, Aν = 1/2 and Ql is the lepton electric

charge in units of the positron charge. The couplings to virtual quarks, where two massless

generations are included, are

Cγγ =
20 sin θ2W

9
, CZZ =

(
V 2
u + V 2

d +A2
u +A2

d

)
cos θ2W

,

CZγ = −2 sin θW
cos θW

(VuQu + VdQd) , CW+W− = 1,

(2.3)

where Qu,d are the electric charges of up and down quarks in units of the positron charge

and Vu = 1/2− 4/3 sin2 θW , Au = 1/2, Vd = −1/2 + 2/3 sin2 θW , Ad = −1/2.

A word of caution is required here. As can be seen from eq. (2.3), the amplitude for

the gluon fusion into a pair of vector bosons is proportional to sums of squares of vector

and axial-vector couplings of these vector bosons to internal fermions. This means that

diagrams with two vector currents and diagrams with two axial currents give identical con-

tributions to the amplitude and that diagrams that involve one vector current and one axial

current do not contribute at all. These two features have different origins. The first one is

the result of the massless approximation and an ensuing relations between matrix elements

of vector and axial currents. The second feature is a direct consequence of C-parity conser-

vation [18–20], that enforces the cancellation of these axial-vector terms when contributions

of all diagrams are summed up. Therefore, the knowledge of the amplitude for vector-like

couplings of gauge bosons to quarks is sufficient to reconstruct the gluon fusion ampli-

tude for electroweak gauge bosons whose couplings to fermions are linear combinations of

vector and axial-vector couplings. Similar arguments ensure that diagrams with a single

vector boson coupled to two gluons through a closed fermion triangle do not contribute

to the amplitude. Indeed, the vector part of these diagrams vanishes because of C-parity

conservation while the axial part cancels among mass-degenerate isospin doublets2.

The scattering amplitude in eq. (2.1) stripped of all non-essential couplings reads

A = Aµνεµ3 ε
ν
4 = Āµναβε

µ
1,λ1

εν2,λ2ε
α
3 ε
β
4 , (2.4)

where ε1,2 are polarization vectors for gluons with definite helicities. As we just explained,

we need to compute the amplitude A for vector-like interactions of massive vector bosons.

We need to decompose the amplitude A into invariant form factors that are independent

of polarization vectors. To do this, we choose physical polarizations for gluons and vec-

tor bosons,

ε1 · p1,2 = 0, ε2 · p1,2 = 0, ε3 · p3 = 0, ε4 · p4 = 0. (2.5)

2A detailed analysis of triangle diagrams can be found in [15], where the case of non mass-degenerate

doublets is considered as well.
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It follows from eq. (2.5) that we use p1,2 as a reference vector for polarization vectors

ε2,1, respectively.

To reduce the number of independent scalar products, we employ the Sudakov decom-

position of the vector boson momenta, p3,4 = α3,4p1 + β3,4p2 ± p⊥. The coefficients α3,4

and β3,4 are expressed in terms of Mandelstam invariants

α3 =
m2

3 − u
s

, β3 =
m2

3 − t
s

, α4 =
m2

4 − t
s

, β4 =
m2

4 − u
s

. (2.6)

Since ε3 · p3 = 0 and ε4 · p4 = 0, we can choose ε3,4 · p1 and ε3,4 · p2 as independent

scalar products; ε3,4 · p⊥ are then given by linear combinations of ε3,4 · p1,2. Given these

constraints, the scattering amplitude is represented by the following expression

A = T1 (ε1 · ε2) (ε3 · ε4) + T2 (ε1 · ε3) (ε2 · ε4) + T3 (ε1 · ε4) (ε2 · ε3)
+ (ε1 · ε2)

(
T4(p1 · ε3) (p1 · ε4) + T5(p1 · ε3) (p2 · ε4)

+ T6(p2 · ε3) (p1 · ε4) + T7(p2 · ε3) (p2 · ε4)
)

+ (ε1 · ε3) (p⊥ · ε2) (T8(p1 · ε4) + T9 (p2 · ε4))
+ (ε1 · ε4) (p⊥ · ε2) (T10(p1 · ε3) + T11 (p2 · ε3))
+ (ε2 · ε3) (p⊥ · ε1) (T12(p1 · ε4) + T13 (p2 · ε4))
+ (ε2 · ε4) (p⊥ · ε1) (T14(p1 · ε3) + T15 (p2 · ε3))
+ (ε1 · p⊥) (ε2 · p⊥) (T17(p1 · ε3) (p1 · ε4) + T18(p1 · ε3) (p2 · ε4) + T19(p2 · ε3) (p1 · ε4)
+T20(p2 · ε3) (p2 · ε4)) + (ε3 · ε4) (p⊥ · ε1) (p⊥ · ε2)T16.

(2.7)

The form-factors T1...20 are functions of Mandelstam kinematic variables s, t, u and invariant

masses of the two vector bosons m3,4.

The problem with the calculation of the scattering amplitude “as it is” is that carrying

around polarization vectors for external gluons and vector bosons is extremely expensive

for computations that employ integration-by-parts identities [21, 22], the main vehicle for

multi-loop calculations. For this reason, we need a procedure that allows us to compute

amplitudes but where no vectors, except for momenta of external particles, appear in the

calculation. A suitable method employs projection operators. The idea is to compute the

amplitude A in eq. (2.7) with polarization vectors ε1...4 substituted by linear combinations

of external momenta p1,2,3,4. This procedure allows us to compute the “projected” ampli-

tude A in terms of form factors T1...20 and also using integration-by-parts identities since

polarization vectors completely disappear from the calculation. By choosing a sufficient

number of independent “projection operators”, we produce a system of equations that we

can solve for the form factors T1...20.

However, there is a subtlety. The expression for the amplitude in eq. (2.7) was writ-

ten under the assumption that polarization vectors satisfy the transversality conditions

eq. (2.5); those conditions will be definitely violated if polarization vectors are replaced

by linear combinations of external momenta. To get around this problem, we write the

amplitude as

A = ĀµναβPµµ112 P
νν1
12 P

αα1
3 Pββ14 ε1µ1ε2ν1ε3α1ε4β1 , (2.8)
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where

Pµν12 = −gµν +
pµ1p

ν
2 + pν1p

µ
2

p1 · p2
, Pµν3 = −gµν +

pµ3p
ν
3

p23
, Pµν4 = −gµν +

pµ4p
ν
4

p24
. (2.9)

We then note that in eq. (2.8) we can use any vector εi to calculate the amplitude since

projection operators P12, P3,4 automatically ensure the transversality constraints p1,2 ·ε1 =

0, p1,2 · ε2 = 0, p3 · ε3 = 0 and p4 · ε4 = 0. We can also replace εµ1 ε
ν
2ε
α
3 ε
β
4 with an arbitrary

rank-four tensor since it will also be projected on the appropriate transverse space.

We now list all projection operators that we use in the computation of gg → V1V2
amplitude. To this end, we define the amplitude contracted with the projection operators

Oµ1µ2µ3µ4 = Āν1ν2ν3ν4P
ν1µ1
12 Pν2µ212 Pν3µ33 Pν4µ44 . (2.10)

We also define a tensor that is a projector on the vector space that is orthogonal to the

collision plane. It reads

tµν = δµp1p2p⊥νp1p2p⊥
, (2.11)

where δµ1p1p2p⊥ν1p1p2p⊥ = δµ1µ2µ3µ4ν1ν2ν3ν4 pν21 p
ν3
2 p

ν4
⊥ p1,µ2p2,µ3p⊥,µ4 and

δµ1µ2µ3µ4ν1ν2ν3ν4 = det|gµi∈{1...4}νj∈{1...4} |. (2.12)

It is clear that contraction of tensor tµν with any linear combination of p1, p2 and p⊥
vanishes thanks to the antisymmetry of the determinant in eq. (2.12).

We define twenty projections of the amplitude A on linear combinations of T1...20 by

making different choices of the “polarization vectors”. They are

G1 = Oµ1µ2µ3µ4gµ1µ2gµ3µ4 , G2 = Oµ1µ2µ3µ4gµ1µ3gµ2µ4 ,
G3 = Oµ1µ2µ3µ4gµ1µ4gµ2µ3 , G4 = p−4⊥ s−2Op⊥p⊥p1p1 ,
G5 = p−4⊥ s−2Op⊥p⊥p1p2 , G6 = p−4⊥ s−2Op⊥p⊥p2p1 ,
G7 = p−4⊥ s−2Op⊥p⊥p2p2 , G8 = 4p−6⊥ s−2Op⊥p⊥µ3µ4tµ3µ4 ,
G9 = 4p−6⊥ s−6Oµ1µ2p1p1tµ1µ2 , G10 = 8p−4⊥ s−3Op⊥µ2µ3p1tµ2µ3 ,
G11 = 4p−6⊥ s−3Op⊥µ2µ3p⊥tµ2µ3 , G12 = 8p−4⊥ s−3Oµ1p⊥p1µ4tµ1,µ4 ,
G13 = 4p−6⊥ s−3Oµ1p⊥p⊥µ4tµ1,µ4 , G14 = 8p−4⊥ s−3Oµ1p⊥µ3p2tµ1,µ3 ,
G15 = 4p−6⊥ s−3Oµ1p⊥µ3p⊥tµ1,µ3 , G16 =8p−4⊥ s−3Op⊥µ2p1µ4tµ2,µ4 ,
G17 = 4p−6⊥ s−3Op⊥µ2p⊥µ4tµ2,µ4 , G18 = 4p−6⊥ s−6Oµ1µ2p1p2tµ1µ2 ,
G19 = 4p−6⊥ s−6Oµ1µ2p2p1tµ1µ2 , G20 = 4p−6⊥ s−6Oµ1µ2p2p2tµ1µ2 .

(2.13)

In these equations, we used a simplified notation for the contraction of the tensor O with

a vector a, Oµ1...µ...µnaµ = Oµ1...a...µn . Since G1...20 only depend on scalar products of

external momenta and on scalar products of external momenta and the loop momenta,

we can express G1...20 through known master integrals [9, 10] by applying integration-by-

parts identities [21, 22]. At the same time, the form factors T1...20 can be written as linear

combinations of G1...20 in a straightforward way.
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To determine physical amplitude for the process g(p1)g(p2) → (V ∗(p3) →
l(p5)l̄(p6))(V

∗(p4) → l(p7)l̄(p8)) we use spinor-helicity notations. Specifically, for the in-

coming gluons we choose

εµ1L = − [2γµ1〉√
2[21]

, εµ1R =
〈2γµ1]√

2〈21〉
, εµ2L = − [1γµ2〉√

2[12]
, εµ2R =

〈1γµ2]√
2〈12〉

. (2.14)

Since a complex conjugation of the helicity amplitudes reverses all helicities, we only

need to consider two, rather than four, cases of equal and unequal helicities. We choose

L1L2 and L1R2 as polarization states for gluons g1 and g2, respectively. We leave the

polarization vectors of the massive vector bosons unspecified at this point. To proceed

further, it is convenient to write tensor products of gluon polarization vectors as follows

(see e.g. ref. [4])

ε1L,µε2L,ν =
〈12〉
[12]s

(p1,µp2,ν + p1,νp2,µ − gµ,νp1 · p2 + iεµνp1p2) ,

ε1L,µε2R,ν =
〈1p⊥2]

[1p⊥2〉p2⊥s2

(
p⊥,µp⊥νs

2

4
+ siεp1p2p⊥µp⊥,ν − εp1p2p⊥µεp1p2p⊥ν + (µ↔ ν)

)
.

(2.15)

The transverse momentum pµ⊥ is introduced just before eq. (2.6). We use eq. (2.15) to

express the amplitude A in eq. (2.7) through nine independent Lorentz structures

Aλ1λ2 = Nλ1λ2
[
F λ1λ21 (p1 · ε4) (p1 · ε3) + F λ1λ22 (p1 · ε4) (p2 · ε3) + F λ1λ23 (p1 · ε3) (p2 · ε4)

+ F λ1λ24 (p2 · ε4) (p2 · ε3) + F λ1λ25 ε4 · ε3

+ iεµναβp
µ
1p

ν
2p
α
⊥ε

β
4

(
F λ1λ26 p1 · ε3 + F λ1λ27 p2 · ε3

)
+ iεµναβp

µ
1p

ν
2p
α
⊥ε

β
3

(
F λ1λ28 p1 · ε4 + F λ1λ29 p2 · ε4

)]
.

(2.16)

In eq. (2.16) Nλ1λ2 are the normalization factors for left-left and left-right polarization cases

NLL =
〈12〉
[12]s

, NLR =
〈1p̂⊥2]

[1p̂⊥2〉p2⊥s2
, (2.17)

and F λ1λ2i=1...9 are helicity-dependent form factors that are functions of the Mandelstam vari-

ables and the invariant masses of vector bosons.

To account for transitions of vector bosons to final state leptons, their polarization

vectors are replaced by matrix elements of vector and axial-vector currents. We there-

fore choose

εµ3L = 〈5|γµ|6], εµ3R = 〈6|γµ|5], εµ4L = 〈7|γµ|8], εµ4R = 〈8|γµ|7]. (2.18)

We note that, although we need helicity amplitudes for all possible helicity combina-

tions of leptons, it is sufficient to compute just one of them since other helicity amplitudes

– 6 –
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g2

g1 V1

V2

q = u, d...

g2

g1 V1

V2

q = u, d...

Figure 1. Representative two-loop diagrams that describe production of vector boson pairs in

gluon fusion.

can be obtained using simple replacement rules. The amplitudes for left-handed polariza-

tion of both electroweak vector bosons read

Aλ1λ23L4L = Nλ1λ2
{(

F λ1λ21 〈15〉[61] + F λ1λ22 〈25〉[62]
)
〈17〉[81]

+
(
F λ1λ23 〈15〉[61] + F λ1λ24 〈25〉[62]

)
〈27〉[82] + 2F λ1λ25 〈57〉[86]

+
1

2

(
F λ1λ26 〈15〉[61] + F λ1λ27 〈25〉[62]

)(
〈12〉〈78〉[81][82] + 〈17〉〈27〉[21][87]

)
− 1

2

(
F λ1λ28 〈17〉[81] + F λ1λ29 〈27〉[82]

)(
〈12〉〈56〉[61][62] + 〈15〉〈25〉[21][65]

)}
.

(2.19)

Amplitudes for right-handed polarizations of the vector boson with momentum p3 (p4) are

obtained from the above ones upon the replacement 5↔ 6 (7↔ 8). Finally, all remaining

helicity amplitudes can be obtain by replacing all angle brackets in spinor products with

square brackets in eq. (2.19) and vice versa

A−λ1−λ23R4R = Aλ1λ23L4L [〈ij〉 ↔ [ij]] (2.20)

The F form factors that enter the amplitudes are expressed through either T or G form

factors. This can be done in a straightforward way using eqs. (2.7), (2.13), (2.15), (2.16).

Examples of corresponding relations are given in the appendix.

3 Calculation of the amplitude

We apply the set-up described in the previous section to the calculation of gluon-fusion

amplitude. There are 93 non-vanishing two-loop diagrams that contribute to the gg → V V

amplitude; some examples are shown in figure 1. We generate the relevant diagrams using

QGRAF [23] and process them with Maple and Form [24]. We compute the contribution

of every diagram to the G and eventually F form factors. At this point, the result is

expressed in terms of two-loop tensor integrals. These integrals can be classified in terms

of six different topologies, three of which are planar and three are non-planar [9, 10].

The tensor integrals are expressed through the master integrals computed in refs. [9, 10],

using integration-by-parts technology [21, 22]. We employ the program FIRE [25–27] to

achieve this. Combining contributions of different diagrams, we obtain the results for the

eighteen form factors (nine for LL gluon helicity configuration and nine for LR gluon

– 7 –
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helicity configuration) that are required to describe all helicity amplitudes for gg → V1V2
process. We note that, compared to the calculation of qq̄ → V1V2 amplitude, the case

of gg → V1V2 requires more complicated reduction since tensor integrals of a higher rank

appear. Nevertheless, FIRE can successfully deal with this challenge.

As we already mentioned, the helicity amplitudes are expressed in terms of master

integrals computed in refs. [9, 10]. The analytic expressions for these master integrals

involve various functions, including logarithms, polylogarithms of multiple ranks as well

as generalized Goncharov polylogarithms. To compute the latter, we use their numerical

implementation [28] in the computer algebra program GiNaC [29]. We note that GiNaC can

be called from both Mathematica and Fortran providing multiple options for the numerical

evaluation of the amplitude.

The gg → V1V2 amplitude appears for the first time at one loop; for this reason this

amplitude is ultraviolet and infra-red finite. The two-loop gg → V1V2 amplitude contains

at most O(1/ε2) singularities, where ε = (4−d)/2 is the parameter of dimensional regular-

ization. The divergences of the two-loop gg → V1V2 amplitude can be predicted in terms of

the one-loop amplitude using results of ref. [30]. The relation between one- and two-loop

amplitudes becomes very simple if expressed through bare, rather than renormalized QCD

coupling. It reads

A2 = −CA
ε2
eεiπA1 +O(ε0), (3.1)

where CA = 3 is the QCD color factor and A1,2 are defined through the following expression

for the amplitude

A =
a0
2

[
s−ε A1 + a0s

−2εA2 +O(α2
s)
]
. (3.2)

In eq. (3.2) we use a0 = α
(0)
s Γ(1 + ε)(4π)ε/(2π), where α

(0)
s is the bare QCD

coupling constant.

A connection between divergences of the two-loop amplitude A2 and the one-loop

amplitude A1 given by eq. (3.1) is important for checks of the correctness of the calculation

since the computation of A2 proceeds without separation into divergent and convergent

parts until the very end.

We are now in position to present some numerical results for the gg → V1V2 amplitude.

To this end, we choose kinematics of an irreducible background to Higgs boson production

and take the center-of-mass energy
√
s to be the mass of the Higgs boson

√
s = mH =

125 GeV. The invariant mass of the vector boson V1 is set to p23 = m2
W , with mW =

80.419 GeV. The invariant mass of the second vector boson V2 is set to 25 GeV. We take

the vector boson scattering angle in the center-of-mass collision frame to be π/3 radians.

We also take decay angles of the lepton l5 in the rest frame of the boson V1 to be θ5 = π/4

and ϕ5 = π/2 and decay angles of the lepton l7 in the rest frame of the boson V2 to be

θ7 = π/6 and ϕ7 = π. The four-momenta of initial and final state particles in GeV are

– 8 –
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Helicity A1(ε = 0) A(2)/A1(ε = 0), 1/ε2 A(2)/A1(ε = 0), 1/ε A(2)/A1(ε = 0), ε0

LLLL −5169.9932 + i 10017.414 −3.0 −9.45694415− i 16.4895884 42.4852911− i 65.01495

LRLL −6427.41534− i 2610.6160 −3.0 −14.9422361− i 9.2198662 −6.774561932− i 71.66763

Table 1. Leading and next-to-leading order helicity amplitudes. Momenta of external particles are

given in the main text of the paper.

given by

p1 = (62.5, 0, 0, 62.5), p2 = (62.5, 0, 0,−62.5),

p5 = (48.2561024468725, 13.8697156788798, −28.4324101181205, 36.4400941989053),

p6 = (37.6127597971275, 12.2010429705974, 28.4324101181205, −21.3881346746519),

p7 = (19.5655688780000, −19.2853793247386, 0, 3.29933778517879),

p8 = (19.5655688780000, −6.78537932473856, 0, −18.3512973094322). (3.3)

Our results for leading and next-to-leading order helicity amplitudes at the kinematic

point eq. (3.3) are shown in table 1. The divergent terms of the next-to-leading order

amplitude are compared to predictions based on eq. (3.1) and perfect agreement is found.

We also compared the leading order helicity amplitude with the results of previous compu-

tations [31–34], as implemented in the program MCFM [35], and found agreement. Finally,

we note that we compared the numerical results for helicity amplitudes reported in table 1

with the results of the independent calculation [36] and found complete agreement.

Finally, it is interesting to explore the numerical stability of gg → V1V2 amplitudes that

we computed in this paper. The numerical stability of such amplitudes is known to be a

potentially sensitive issue as earlier one-loop studies showed, see e.g. refs. [34, 37]. To study

numerical stability, we consider the same kinematic point as described above but we treat

the vector boson scattering angle as a free parameter. We then compare the results of the

double-precision implementation of the form factors in a Fortran program with, effectively,

arbitrary-precision calculation in Mathematica. We find that helicity amplitudes computed

in these two different ways agree well for values of the scattering angle as small (large) as

θ = 1 ( θ = 179) degrees. For such angles, the transverse momentum of a vector boson

is just 0.5 GeV. We therefore conclude that our numerical implementation of helicity

amplitudes is sufficiently stable to allow their use in realistic numerical calculations. As a

further illustration of these numerical results, in figure 2 we show absolute values of helicity

amplitudes as a function of the scattering angle.

4 Conclusions

In this paper, we computed the helicity amplitudes for the production of electroweak gauge

bosons in gluon fusion gg → V1V2, mediated by massless quark loops. The electroweak

gauge bosons are allowed to have different masses and be off-shell; their decays to fermion

pairs are taken into account explicitly. The helicity amplitudes for gg → V1V2 are described

by nine helicity-dependent form factors. We construct projection operators to compute

those form factors from Feynman diagrams, using integration-by-parts identities and the

– 9 –
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Figure 2. The ratio of finite parts of two- and one-loop helicity amplitudes R2 = |A2(LL) +

A2(LR)|/(|A1(LL)|+ |A1(LR)|) as a function of the vector-boson scattering angle.

master integrals calculated by us previously. Analytic results for helicity amplitudes are

implemented in a Fortran code that is available from the authors upon request.

The results for the scattering amplitudes gg →W+W− and gg → ZZ obtained in this

paper open up an opportunity to compute the NLO QCD corrections to the production

of a pair of electroweak vector boson in gluon fusion. Such calculations are interesting

both at low and high center-of-mass collision energies. In the former case, they allow

for a more accurate estimate of the irreducible background to Higgs production and the

possible signal/background interference effects. In the latter case, precise predictions for

gg → ZZ are important for improving prospects of constraining total Higgs boson decay

width following refs. [38–40], as well as for more generic Higgs off-shell studies [41]. The

corresponding real emission corrections gg → ZZg have to be calculated in this case. Such

calculations are clearly possible with the existing one-loop technology [42–45] and will be

done in the near future.
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A The relations between various form factors

For the two possible helicity combinations, the invariant form factors, expressed through

T form-factors, read

FLL1 =
1

2

[(
m2

3 − u
)

(T12 + T8)−
(
m2

4 − t
)

(T10 + T14)− s(p2⊥T17 + 2T4)
]
,

FLL2 =
1

2

[(
m2

3 − t
)

(T12 + T8)−
(
m2

4 − t
)

(T11 + T15)− p2⊥sT19 − 2sT6 + 2T2 + 2T3
]
,

FLL3 =
1

2

[(
m2

3 − u
)

(T13 + T9)−
(
m2

4 − u
)

(T10 + T14)− p2⊥sT18 − 2sT5 + 2T2 + 2T3
]
,

FLL4 =
1

2

[(
m2

3 − t
)

(T13 + T9)−
(
m2

4 − u
)

(T11 + T15)− s(p2⊥T20 + 2T7)
]
,

FLL5 = −1

2
s
(
p2⊥T16 + 2T1 + T2 + T3

)
,

FLL6 =

(
m2

3 − u
)

(T3 − T2)
p2⊥s

− T10 + T14,

FLL7 =

(
m2

3 − t
)

(T3 − T2)
p2⊥s

− T11 + T15,

FLL8 =

(
m2

4 − t
)

(T3 − T2)
p2⊥s

+ T12 − T8,

FLL9 =

(
m2

4 − u
)

(T3 − T2)
p2⊥s

+ T13 − T9;

FLR1 =
1

2

[ (
m2

4 − t
) (
p2⊥s(T10 + T14)− 2

(
m2

3 − u
)

(T2 + T3)
)

+ p2⊥s
(
p2⊥sT17 −

(
m2

3 − u
)

(T12 + T8)
) ]
,

FLR2 =
1

2

[(
m2

4 − t
) (
p2⊥s(T11 + T15)− 2

(
m2

3 − t
)

(T2 + T3)
)

−p2⊥s
((
m2

3 − t
)

(T12 + T8)− p2⊥sT19 − 2(T2 + T3)
)]
,

FLR3 =
1

2
p2⊥s

(
−
(
m2

3 − u
)

(T13 + T9) +
(
m2

4 − u
)

(T10 + T14) + p2⊥sT18
)

+ (T2 + T3)
(
p2⊥s−

(
m2

3 − u
) (
m2

4 − u
))
,

FLR4 =
1

2
(
(
m2

4 − u
)

(p2⊥s(T11 + T15)− 2
(
m2

3 − t
)

(T2 + T3))

+ p2⊥s(p
2
⊥sT20 −

(
m2

3 − t
)

(T13 + T9))),

FLR5 =
1

2
p2⊥s

2(p2⊥T16 − T2 − T3),

FLR6 = p2⊥s(T10 + T14)−
(
m2

3 − u
)

(T2 + T3),

FLR7 = p2⊥s(T11 + T15)−
(
m2

3 − t
)

(T2 + T3),

FLR8 =
(
m2

4 − t
)

(T2 + T3) + p2⊥s(T12 + T8),

FLR9 =
(
m2

4 − u
)

(T2 + T3) + p2⊥s(T13 + T9). (A.1)
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The square of the transverse momentum written through Mandelstam invariants reads

p2⊥ = −(tu−m2
3m

2
4)/s.

When the F form factors are expressed in terms of projections G1,...,20 shown earlier,

the results appear to be relatively simple. In particular, all spurious poles in d− 4, present

in the relations between T ’s and G’s cancel out in the relations between F ’s and G’s. To

give an example of these relations, we show results for a few of the simplest form factors

for the LL amplitude

FLL6 =
(m2

3 − u)(G12 +G16)

(d− 3)(m2
3 − t)

+
s(m2

3 + p2⊥)(G13 +G17)

(d− 3)(m2
3 − t)

,

FLL7 =
G12 +G16 + (t−m2

3)(G13 +G17)

d− 3
,

FLL8 =
(m2

4 − t)G10 − s(m2
4 + p2⊥)G11

(d− 3)(m2
4 − u)

+
G14 + (m2

4 − t)G15

d− 3
,

FLL9 =
(u−m2

4)G11 −G10

d− 3
+

(u−m2
4)G14 + s(m2

4 + p2⊥)G15

(d− 3)(m2
4 − t)

.

(A.2)
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