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Two independent criteria are presented that together guarantee exponential suppression of the two-loop
cosmological constant in nonsupersymmetric heterotic strings. They are derived by performing calculations
in both the full string theory and in its effective field theory, and come respectively from contributions that
involve only physical untwisted states, and contributions that include orbifold twisted states. The criteria
depend purely on the spectrum and charges, so a model that satisfies them will do so with no fine-tuning.
An additional consistency condition (emerging from the so-called separating degeneration limit of the
two-loop diagram) is that the one-loop cosmological constant must also be suppressed, by Bose-Fermi
degeneracy in the massless spectrum. We comment on the effects of the residual exponentially suppressed
one-loop dilaton tadpole, with the conclusion that the remaining instability would be under perturbative
control in a generic phenomenological construction. We remark that theories of this kind, that have
continued exponential suppression to higher orders, can form the basis for a string implementation of the
“naturalness without supersymmetry” idea.
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I. INTRODUCTION

There has been interest recently in nonsupersymmetric
string theories, in which one might build the standard
model (SM) directly. One particular object of focus has
been the partial solution of the instability problems that
generally arise in the absence of space-time supersymmetry
(SUSY). In Refs. [1–3] it was pointed out that a natural
starting point for non-supersymmetric strings is a certain
set of Scherk-Schwarz (SS) string models that have
accidental Bose-Fermi degeneracy in their massless spec-
tra. It is important to realise that this is a possibility even if
the effective theory is entirely nonsupersymmetric, and
indeed such models were explicitly constructed in the string
theory in [1]. They have a visible spectrum that resembles
that of the SM and a hidden sector whose Bose-Fermi non-
degeneracy is equal and opposite to that of the SM, as
shown in Fig. 1. In theories of this kind, successive Kaluza-
Klein (KK) levels are unable to contribute to the one-loop
cosmological constant, which can only get contributions
from heavy winding modes, string excitation modes and
also from non-level matched states. As these modes are all
short-range, they are unable to explore the whole compact

volume. Consequently, even if the compactification scale is
only moderately large, their contribution to the cosmologi-
cal constant (and hence destabilising dilaton tadpoles) is
parametrically exponentially suppressed. As an example,
a supersymmetry breaking scale of say 1=R ∼ 1014 GeV
requires a string mass of Ms ∼ 1016 GeV to get the correct
Planck scale [where R represents the compactification scale
and where the gravitino mass goes like 1=ð2RÞ]. Even
though the radius is then only 102 string lengths and the
visible spectrum entirely nonsupersymmetric, the cosmo-
logical constant is suppressed by an astronomical factor,
e−4πRMs ∼ 10−546. (It is worth adding that more generally
such a configuration seems to be the only way to get an
effective 4D nonsupersymmetric theory. A generic non-
supersymmetric KK construction will be unstable and
collapse on timescales of order R, thus it is never really
four dimensional. Such a cosmological constant, generated
entirely by heavy modes, also allows novel separations of
finite UV and IR contributions to the potential [4].)
An open question is what happens at two-loops and

beyond in such theories. Does the exponential suppression
continue? Field theory intuition says that generic two-loop
contributions will start to make their appearance, but it is
conceivable that some kind of string “miracle” appears to
save the day, or that a further subset of one-loop suppressed
theories may have two-loop suppression in the cosmologi-
cal constant as well. This paper shows by explicit calcu-
lation that (while we cannot rule out the former) the latter
is highly likely. We derive two criteria that define a
subclass of theories which continue to enjoy exponential
suppression at two-loops. Like the one-loop case, this
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suppression is simply an accidental consequence of their
particle content.
We should note that from a field theory point of view the

possibility of such cancellation is surprising. At one-loop,
some scalars and some fermions inevitably gain supersym-
metry breaking masses of order the KK scale even though
some others may remain exponentially light [1]: this then
feeds back into the cosmological constant which one
generically expects to be of order the KK scale suppressed
by a two-loop factor. However the two-loop cosmological
constant calculation in the full string theory already
contains within it the one-loop shifts in the spectrum.
Therefore another way to view the criteria we present, is
that they precisely determine when the latter conspire to
cancel in the two-loop cosmological constant.
Our program, and this entire approach, is reminiscent of

the field theory ideas of Refs. [5–8]which attempt to achieve
naturalness without supersymmetry, by essentially extend-
ing the Veltman condition of Ref. [9] to all orders. Indeed, it
is a remarkable fact that, thanks to the theorem of Kutasov
and Seiberg [10], non-supersymmetric string theories with
D ¼ 4 whose cosmological constant vanishes at one-loop
must also satisfy the “field independent”Veltman condition,
namely StrðM2Þ ¼ 0 [11,12]. Hence although the object of
study here is the cosmological constant, not the mass of
some putative Higgs, there is a direct link. However the
string case goes even further than the field theory one: there
are no freely adjustable couplings, since couplings are all
either zero or one (or themselves exponentially suppressed
by the volume), so there is absolutely no fine-tuning
involved. Theories either have the correct massless particle
content or they do not.
At the one-loop level, because of this connection to the

Veltman condition, any model with vanishing cosmological

constant can be thought of as a stringy UV completion of
the scenario outlined in Ref. [8]. Although we stress that
the operator being considered here is the cosmological
constant, the exact same procedure could be carried out for
the Higgs mass-squared itself. This is discussed in more
detail in Ref. [13]. In the models of Ref. [1], this is achieved
because a Scherk-Schwarz deformation preserves the
Bose-Fermi degeneracy of the massless modes in all of
their KK levels as well. In the logarithmically running low
energy theory, one then assumes that the relevant scale at
which such a relation should be applied is the compacti-
fication scale, above which the theory becomes extra
dimensional. An important difference though is the moti-
vation for imposing the condition at that scale which has
nothing to do with SUSY being restored there, but rather
the one-loop cosmological constant vanishing.1

At the two-loop level, we will find as mentioned two
rather different looking criteria for vanishing cosmological
constant. The criterion for the vanishing of the entirely
untwisted contributions (that is diagrams whose propaga-
tors contain only the descendants of broken N ¼ 2 super-
multiplets) is a complicated combination of parameters
(numbers of gauge bosons, gauginos, hypermultiplets and
so forth) that essentially counts the two-loop effective field
theory divergences. As we will demonstrate, this parameter
is most easily extracted from the constant term in the
“q-expansion” of the two-loop string partition function.

FIG. 1. The spectrum of theories that satisfy Bose-Fermi degeneracy with a standard model-like light sector (reproduced from [1]).
As the standard model does not have Bose-Fermi degeneracy a cancelling hidden sector is inevitable, but note there is no supersymmetry
in the spectrum. Models off this kind were constructed in [1].

1Note that we cannot even say the theory becomes approx-
imately supersymmetric at the scale 1=R because of the argu-
ments presented in Ref. [1]: whilst at order 1=R the KK spectrum
is indeed supersymmetric, the other stringy modes, in particular
winding modes, manifestly break SUSY.
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By contrast diagrams that contain twisted loops (that is
loops of twisted states that still appear in complete N ¼ 1
chiral supermultiplets) can vanish due to the cancellation of
combinations of “field dependent” Veltman conditions.
Such diagrams have a different dependence on the volume
modulus from the entirely untwisted ones, so to avoid fine-
tuning one has to impose a second independent criterion for
the twisted states, of the form

P
Uð−1ÞFUTrjYUTTj2 ¼ 0

where U stands for generic untwisted fields in the theory,
and the trace is over the pairs of twisted states to which they
couple, with tree-level coupling YUTT. This criterion is
quite Veltman-like, but note that it is the sum over the
Veltman conditions of all the twisted states that appears;
we do not need to apply them individually. Furthermore the
couplings are degenerate, so again the vanishing of this
quantity is a question of particle content.
An important aspect to bear in mind is that one requires

an absence of gravitationally coupled products of one-loop
divergences in order to produce the above criteria. This
contribution would normally come from the so-called
separating degeneration limit of the two-loop partition
function, which we will discuss in some detail. Such terms
are absent only if one has chosen a theory that already
satisfies the criterion for the one-loop cosmological con-
stant to vanish, namely massless Bose-Fermi degeneracy,

Nð0Þ
b − Nð0Þ

f ¼ 0. Indeed, more generally one can see that at
each order, a sensible criterion for continued suppression
can only be achieved when the criteria for all the orders
below are satisfied.
Thework contained in this paper naturally followson from

previous research into non-supersymmetric strings. The idea
of Scherk-Schwarz SUSY breaking [14] was first adapted to
the string setting in Refs. [15–18], which introduced coor-
dinate dependent compactification (CDC). Subsequently,
there has been extensive research into the one-loop
cosmological constant [2,3,10–12,19–39], their finiteness
[11,12,21–23,40], how they relate to strong/weak coupling
duality symmetries [41–46], and ideas relating to the string
landscape [47,48]. The mechanism of CDC has been further
developed in Refs. [49–53] while phenomenological ideas
have been explored further in Refs. [26,27,46,54–63].
Additionally, solutions to the large volume “decompactifi-
cation problem” have been discussed in Refs. [64–67], while
numerous other configurations of nonsupersymmetric string
models have been discussed in Refs. [68–84], which have
included the study of relations between scales in different
schemes [85–91].
The results we have found are a natural extension of this

work, which leads one to speculate on the existence of three-
loop and beyond cancellations, and whether there might be a
universal condition for string theories that, like the one
conjectured for field theory in Ref. [5], ensures cancellation
to all orders. Conversely, it raises the possibility that
imposing the requirement of continued exponential suppres-
sion to ever higher order could give interesting predictions
for the particle content of the theory.

II. TWO-LOOP AMPLITUDES

A. The setup in the ϑ-function formalism

Let us begin by collecting and digesting the necessary
results for the calculation of the two-loop cosmological
constant. Multiloop string calculations of the cosmological
constant have been considered in the past in
Refs. [2,3,38,92–102]. However, care is required from
the outset as there are possible pitfalls. In particular, one
of the major difficulties in calculating string amplitudes
beyond one-loop proved to be the integrating out of the
supermoduli. If done incorrectly, computations of this type
typically give ambiguous results that depend on the choice
of gauge. For example, attempts were made in the past to
determine the value of the two-loop vacuum amplitude for
the nonsupersymmetric models presented in Refs. [2,3]
(the so-called KKS models). The initial claim was that the
cosmological constant is vanishing, but contradictory
evidence was presented in Ref. [38]. In fact both of these
results suffered from the aforementioned issue of gauge
dependence. A correct gauge-fixing procedure was later
introduced in the work of Refs. [103–106], and the
computation was redone in Ref. [107] with the conclusion
that the two-loop contribution is indeed non-vanishing for
the KKS models. It is these later papers that form the basis
of our analysis.
For the type of nonsupersymmetric model described

in Ref. [1], one does not actually expect the two-loop
contribution to the cosmological constant to be identically
zero. As described in the Introduction, the best one can
achieve at one-loop is for it to be exponentially suppressed
if the massless spectrum contains an equal number of
bosons and fermions. Therefore we seek a similar sup-
pression at higher loop order.
Note that as the main source of the cosmological constant

(a.k.a. Casimir energy) in large volume Scherk-Schwarz
compactifications is the massless spectrum, one might think
it is preferable to approach the entire problem from the
perspective of the effective field theory. However at two
loops, it is not always obvious how the string computation
factorizes onto the field theory diagrams. In addition one
would have to perform an analysis in the effective softly
broken supergravity, and there are certain purely string
contributions, in particular the separating degeneration limit
(of which more later), that one has to check. These issues are
exacerbated by the fact that the stringmodels typically have a
large rank making it tedious to count states, and by the fact
that onewould in any case have to determine all the tree-level
couplings of the effective field theory. Aswe shall see, it is by
contrast far easier to simply extract the coefficient of the
relevant (constant) term from the q-expansion of the two-
loop partition function.
The structure of two-loop superstring amplitudes is built

upon the representation of the world sheet by a super
Riemann surface of genus two. Let us start with a brief
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outline of the essential properties of such surfaces, and as
a warm-up exercise then perform the computation of the
two-loop cosmological constant in an entirely supersym-
metric theory.
Consider a super Riemann surface of genus g with a

canonical homology basis of AI and BI cycles as shown in
Fig. 2. The period matrix ΩIJ is given by holomorphic
Abelian 1-forms wI dual to the AI-cycles such thatI

AI

ωJ ¼ δIJ;
I
BI

ωJ ¼ ΩIJ: ð2:1Þ

In addition to the period matrix there is the super period
matrix, Ω̂IJ, which can be defined in a similar way, by
integrating superholomorphic 1=2 forms over the AI and BI
cycles.
The supermoduli space Mg of a genus g super Riemann

surface contains 3g − 3 even moduli and 2g − 2 odd moduli
for g ≥ 2. Specializing to the case where g ¼ 2, the super
period matrix gives a natural projection of the supermoduli
space of a super Riemann surface onto the moduli space of
a Riemann surface, and its 3 independent complex entries
provide complex coordinates for the moduli space of even
moduli,M2. The super period matrix can be expressed in a
simple way in terms of the period matrix and, following
the procedure of Refs. [103–106], one can work in the
so-called split gauge, which has the main advantage that
the period matrix and super period matrix are equivalent,
and one can simply use ΩIJ to denote both. It can be
parametrized by

Ω ¼
�
τ11 τ12

τ12 τ22

�
; ð2:2Þ

where τ11, τ12 and τ22 are the complex variables corre-
sponding to the three moduli (i.e., playing the same role as
τ in the one-loop diagrams). To make the discussion widely
accessible, we present the result (which derives from
Refs. [103–106] after some work and carefully accounting
for the measure) in terms of two-loop ϑ-functions, the most
natural extension of the standard one-loop formalism.
For a genus 2 surface there are 16 independent spin

structures, labeled by half-integer characteristics2

κ ¼
�
κ0

κ00

�
; κ0; κ00 ∈

�
0;
1

2

�
2

; ð2:3Þ

where κ0 is a 2-vector of spin structures on the AI-cycles,
and κ00 is a 2-vector of spin-structures on the BI-cycles.
The ϑ-functions with characteristic v are defined by

ϑ½κ�ðv;ΩÞ≡ X
n∈Z2

expfiπðnþ κ0ÞtΩðnþ κ0Þ

þ 2πiðnþ κ0Þtðvþ κ00Þg: ð2:4Þ

A given spin structure is said to be even or odd depending
on whether 4κ0 · κ00 is even or odd. For vanishing character-
istics, v ¼ 0, all of the 6 odd spin-structure ϑ-functions are
identically zero (much like ϑ11 in the one-loop case), so that

ϑ

"
1
2

0

1
2

0

#
¼ ϑ

"
0 1

2

0 1
2

#
¼ ϑ

"
1
2

1
2

1
2

0

#
¼ ϑ

"
1
2

1
2

0 1
2

#

¼ ϑ

"
1
2

0

1
2

1
2

#
¼ ϑ

"
0 1

2

1
2

1
2

#
¼v→0

0: ð2:5Þ

The even spin structures will be denoted generically with a
δ, and the even ones with a ν: for example even ϑ-functions
will be written as ϑ½δ�.
After integrating over the supermoduli, enforcing the

GSO projection and summing over spin structures, the
cosmological constant for the supersymmetric heterotic
string can be written [103–106]

Λ2−loop ¼
Z
F 2

d3ΩIJ

ðdet ImΩÞ5
ϒ8ðΩÞΨ8ðΩÞ
j16π6Ψ10ðΩÞj2

; ð2:6Þ

where d3ΩIJ ¼ d2τ11d2τ12d2τ22, and the integration is over
the fundamental domain of the moduli, F 2, typically taken
to be [108–110]
(1) − 1

2
< ReðΩ11Þ;ReðΩ12ÞReðΩ22Þ ≤ 1

2
,

(2) 0 < 2ImðΩ12Þ ≤ ImðΩ11Þ ≤ ImðΩ22Þ,
(3) jdetðCΩþDÞj ≥ 1 ∀ ðAC B

D Þ ∈ Spð4;ZÞ.
The modular forms appearing in Eq. (2.6) are defined as

follows. First it is useful to define

Ξ6½δ�ðΩÞ≡
X

1≤i<j≤3
hνijνji

Y
k¼4;5;6

ϑ½νi þ νj þ νk�4ð0;ΩÞ:

ð2:7Þ

This expression uses the fact that any even spin structure
can be written as the sum of three odd spin structures,
δ ¼ ν1 þ ν2 þ ν3; in the sum, ν4;5;6 are the remaining three
odd spin structures, and

hκjρi≡ expf4πiðκ0 · ρ00 − ρ0 · κ00Þg: ð2:8Þ

FIG. 2. Canonical homology basis for genus 2.

2Note that in our conventions, the spin structures are given as
the transpose of those appearing in Refs. [103–106].
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In term of Ξ6 we then have

ϒ8ðΩÞ ¼
X
δeven

ϑ½δ�4ðΩÞΞ6½δ�ðΩÞ;

Ψ10ðΩÞ ¼
Y
δeven

ϑ½δ�2ð0;ΩÞ; ð2:9Þ

where the product is obviously over even spin structures
only. In the end the two-loop cosmological constant in a
SUSY theory is of course zero, as it should be; this is due
to the genus two version of the abstruse identity, namely
ϒ8 ¼ 0.

B. The Scherk-Schwarzed cosmological constant

Adapting the technology of the previous section, one can
now start to build up the two-loop cosmological constant
for the nonsupersymmetric theories of Ref. [1]. These
theories are constructed by taking a 6D theory in the free
fermionic formulation and compactifying down to 4D
on a T 2=Z2 orbifold, breaking spacetime supersymmetry
through a coordinate dependence in the compactification
(CDC). This is the equivalent of the Scherk-Schwarz
mechanism in string theory. Sectors that are twisted
under the final orbifolding remain supersymmetric under
the deformation, and so their spectrum is unchanged.
(Whenever we refer to “twisted” or “untwisted” this will
always mean with respect to the final orbifolding.) At genus
two there can be a twist associated with each loop, but the
focus will mainly be on the totally untwisted sectors since
twisted states are involved in a very restricted set of
diagrams due to their remaining supersymmetric structure.
It is worth elaborating on this last particular aspect before

we start the calculation of the totally untwisted diagrams in
earnest. One can proceed by constructing an extension of
the argument of Refs. [1,17]. At one-loop the partition
function of the N ¼ 0 deformed theory (whose orbifold
action we shall denote by g) is decomposed as

ZðeÞ ¼ 1

2
ðZ0

0ðeÞ − Z0
0ð0ÞÞ ð2:10Þ

þ 1

2
ðZ0

0ð0Þ þ Zg
0 þ Z0

g þ Zg
gÞ; ð2:11Þ

where the indices represent the orbifold action on the A and
B cycle. The Scherk-Schwarz phases on the world-sheet
degrees of freedom are denoted by a vector e. The only
dependence on them is in the first totally untwisted term.
The second term is (up to the factor of 1=2) the partition
function of the nonorbifolded and nondeformed N ¼ 2
theory, while the second line is the partition function of
an entirely undeformed N ¼ 1 theory; both are zero, and
hence only the first term can give a nonzero contribution

to the cosmological constant. (So for example any N ¼
2!e N ¼ 0unorbifolded theorywithBose-Fermi degeneracy

implies the existence of a chiral orbifoldedN ¼ 1!e N ¼ 0
theory that also has Bose-Fermi degeneracy.)
Continuing to two loops, a similar decomposition would

look like

4ZðeÞ ¼ Z00
00ðeÞ − Z00

00ð0Þ þ Z0g
00ðeÞ − Z0g

00ð0Þ
þ � � � þ ðZ00

00ð0Þ þ Z0g
00ð0Þ þ Z00

0gð0Þ þ Zg0
00ð0Þ

þ Z00
0gð0Þ þ � � � þ Zgg

00 þ Zg0
0g þ � � � þ Zgg

ggÞ;
ð2:12Þ

where now of course there are two cycles. The bracket is
the undeformed N ¼ 1 theory and must vanish by super-
symmetry, and the first term is the partition function for the
entirely unorbifolded theory, representing contributions
containing the untwisted fields only. Clearly the one loop
argument would go through as before, were it not for the
additional e-dependent terms on the first line, which
represent diagrams that have twisting on one pair of AI ,
BI cycles, with the other pair of AI , BI cycles remaining
entirely untwisted. Such diagrams will be referred to as
“mixed” diagrams. What remains is therefore to determine
the contributions of the mixed diagrams at leading order,
and the contribution from the entirely untwisted first term,
Z00

00ðeÞ. It is these two different kinds of contribution that
lead to the two criteria mentioned in the Introduction.
The former will be dealt with explicitly later, but for

the moment let us now turn to the calculation for the
entirely untwisted contribution which is (up to a factor) the
cosmological constant of the unorbifolded theory. To define
the sums over spin structures, the CDC and vector notation
is the standard one, summarized in Ref. [1]. In particular
dot-products are the usual Lorentzian ones, while a separate
sum over basis vectors Va is understood; thus explicitly
the collection of spin-structures in a particular sector are
αIV ≡ αIaVa and βIV ≡ βIaVa, with a labelling the basis
vectors and, recall, I ¼ 1, 2 labeling the AI and BI cycles.
The right- and left-moving fermions have spin-structures
denoted

S0
R ¼

� ðαVÞ0
ðβVÞ0

�
R

; S0
L ¼

� ðαVÞ0
ðβVÞ0

�
L

:

The primes represent the shift due to the CDC deformation,
that is

ðαIVÞ0 ¼ αIV − nIe

ð−βIVÞ0 ¼ −βIV þ lIe; ð2:13Þ

where nI ¼ n1I þ n2I , lI ¼ lI
1 þ lI

2 and niI are the wind-
ing numbers and lI

i are the dual-KK numbers in the
Poisson resummed theory. In the present context, there
are 16 transverse right-moving real fermions and 40
transverse left-moving real fermions on the heterotic string
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(so that S0
R=L are vectors containing 16 and 40 different spin

structures respectively).
After a little work, the techniques of Refs. [103–106]

yield the two-loop cosmological constant expressed purely
in the ϑ-function formalism:

Λ2−loop ¼
Z
F 2

d3ΩIJ

ðdet ImΩÞ3

×
X

fαa;βag

Γð2Þ
2;2

jΨ10j2
~C0
�
α

β

�
Ξ6

�
α1s α2s

β1s β2s

�

×
Y16
i¼1

ϑ½S0Ri�1=2
Y40
j¼1

ϑ̄½S0Lj�1=2; ð2:14Þ

where d3ΩIJ ¼ d2τ11d2τ12d2τ22 and where “s” denotes the
noncompact space-time entries of the spin-structure vectors.
Let us describe the factors in detail. In addition to the

self-evident fermion factors, the compactification from 6D
to 4D has introduced an extra factor of the two-loop Narain
partition function for the two compact bosonic degrees of
freedom, Γð2Þ

2;2. In its original non-Scherk-Schwarzed and
un-Poisson resummed format it would look like

Γð2Þ
2;2ðΩ;G;BÞ ¼ det ImΩ

X
ðmI

i ;n
iIÞ
e−πL

IJImðΩIJÞþ2πimI
i n

iJReðΩIJÞ;

ð2:15Þ
where

LIJ ¼ ðmI
i þ BiknIkÞGijðmJ

j þ BjlnJlÞ þ niIGijnjJ;

ð2:16Þ
and where Gij and Bij are the usual metric and antisym-
metric tensor respectively. After introducing the CDC shift
and performing a Poisson resummation on all of the m’s, it
takes the form

Γð2Þ
2;2 ¼T2

2

X
lIi ;n

I
i

exp

�
−

πT2

U2detImΩ
½jM1

1þM1
2Uj2Imτ22

þjM2
1þM2

2Uj2Imτ11− ððM1
1þM1

2UÞðM2
1þM2

2UÞ�

þ c:c:ÞImτ12�
�
×e−2πiTðn11l12þn2

1
l2
2
−n1

2
l1
1
−n2

2
l2
1
Þ ð2:17Þ

where

M1
1 ¼ l1

1 − n11τ11 − n21τ12;

M2
1 ¼ l2

1 − n21τ22 − n11τ12;

M1
2 ¼ l1

2 − n12τ11 − n22τ12;

M2
2 ¼ l2

2 − n22τ22 − n12τ12: ð2:18Þ
We should point out that in the above equations and in what
follows, we have lowered the “i” index on the winding
numbers purely to simplify notation; they have not been

lowered through the use of the metric Gij. A word of
warning is also required concerning the definition of the
fαa; βag summation in Eq. (2.14): the partition function

Γð2Þ
2;2 is of course a function of lI

i ; n
I
i , but now so are the S0

L

and S0
R due to the CDC induced shift. Therefore one cannot

really factor the summations as we appear to do above:

everything to the right of Γð2Þ
2;2 is to be correctly included in

the sum over lI
i ; n

I
i. However the case of ultimate interest is

when the radii are moderately large, since as described in
the Introduction we wish to determine the presence or
otherwise of unsuppressed SS contributions to the vacuum
energy. These can only correspond to nI ¼ 0 mod (2) as is
evident from Eq. (2.17), while we require at least one of the
lI¼1;2 to be equal to 1 mod (2) to avoid cancellation by
supersymmetry. The Poisson resummation could have been
done for different choices of the lI separately but it would
amount to the same result. The result is leading terms that
carry the usual volume dependence but are otherwise not
suppressed. Conversely the subleading terms coming from
the nonzero nI modes would involve a simple general-
isation of the saddle-point approximation used for the
one-loop case in Ref. [1] leading inevitably to exponential
suppression.
The final ingredients in Eq. (2.14) are the GSO projec-

tion phases, ~C½ αβ �. These can be deduced from the fact that

two-loop partition functions factorize onto products of two
one-loop partition functions in a certain limit of moduli
space, at which point the GSO coefficients must factorize as
well [37,111]. Since the GSO coefficients are completely
moduli independent, this factorization must hold every-
where. They can therefore be written as a product of the
known genus one coefficients

~C

�
α

β

�
¼ ~C

�
α1

β1

�
~C

�
α2

β2

�
: ð2:19Þ

As described in Ref. [112], most generally these are
functions of the structure constants kab, keb, kae and kee,
that take the following form

~C

�
αI

βI

�
¼ exp½2πiðlIkeenI − lIkebαIb − βIakaenIÞ�

× exp½2πiðαIasa þ βIasa þ βIakabαIbÞ�; ð2:20Þ

with the vector e assuming a projective role, completely
analogous to that of the other basis vectors. For the
canonical assignment of structure constants for the CDC
vector e, there is no sector dependence in the phases, that is

~C

�
αI

βI

�
¼ exp

�
2πi

�
1

2
lIe2nI − βIV · enI

��

× exp½2πiðαIasa þ βIasa þ βIakabαIbÞ�: ð2:21Þ
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However, note that in Eq. (2.14) we actually have ~C0½ αβ �
rather than ~C½ αβ �. This primed definition does not include the

factors of exp½2πiðαIasa þ βIasaÞ� appearing in the above
equations, which are effectively contained withinΞ6 instead.
Equation (2.14) is the “master equation” that provides

our first criterion. It is straightforward to check that it has
the correct modular properties under Spð4;ZÞ by consid-
ering the transformations given in Eq. (B3). As we are
about to see, one can also use it to determine the leading
contribution to the cosmological constant by deduce the
q-expansions, by inserting the explicit expressions for the
two loop ϑ-functions, in Appendix A. Writing the cosmo-
logical constant as

Λ2−loop ¼
Z
F 2

d3ΩIJ

ðdet ImΩÞ3 ℵ; ð2:22Þ

the criterion for vanishing untwisted contribution to the
two-loop cosmological constant is then that the constant
term in the q-expansion of

ℵ ¼
X

fαa;βag

Γð2Þ
2;2

jΨ10j2
~C0
�
α

β

�
Ξ6

�
α1s α2s

β1s β2s

�

×
Y16
i¼1

ϑ½S0Ri�1=2
Y40
j¼1

ϑ̄½S0Lj�1=2; ð2:23Þ

vanishes. Note that ℵ is a product of the measure and the
partition function.

C. The q-expansion of ℵ

Let us proceed to examine the q-expansions for the
cosmological constant in certain limits, in particular the
large radius limit. The general form of the integrand in
the two-loop cosmological constant is

ℵ ¼ Γð2Þ
2;2

X
a;b∈Z3

Cabq
a1
1 qa22 qa33 q̄b11 q̄b22 q̄b33 ; ð2:24Þ

where ai ≥ −1=2 and bi ≥ −1. It is useful to define YI¼1…3

such that τ11 ≡ Y1 þ Y2; τ12 ≡ Y2; τ22 ≡ Y2 þ Y3 with
qI ¼ expf2πiYIg. Letting LI ¼ ImðYIÞ so that

ImΩ ¼
�
L1 þ L2 L2

L2 L2 þ L3

�
; ð2:25Þ

the variables L1, L2, L3 can be interpreted as Schwinger
time parameters for the three propagators of the two-loop
sunset Feynman diagram shown in Fig. 3. With this
parametrization, det ImðΩÞ ¼ L1L2 þ L2L3 þ L1L3, and
the fundamental domain F 2 restricts the variables so
that 0 < L2 ≤ L1 ≤ L3.
By parametrizing the period matrix in this way, the

qI-expansion of ℵ is symmetric with respect to the

three qI. It can be relatively straightforwardly evaluated.
The q-expansion of Ψ−1

10 is given by3

212

Ψ10

¼ 1

q1q2q3
þ 2

X
I<J

1

qIqJ
þ 24

X
I

1

qI
þOðqIÞ: ð2:26Þ

The rest of ℵ is model dependent and can be determined
using the qI-expansions of the ϑ-functions in Appendix A.
As an example of thewhole procedurewewill consider an

SOð10Þ model that has massless Bose-Fermi degeneracy,
and hence exponentially suppressed cosmological constant
at one-loop. The model is presented in Appendix C, where it
is shown explicitly that in the SUSY theory (i.e., the theory
without any CDC deformation) the two-loop cosmological
constant vanishes. It is also shown there that the one-loop
cosmological constant in the broken theory is exponentially
suppressed because there is Bose-Fermi degeneracy at the
massless level, and hence the constant term in the one-loop
partition function is absent.
Recall that nonvanishing two-loop contribution to the

cosmological constant comes from sectors in which at least
one of l1 and l2 is equal to 1 mod (2). For example, if
l1 ¼ l2 ¼ 1, the q-expansion of ℵ in the full non-SUSY
SOð10Þ theory is found to be

ℵ ∝
1

jΨ10j2
ðq1q2q3 þ � � �Þ

×

�
1þ 1

2
q̄1q̄2 −

33

2
q̄1q̄3 þ

1

2
q̄2q̄3 − 116q̄1q̄2q̄3 þ � � �

�

¼ 1

q̄1q̄2q̄3
þ 2

q̄1q̄2
þ 2

q̄1q̄3
þ 2

q̄2q̄3
þ 49

2q̄1
þ 15

2q̄2

þ 49

2q̄3
− 147þOðqIq̄JÞ: ð2:27Þ

The terms with l1 ¼ 1 and l2 ¼ 0, and with l1 ¼ 0 and
l2 ¼ 1 have the coefficients of 1=q̄i permuted but are
otherwise identical. In particular the constant term is the
same. In total then, we find a nonvanishing constant piece,
and conclude that this particular model gets a generic (i.e.,
not exponentially suppressed) contribution to the cosmo-
logical constant starting at two-loops.

FIG. 3. Generic sunset diagram for the two-point function.

3Note that terms with a positive power of any of the qI are
included in OðqIÞ. These terms can never contribute to the
constant term in the full q-expansion.
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D. Field theory factorization: Identifying
leading contributions

Note that the constant piece in ℵ includes various field
theoretical contributions, not only the ones corresponding to
the sunset topology. For reference the contributions in the
field theory are displayed in Fig. 4 in the parent N ¼ 2
formalism. They can in principle be computed in the 6D field
theory following Ref. [113]. Given the complexity of the
theories involved, and the fact that one would have to
determine the spectrum and all the effective couplings, this
would be an extremely arduous task, and it is actually much
easier to simply determine the two-loop partition function
directly as above. Nevertheless it is instructive to see how the
expression of Eq. (2.27) does indeed give the corresponding
field theory contributions in the various degeneration limits.
First note that for sufficiently large compactification

volume the nonzero winding mode contributions are
extremely exponentially suppressed compared to those with
nIi ¼ 0. In addition the supersymmetric minimum for the
CDC deformations is aroundU1 ¼ 1 as discussed inRef. [4].
Expanding around this point and using Eq. (2.17), the domi-
nant contributions to the cosmological constant are given byZ

F 2

d3ΩIJ

ðdet ImΩÞ3 Γ
ð2Þ
2;2

���
nIi¼0

X
a;b∈Z3

Cabq
a1
1 qa22 qa33 q̄b11 q̄b22 q̄b33

≈
Z

∞

∼1

Z
L3

∼1

Z
L1

0

dL2dL1dL3

ðdet ImΩÞ3 T2
2

X
lIi ;a∈Z

3

× exp
�
−

πT2U2

det ImΩ
½ðl1

2Þ2L3 þ ðl2
2Þ2L1 þ ðl12 − l22Þ2L2�

−
πT2

U2 det ImΩ
½ðl1

1 þ l1
2Þ2L3 þ ðl2

1 þ l2
2Þ2L1

þ ðl11 þ l12 − l21 − l22Þ2L2�
�
Caae−4πða1L1þa2L2þa3L3Þ:

ð2:28Þ

In the regions of the fundamental domain in which the real
parts of the three moduli are integrated from −1=2 to 1=2,
the only nonzero contributions come from the physical
states with ai ¼ bi ≥ 0, and are given by the physical
coefficients Caa. (This result is also a consequence of the
fact that modular invariance requires ai − bi ∈ Z.) The
approximation sign is there because, as was also the case
for one-loop integrals, there is a small region of the funda-
mental domain for which the integration over the real parts of
the moduli does not extend over the full domain −1=2 <
ReðΩIJÞ ≤ 1=2. In this region, there is no level-matching and
so unphysical states contribute to the vacuum amplitude.
Nevertheless as inRef. [1],we find that the contributions from
these unphysical states are also extremely exponentially
suppressed compared to the both the massless contributions
and the lowest lying string excitation mode contribution,
provided that the compactification radii are sufficiently large.
As per the previous subsection we are therefore inter-

ested in the value of C00, the coefficient of the constant
piece giving leading order contributions. The important
observation is that for these massless modes (with
a1 ¼ a2 ¼ a3 ¼ 0) the expression in Eq. (2.28) has simply
degenerated to the 4 dimensional field-theory result in the
Schwinger formalism, so the coefficient C00 could also be
calculated in the effective 6D → 4D Scherk-Schwarz field-
theory. The relevant diagrams are shown together with the
coefficients of their contribution to C00 in Fig. 4, which are
deduced from the calculations in Ref. [113]. (Note that all
coefficients are written for the fields as they decompose
into boson or fermionic components of N ¼ 2 multiplets.)
Different limits of the integral in Eq. (2.28) generate all

the field-theory diagrams in Fig. 4. In particular the
“double-bubble” diagrams come from the region where
L1, L3 → ∞, while L2 ≳ 1. Explicitly in this limit, one
still requires a1 ¼ a2 ¼ a3 ¼ 0 to avoid exponential sup-
pression, but can everywhere replace det ImΩ ≈ L1L3.
The L2 integral then may be trivially performed (with its

FIG. 4. The Feynman diagrams for the two-loop cosmological constant in the effectiveN ¼ 2 field theory of the untwisted sector with
dashed lines indicating scalar components of hypermultiplets, solid lines fermionic components. Likewise “photon” lines represent the
bosonic component of the gauge supermultiplet (i.e., vector plus scalar adjoint), while the gaugino lines represent theN ¼ 2 gauginos.
Leading order corrections (i.e., not exponentially suppressed) contributions are proportional to the sum over all these coefficients in the
entire theory. In a supersymmetric theory the contributions vanish line by line as they should. In a Scherk-Schwarzed theory, only those
diagrams with all masses unshifted count (twice) towards the cosmological constant. Cancellation in a nonsupersymmetric theory can be
achieved by choosing field content.
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upper limit L1 being effectively infinite). Taking for
example l2

2 ¼ l1
1 ¼ 1 in this limit results in an integral

proportional to

≈
Z

∞

∼1

Z
L3

∼1

dL1dL3

L2
1L

2
3

C00 exp

�
−
πT2U2

L3

−
πT2

U2L1

�
;

which (taking the upper limit L3 → ∞ on the L1 integral)
has the form of a product of two one-loop Poisson
resummed Schwinger integrals in a KK theory with two
extra dimensions. A more complete way to reach this
conclusion would be to first go to the “nonseparating
degeneration” limit of Ref. [106], i.e., τ22 → i∞ with τ11,
τ12 fixed, and from there take τ11 → i∞.
The field theory recipe for evaluating C00 for the Scherk-

Schwarzed string theories is therefore as follows: retain in
the list of two-loop diagrams only those that are exactly
massless, meaning that the states on all propagators do not
receive any CDC shift. Then C00 is precisely twice the
resulting sum of coefficients.
The reasoning is straightforward and exactly mirrors

what happens in the one-loop case. First recall that we are
(for this calculation) considering only untwisted states in
the diagrams of Fig. 4. This implies that there is KK and e
charge conservation at the vertices, which in turn implies
that the CDC shifts pairs of either fermion-fermion or
boson-boson masses on the sunset diagrams. The nett effect
of such a shift is that the space-time statistics of an entire
loop on the diagram is reversed, and consequently these
diagrams contribute with an additional minus sign.
Meanwhile the “superpartner” diagram (in which the
space-time statistics really is reversed on that loop) is still
present: hence a factor of two.
In principle the sum of coefficients can vanish, and the

important aspect that makes this possible is the coupling
degeneracy, which is due to the underlying supersymmetry
of the undeformed theory, and the N ¼ 2 structure of the
untwisted (i.e., SUSY breaking) sector. This is a well-
known feature of effective string theories, but the crucial
point here is that while at the level of the field theory a
complete cancellation of contributions may seem like a
miraculous tuning, at the level of the string theory it is
merely a consequence of the particle content and the
corresponding partition function and measure (and indeed
there are no independent couplings). It is worth repeating
that from this point of view (and in practice), it is far easier
simply to work with the q-expansion of the string partition
function, than to attempt to evaluate C00 for the entire field
theory.

E. The separating degeneration limit

There is one limit that would not be covered by the field
theoretic treatment described in the previous sub-section,
namely the separating degeneration limit. For a two-loop
string vacuum amplitude this corresponds to taking the

limit τ12 → 0 keeping τ11, τ22 fixed. This gives a Riemann
surface that looks like two one-loop vacuum amplitudes
connected by a long thin tube, as shown in Fig. 5. The
limits of various objects appearing in the two-loop cos-
mological constant are given by [106]

ϑ½μ1; μ2�ðΩÞ ¼ ϑ1½μ1�ð0; τ11Þϑ1½μ2�ð0; τ22Þ þOðτ212Þ;
ϑ½ν0; ν0�ðΩÞ ¼ −2πiτ12ηðτ11Þ3ηðτ22Þ3 þOðτ312Þ;

Ξ6½μ1; μ2�ðΩÞ ¼ −28hμ1jν0ihμ2jν0iηðτ11Þ12ηðτ22Þ12
þOðτ212Þ;

Ξ6½ν0; ν0�ðΩÞ ¼ −3 · 28ηðτ11Þ12ηðτ22Þ12 þOðτ212Þ;
Ψ10ðΩÞ ¼ −ð2πτ12Þ2212ηðτ11Þ24ηðτ22Þ24 þOðτ412Þ;

ð2:29Þ

where μ1;2;3 and ν0 are the three even and unique odd genus
1 spin structures respectively, while the genus two Narain

lattice Γð2Þ
2;2 splits into a product of two genus one Narain

lattices. Therefore the full two-loop cosmological constant
in the separating degeneration limit takes the form

Λ¼
Z

d2τ11d2τ22d2τ12
ðImðτ11ÞImðτ22ÞÞ3

×
X
fαi;βig

~C

�
α

β

�
1

218π4jτ12j4
1

ηðτ11Þ12ηðτ22Þ12η̄ðτ11Þ24η̄ðτ22Þ24

×Γð1Þ
2;2ðτ11ÞΓð1Þ

2;2ðτ22Þ
Y
η∈F0

R

ϑ1=21

�ðα1VÞ0
ðβ1VÞ0

�
ϑ1=21

�ðα2VÞ0
ðβ2VÞ0

�

×
Y
~ϕ∈F0

L

ϑ̄1=21

�ðα1VÞ0
ðβ1VÞ0

�
ϑ̄1=21

�ðα2VÞ0
ðβ2VÞ0

�
þO

�
1

τ12

�
; ð2:30Þ

which is essentially two one-loop vacuum amplitudes
connected by a divergent propagator. We therefore make
the crucial conclusion that the separating degeneration limit
contains the divergence due to any uncancelled one-loop
dilaton tadpoles. In general, i.e., at higher loop order, one
expects such terms to always be present. That is at n-loop
order, any uncancelled tadpoles from the (n − 1)-loop
theory will contribute to divergences in the cosmological
constant. Thus if the one-loop partition function has
Bose-Fermi degeneracy, these terms are a divergence
multiplied by an exponentially suppressed coefficient.

FIG. 5. The separating degeneration limit.
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One may confirm that the same conclusion is arrived at
using the full q-expansion in the separating degeneration
limit. First of all in this limit we have

212

Ψ10

¼ −
1

ð2πτ12Þ2
�

1

q1q3
þ 24

q1
þ 24

q3
þ 576þOðqIÞ

�
:

ð2:31Þ

Returning to the non-SUSY SOð10Þ model with massless
Bose-Fermi degeneracy given in Appendix C, for the
untwisted sector with l1;2 odd, the leading term in the
q-expansion of the partition function after summing over
spin structures is given by

ℵ ¼ 1

jΨ10j2
�
−
1

4
þ 6q1 þ 6q3 − 144q1q3 þ � � �

�
× ðq̄1q̄2 þ � � �Þ

¼ 1

j2πτ12j4
�
−
576

4
þ 6 · 24þ 6 · 24 − 144þOðqIÞ

�
× ð1þOðq̄IÞÞ

¼ 0þOðqIÞð1þOðq̄IÞÞ
j2πτ12j4

: ð2:32Þ

The constant term has vanished as expected in this limit, for
this model.

F. Comments on the effect of the one-loop tadpole

For the class of non-SUSY string models that we are
considering in this paper, it is known that at one-loop order
there is an exponentially suppressed but nonzero dilaton
tadpole. If this tadpole is left uncanceled, then as we saw in
the previous section, it can contribute through the sepa-
rating degeneration as a divergence in the two-loop
cosmological constant. It is well known that infrared
divergences can appear in this degeneration [114–116],
however, our experience from QFT is that these divergen-
ces typically arise because we are asking the wrong
questions. As we have learned from QFT, what one should
in principle do is stabilise the theory in the correct one-loop
vacuum so that the tadpole is effectively cancelled. The two
loop separating degeneration divergence would then be
seen to be merely an artifact that disappears if we perform
this procedure. It might also be the case that one could live
with the tadpole and have a dynamical cosmologically
evolving background as in Ref. [117]. These issues have
also been discussed in Refs. [118–120].
In generic nonsupersymmetric string models the dilaton

tadpoles can be large. Any attempt to cancel the tadpole
through a background redefinition would require such a
large shift that it is highly unlikely that the new vacuum
bears any resemblance to the original, thereby negating
any positive phenomenological aspects of the originally
constructed model. The key point about the specific types

of models we consider here is that the dilaton tadpoles are
exponentially suppressed. If one were to employ a back-
ground redefinition, the shift to achieve this should be
sufficiently small so as not to result in any appreciable
alteration in the phenomenological properties, including
the spectrum of the massless states. If this were not the case
then clearly there would be a problem, since the con-
struction of models with suppressed cosmological con-
stants is dependent on a careful cancellation of bosonic and
fermionic massless degrees of freedom at one-loop order.
In theory one is able to perform this background shift at the
string theory level (see Ref. [121]), however in practice this
would be rather involved.
An alternative argument is built around balancing the

one-loop tadpole itself against another contribution as in
Ref. [4] where the mechanism is incorporated in the
effective supergravity theory, and of course should not
itself result in a large cosmological constant. In a frame-
work that is completely stable, where the dilaton tadpole is
canceled, the divergent contribution to the two-loop cos-
mological constant should then vanish, while crucially the
remaining contributions remain unaltered. For the models
which contain a bose-fermi degeneracy, the potential can be
written as

V ¼ VIR þ VUV; ð2:33Þ

where VUV is computed in the full string theory while VIR
arises from nonperturbative effects in the effective field
theory. The key point is that because VUV comes from the
contribution of heavy modes only, it is independent of the
low-energy IR physics. Therefore, we can introduce some
stabilising mechanism in the IR to cancel the UV con-
tribution, and provided this does not alter the masses of
states in any way that is not exponentially suppressed, then
the massless spectrum will remain unchanged.
A full treatment of the tadpole is beyond the scope of

this paper and so we leave a complete study of the
dynamics to future work. With this in mind, we assume
it is fact consistent to study the cosmological constant in
our naive vacuum, with the knowledge that the conditions
on the structure of the massless spectrum that guarantee
exponential suppression will still be satisfied after the shift
to the correct vacuum. We emphasise that this would not be
the case without exponential suppression of the one-loop
tadpole. Those theories would undergo large shifts in the
metric upon finding their true vacua, and any putative dilaton
stabilisation would most likely be completely invalidated in
the process, along with any two-loop discussion.

G. Suppression of the “mixed” diagrams

This completes the derivation and discussion of the first
criterion for vanishing two-loop cosmological constant.
It remains to consider the contributions with one untwisted
propagator and two twisted ones, i.e., the mixed diagrams.
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In the untwisted sector, the compactification from 6D to 4D
resulted in the inclusion of the two-loop Narain partition
function for the two compact bosonic degrees of freedom.
This term meant that, for sufficiently large compactification
radii, contributions to the cosmological constant from
nonlevel matched states (including the proto-graviton) were
exponentially suppressed compared to contributions from
both massless states and the lowest lying string excitation
modes. By contrast, for the twisted sectors, the partition
function for the two compact bosonic degrees of freedom is
given by [107,122]

Z½ϵ� ¼ Zqu½ϵ�
X

ðpL;pRÞ∈Γ
exp fπiðp2

Lτϵ − p2
Rτ̄ϵÞg ð2:34Þ

where τϵ is the Prym period and

Zqu½ϵ� ¼
����ϑ½δþi �ð0;ΩÞϑ½δ−i �ð0;ΩÞZðΩÞ2ϑið0; τϵÞ2

���� ð2:35Þ

where ZðΩÞ is the partition function for two bosonic
degrees of freedom in the uncompactified theory.
For twisted sectors involving some twist on only one of

the two loops we anticipate that the cosmological constant
may still receive a nonzero contribution. First we can see
that again it is the massless states which provide the
dominant contributions to the cosmological constant, while
massive states receive exponential suppression after inte-
grating over the real parts of the three moduli as before.
The contributions from nonlevel matched (i.e., unphysical)
states are also exponentially suppressed (for sufficiently
large compactifiction radii), despite the fact these sectors do
not include the two-loop Narain partition function. Instead,
in these sectors there is the factor,

Γð1Þ
2;2ðτϵÞ ¼

X
ðpL;pRÞ

exp fπiðp2
Lτϵ − p2

Rτ̄ϵÞg ð2:36Þ

which just has the form of a one-loop Narain partition
function involving the Prym period τϵ. As usual we can
perform a Poisson resummation giving

Γð1Þ
2;2ðτϵÞ¼

T2

τϵ

X
l⃗;n⃗

exp

�
−
πT2

τϵU2

jl1−n1τϵþðl2−n2τϵÞUj2
�
:

ð2:37Þ

In order to show that the unphysical states are suppressed
even in the twisted sectors, we make use of the fact that
there is a relation between the Prym period τϵ and the
period matrix Ω. The Schottky relations state that for any i,
j ¼ 2, 3, 4

ϑið0; τϵÞ4
ϑjð0; τϵÞ4

¼ ϑ½δþi �ð0;ΩÞ2ϑ½δ−i �ð0;ΩÞ2
ϑ½δþj �ð0;ΩÞ2ϑ½δ−j �ð0;ΩÞ2

: ð2:38Þ

In the notation above, for any given twist ϵ ≠ 0, there are 6
even spin structures δ where δþ ϵ is also even. These 6
spin structures are denoted δþi and δ−i , for i ¼ 2, 3, 4, where
δ−i ¼ δþi þ ϵ. The region of moduli space where there is no
level-matching is when L1, L2, L3 are all sufficiently small
and are at mostOð1Þ. When the imaginary parts of the three
moduli are small, the Schottky relations tell us that ImðτϵÞ
is also small (while it is large when both L1 and L3 are
sufficiently large) and so by considering the Poisson

resummed form of Γð1Þ
2;2ðτϵÞ we see that small values of

τϵ result in exponential suppression.
What remains therefore are the diagrams with a twisted

loop and an untwisted propagator containing only physical
states. (Due to theZ2 orbifold, there can only be eitherUUU
orTTU vertices in the superpotential of the unbroken theory,
and hence no diagrams with a single twisted propagator.)
The coefficients of these diagrams can be easily evaluated in
the field theory. The integral for a loop of fermions of mass
m1 and m2 coupling to a scalar are of the form

Σðk2Þ ¼ −i
Z

d4q
ð2πÞ4

qþm1

q2 −m2
1

ðqþ =kÞ þm2

ðqþ kÞ2 −m2
2

: ð2:39Þ

We can assume one mass to be zero, and first consider the
fermion as the KK states. Thus we have to consider the
Euclideanized integrals

ITfTsUf
¼ 2

Z
d4q
ð2πÞ4

Z
d4k
ð2πÞ4

q · ðqþ kÞ
q2k2

1

ðqþ kÞ2 þm2
f

:

ð2:40Þ
We also have the case where the scalar is the KK state which
involve the integral

ITfTfUs
¼
Z

d4q
ð2πÞ4

Z
d4k
ð2πÞ4

q · ðqþ kÞ
q2

1

ðk2 þm2
sÞ

1

ðqþ kÞ2 :

ð2:41Þ
These diagrams will come with a coefficient TrY2

UTT where
YUTT is the tree-level UTT Yukawa coupling in the super-
potential; it takes the value

ffiffiffi
2

p
gYM or 0 depending on

whether the charges are conserved at the vertex. The
double-bubble diagrams (for Yukawas) will have the same
coefficient with a minus sign

JTsTs
¼ −

Z
d4q
ð2πÞ4

Z
d4k
ð2πÞ4

1

q2
1

k2
: ð2:42Þ

JTsUs
¼ −2

Z
d4q
ð2πÞ4

Z
d4k
ð2πÞ4

1

q2
1

k2 þm2
s
: ð2:43Þ

In the untwisted sector, it is possible to show that the
sunset diagrams can be reduced to the form of scalar
double-bubble diagrams by basic manipulation [113].
However, similar manipulations do not produce the same
result in the twisted sectors and so we must evaluate the
sunset diagrams as they are. Using the Schwinger formula
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1

Aν ¼
1

ΓðνÞ
Z

∞

0

dyyν−1 expð−yAÞ; ReðAÞ > 0;

ð2:44Þ
and the integralsZ

d4q
ð2πÞ4 q

2n expð−αq2Þ ¼ Γ½2þ n�
α2þn16π2

; ð2:45Þ

we find that the sunset diagrams can be written in the
following form, where either ms ¼ 0 if the single untwisted
propagator is a fermion, or mf ¼ 0 if it is a scalar:

I ¼ −
i

ð16π2Þ2
Z

∞

0

dy1dy2dy3e
−y3m2

s−y2m2
f

×
2y3

ðy1y2 þ y1y3 þ y2y3Þ3
: ð2:46Þ

The above integral has UV divergences when at least two
of the Schwinger parameters y1, y2, y3 approach zero.
Therefore, when we come to evaluate these diagrams later

we will introduce a regulator e−Nð 1
y2
þ 1

y3
Þ.

1. Figure 8 diagrams

We may proceed to calculate the relevant integrals in a
similar manner to Refs. [123,124]. In the untwisted sector
the scalar figure 8 diagram is proportional to Jðm2

Bl
Þ2 where

Jðm2
Bm
Þ ¼

X
mi∈Z

Z
d4p
ð2πÞ4

1

p2 þm2
Bm

: ð2:47Þ

We need to consider the case with two compact dimensions
with radii R1 and R2. We will begin by considering the
supersymmetric case in order to verify cancellation
between all diagrams. For the scalar mass we therefore have

m2
Bl

¼ 4m2
1

R2
1

þ 4m2
2

R2
2

; ð2:48Þ

where m1 and m2 are Kaluza-Klein numbers. Therefore,
again using the Schwinger formula and integrating over the
momentum p we obtain

Jðm2
Bl
Þ ¼ 1

16π2
X
mi∈Z

Z
∞

0

dt
1

t2
e
−4ðm

2
1

R2
1

þm2
2

R2
2

Þt ð2:49Þ

To proceed with the calculation we introduce a regulator
e−N=t, allowing us to interchange the order of summation
and integration. From there we can perform a Poisson
resummation on the KK numbers and finally obtain

Jðm2
Bl
Þ ¼ 1

16π2

Z
∞

0

dt
1

t2
πR1R2

4t

X
li∈Z

e−
π2

4tðR2
1
l2
1
þR2

2
l2
2
Þe−

N
t

¼ 1

16π2

�
πR1R2

4N2
−
4EðiU2; 2Þ
π3R1R2

þ 32NEðiU2; 3Þ
π5R2

1R
2
2

�
ð2:50Þ

where U2 ¼ R2=R1 and EðU; nÞ is the real analytic
Eisenstein series with U ¼ U1 þ iU2

EðU; nÞ ¼
X0

l1;l2

Un
2

jl1 þ l2Uj2n : ð2:51Þ

For a twisted loop there are no associated KK states and
so we only have the contribution from the massless state.
In this case we simply have J ¼ 1

16π2N and so for the Fig. 8
diagram with a single twisted loop we find

JTsUs
¼ 1

ð16π2Þ2
�
πR1R2

4N3
−
4EðiU2; 2Þ
π3R1R2N

þ 32EðiU2; 3Þ
π5R2

1R
2
2

�
:

ð2:52Þ

2. Sunset diagram

When the untwisted propagator in the sunset diagram is a
scalar we obtain the result

Is ¼ −
1

ð16π2Þ2
X
mi∈Z

Z
∞

0

dy1dy2dy3e−y3m
2
s

×
2y3

ðy1y2 þ y1y3 þ y2y3Þ3
e−Nð 1

y2
þ 1

y3
Þ

¼ −
1

ð16π2Þ2
�
πR1R2

12N3
−

16

π5R2
1R

2
2

×

��
3þ 2 log

N
π2

�
EðiU2; 3Þ þ Eð0;1ÞðiU2; 3Þ

�

−
4EðiU2; 2Þ
π3R1R2N

þ 32EðiU2; 3Þ
π5R2

1R
2
2

�
; ð2:53Þ

where the notation Eð0;1ÞðU; nÞ≡ ∂nEðU; nÞ. On the other
hand when the untwisted propagator is a fermion we have

If ¼ −
1

ð16π2Þ2
X
mi∈Z

Z
∞

0

dy1dy2dy3e
−y2m2

f

×
2y3

ðy1y2 þ y1y3 þ y2y3Þ3
e−Nð 1

y2
þ 1

y3
Þ

¼ −
1

ð16π2Þ2
�
πR1R2

6N3
þ 16

π5R2
1R

2
2

×

��
3þ 2 log

N
π2

�
EðiU2; 3Þ þ Eð0;1ÞðiU2; 3Þ

��
:

ð2:54Þ

Therefore the total contribution from the sunset diagrams
with unbroken supersymmetry is
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Isþ If ¼−
1

ð16π2Þ2
�
πR1R2

4N3
−
4EðiU2;2Þ
π3R1R2N

þ32EðiU2;3Þ
π5R2

1R
2
2

�
ð2:55Þ

which exactly cancels the contribution from the Fig. 8
diagram as expected.
Finally we can obtain the two-loop contribution to the

vacuum energy from the twisted diagrams in a theory with
supersymmetry broken by the Scherk-Schwarz mechanism.
The masses of the twisted states themselves are unaffected
by the supersymmetry breaking, but the masses of the
untwisted states to which they couple may still be shifted.
The result of Scherk-Schwarz supersymmetry breaking
amounts to shifting the KK numbers by 1

2
. We may proceed

with the calculation in the same way as before, and find the
shift in the KK numbers results in a replacement of the real
analytic Eisenstein series EðU; nÞ by E1

2
ðU; nÞ, where

E1
2
ðU; nÞ ¼

X0

l1;l2

Un
2e

πiðl1þl2Þ

jl1 þ l2Uj2n : ð2:56Þ

Therefore, we find the contribution from the twisted sectors
to be

TrðY2
UTTÞNT

ðNU
b − NU

f Þ
16π9R2

1R
2
2

��
3þ 2 log

N
π2

�
~EðiU2; 3Þ

þ ~Eð0;1ÞðiU2; 3Þ
�

ð2:57Þ

where ~EðU; nÞ is an Eisenstein series restricted to
l1 þ l2 ¼ odd, NT is the number of twisted degrees of
freedom, and NU

b and NU
f denote the number of untwisted

bosons and fermions respectively that couple to the twisted
states and whose masses remain unshifted after supersym-
metry breaking. Therefore, we see that if the spectrum
contains a degeneracy in the number of massless bosons
and fermions in the untwisted sector that couple to twisted
states, then the leading contribution from the twisted
sectors is zero. Noting that the functional form of this
term makes it unnatural for it to cancel against the entirely
untwisted contribution, this gives us a second criterion for
the vanishing of the two-loop cosmological constant: ℶ ¼ 0
where in terms of the couplings we have

ℶ ¼
X

U¼massless

ð−1ÞFUTrjYUTTj2; ð2:58Þ

and where for a givenU, the coupling YUTT is considered to
be a matrix with indices running over all the twisted states,
and includes both gauge and Yukawa couplings. Taking
account of the degeneracy in the couplings, we can write a
simple operational expression for ℶ, namely

ℶ ¼
X

U;T;T 0¼massless

ð−1ÞFUδQðQU þQT þQT 0 Þ; ð2:59Þ

where the sum is over all massless physical untwisted
fields, and pairs of twisted fields. The δQ-function imposes
either simple charge conservation for the charge vectors of
the triplet of fields (i.e., representing superpotential ϕψ̄Lψ

0
R

type couplings), or charge conservation with an extra unit
in the noncompact space-time index (representing gauge
Aμψ̄Lγμψ

0
L type couplings that have an extra Dirac matrix).

III. CONCLUSION

In this paper we have derived two criteria for the
exponential suppression of the two-loop cosmological con-
stant in string theories with spontaneously broken super-
symmetry. These two criteria determine respectively when
the leading order entirely untwisted and partially twisted
contributions vanish. The untwisted criterion, in Eq. (2.23),
is most easily determined in any given model from the
vanishing of the constant term in the q-expansion of the
integrand in the two-loop cosmological constant. Note that
this object contains factors from the partition function but
also from the measure; the criterion can not be determined
from the partition function alone. The twisted criterion can
be determined from the effective field theory, but can most
easily be evaluated in a very simple operational way simply
with the knowledge of the states in the spectrum and all of
their charges. The resulting condition, in Eq. (2.58), is the
vanishing of a “sum of Veltman conditions” for the twisted
fields; that is, in terms of the effective field theory, one can
imagine that at the one-loop level the twisted states in the
spectrum will receive quadratically divergent contributions
to their mass from the leading quadratic divergence in the
cosmological constant. At the two-loop level, these terms
will enter into “sunset” diagrams, but the degenerate nature
of the couplings implies that the sum of such contributions
may vanish, depending on the spectrum.
For consistency, one should also impose the vanishing

of the one-loop leading contribution to the cosmological
constant, which is achieved in theories that have Bose-
Fermi degeneracy in their massless physical states.
Divergences associated with the one-loop dilaton tadpole
would appear at two loop level in the so-called separating
degeneration limit of the diagrams, a limit that resembles
two one-loop torus diagrams connected by a long thin tube.
However, their presence does not actually affect the
phenomenology of these models since the crucial point
is that because the tadpoles are exponentially suppressed,
their effect on the physical spectrum is in fact negligible.
The two criteria we have presented here can be thought

of as a stringy implementation of the “naturalness without
supersymmetry” idea first proposed in Ref. [5] up to the
two-loop level. The existence or otherwise of models that
satisfy these conditions, and their properties should they
exist, is a subject of current study, which will be reported
elsewhere [125].
It would also be of interest to search for a subset of

theories that mimic the supertrace rules in models involving
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D3-branes, where vanishing one-loop supertraces are
known to extend to higher order automatically [126].
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APPENDIX A: TWO-LOOP THETA FUNCTIONS

Letting τ11 ≡ Y1 þ Y2; τ12 ≡ Y2; τ22 ≡ Y2 þ Y3 and
defining qI ¼ expf2πiYIg, the genus two theta functions
have the following expansions in qI up to linear order (note
that the convention for cycles, ½α1Vβ1V

α2V
β2V

�, is the transpose of
that used in [103–106])

ϑ

"
0 0

0 0

#
∼ 1þ 2q1=21 q1=22 þ 2q1=21 q1=23 þ 2q1=22 q1=23 þ � � �

ϑ

"
0 0

0 1
2

#
∼ 1þ 2q1=21 q1=22 − 2q1=21 q1=23 − 2q1=22 q1=23 þ � � �

ϑ

"
0 0

1
2

0

#
∼ 1 − 2q1=21 q1=22 − 2q1=21 q1=23 þ 2q1=22 q1=23 þ � � �

ϑ

"
0 0
1
2

1
2

#
∼ 1 − 2q1=21 q1=22 þ 2q1=21 q1=23 − 2q1=22 q1=23 þ � � �

ϑ

"
1
2

0

0 0

#
∼ 2q1=81 q1=82 ð1þ q1=23 Þ þ � � �

ϑ

"
1
2

0

0 1
2

#
∼ 2q1=81 q1=82 ð1 − q1=23 Þ þ � � �

ϑ

"
0 1

2

0 0

#
∼ 2q1=82 q1=83 ð1þ q1=21 Þ þ � � �

ϑ

"
0 1

2

1
2

0

#
∼ 2q1=82 q1=83 ð1 − q1=21 Þ þ � � �

ϑ

"
1
2

1
2

0 0

#
∼ 2q1=81 q1=83 ð1þ q1=22 Þ þ � � �

ϑ

"
1
2

1
2

1
2

1
2

#
∼ 2q1=81 q1=83 ð1 − q1=22 Þ þ � � � ðA1Þ

For ease of reference we also collect here the large radius
q-expansion for the weight 10 Igusa cusp form:

212

Ψ10

¼ 1

q1q2q3
þ 2

X
i<j

1

qiqj
þ 24

X
i

1

qi
þOðqiÞ: ðA2Þ

APPENDIX B: MODULAR TRANSFORMATIONS
FOR GENUS 2 SURFACES

Modular transformations for a genus 2 Riemann surface
form the infinite discrete group Spð4;ZÞ defined by

M ¼
�
A B

C D

�
; M

�
0 I

−I 0

�
Mt ¼

�
0 I

−I 0

�
;

ðB1Þ

where A, B, C, D are integer valued 2 × 2 matrices. The
Siegel upper half-plane is defined as the set of all
symmetric 2 × 2 complex matrices with positive definite
imaginary part. Modular transformations under Spð4;ZÞ
act on the Siegel upper half-plane by

Ω → ~Ω ¼ ðAΩþ BÞðCΩþDÞ−1; ðB2Þ

giving the following transformations,

ϑ½~δ�ð0; ~ΩÞ4 ¼ ϵ4 detðCΩþDÞ2ϑ½δ�ð0;ΩÞ4;
Ξ6½~δ�ð ~ΩÞ ¼ ϵ4 detðCΩþDÞ6Ξ6½δ�ðΩÞ;
Ψ8ð ~ΩÞ ¼ detðCΩþDÞ8Ψ8ðΩÞ;
Ψ10ð ~ΩÞ ¼ detðCΩþDÞ10Ψ10ðΩÞ;

det Imð ~ΩÞ ¼ jdetðCΩþDÞj−2 det ImΩ;

d3 ~Ω ¼ jdetðCΩþDÞj−6d3Ω; ðB3Þ

where ϵ4 ¼ �1.

APPENDIX C: SOð10Þ MODEL
WITH MASSLESS BOSE-FERMI

DEGENERACY

1. Model definition, and vanishing of SUSY
partition function

The model is defined by the following set of basis
vectors Va and CDC deformation vector e, which corre-
spond to the SOð10Þ model of Ref. [1]:
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V0 ¼ − 1
2
½11 111 111 1111 11111 111 11111111�

V1 ¼ − 1
2
½00 011 011 1111 11111 111 11111111�

V2 ¼ − 1
2
½00 101 101 0101 00000 011 11111111�

b3 ¼ − 1
2
½10 1̄00̄ 0̄01̄ 0001 11111 010 10011100�

V4 ¼ − 1
2
½00 101 101 0101 00000 011 00000000�

e ¼ 1
2
½00 101 101 1011 00000 000 00011111� ðC1Þ

while the corresponding structure constants kij are given by

kij ¼

0
BBBBBBBB@

0 0 0 1
2

0

0 0 0 1
2

0

0 1
2

0 0 0

1
2

0 0 0 0

0 1
2

0 0 0

1
CCCCCCCCA
: ðC2Þ

It is easier to verify the vanishing of the two loop cosmological constant in SUSY models by taking a set of equivalent basis
vectors where V0 and V1 are replaced by

V0
0 ¼ V1 ¼ − 1

2
½00 011 011 1111 11111 111 11111111�

V0
1 ¼ ¯V0 þ V1 ¼ − 1

2
½11 100 100 0000 00000 000 00000000� : ðC3Þ

Beginning with a simple model defined only by the vectors
V0

0 and V1
0, one finds a contribution appearing as an

overall factor in the expression for the cosmological
constant. This factor comes from the components corre-
sponding to iR ¼ 1, 2, 3, 6 and is given by

X
a;b;c;d∈f0;1

2
g
Ξ6

�
a b

c d

�
ϑ

�
a b

c d

�
4

¼ 0: ðC4Þ

A similar story applies to the model defined by the three
basis vectors V0

0, V1
0 and V2 where the identity that now

guarantees a vanishing cosmological constant is

X
a1;b1;c1;d1∈f0;12g

ð−1Þc2a1þd2b1Ξ6

�
a1 b1
c1 d1

�
ϑ

�
a1 b1
c1 d1

�
2

× ϑ

�
a1 þ a2 b1 þ b2
c1 þ c2 d1 þ d2

�
2

¼ 0; ðC5Þ

for any a2, b2, c2, d2 ∈ f0; 1
2
g. By inspection, this identity

also guarantees a vanishing contribution to the one-loop
vacuum energy of the full non-SUSY SOð10Þmodel above,
from the untwisted sectors in which both l1, l2 ¼ 0

mod (2) (where l1 ¼ l1
1 þ l1

2 and similar for l2).

2. Massless Bose-Fermi degeneracy
and the 1-loop q-expansion

The one-loop partition function after the applying the
CDC is proportional to

Z ∝
1

ηðτÞ12η̄ðτ̄Þ24
X
α;β

C

�
α

β

�
Γ2;2jn¼0

×
Y
iR

ϑ

�
αVi − nei
−βVi þ lei

�Y
iL

ϑ̄

�
αVi − nei
−βVi þ lei

�
: ðC6Þ

The q-expansions of ηðτÞ−12 and η̄ðτ̄Þ−24 are

1

ηðτÞ12¼
1ffiffiffi
q

p þOð ffiffiffi
q

p Þ; 1

η̄ðτ̄Þ24¼
1

q̄
þ24þOðq̄Þ: ðC7Þ

The source of the exponential suppression of the one loop
cosmological constant is then that, in the sectors where
l ¼ l1 þ l2 is odd (so that the contributions does not just
vanish by supersymmetry), the q-expansion of the partition
function is found to be missing the constant term due to the
Bose-Fermi degeneracy among the massless states:

Z ∝
1

ηðτÞ12η̄ðτ̄Þ24 ð128
ffiffiffi
q

p
− 3072q̄

ffiffiffi
q

p þ � � �Þ

¼ 128

q̄
þ 0þOððqq̄Þ1=2Þ: ðC8Þ
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