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1. Introduction 

China Investment Corporation (CIC), the relatively young sovereign wealth fund (SWF) of 

China, has attracted much attention since its inception on 19 September, 2007. Due to the 

huge amount of foreign exchange reserves it can tap into, many are curious about its identity 

as an international investor, its investment objective and its strategic asset allocation (SAA). 

This motivates us to find a portfolio optimization method to suit the demands for such long-

term institutional investors', such as SWFs and central banks, SAA decisions. 

The three features of financial efficiency, good risk appraisal and allocation efficacy have 

intuitive importance to portfolio management, and therefore each of these aspects has been 

well developed. With respect to allocation efficacy, by which we mean stability of portfolio 

as well as level of diversification, the mean-variance analysis has been criticized. The most 

frequently applied solution is that proposed by Black and Litterman (1991, 1992) and further 

developed by He and Litterman (1999), and Satchell and Scowcroft (2000). They utilize the 

Bayesian rule to combine analysts’ forecasts with the market equilibrium. This differs from 

the mean-variance method where the forecasts for every asset return are derived from the 

historic data. Based on the efficient market hypothesis, this method incorporates the market 

view as the basis for forecasting the future returns.  

With respect to good risk appraisal for SAA, many papers discover the asymmetric 

dependence feature in asset returns (Longin and Solnik, 2001; Ang and Chen, 2002; Bae et 

al., 2003; Hong et al., 2007). Some assets are more likely to go down together, thus 

diminishing the effect of diversification. In addition, the fat-tail feature means that extreme 

losses would be underestimated if the common Gaussian distribution were assumed, as in the 

mean-variance analysis. Therefore, the copula method is important for risk management in 

asset allocation. The application of copula method in financial series estimation is developing 
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rapidly. In particular, the vine-copula offers flexible tools to handle risk management in 

multivariate portfolio problems. 

Another important issue in portfolio management is the ‘estimation error’. Many papers 

attempt to deal with the estimation problem (Barry, 1974; Jorion, 1986, 1991; Pástor, 2000; 

Pástor and Stambaugh, 2000). This problem is closely related to the robustness of the optimal 

asset allocation and the accuracy of the model’s predictability. Hence, proper treatment in 

this regard is expected to improve the overall financial performance of the portfolio 

management process. Estimation is the first stage in almost every portfolio optimization 

model. However, if the possibility of estimation error is neglected, using different sets of 

observations from the same distribution can often lead to different results as to the underlying 

distribution. In response to this issue, Jorion’s (1991) shrinkage method is widely applied, 

and has been proved to be effective in many cases. We intend to incorporate this into our 

method and expect it to be able to improve the overall financial performance (profitability) in 

our case. 

In the same field, several papers attempt to improve on asset allocation problems for the 

central banks in terms of the previous three aspects. Petrovic (2011) and Leon and Vela (2011) 

apply the Black-Litterman model for central banks. They recognize the potential of the 

Black-Litterman for allocation efficacy and combine the market equilibrium with investors’ 

opinions. Barros Fernandes et al. (2012) use the Black-Litterman plus re-sampling techniques 

to deal with the estimation error. However, the re-sampling method is less intuitively 

appealing and less theoretically founded than the Bayesian method used in Jorion (1991) and 

others for estimation error. The method in their paper also lacks our copula risk appraisal 

ability. Another reason for choosing Jorion’s shrinkage estimation over the re-sampling 

technique is that the estimation of vine-copula structures in high dimensional situations 
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entails the high cost of computer power. In the re-sampling procedure, the repeated 

estimations of the copula parameters would take too much time to justify its advantage over 

the shrinkage estimation, presuming such an advantage does exist. 

In the following sections, first in Section 2 the methodology is proposed and elaborated.  In 

Section 3, we provide empirical analysis on the case of CIC, targeting the effectiveness of the 

method as well as the implications for CIC of our optimal SAA result. In the final section, we 

conclude and point out limitations of this research. 

  

2. Methodology 

2.1 Bayesian linkage for three components 

The three components we intend to incorporate in order to postulate a joint distribution are 

the above mentioned market equilibrium for robust portfolio, shrinkage estimation for 

estimation error and vine-copula for risk appraisal. It is important that these are connected in 

an intuitive manner. We are enlightened by the Black-Litterman approach for joining the 

market view and investors’ views using the Bayesian theorem. The combination of the three 

components can be interpreted intuitively using the method and it is written as: 

𝑓(𝑟|𝑟𝑠ℎ𝑟𝑖𝑛𝑘, 𝜋, Σ, 𝜃𝑐𝑜𝑝𝑢𝑙𝑎) =
𝑓1(𝑟𝑠ℎ𝑟𝑖𝑛𝑘|𝑟,𝜃𝑐𝑜𝑝𝑢𝑙𝑎;𝜋,Σ)𝑓2(𝑟|𝜋,Σ;𝜃𝑐𝑜𝑝𝑢𝑙𝑎)

∫ 𝑓1(𝑟𝑠ℎ𝑟𝑖𝑛𝑘|𝑟,𝜃𝑐𝑜𝑝𝑢𝑙𝑎𝜋,Σ)𝑑𝑟
            (1) 

where 𝑓(𝑟|𝑟𝑠ℎ𝑟𝑖𝑛𝑘, 𝜃𝑐𝑜𝑝𝑢𝑙𝑎, 𝜋; Σ) is the posterior probability density function for returns with 

combined views of the three components: shrinkage estimation 𝑟𝑠ℎ𝑟𝑖𝑛𝑘, copula risk appraisal 

𝜃𝑐𝑜𝑝𝑢𝑙𝑎, and the market equilibrium return 𝜋. 𝑓2(𝑟|𝜋, Σ; 𝜃𝑐𝑜𝑝𝑢𝑙𝑎) is called the prior probability 
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function and 𝑓1(𝑟𝑠ℎ𝑟𝑖𝑛𝑘|𝑟, 𝜃𝑐𝑜𝑝𝑢𝑙𝑎; 𝜋, Σ)  is the investor’s view expressing the copula risk 

dependence and shrinkage estimated returns. 

In our theory of Bayesian connection for the three components, the prior distribution 

represents the market view of the returns. 𝑓2(𝑟|𝜋, Σ; 𝜃𝑐𝑜𝑝𝑢𝑙𝑎)  is assumed to be Gaussian 

distribution with mean values as predicted by the market equilibrium. Based on the prior, the 

investor expresses her view conditional on the market view return from the prior. The return 

should follow a distribution with mean as the market prior and a copula dependence structure 

as estimated from data. This means that the investor assumes that in the long run the returns 

should return to the equilibrium, but it is possible that the returns would deviate from the 

equilibrium in a manner predicted by the short run copula dependence pattern, and the 

shrinkage estimated returns represent the deviated short run returns. The Bayesian theorem 

approach of combination of different views is theoretically founded, compared to Meucci’s 

(2009 and 2010) more subjective Black-Litterman copula opinion pooling and the entropy 

minimization method. 

 

2.2 Prior 

The prior distribution expresses the market view. Its design is inspired by the Black-

Litterman model for incorporating the market equilibrium. It assumes that the Capital Asset 

Pricing Model (CAPM) is established in the long run and the derivation of the equilibrium 

returns of the assets is a process of inverse optimization of the market portfolio. If the CAPM 

is assumed to be valid, we have: 

𝜋 = 𝛽(𝜇𝑚 − 𝑟𝑓)                                                      (2) 
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where 𝜋 is the vector of excess returns; 𝜇𝑚  is the return of the market portfolio; 𝑟𝑓  is the 

return of the risk free asset; 𝛽 is a vector of asset betas representing the risk sensitivities of 

risky assets, where: 

𝛽 = 𝐶𝑜𝑣(𝜇, 𝜇′𝑤𝑚)/𝜎𝑚
2                                                 (3) 

where 𝑤𝑚  is a vector for market weights of each asset; 𝜇′𝑤𝑚  is the return of the market 

portfolio; and 𝜎𝑚
2  is variance of the market portfolio. If we write Σ = 𝐶𝑜𝑣(𝜇, 𝜇′) to be the 

covariance matrix of the risky assets, then: 

π = 𝛿Σ𝑤𝑚                                                             (4) 

where 𝛿 = (𝜇𝑚 − 𝑟𝑓)/𝜎𝑚
2  is estimated from data. Also estimated from the data is the 

covariance matrix Σ, and the market weight 𝑤𝑚 is known. Therefore the market equilibrium 

𝜋  is generated by the estimates of the risks Σ , the market preference  𝛿  and the market 

weights, which is more robust than the sample estimates of the returns. 

Actually in the inverse optimization problem, the Markowitz portfolio optimization can be 

achieved if and only if Equation (4) is established for any 𝛿 ≥ 0 (Bertsimas et al., 2012). The 

determination of 𝛿 will determine the equilibrium excess returns π. In our model, 𝛿 is the 

market risk sensitivity and it is determined by the CAPM model to represent the market level 

of risk aversion. If the market is in certain form of market efficiency, the rationale for 

incorporating the market equilibrium returns is that the long-term equilibrium as a benchmark 

would forecast the future returns in certain degree and stabilize the asset allocation outcome. 

2.3 Investor’s View 

The investor’s view refers to the density distribution function, 𝑓1(𝑟𝑠ℎ𝑟𝑖𝑛𝑘|𝑟, 𝜃𝑐𝑜𝑝𝑢𝑙𝑎; 𝜋, Σ). It 

contains the other two components of our model, the copula dependence and the shrinkage 
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estimation of the returns. The incorporation of these two follows the Bayesian rule, and 

therefore the probability density function is a vine-copula function with parameters such as 

the copula coefficients, the return vector from the prior, 𝑟 , and the shrinkage estimated 

returns 𝑟𝑠ℎ𝑟𝑖𝑛𝑘  as function inputs. According to the C-vine copula density function, the 

investor’s view density function states: 

𝑓1(𝑟𝑠ℎ𝑟𝑖𝑛𝑘|𝑟, 𝜃𝑐𝑜𝑝𝑢𝑙𝑎; 𝜋, Σ) =

∏ 𝑓(𝑥𝑘)𝑛
𝑘=1 ∏ ∏ 𝑐𝑗,𝑗+𝑖|1,…,𝑗−1{𝐹(𝑥𝑗|𝑥1, … , 𝑥𝑗−1), 𝐹(𝑥𝑗+𝑖|𝑥1, … , 𝑥𝑖+𝑗−1)}

𝑛−𝑗
𝑖=1

𝑛−1
𝑗=1                   (5) 

where 𝑟𝑠ℎ𝑟𝑖𝑛𝑘 is a vector composed by {𝑥1, … , 𝑥𝑛}; 𝑓(𝑥𝑘) is the marginal density function for 

kth elements in 𝑟𝑠ℎ𝑟𝑖𝑛𝑘, and 𝑐𝑗,𝑖|k(∙) is a bivariate copula density function between jth and ith 

elements conditional on the kth.  

For the estimation of 𝑟𝑠ℎ𝑟𝑖𝑛𝑘 , the Bayesian-Stein method is described in Section 2.4. We 

follow Jorion (1986) and we have: 

𝑟𝑠ℎ𝑟𝑖𝑛𝑘 = (1 − �̂�)�̅� + �̂�𝑌0̅                                              (6) 

with  

 𝑌0̅ =
𝟏′Λ−1�̅�

𝟏′Λ−1𝟏
 

�̂� =
𝑁 + 2

(𝑁 + 2) + (�̅� − 𝑌0̅𝟏)′𝑇Λ−1(�̅� − 𝑌0̅𝟏)
 

Λ =
T − 1

T − N − 2
Σ 

(7) 
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where �̅� is the sample mean; Σ is the sample covariance matrix; T is the sample size and N is 

the number of returns. 

In order to calculate the density function of equation (5), we still need to determine the types 

and the parameters of the marginal densities of 𝑓(𝑥𝑘) and the bivariate copulas on each vine 

node for the C-vine structured dependence. ARMA – GARCH/APARCH – C-vine copula 

model combination is used for the task. The estimation contains two steps. In step 1 of the 

ARMA – GARCH/APARCH process, for each return series ARMA lag length parameters (u, 

v) are given choices from 0 up to 3. Two variance dynamics types are offered, GARCH and 

APARCH, with lag length parameters (p, q) also from 0 to 3. The residuals in the mean 

function are given choices from three types of distributions, namely Gaussian, Student-t and 

the skewed Student-t. In the second step of the estimation process, each C-vine copula 

element is given the choice of 31 types of bivariate copulas. For both steps, the Akaike 

information criterion is applied for choosing the best fit models types, and maximized 

likelihood estimators are used for parameter values. Details of the ARMA – 

GARCH/APARCH – C-vine copula model combination can be found in Zhang et al. (2013). 

However, for the purpose of incorporating the shrinkage return and the copula dependence in 

this paper, not all the results from the above two steps are needed. In equation (5), the copula 

parameters, 𝜃𝑐𝑜𝑝𝑢𝑙𝑎 , derive from the estimation, but for the parameters in 𝑓(𝑥𝑘) , the 

forecasted stationary mean values from the ARMA – GARCH/APARCH model are not 

needed. They should be based on the returns from the prior for compliance with the Bayesian 

assumption. 

The above description is the objective reference model to incorporate the copula for 

asymmetric features. Subjective investor views can also be added in the same manner of the 

Black-Litterman model. The variance parameters of the marginal distributions, 𝑓(𝑥𝑘), can be 
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multiplied by a parameter ranging from 0 to 1, representing investor's confidence in this view 

from 0 to 100 percent. Any linear combination of the individual returns can also form views 

like in Black-Litterman model. Since the dependency of the joint distribution is estimated by 

copula, the relationship between the linear combination views can be thus obtained easily. 

2.4 Posterior 

In Bayesian probability theory, it is always difficult to calculate a posterior distribution. For 

ease of applying the Bayesian theory, analytic posterior distributions are given when the prior 

and the likelihood function, i.e. 𝑓1(𝑟𝑠ℎ𝑟𝑖𝑛𝑘|𝑟, 𝜃𝑐𝑜𝑝𝑢𝑙𝑎; 𝜋, Σ) in equation (1), take the forms of 

various usual continuous probability functions. These known analytic solutions of posterior 

and prior distributions are called conjugate distributions. However, in our case, in order to 

introduce the copula structure for better risk appraisal, the likelihood function is complex as 

well as flexible. The distribution function is a combination of marginal returns and copula 

dependence. In addition, there are 31 types of copula for each pair of returns in the vine 

structure and the number of types for each univariate return is 1536 (the product of 2 types of 

variance model, 3 different residual distributions, 44 combinations of ARMA-GARCH lag 

length parameters u, v, p, q). It is extremely difficult to obtain an analytic posterior. 

Cheung (2009) introduced a simulation method for general Bayesian posterior distributions. 

A simulated posterior for equation (1) can thus be obtained in the following steps: 

1. Prior distribution sampling. Sample {𝑟(𝑙)}𝑙=1
𝐿 ~𝑁(𝜋, Σ), where L represents a large sample 

size, by applying the usual inverse probability integral transformation. The simulated 

distribution follows the prior distribution. 

2. New probability vector calculation for the posterior distribution:  
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𝑝(𝑙) =
𝑓1(𝑟𝑠ℎ𝑟𝑖𝑛𝑘|𝑟(𝑙),𝜃𝑐𝑜𝑝𝑢𝑙𝑎;𝜋,Σ)

∑ 𝑓1(𝑟𝑠ℎ𝑟𝑖𝑛𝑘|𝑟(𝑖),𝜃𝑐𝑜𝑝𝑢𝑙𝑎;𝜋,Σ)𝐿
𝑖=1

                                          (8) 

3. The pair {𝑝(𝑙), 𝑟(𝑙)}𝑙=1
𝐿  is the simulated posterior distribution with 𝑟(𝑙)  as a simulated 

value, 𝑝(𝑙) is its probability. 

It is worth noting that compared to a usual simulation applying the inverse probability 

integral transformation, the outcome pair {𝑝(𝑙), 𝑟(𝑙)}
𝑙=1

𝐿
 here is different. For a usual 

simulation {𝑟(𝑙)}
𝑙=1

𝐿
~𝑁(𝜋, Σ), it can be considered as a pair of {𝑞(𝑙), 𝑟(𝑙)}

𝑙=1

𝐿
 where all 𝑞(𝑙) =

1/𝐿, which means each 𝑟(𝑙) is independent and equally important. This is not the case in the 

Bayesian posterior sampling. The proof of the above procedure can be found in Cheung 

(2009). 

2.5 Portfolio optimization and performance assessment 

The optimal asset allocation is solved based on the Bayesian distribution combining the 

above three components by maximizing an appropriate utility function. The chosen utility 

function must be able to reflect the investor’s preference on higher moments other than mean 

and variance of the portfolio distribution and the asymmetric features of the assets’ joint 

distribution. The Disappointment Aversion utility (DA utility hereafter) proposed by Gul 

(1991) is applied by Ang et al. (2005) and Hong et al. (2007) under asymmetric portfolio 

decisions similar to ours.  

The DA utility is defined by the following equation: 

𝐷𝐴(𝑊) =
1

𝐾
(∫ 𝑢(𝑊)𝑑𝐹(𝑊)

𝜇𝑤

−∞
+ 𝐴 ∫ 𝑢(𝑊)𝑑𝐹(𝑊)

∞

𝜇𝑤
)                 (9) 

where 𝑢(∙) is the felicity function in the form of CRRA utility here, i.e.  
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𝑢(𝑊) = {
(1 − 𝛾)−1 ∙ (𝑊)1−𝛾  𝑖𝑓 𝛾 ≠ 1

ln(𝑊)  𝑖𝑓 𝛾 = 1
,                                 (10) 

𝜇𝑤  is the certainty equivalent according to the Constant Relative Risk Aversion (CRRA) 

power utility; 𝐹(∙) is the cumulative distribution function of the wealth; and 𝐾 is a constant 

scalar given by:  

𝐾 = 𝑃(𝑊 < 𝜇𝑤) + 𝐴𝑃(𝑊 > 𝜇𝑤).                                (11) 

The disappointment aversion parameter A in the above equations gives asymmetric 

preference on gains over losses. The risk preference parameter, 𝛾, represents the investor’s 

individual risk appetite, which is different from 𝛿 in Equation (4), the risk aversion of the 

market in the inverse optimization.  We consider the risk preference 𝛾 = 5 , and 

disappointment aversion 𝐴 = 0.45  as appropriate levels representing China’s SWF 

preference. The asset allocation is optimized by: 

max
𝑤

𝐷𝐴(𝑊)                                                       (12) 

𝑊 = 1 + 𝑤′𝑟                                                       (13) 

where the distribution of the asset returns 𝑟 is modelled by the Bayesian method described 

previously. 

For the purpose of assessing the optimal portfolio performance and the effectiveness of the 

Bayesian distributional method proposed in this paper, three dimensions of evaluation 

measures are devised, namely financial performance, risk predictability, and allocation 

efficacy. Financial performance is assessed by in-sample and out-of-sample DA utilities of 

the optimal allocation. Risk predictability is assessed by the difference between in-sample 

and out-of-sample skewness and the difference between in-sample and out-of-sample excess 

kurtosis. The allocation efficacy comprises the allocation diversification and stability, and 
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these are evaluated respectively by the mean Herfindahl index, given by the sum of the 

squared asset weights as suggested in Barros Fernandes et al. (2012), and the average 

turnover given by the sum of changes of each asset between two consecutive years divided by 

the value of the portfolio. 

3 Empirical Analysis 

3.1 Data and comparison procedure 

According to its annual report, financial assets account for the majority of CIC’s investment 

portfolio, with public equities taking 32%, fixed-income securities 19.1%, and cash and 

others 3.8% as of 31 December 2012. Among the fixed-income securities investment, 

sovereign bonds of advanced and emerging economies account for 54.7% and 17.5% 

respectively, and another big chunk is investment grade corporate bonds, which takes 25.1%. 

Equity investment comprises three basic categories: US equities take 49.2%, other advanced 

economies equities 27.8% and emerging market equities 23%.  

We follow these disclosed asset classes, using a total of 15 representative indices. For the 

fixed-income investments, six Bank of America Merrill Lynch Bond indices are selected. 

Four are sovereign bonds for advanced and emerging economies, while the other two are US 

corporate bonds and EMU AAA graded bonds. Six FTSE equities indices are used for the 

public equities investment, with three representing developed regions and three for the 

emerging economics. In addition to these 12 financial assets, there are three exchange-traded 

fund (ETFs) indices of real estate, oil and gold to represent the non-financial investments 

partially disclosed in CIC annual reports. Details of the indices are in Table 1. 
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Table 1 Data Source Description 

Name Type Source Mnemeric 

Code 

Frequency 

FTSE AW NORTH AMERICA Stock 

Indices 

Thomson 

Reuters 

Datastream 

AWNAMR$(RI) Daily 

FTSE AW EUROPE AWEROP$(RI) 

FTSE AW DEV ASIA PAC. AWDVAP$(RI) 

FTSE EMERGING ASIA PAC. AWAEPA$(RI) 

FTSE EMERGING LATIN AMER AWAELA$(RI) 

FTSE AW MIDDLE EAST & 

AFRICA 

AWMEAF$(RI) 

BOFA ML GLB GVT G7 Bond Indices MLGGVG7(RI) 

BOFA ML USD EMRG SOV ASIA MLIGDA$(RI) 

BOFA ML USD EM SOV LTN AM MLIGDL$(RI) 

BOFA ML USD EMRG SOV 

EUR/ME/AFR 

MLIGDE$(RI) 

BOFA ML US CORP AAA MLC3ART(RI) 

BOFA ML EMU CORP LGE CAP 

AAA 

MLELA0$(RI) 

ISHARES US REAL ESTATE Commodity 

ETFs 

U:IYR(RI) 

UNITED STATES OIL FUND U:USO(RI) 

SPDR GOLD SHARES U:GLD(RI) 
Notes: 'FTSE AW' refers to the FTSE all world indices. 'DEV' is short for developed countries. 'ASIA PAC.' is 

the abbreviation for Asian Pacific. 'BOFA ML' refers to Bank of America, Merrill Lynch. ‘Emerging countries’ 

is abbreviated to 'EM' or 'EMRG'. 'GLB', 'GVT', 'SOV', 'CORP', and 'LGE CAP' refer to global, government, 

sovereign bonds, corporate bonds, and large capitalization respectively. 'EUR/ME/AFR' refers to Europe, 

Middle East and Africa.  

Source: Compiled by the author. 

 

The data frequency is daily and the coverage period is from the beginning of 2006 until the 

end of 2012 to reflect the establishment time of CIC in 2007. A three-year rolling window 

approach of allocation optimization and evaluation is applied.  This means that a three-year 

data window is used for the estimation of the next year’s distribution and at the end of the 

next year the three-year window rolls a year forward to exclude the earliest year data and 

include the latest year data for the next estimation. The eight years’ data coverage allows us 

to make such optimizations five times. 
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In addition to the Bayesian method comprising the market equilibrium, estimation errors and 

the copula risk appraisal techniques, there are four other estimation methods for comparison 

to manifest the advantage of our proposed method. These are listed in Table 2. Three of these 

methodologies exclude one of the three components. The purpose of this is that by 

comparison of the methods the effects of the missing component can be reflected. The fourth 

method is the simple sample mean-variance estimation as a benchmark. The five 

methodologies are compared across three dimensions: financial performance, risk 

predictability and allocation efficacy as described in section 3.5. It is worth noting that the 

third method, EsEq, is just the Black-Litterman model with the investor’s views as the 

shrinkage estimated returns from the data. 

Table 2 Five Alternative Models 

EsCoEq Three-component model of Estimation Error, Copula and 

Market Equilibrium 

CoEq Two-component model of Copula and Market Equilibiurm 

EsEq Two-component model of Estimation Error and Market 

Equilibrium 

EsCo Two-component model of Estimation Error and Copula 

Sample Simple Mean-Variance model by historical returns 
Source: Compiled by the author. 

A robustness test of the proposed method is carried out after the initial comparison. This 

confirms the combination of the three components, and we then provide analysis of the 

optimal allocation outcome. 

3.2 Comparison of methods 

Table 3 displays the criteria statistics results according to the method described above. The 

investment universe contains all 15 asset classes across 5 years. The table shows the 

comparison of 10 criteria across the 5 methods. The first two criteria are the DA utilities of 
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the optimal asset allocation according to a particular method. The in-sample DA utility is 

calculated based on the estimation using the data window. The out-of-sample DA utility is 

obtained by holding the optimal allocation from the estimation through the next year and 

using the daily data of that year as an empirical returns distribution. Although the difference 

in DA utility between methods seems small, but it does not mean the difference in allocation 

result is negligible. First, it is because daily returns are used in calculation rather than 

annualized version. Second, they are utility results rather than economic values.  

The same logic for obtaining these in-sample and out-of-sample statistics applies in the 

skewness and excess kurtosis case. Differences between the in-sample and out-of-sample 

skewness and excess kurtosis are provided as criteria for the asymmetric risk prediction. It is 

because the consistency between in-sample and out-of-sample results represents the method's 

forecasting ability. The differences of these five methods are ranked later in increasing order 

to summarize their risk appraisal ability across various scenarios. Due to the nature of 

forecasting, in each single scenario performance of methods may be subject to chances but 

we are looking for the summarized result of many scenarios. 

The remaining two criteria are the turnover and the Herfindahl index, to reflect allocation 

stability and diversification respectively. The turnover statistic needs the allocation 

information of the previous period, and therefore the values are zero in the first year. As to 

the out-of-sample statistics, data from next year are needed as the realized empirical 

distribution. Hence, in the last year there is no out-of-sample statistic. In the following 

analyses, the financial performance of a method is represented by the in-sample and out-of-

sample DA utilities. The skewness and excess kurtosis differences are used as the criteria for 

the risk predictability. With regard to allocation efficacy, the turnover and the Herfindahl 

index reveal stability and diversification. 
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Table 3 Allocation Criteria across 5 Methods 

2008 

 DAinsample DAoutsample skewinsample skewoutsample skewdiff exkurinsample exkuroutsample exkurdiff turnover Herfindahl 

EsCoEq -0.11165 -0.11256 0.132312 0.085298 0.047014 0.169559 3.711341 3.541782 0 0.56849 

CoEq -0.11135 -0.11258 -0.01991 0.265078 0.284988 0.359389 3.89628 3.536891 0 0.62192 

EsEq -0.1115 -0.11269 0.018831 -1.44797 1.466803 0.021254 12.52276 12.50151 0 0.563322 

EsCo -0.1119 -0.11134 -6.28925 0.182246 6.471497 419.573 0.716303 418.8567 0 0.304174 

Sample -0.11175 -0.11197 0.001672 -0.45244 0.454111 0.002001 6.248988 6.246987 0 0.325619 

2009 

 DAinsample DAoutsample skewinsample skewoutsample skewdiff exkurinsample exkuroutsample exkurdiff turnover Herfindahl 

EsCoEq -0.11163 -0.11155 0.011059 -0.27598 0.287036 0.397809 0.234974 0.162835 0.640811 0.337697 

CoEq -0.11167 -0.11143 0.12662 -0.3342 0.460822 0.335493 0.370403 0.03491 0.908177 0.349243 

EsEq -0.11181 -0.11182 -0.00868 -0.23894 0.23026 -0.03189 -0.05582 0.023927 0.367264 0.465653 

EsCo -0.11159 -0.11136 -0.19485 -0.3683 0.173452 12.09569 0.920028 11.17566 1.082556 0.360958 

Sample -0.11183 -0.11142 0.000753 -0.28396 0.284711 -0.00942 0.645569 0.654988 0.458316 0.299011 

2010 

 DAinsample DAoutsample skewinsample skewoutsample skewdiff exkurinsample exkuroutsample exkurdiff turnover Herfindahl 

EsCoEq -0.11157 -0.11146 -0.17458 -0.55172 0.377147 0.221506 1.791427 1.569921 0.48821 0.243843 

CoEq -0.11171 -0.11152 0.09301 -0.51828 0.61129 0.285407 1.739939 1.454531 0.21619 0.299138 

EsEq -0.11451 -0.11377 -0.01043 -0.56461 0.554176 0.046608 2.393497 2.346889 1.659972 0.066667 

EsCo -0.11167 -0.11144 -0.21587 -0.62116 0.405295 4.437041 1.874159 2.562881 0.769485 0.230415 

Sample -0.11188 -0.11153 0.014467 -0.48701 0.50148 0.028068 1.495352 1.467285 0.06884 0.28655 

2011 

 DAinsample DAoutsample skewinsample skewoutsample skewdiff exkurinsample exkuroutsample exkurdiff turnover Herfindahl 

EsCoEq -0.11132 -0.11117 -0.04417 -0.04432 0.00015 0.307915 0.442138 0.134222 0.722214 0.344264 

CoEq -0.11122 -0.11109 -0.0556 -0.05689 0.00129 0.618172 0.710675 0.092503 1.52243 0.573431 

EsEq -0.11143 -0.1111 0.000862 -0.01005 0.010908 0.009243 0.757508 0.748264 1.317486 0.213773 
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EsCo -0.1114 -0.1112 -8.73061 -0.00847 8.722145 845.5981 0.610053 844.9881 0.496482 0.208899 

Sample -0.11141 -0.11111 -5.14E-05 -0.0318 0.031751 -0.00984 0.470388 0.48023 0.795511 0.210576 

2012 

 DAinsample DAoutsample skewinsample skewoutsample skewdiff exkurinsample exkuroutsample exkurdiff turnover Herfindahl 

EsCoEq -0.11122 0 0.014964 0 0 0.080257 0 0 0.825921 0.249259 

CoEq -0.11121 0 -0.04542 0 0 0.084172 0 0 1.095843 0.228651 

EsEq -0.11133 0 -0.0129 0 0 0.029853 0 0 0.3518 0.246443 

EsCo -0.11126 0 -0.16954 0 0 2.040057 0 0 0.48981 0.242937 

Sample -0.11128 0 -0.00746 0 0 0.036474 0 0 0.481838 0.268293 

Source: Compiled by the author. 
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However, it is difficult to determine the merits of each method, since there are many criteria 

and many years. For convenience in comparison, we have devised a ranking method for the 

statistics. The method is inspired by Barros Fernandes et al. (2012) in comparing their 

optimization method with the Black-Litterman. In their paper, the counts of scenarios for 

each method performed the best compared with other methods are reported in terms of 

several criteria. The statistics’ unit is each performance criterion. In terms of a method overall 

performance across all the criteria interested, the comparison method cannot provide a 

synthesized view.  

Our ranking method inherits and improves upon their comparison method. It looks at not only 

which method is the best, but also the other orders in performance rankings. So for example a 

second best method in one scenario would also generate a positive effect in its final 

performance statistic over all scenarios. Since the rankings can be combined across different 

criteria, it also overcomes the above drawback of lacking a synthesized view for a method. 

This additional feature is especially appropriate when in our optimization model we need to 

assess three dimensions – financial performance, risk appraisal ability and allocation efficacy.  

The ranking contains two steps. In the first step, we rank the 5 methods based on the 6 criteria. 

For example, with respect to DA in-sample utility in 2008 the best utility method, EsEq, is 

ranked 1, and the worst method, Sample, has the lowest ranking, 5. The rank index for each 

distribution method is recorded for the six criteria we are interested in and across five years. 

Therefore, for each year from 2008 to 2012 there is a set of DA in-sample utility rank indices. 

In the second step, these rank indices across five years for the same criteria are summed and 

then ranked again from the smallest number summed to the largest. The smaller the number 

of the sum, the better the performance of this particular method in terms of a particular 
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criterion, say the DA in-sample utility. It means that over the five years, this method has been 

ranked the highest overall. The procedure of this ranking method is demonstrated in Figure 1. 

In Table 4, the six criteria are further summarized into three categories. Financial 

performance contains the DA in-sample and out-of-sample utilities. Its ranking is obtained by 

considering the two criteria as one. Similarly, risk predictability treats the skewness 

difference and excess kurtosis difference as one criterion, and allocation efficacy includes 

stability and diversification. The first column records the overall ranking covering the six 

criteria of each method.  

It can be seen from the table that the proposed three-component method does perform best 

overall. It ranks second for financial performance and first for risk predictability. It confirms 

our prediction that the combination of copula for risk appraisal, market equilibrium for 

allocation stability and Bayesian-Stein for estimation error reduction outperforms other 

methods, i.e. those with only two components or the naked naïve MV analysis. The sample 

MV method only ranks second to last.  
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Figure 1 Procedure for Deriving Performance Rankings 

However, the result in Table 4 only contains five years. The merit of the three-component 

method may be just by chance. Also, the incorporation of the market equilibrium does not 
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seem to improve the allocation efficacy. In contrast, the two methods without the market 

equilibrium are ranked first and second in this regard. To find out the reason for this, and to 

test the robustness of the proposed method, we continue with more analyses of the methods. 

In addition, the robustness test result in the following section can also tell us the effects of 

each of the three components proposed. 

Table 4 Performance Ranking in Three Categories 

 All Financial 

Performance 

Risk 

Predictability 

Allocation 

Efficacy 

EsCoEq 1 2 1 4 

CoEq 2 1 2 5 

EsEq 5 5 3 3 

EsCo 3 3 5 1 

Sample 4 4 4 2 
Notes: The numbers indicate the rankings of each method compared with other methods according to a specific 

criterion indicated by the column caption. 

Source: Compiled by the author. 

 

3.3 Method robustness 

In order to test for the robustness of the proposed method, we divide the data into four 

separations, and apply the same procedure as for method comparison. In addition to the 15 

asset classes in section 4.2, there are three further asset allocation portfolios. We group the 12 

financial assets together as the first separation. The second and third separations are six bonds 

as the fixed-income securities group and six stocks plus three commodity ETFs as the high 

risk securities group. In the following analyses we label these as bonds and stocks separations 

respectively. 

Table 5 shows the overall rankings across the four separations. For each method there are 20 

sub-rankings (4 separations times 5 years) summarized for the criteria of stability and 
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diversification, while for financial performance and risk predictability there are 40 sub-

rankings, because each of these contains two specific criteria. The table synthesizes all four 

situations and ranks the three-component method as best overall. The relative lack of 

performance in the allocation efficacy criterion leads us to reinstate its original two criteria 

format. In terms of stability, the proposed three-component method is ranked third. From the 

comparisons between the methods, the effects on stability of the three components, i.e. 

estimation error, copula and equilibrium, can be revealed. By comparing EsCoEq and CoEq, 

it is clear that the omission of estimation error has deteriorated the stability. Similarly, by 

observing the rankings in stability between EsCoEq and EsEq, and between EsCoEq and 

EsCo, it can be seen that the incorporation of copula has weakened the stability, whereas the 

equilibrium has strengthened it. In terms of the criterion of diversification, the first three 

methods with equilibrium incorporated have lower rankings, compared to the last two 

methods without. This is due to the fact that the market value weights of each asset class are 

not very averagely allocated.  

Table 5 Performance Rankings Summarized from Four Sample Separations 

 All Financial 

Performance 

Risk 

Predictability 

Stability Diversification 

EsCoEq 1 2 1 3 4 

CoEq 2 1 2 4 5 

EsEq 5 5 3 2 3 

EsCo 3 3 4 5 1 

Sample 4 4 5 1 2 
Notes: The numbers indicate the rankings of each method compared with other methods according to a specific 

criterion indicated by the column caption. The result is reached by summarizing rankings across the four sample 

separations. 

Source: Compiled by the author. 

From Table 6 to Table 9, the specific rankings of the four separations are listed. The overall 

dominance of the three-component model is shown in Table 10. In the specifics here, we can 
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see that the proposed model does not perform poorly in any of the situations. The result 

shows the robustness of the proposed model. 

We have expectations when including each of the components, i.e. the estimation error, the 

copula or the market equilibrium, into the model. The copula should help with the risk 

prediction. The market equilibrium should be able to improve the allocation efficacy, and the 

estimation error should have a positive overall impact across the criteria of financial 

performance, risk predictability and allocation efficacy. The effects of each component can 

be revealed by comparing the three-component model with each of the two-component 

models. The two-component models each lack the effect of a particular missing component. 

Therefore the changes of rankings in each criterion are considered to be mainly due to the 

missing component. We use upward or downward pointing arrows beside the rankings of the 

three two-component models to indicate their changes compared with the proposed three-

component model.  

Table 10 is a summary of Tables 6 to 9. It groups the changes of rankings by the three two-

component methods. If the ranking of a criterion is lowered, this means that the lack of a 

particular model component deteriorates the criterion performance, and thus proves the 

importance of that component. For the CoEq method, a combination of the copula and the 

market equilibrium, we expect that compared to the three-component model EsCoEq, it 

should manifest the characteristics of the estimation error factor. The incorporation of 

estimation error is supposed to improve the criteria in all three aspects systemically, and this 

is what we see in the result. In all four situations, the number of times a criterion ranking falls 

is higher than or at least equal to the number of times the ranking rises. For example, in the 

case of Bonds, all rankings decrease, which means improvement in all aspects. For Stocks, 

two rankings fall and two rise, which simply indicates that the benefits and disadvantages are 
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balanced. Across all cases, if the estimation error factor is missing, more damage is done than 

benefit received. The effects of the other components, the copula for risk predictability and 

the market equilibrium for allocation efficacy, are more evident. The EsEq method 

demonstrates the copula impact whereas the EsCo shows the market equilibrium. In all four 

situations, all assets, financial assets, stocks and bonds, the inclusion of the copula 

component is proved to increase the risk predictability, and incorporating market equilibrium 

can improve allocation stability, as highlighted by the downward pointing arrows in bold text. 

These effects are unlikely to be by chance, due to their consistent presence in all four 

robustness testing situations. Other causalities, between copula and stability for example, 

might be false, and depend on the situation. Above all, the confirmation of our expectations 

for the three model components renders us confident in the model robustness and in its 

application for China’s SWF strategic asset allocation decisions. 

 

Table 6 Ranking indices for all 15 assets 

 All Financial 

Performance 

Risk 

Predictability 

Stability Diversification 

EsCoEq 1 2 1 1 4 

CoEq 2 1(↑) 2(↓) 5(↓) 5(↓) 

EsEq 5 5(↓) 3(↓) 3(↓) 3(↑) 

EsCo 3 3(↓) 5(↓) 4(↓) 1(↑) 

Sample 4 4 4 2 2 
Notes: The numbers indicate the rankings of each method compared with other methods according to a specific 

criterion indicated by the column caption. The upward and downward pointing arrows represent the rising or 

falling of the method's ranking compared to the proposed three-component method in the first row. 

Source: Compiled by the author. 

Table 7 Ranking indices for 12 financial assets 

 All Financial 

Performance 

Risk 

Predictability 

Stability Diversification 

EsCoEq 1 2 2 1 1 

CoEq 2 1(↑) 1(↑) 4(↓) 4(↓) 
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EsEq 4 5(↓) 3(↓) 2(↓) 5(↓) 

EsCo 3 3(↓) 4(↓) 5(↓) 2(↓) 

Sample 5 4 5 3 3 
Notes: The numbers indicate the rankings of each method compared with other methods according to a specific 

criterion indicated by the column caption. The upward and downward pointing arrows represent the rising or 

falling of the method's ranking compared to the proposed three-component method in the first row. 

Source: Compiled by the author. 

Table 8 Ranking indices for stocks 

 All Financial 

Performance 

Risk 

Predictability 

Stability Diversification 

EsCoEq 3 3 2 4 5 

CoEq 5 4(↓) 3(↓) 3(↑) 4(↑) 

EsEq 4 5(↓) 4(↓) 2(↑) 3(↑) 

EsCo 1 1(↑) 1(↑) 5(↓) 1(↑) 

Sample 2 2 5 1 2 
Notes: The numbers indicate the rankings of each method compared with other methods according to a specific 

criterion indicated by the column caption. The upward and downward pointing arrows represent the rising or 

falling of the method's ranking compared to the proposed three-component method in the first row. 

Source: Compiled by the author. 

Table 9 Ranking indices for bonds 

 All Financial 

Performance 

Risk 

Predictability 

Stability Diversification 

EsCoEq 2 1 1 3 4 

CoEq 4 2(↓) 2(↓) 5(↓) 5(↓) 

EsEq 3 5(↓) 4(↓) 2(↑) 3(↑) 

EsCo 5 3(↓) 5(↓) 4(↓) 2(↑) 

Sample 1 4 3 1 1 
Notes: The numbers indicate the rankings of each method compared with other methods according to a specific 

criterion indicated by the column caption. The upward and downward pointing arrows represent the rising or 

falling of the method's ranking compared to the proposed three-component method in the first row. 

Source: Compiled by the author. 

Table 10 Components’ effects 

 Financial 

Performance 

Risk 

Predictability 

Stability Diversification 

CoEq (Missing Estimation Error) 

All Asset (↑) (↓) (↓) (↓) 

Financial (↑) (↑) (↓) (↓) 

Stocks (↓) (↓) (↑) (↑) 

Bonds (↓) (↓) (↓) (↓) 

EsEq (Missing Copula) 
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All Asset (↓) (↓) (↓) (↑) 

Financial (↓) (↓) (↓) (↓) 

Stocks (↓) (↓) (↑) (↑) 

Bonds (↓) (↓) (↑) (↑) 

EsCo (Missing Market Equilibrium) 

All Asset (↓) (↓) (↓) (↑) 

Financial (↓) (↓) (↓) (↓) 

Stocks (↑) (↑) (↓) (↑) 

Bonds (↓) (↓) (↓) (↑) 
Notes: This table is a summary of the arrow indicators from the previous 4 tables. 

Source: Compiled by the author. 

 

4 Conclusion 

This paper is motivated by the need for strategic asset allocation from ample funded, long-

term institutional investors. China’s SWF is taken as an example to illustrate a proposed 

three-component optimization method emphasizing both in long-term return and investment 

safety.  

The method for forecasting the asset class returns combines three components, i.e. estimation 

error, copula and market equilibrium, using the Bayesian theorem, in order to deal with the 

well documented problems in mean-variance optimization, such as difficulty in estimating the 

proper parameters, lack of capability to handle non-Gaussian distributions, and the often 

extreme allocations. With regard to estimation error, Jorion (1985, 1986 and 1991) represents 

the direction of using Bayesian rule to incorporate the estimation risk. For the non-Gaussian 

returns, Hong et al. (2007) and other papers point out the importance of noticing asymmetries 

in individual assets and their dependence on the asset allocation decisions. In response to the 

unintuitive allocations of the mean-variance method, Black and Litterman (1991 and 1992) 

and subsequent papers propose models to incorporate the market equilibrium asset weights as 
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a benchmark for analysis. We discover that a combination of the three is well suited to CIC’s 

investment requirements on both returns and special attention to extreme risks. 

In order to test for the effectiveness and the robustness of the proposed method, we rank it 

with other comparable methods in the three aspects most important to CIC: financial 

performance, risk management, and allocation efficacy. In various situations, the proposed 

three-component method gives the overall best performance. The effect of each component is 

also revealed through comparison to be as expected. Shrinkage estimation improves overall 

performance; vine-copula enhances risk appraisal; and market equilibrium improves 

allocation efficacy. 

In the future research, improvements can be made in respect both of data and of methodology. 

With regard to the dataset utilized here, currently indices from FTSE and Merrill Lynch 

represent the financial asset classes around the world. However, if it were possible to use a 

customized set of indices reflecting the views of CIC’s analysts, the allocation result would 

be more informative. The diversification decision and the relative importance of each asset 

class can provide more guidance as to the SAA decision. In the methodology aspect, the 

proposed model offering good financial performance, risk appraisal and allocation efficacy 

should be widely applicable in other asset allocation situations. For some insurance and 

pension management funds, as well as some university endowments, their SAA objectives 

resemble the investment-centred SWFs such as CIC. Therefore, the method should be tested 

in a wider range of applications, and with consideration of the performance in assets with 

different risk regimes and different durations. In addition, the robustness test can be enhanced 

further. A bigger dataset, longer horizon, and more data divisions should be attempted to 

confirm the proposition of wider applicability. 
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