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1 Introduction

In this paper we consider the integrability of the defects in affine Toda field theories

(ATFTs) found in [1]. Since (some of) the interest in integrable systems is due to their

ability to model physical phenomena whilst remaining exactly solvable it is important to

be able to incorporate common physical occurences without destroying the integrability of

the system. A defect is some discontinuity in physical media or fields in a mathematical

model, and we will check whether incorporating a discontinuity into an integrable model

can be achieved without destroying its integrability. We follow the classical Lagrangian

picture of defects introduced in [2] and further studied in [1, 3–8]. In this approach for a

defect at x = 0 there is a field vector u defined in the region x ≤ 0 and a field vector v

defined in the region x ≥ 0, with both fields obeying the same bulk theory. There may also

be some additional degrees of freedom appearing only at the defect, which are referred to as

auxiliary fields. The Lagrangian density of the whole system then contains the Lagrangians

of the bulk theories, restricted to the appropriate regions, and a defect term coupling the

two sets of bulk fields and any auxiliary fields at x = 0. This defect term consists of a

“kinetic” part, containing time derivatives of the fields, and a defect potential. Using this

Lagrangian density in the Euler-Lagrange equations will yield the bulk equations of motion

for u restricted to x ≤ 0, the bulk equations of motion for v restricted to x ≥ 0, and some

equations of motion coupling the bulk fields u and v to each other and to the auxiliary

fields (if they are present), evaluated at x = 0.
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For classical 1 + 1 dimensional field theories Liouville integrability is defined as pos-

sessing an infinite number of independent conserved quantities in Poisson involution. Such

a system is in principle solvable [9, 10]. Solitons are a particular set of solutions which are

a feature of integrable systems and appear as stable, localised field configurations. There

are many physical examples of integrable systems and solitons, for just a few of these

see [11, 12]. One method of proving the integrability of a system is using the method of

Lax pairs and r-matrices first introduced in [13].

The Lax pair is a pair of matrices a0(t, x, λ) and a1(t, x, λ) such that for a vector field

Ψ(t, x)

dΨ(t, x)

dt
= −a0(t, x, λ)Ψ(t, x) (1.1)

dΨ(t, x)

dx
= −a1(t, x, λ)Ψ(t, x) (1.2)

where λ is the spectral parameter. These Lax matrices may be used to transport the vector

Ψ as

Ψ(t2, x, λ) = Pe−
∫ t2
t1

dt′a0(t′,x,λ)Ψ(t1, x, λ) (1.3)

Ψ(t, x2, λ) = Pe
−

∫ x2
x1

dx′a1(t,x′,λ)
Ψ(t, x1, λ) (1.4)

where P denotes path ordering. The transport matrices themselves are also solutions

to eqs. (1.1), (1.2) respectively. By either requiring that the overdetermined system of

equations in eqs. (1.1), (1.2) are consistent, or that the transport as given in eqs. (1.3), (1.4)

is path independent, we find the zero curvature condition to be

a1,t − a0,x + [a0, a1] = 0. (1.5)

This must be satisfied by the Lax pair if we are to generate an infinite number of conserved

quantities. The gauge transformation

a0 → ã0 = −GtG
−1 +Ga0G

−1 (1.6)

a1 → ã1 = −GxG
−1 +Ga1G

−1 (1.7)

leaves the zero curvature condition unchanged.

The system in the bulk is some field u (or v) which is governed by an equation of

motion. If a pair of matrices which are dependent on u and the spectral parameter λ

satisfy eq. (1.5) if and only if u satisfies the equations of motion of the system then we have

a Lax pair of the system. This Lax pair may then always be used to generate an infinite

number of conserved quantities involving the field u, and thus being conserved quantities

of the integrable system. To generate these conserved quantities the Lax pair is used to

give the monodromy matrix, which transports Ψ between x → −∞ and x → ∞. The trace

of this matrix is equal when evaluated at different times, and it is possible to expand this

in terms of the spectral parameter λ and equate powers of λ to give an infinite number of

conserved quantities. If the system is integrable it is then possible to construct a related

r-matrix, which will ensure that these conserved quantities Poisson commute.

– 2 –
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The integrable field theories which we will be considering here are the ATFTs. They

began life as a description of a one-dimensional lattice of particles with nearest-neighbour

interactions, which was shown to be integrable with soliton solutions [14]. The potential

of this system contained terms of the form eui−1−ui , where ui is the position of particle

i, and in [15] these potential terms were generalised to depend on the simple roots of

any Lie algebra. The “affine” refers to the fact that the potential is written in terms of

the simple roots and the lowest weight root, as the addition of the lowest weight root

to a Dynkin diagram gives an affine Dynkin diagram. In [16] the Toda lattice is taken

to a two-dimensional field theory for the Ar and Tzitzéica cases. All ATFTs are given

in [17] and their conserved quantities are investigated. These were first shown to have zero

curvature (and so an infinite number of conserved quantities) [17, 18] and later shown to be

integrable [19, 20] using the method of the Lax pair and r-matrix. All ATFTs have solitons

as solutions [21–23]. As well as being integrable solitons (stable by virtue of a cancellation of

nonlinear and dispersive forces) these solitons are also topological (stable due to possessing

some topological charge, in this case the difference between the field as x → ±∞).

An ATFT is described by the Lagrangian density

Lu =
1

2
ui,tui,t −

1

2
ui,xui,x − U U =

m2

β2

r
∑

i=0

nie
β(αi)juj (1.8)

where αi (i = 1, . . . , r) are the simple root vectors of a Lie algebra, ni (i = 1, . . . , r) are a

set of integers characteristic of each algebra, n0 = 1 and α0 = −∑r
i=1 niαi gives the lowest

weight root which corresponds to the extra node on an affine Dynkin diagram. m is the

mass constant, β is the coupling constant and in the classical case we can rescale the field u

and the variables t and x to set m = β = 1. Taking this expression with v instead of u gives

the Lagrangian density Lv and the potential V which will goven the behaviour of the field to

the right of the defect. The vector u = (u1, . . . , ur)
T lies in the space spanned by the simple

root vectors and the fields {ui} are the projections of u onto the basis of this vector space.

Because the simple roots are defined only up to their inner products with other simple

roots the potential based on the set of roots {αi} and the potential based on the set of roots

{Qαi}, where Q is some orthogonal transformation, describe the same ATFT. Because the

kinetic part of the bulk Lagrangian is invariant under orthogonal transformations of the

fields the ATFTs based on the roots {αi} can be obtained by taking u → Qu in the ATFT

based on the roots {Qαi}. In a similar manner we can take the ATFT based on {cαi},
where c is a constant, and, with u → c−1u and a rescaling of the coordinates t and x such

that ∂t,x → c∂t,x, return to the ATFT based on the roots {αi}. Therefore our precise choice
of root vectors is unimportant, and they can be set to be as simple as possible.

This potential has multiple vacua occurring at 2πi multiples of weights of the Lie

algebra whose simple roots the potential is based on, so if the field u is complex then we

can have soliton solutions to the ATFT equations of motion which interpolate between

different vacua as x → ±∞. Such soliton solutions have been found for all ATFTs [21–24].

– 3 –
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For an ATFT the Lax pair is

a0 =
1

2

(

ux.H +
1√
2

r
∑

i=0

√
ni|αi|e

1
2
αi.u

(

λEαi
− 1

λ
E−αi

)

)

(1.9)

a1 =
1

2

(

ut.H +
1√
2

r
∑

i=0

√
ni|αi|e

1
2
αi.u

(

λEαi
+

1

λ
E−αi

)

)

(1.10)

[17] where H are the Cartan generators and Eαi
is the generator associated with the root

αi. While we are using the affine simple roots we are still using the non-affine, finite

dimensional generators which obey the commutation relations

[Hj , Eα] = (α)jEα (1.11)

Eα = E†
−α (1.12)

[Eα, E−α] =
2

|α|2 (α)jHj (1.13)

[Eα, Eβ ] = nαβEα+β if α+ β ∈ roots (1.14)

[Eα, Eβ ] = 0 if α+ β /∈ roots, 0. (1.15)

Here subscripts are used to identify the different generator matrices and roots. A subscript

outside a bracket denotes a component of the bracketed vector. From eq. (1.11) we see that

the Cartan generator Hi is associated with the projections of the roots onto the basis vector

ei, hence each Cartan generator is associated with one of the orthonormal basis vectors of

the root space and we can take u.H = uiHi. Using this Lax pair in eq. (1.5), along with

these commutation relations, we can check that it is satisfied provided that the equations

of motion of the ATFT (given by the Lagrangian density in eq. (1.8)) are satisfied, and so

our bulk theories have zero curvature.

Some of the earliest studies of defects were in quantum integrable field theories, for

example in a free fermion theory [25, 26] and in sine-Gordon theory [27], and here it was

shown that integrable defects must be purely reflecting or transmitting. From the fact

that quantum defects must be purely transmitting (a purely reflecting defect is simply

a boundary, as investigated in [28]) came the idea that momentum conservation may be

important in the classical case.

In [2] it was found that for a defect in sine-Gordon theory certain defect equations

ensured that momentum was conserved. The conservation of energy and some higher spin

charges was also checked for these momentum conserving defects. These defects which

couple the bulk fields u and v, but have no auxiliary fields, are referred to as type I defects,

and were generalised to give momentum conserving defects in Ar ATFTs. However it was

also proved that momentum conserving defects of the particular form found in [2, 3] could

never appear in an ATFT based on a Lie algebra other than Ar. In [6] the momentum

conserving defects first found in [2] were modified by the addition of a degree of freedom

at the defect, allowing a momentum conserving defect in the Tzitzéica model (previously

excluded due to not being based on the roots of Ar) to be found. These defects with

auxiliary fields are referred to as type II defects. This idea of extra fields at the defect, and
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the fact that one ATFT can be folded to a different ATFT using certain symmetries of the

Dynkin diagram [29, 30], was used in [7] to fold existing Ar ATFT defects to new Cr ATFT

defects. These type II defects were generalised in [1] and momentum conserving defects

were found in the Br and Dr ATFTs. Some investigation into defects in non-relativistic

theories such as the nonlinear Schrödinger equation and the Kortweg-de Vries equation

have also been made [31, 32].

That it is possible for a system which explicitly breaks time translation invariance to

have conserved momentum is very interesting, and it is hoped that the restrictions arising

from momentum conservation are sufficient to ensure the integrability of the system. There

are already some strong indications that this is the case. All of the above defects have

soliton solutions in which a soliton passes from one bulk theory to the other, experiencing

a delay and sometimes a change in topological charge. An interesting consequence of

requiring momentum conservation is that the defect equations can always be modified in

such a way that they give a Bäcklund transformation (some first order differential equations

coupling the solutions to two sets of uncoupled higher order differential equations [33]) for

the bulk theories [1–3, 6].

The type I defects have already been shown to possess an infinite number of conserved

quantities, and this along with the soliton solutions indicates that they are likely inte-

grable [3–5]. However, the integrability of these particular defects has not been proven as

they are given in a Lagrangian rather than a Hamiltonian form, meaning that the Poisson

brackets and r-matrix required to prove that the charges are in involution are difficult to

write down. A type II defect matrix for the Tzitzéica model is found in [34] and the sys-

tem is shown to have an infinite number of conserved quantities. A Hamiltonian set-up in

which the Lax and r-matrix equations are immediately assumed to be satisfied by some

matrix associated with the defect is investigated in [35–38] for defects in the nonlinear

Schrödinger equation, sine-Gordon and ATFTs. While these defects are integrable they

do not necessarily describe the same systems as the momentum conserving defects found

in the Lagrangian set-up. Some attempt to reconcile this Hamiltonian approach and the

Lagrangian approach to defects is made in [39, 40]. The type I and type II Lagrangians

are rewritten as Hamiltonians with second class constraints in [6].

In this paper we will not attempt to prove the integrability of a system with a defect,

only that it posesses an infinite number of conserved quantities. We will achieve this using

the method of zero curvature and Lax pairs developed for the Kortweg-de Vries equation

in [13] and modified to apply to a system with a type I defect in [3]. We first give a

recap of momentum conserving defects, giving the generalised type II defects found in [1]

in section 2.1, with these momentum conserving defects in ATFTs given in section 2.2.

Section 2.3 gives the Tzitzéica defect found in [6] and section 2.4 gives some new, more

complete results for a momentum conserving defect in the D4 ATFT. In section 3.1 we

show the derivation of the zero curvature condition for a defect which appeared in [3]. In

section 3.2 we find that for a defect in an ATFT momentum conservation can be shown

to be a necessary condition for zero curvature of the system, and are able to find some

possible restrictions on the exact form an integrable defect may take. However, we are

unable to prove that the zero curvature condition for these defects can be satisfied. Finally
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in sections 3.3 and 3.4 we consider the zero curvature of two specific defects, those in the

Tzitzéica model and the D4 ATFT. The defect matrix for the Tzitzéica model has been

found previously in [34]. Both are shown to satisfy the zero curvature condition, and so

have an infinite number of conserved quantities.

2 Momentum conserving defects

We will now present the results on generalised type II momentum conserving defects which

appear in [1], with the defect Lagrangian and potential for momentum conserving defects

in any ATFT, the Tzitzéica model and the D4 ATFTs.

2.1 Generalised momentum conserving type II defects

Components of the bulk fields u and v are denoted as u1, u2, . . . , v1, v2, . . . and because we

assume that u and v describe two copies of the same bulk theory the number of components

of u and v are equal. The auxiliary fields at the defect are contained in the field vector λ,

with components denoted by λ1, λ2, . . . . There may be any number of components of the

auxiliary field vector. Note that this field vector λ is not the spectral parameter; we specify

whether λ is the auxiliary field vector or the spectral parameter whenever it appears in

this paper. The Lagrangian description of the theory in the presence of a defect at x = 0

is given in terms of a density

L = Θ(−x)Lu +Θ(x)Lv + δ(x)LD, (2.1)

where the bulk Lagrangian densities

Lu =
1

2
(ui,tui,t − ui,xui,x)− U(u) (2.2)

Lv =
1

2
(vi,tvi,t − vi,xvi,x)− V (v) (2.3)

govern the behaviour of the bulk fields u and v. Subscripts of t and x denote partial

differentiation with respect to that variable and are separated from subscripts of indices by

a comma. Einstein sum notation is used throughout. The two bulk theories are coupled

at x = 0 via the defect Lagrangian LD which depends on u, v and λ. Note that this form

of defect is not restricted to the ATFTs. This Lagrangian set-up was pioneered in [2].

Motivated by the form of the type I defects appearing in [2–5] and the type II defects

appearing in [6, 7] the generalised type II defect Lagrangian density was taken to be

LD =
1

2
uiAijuj,t+

1

2
viBijvj,t+uiCijvj,t+

1

2
λiWijλj,t+λiXijuj,t+λiYijvj,t−F (u, v, λ) (2.4)

where A, B, C, W , X and Y are arbitrary, constant, real coupling matrices.

Because the auxiliary field vector λ does not appear in the bulk Lagrangians the

behaviour of the system is not altered under the redefinition of the auxiliary fields λi →
αijuj + βijvj + γijλj . α and β are any matrices and γ is an invertible matrix to ensure the

degrees of freedom associated to the auxiliary fields are not removed. The bulk fields can
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also be transformed as ui → Qijuj , vi → Q′
ijvj without changing the general form of the

bulk and defect Lagrangians provided Q and Q′ are both orthogonal.

Energy and momentum were the only conserved charges investigated in [1], with mo-

mentum conservation proving to be particularly restrictive. Provided {ui}, {vi} → constant

as x → ±∞ and U and V have no local minima the energy of the system in the bulk dif-

ferentiated with respect to t is

dE

dt
= (ui,xui,t − vi,xvi,t)|x=0 . (2.5)

Using the defect conditions arising from eq. (2.4) to remove the x derivatives we find that

eq. (2.5) may be rewritten as
dE

dt
= −dF

dt
. (2.6)

Therefore E + F is the conserved energy-like quantity, where E is the bulk energy and

F is the defect potential. Since the defect breaks manifest translation invariance and so

the system is no longer obviously momentum conserving it was expected that requiring

conservation of momentum would be far more restrictive than requiring conservation of

energy. The momentum of the system in the bulk differentiated with respect to t is

dP

dt
=

(

1

2
(ui,tui,t + ui,xui,x − vi,tvi,t − vi,xvi,x)− U + V

)∣

∣

∣

∣

x=0

. (2.7)

For the system to be momentum conserving we must be able to use the defect equations

arising from eq. (2.4) to rewrite the right hand side of this equation as a total time derivate.

This places certain constraints on both the coupling matrices and the defect potential.

By using this freedom to make field redefinitions and by applying the constraints arising

when the system is taken to conserve momentum this defect Lagrangian was rewritten as

LD =
1

2
u
(1)
i Aiju

(1)
j,t +

1

2
v
(1)
i Aijv

(1)
j,t + u

(1)
i (1 −A)ij v

(1)
j,t

+ u
(2)
i v

(2)
i,t + 2µ

(2)
i

(

u
(2)
i,t − v

(2)
i,t

)

+
1

2
ξiWijξj,t − F. (2.8)

The components of λ which (after field redefinitions) coupled to no bulk fields, only other

auxiliary fields, are contained in the vector ξ, with the coupling matrix W given by

W =

















0 1 . . . 0 0

−1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1

0 0 . . . −1 0

















. (2.9)

The remaining auxiliary fields, which do couple to the bulk fields, are contained in the

vector µ(2). The form of the couplings of the bulk fields and these auxiliary fields are

partly determined by requiring momentum conservation and partly by our choice of field

redefinitions, intended to simplify the various couplings as far as possible. The vector ξ

contains m components, the vector µ(2) contains n components and the bulk vectors u and

– 7 –
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v have r components. Of the components of u and v, n couple to some auxiliary field (with

every component of µ(2) coupling to a different pair of bulk fields) and n− r do not. The

bulk fields which do not couple to any auxiliary fields are contained in the vectors u(1) and

v(1), so labelled because they couple like the fields in a type I defect. The coupling matrix

A may be any antisymmetric matrix. The bulk fields which do couple to auxiliary fields

are contained in the vectors u(2) and v(2), with the labelling indicating coupling similar to

that in a type II defect. The bulk fields may be split between the (1) and (2) vectors, and

the auxiliary fields between the µ(2) and ξ vectors, in any way (provided µ(2), u(2) and v(2)

all have the same number of components). For the full calculation taking the general defect

Lagrangian in eq. (2.4) to the momentum conserving defect Lagrangian in eq. (2.8) see [1].

It was shown in [1] that every momentum conserving defect must be related to this

form of defect Lagrangian by a field redefinition of the auxiliary fields or an orthogonal

transformation of the bulk fields. The particular choices of field redefinitions made to reach

this form of the Lagrangian were intended to simplify the couplings as far as possible.

That the defect Lagrangian is in the form eq. (2.8) is a necessary but not yet sufficient

condition for the defect to be momentum conserving. In addition to the “kinetic” part of

the defect Lagrangian being in the form given in eq. (2.8) the defect potential must be

given by F = D + D̄, where the dependencies of D and D̄ are

D = D
(

p(1) +Aq(1), p(2) − µ(2), q(2), ξ
)

(2.10)

D̄ = D̄
(

q(1), q(2), µ(2), ξ
)

(2.11)

and they satisfy the momentum conservation condition

2(U − V ) = D
p
(1)
i

D̄
q
(1)
i

+D
q
(2)
i

D̄
µ
(2)
i

−D
µ
(2)
i

D̄
q
(2)
i

− 4DξiWijD̄ξj . (2.12)

The new field vectors p and q are given by pi = 1
2 (ui + vi), qi = 1

2 (ui − vi), with the

components split between p(1), q(1) and p(2), q(2) in exactly the same way as the u and v

field vectors split into u(1), v(1) and u(2), v(2). The total conserved energy and momentum of

the system are E+D+D̄ and P+D−D̄, where E and P are the bulk energy and momentum.

A redefinition µ
(2)
i → µ

(2)
i +f

(

q(2)
)

q
(2)
i

does not alter the defect Lagrangian in eq. (2.8)

as it only introduces a total t derivative. Redefinitions of the bulk fields which are the

orthogonal transformations u(1) → Qu(1) and v(1) → QTu(1), or the orthogonal transfor-

mations u(2) → Q′u(2), v(2) → Q′v(2) and µ(2) → Q′Tµ(2), or the shifts u → u+c, v → v+d

(where Q and Q′ are any orthogonal matrices and c and d are any constants) alter neither

the bulk nor the defect Lagrangian. This means that once D and D̄ satisfying the momen-

tum conservation condition have been found these field redefinitions can be used to give a

family of different defect potentials satisfying the same momentum conservation condition.

The equations of motion at the defect, with the defect Lagrangian given in eq. (2.8)

with F = D + D̄ and written in terms of pi =
1
2(ui + vi), qi =

1
2(ui − vi), are

p
(1)
i,x = p

(1)
i,t + 2Aijq

(1)
j,t − 1

2
D

q
(1)
i

− 1

2
D̄

q
(1)
i

(2.13)

q
(1)
i,x = −q

(1)
i,t − 1

2
D

p
(1)
i

(2.14)
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p
(2)
i,x = p

(2)
i,t − 2µ

(2)
i,t − 1

2
D

q
(2)
i

− 1

2
D̄

q
(2)
i

(2.15)

q
(2)
i,x = −q

(2)
i,t − 1

2
D

p
(2)
i

(2.16)

0 = q
(2)
i,t − 1

4
D

µ
(2)
i

− 1

4
D̄

µ
(2)
i

(2.17)

0 = ξi,t +WijDξj +WijD̄ξj . (2.18)

Requiring momentum conservation is evidently very restrictive on the form the cou-

plings at the defect and the defect potential may take. In the type I case requiring the

defect to have zero curvature showed that the restrictions on the defect which ensured

energy and momentum conservation were necessary and sufficient to ensure the existence

of an infinite number of conserved charges [3, 5]. We aim to show the same for the defects

described in this section.

2.2 Momentum conserving defects in ATFTs

Recall that for the defect in eq. (2.8) we were required to split the bulk field components

between vectors u(1) and u(2). For an ATFT u lives in the root space of the underlying Lie

algebra, so we can divide this vector space into the 1-space, with the projection of u on to

this space being u(1), and the 2-space, with the projection of u onto this space being u(2).

The 1-space and 2-space are orthogonal and sum to the root space. We then have (αi)
(1)

as the projection of the simple root αi onto the 1-space and (αi)
(2) as its projection onto

the 2-space.

We can take the momentum conservation condition in eq. (2.12) and use the ATFT

potential in eq. (1.8) (dependent on u for U and on v for V ), along with the dependencies

of D and D̄ given in eqs. (2.10), (2.11) to see that they must take the form

D = σ
n
∑

i=0

xi

(

q(2), ξ
)

e
(αi)

(1)
j

(

p
(1)
j +Ajkq

(1)
k

)

+(αi)
(2)
j

(

p
(2)
j −µ

(2)
j

)

(2.19)

D̄ =
1

σ

n
∑

i=0

yi

(

q(1), q(2), ξ
)

e−(αi)
(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j . (2.20)

This arises from considering the exponentials of the field p which appear in U −V and the

dependencies of D and D̄. The defect parameter σ is a free constant and appears because

all terms in eq. (2.12) are of the form DD̄. xi and yi are functions yet to be determined. A

major difficulty in finding D and D̄ which satisfied the momentum conservation condition

was that there is no systematic way of determining how the root space should split into

the 1-space and the 2-space. Trial and error was used to give all the results in [1].

Using eqs. (2.19), (2.20) in the momentum conservation condition and equating powers

of p we have

2ni

(

e(αi)kqk − e−(αi)kqk
)

=

r
∑

j=0

(

xi(αi)kyj,qk + xiyj(αi)
(1)
k Akl(αj)

(1)
l + x

i,q
(2)
k

(αj)
(2)
k yj

− 4xi,ξkWklyj,ξl

)

e(αi−αj)
(1)
k

Aklq
(1)
l

−(αi−αj)
(2)
k

µk (2.21)
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for i = 0, . . . , r as the momentum conservation conditions. We will give the solutions to

these conditions for the Tzitzéica and D4 ATFT cases.

2.3 Momentum conserving defects in the Tzitzéica model

This momentum conserving type II Tzitzéica defect first appeared in [6].

The Tzitzéica potential is given by eq. (1.8) with simple (and lowest weight) roots

α0 = −2 α1 = 1 (2.22)

and marks

n0 = 1 n1 = 2. (2.23)

The bulk fields are evidently scalar, and from [6] we know that there will be a scalar

auxiliary field. The defect Lagrangian is

LD = uvt + 2µ (ut − vt)−D − D̄ (2.24)

and for this to be momentum conserving D(p − µ, q) and D̄(q, µ) (with p = 1
2(u + v),

q = 1
2(u− v)) must satisfy the momentum conservation condition

2
(

e−2(p+q) − e−2(p−q) + 2ep+q − 2ep−q
)

= DqD̄µ −DµD̄q. (2.25)

Because only D is dependent on p and the right hand side must be overall independent of

µ we can write

D = σ
(

x0(q)e
−2p+2µ + x1(q)e

p−µ
)

(2.26)

D̄ =
1

σ

(

y0(q)e
−2µ + y1(q)e

µ
)

. (2.27)

At the end of section 2.1 we noted that the redefinition µ → µ+ f(q) of the auxiliary field,

where f is any function, does not change the kinetic part of the defect Lagrangian and

so can be used to give a family of D and D̄ satisfying the same momentum conservation

condition. In order to simplify the differential equations to be solved we will use the field

redefinition µ → µ − 1
2 lnx1 to set x1 = 1. The other coefficients are currently arbitrary,

so can be redefined to include this.

Using these choices for the Tzitzéica simple roots, marks and choice of 1-space and

2-space (i.e. no 1-space and a one dimensional 2-space) in the set of differential equations

which are the momentum conservation conditions for a general ATFT in eq. (2.21) we can

write down a set of differential equations to be solved for x0,1 and y0,1. This set of four

differential equations which form the momentum conservation condition are then solved by

x0 =
1

2c
(eq + e−q)2 y0 = c

x1 = 1 y1 = 4(eq + e−q) (2.28)
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where c is a constant. We now have a specific solution,

D = σ

(

1

2c
(eq + e−q)2e−2p+2µ + ep−µ

)

(2.29)

D̄ =
1

σ

(

ce−2µ + 4(eq + e−q)eµ
)

. (2.30)

We can choose to take µ → µ+ 1
3 ln c and redefine the defect parameter as σ → c

1
3σ. This

removes all instances of the constant c. To introduce as much freedom as is possible we

then make the field redefinition µ → µ+ f(q), giving

D = σ

(

1

2
(eq + e−q)2e2fe−2p+2µ + e−fep−µ

)

(2.31)

D̄ =
1

σ

(

e−2fe−2µ + 4(eq + e−q)efeµ
)

(2.32)

as the solutions to eq. (2.25).

There is also some freedom to redefine the external fields. We can shift u or v by

an integer multiple of 2πi without affecting the bulk Lagrangians or the kinetic part of

the defect Lagrangian. Taking u → u + 2πin, v → v + 2πim (so p → p + πi(n + m),

q → q + πi(n−m)) gives the defect potential

D = σ

(

1

2
e2f (e2q + e−2q + 2)e−2p+2µ + (−1)n+me−fep−µ

)

(2.33)

D̄ =
1

σ

(

e−2fe−2µ + 4(−1)n−mef (eq + e−q)eµ
)

. (2.34)

But we can also immediately take the redefinition µ → µ + πi(n + m) to return to the

D and D̄ given in eqs. (2.31), (2.32), and since the freedom to shift the external fields

corresponds to a shift in the auxiliary fields the entire family of momentum conserving

defects satisfying the momentum conservation condition in eq. (2.25) have a potential

given by eqs. (2.31), (2.32).

The interactions of solitons with this defect were investigated in [6], and a similar

situation to the Ar ATFT case was found, with the defect able to delay or absorb solitons

and change their topological charge.

2.4 Momentum conserving defects in the D4 ATFT

Here we present a more complete description of a defect in a D4 ATFT, expanding on work

carried out in [1].

The D4 ATFT potential is given by eq. (1.8) with simple (and lowest weight) roots

α0 =











−1

−1

0

0











α1 =











1

−1

0

0











α2 =











0

1

−1

0











α3 =











0

0

1

−1











α4 =











0

0

1

1











(2.35)

and marks

n0 = 1 n1 = 1 n2 = 2 n3 = 1 n4 = 1. (2.36)
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The fundamental weights wj satisfy 〈αi, wj〉 = δij , with wi being the fundamental weight

associated to the simple root αi and the fundamental weights of D4 are

w1 =











1

0

0

0











w2 =











1

1

0

0











w3 =
1

2











1

1

1

−1











w4 =
1

2











1

1

1

1











. (2.37)

In [1] it was found that taking the 1-space to have the basis (e1, e4) and the 2-space

to have the basis (e2, e3), giving two auxiliary fields µ2 and µ3, and taking A = 0 and no ξ

fields gave a defect which, with the correct choice of potential, was momentum conserving.

With these choices of 1-space and 2-space the defect Lagrangian in eq. (2.8) becomes

LD = u1v1,t + u2v2,t + u3v3,t + u4v4,t + 2µ2 (u2,t − v2,t) + 2µ3 (u3,t − v3,t)−D − D̄ (2.38)

where D(p1, p2 − µ2, p3 − µ3, p4, q2, q3) and D̄(q1, q2, q3, q4, µ2, µ3) (with pi = 1
2(ui + vi),

qi =
1
2(ui − vi)) must satisfy

2
(

e−p1−q1−p2−q2−e−p1+q1−p2+q2+ep1+q1−p2−q2−ep1−q1−p2+q2+ep2+q2−p3−q3−ep2−q2−p3+q3

+ep3+q3−p4−q4−ep3−q3−p4+q4+ep3+q3+p4+q4−ep3−q3+p4−q4
)

=Dp1D̄q1+Dq2D̄µ2−Dµ2D̄q2+Dq3D̄µ3−Dµ3D̄q3+Dp4D̄q4 . (2.39)

From eqs. (2.19), (2.20) we expect D and D̄ to be

D = σ
(

x0(q2, q3)e
−p1−p2+µ2 + x1(q2, q3)e

p1−p2+µ2 + x2(q2, q3)e
p2−p3−µ2+µ3

+ x3(q2, q3)e
p3−p4−µ3 + x4(q2, q3)e

p3+p4−µ3
)

(2.40)

D̄ =
1

σ

(

y0(q1, q2, q3, q4)e
−µ2 + y1(q1, q2, q3, q4)e

−µ2 + y2(q1, q2, q3, q4)e
µ2−µ3

+ y3(q1, q2, q3, q4)e
µ3 + y4(q1, q2, q3, q4)e

µ3
)

(2.41)

where xi and yi are unknown functions. As some terms in D̄ have the same exponentials

of µ we can redefine some of these currently arbitrary functions as y1 → y1 − y0 and

y3 → y3 − y4 to set y0 = 0 and y4 = 0. We can also use the field redefinitions µ2 →
µ2 −

(∫ q2 lnx0(q
′
2, q3)dq

′
2

)

q2
and µ3 → µ3 −

(∫ q2 lnx0(q
′
2, q3)dq

′
2

)

q3
to set x0 = 1. The rest

of the xi and yi can simply be redefined to include this extra function.

Using these choices in eq. (2.21) and equating powers of µ2,3 we find a set of differential

equations which xi and yi must satisfy as a momentum conservation condition. While a

single possible defect potential was given for theD4 ATFT in [1], these differential equations

were not solved exhaustively there, and the following working is new.

There are two distinct solutions,

x0 = 1

x1 = 1 y1 =
(

eq1 + e−q1
) (

eq2 + e−q2
)

x2 = 2g(q3)
(

eq2 + e−q2
)

y2 = g(q3)
−1

(

eq3 + e−q3
)

x3 =
1

c
g(q3)

−1
(

eq3 + e−q3
)

y3 = cg(q3)
(

eq4 + e−q4
)

x4 =
1

c
g(q3)

−1
(

eq3 + e−q3
)

(2.42)
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and

x0 = 1

x1 = −1 y1 =
(

eq1 − e−q1
) (

eq2 − e−q2
)

x2 = −2g(q3)
(

eq2 − e−q2
)

y2 = g(q3)
−1

(

eq3 − e−q3
)

x3 = −1

c
g(q3)

−1
(

eq3 − e−q3
)

y3 = cg(q3)
(

eq4 − e−q4
)

x4 =
1

c
g(q3)

−1
(

eq3 − e−q3
)

(2.43)

where the constant c and function g(q3) are free (and may be different in each case). When

used to write downD and D̄ from eqs. (2.40), (2.41) these will give two separate possibilities

for the momentum conserving defect potential.

We can use our freedom to carry out field redefinitions to remove the constant c and

function g in both cases. For the first solution taking µ2 → µ2 − 1
3 ln c, µ3 → µ3 − 2

3 ln c

and σ → c
1
3σ removes (or absorbs into the definition of µ(2) and σ) the constant c and

taking µ2 → µ2, µ3 → µ3 − ln g(q3) removes the function g(q3). Reintroducing all possible

freedom available from auxiliary field redefinitions by taking µ2 → µ2 + f(q2, q3)q2 , µ3 →
µ3+ f(q2, q3)q3 (where f may be any function) we now have, from the first set of solutions,

the defect potential

D+ = σ

(

efq2
(

ep1 + e−p1
)

e−p2+µ2 + 2e−fq2+fq3
(

eq2 + e−q2
)

ep2−p3−µ2+µ3

+ e−fq3
(

eq3 + e−q3
) (

ep4 + e−p4
)

ep3−µ3

)

(2.44)

D̄+ =
1

σ

(

e−fq2
(

eq1 + e−q1
) (

eq2 + e−q2
)

e−µ2 + efq2−fq3
(

eq3 + e−q3
)

eµ2−µ3

+ efq3
(

eq4 + e−q4
)

eµ3

)

. (2.45)

The + superscripts will differentiate this from the defect potential arising from the second

set of solutions, and refer to the fact that terms of the form (eq + e−q) appear here.

For the second solution taking µ2 → µ2 − 1
3 ln c, µ3 → µ3 − 2

3 ln c, σ → c
1
3σ and

µ3 → µ3 − ln g(q3) again removes the constant c and function g(q3). Reintroducing all

possible freedom available from auxiliary field redefinitions by taking µ2 → µ2+f(q2, q3)q2 ,

µ3 → µ3 + f(q2, q3)q3 (where f may be any function) we now have, from the second set of

solutions, the defect potential

D− = σ

(

efq2
(

ep1 − e−p1
)

e−p2+µ2 − 2e−fq2+fq3
(

eq2 − e−q2
)

ep2−p3−µ2+µ3

+ e−fq3
(

eq3 − e−q3
) (

ep4 − e−p4
)

ep3−µ3

)

(2.46)

D̄− =
1

σ

(

− e−fq2
(

eq1 − e−q1
) (

eq2 − e−q2
)

e−µ2 + efq2−fq3
(

eq3 − e−q3
)

eµ2−µ3

+ efq3
(

eq4 − e−q4
)

eµ3

)

. (2.47)

The − superscripts here refer to the fact that terms of the form (eq − e−q) appear.
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There is still the freedom to carry out field redefinitions on the bulk fields. The bulk

fields may be shifted by any 2πi multiple of a weight of D4 without affecting the bulk

Lagrangians. If u and v have the same shift then p is also shifted by a 2πi multiple of a

weight, and as exponentials of p in D all appear in the form eαi.p they remain unchanged.

q remains completely unchanged. So as in the Tzitzéica case it is the relative shift between

u and v which is important. We will consider shifts of v proportional to the fundamental

weights given in eqs. (2.37).

Acting on the defect potential given by D+, D̄+ in eqs. (2.44), eq:D4Dbargeneral1 with

v → v + 2πiw1, where w1 is one of the fundamental weights given in eq. (2.37), and also

performing the shift µ3 → µ3+πi on the auxiliary fields and the redefinition σ → −σ gives

D+, D̄+. The freedom from this external field redefinition is equivalent to the freedom we

already have to redefine the auxiliary fields and the defect parameter, and does not give a

defect potential that is materially different. Carrying out an identical set of redefinitions

on D−, D̄− returns to D−, D̄− also.

Acting on D+, D̄+ with v → v + 2πiw2 immediately returns D+, D̄+, and likewise

acting on D−, D̄− with v → v + 2πiw2 immediately returns D−, D̄−.

Acting on D+, D̄+ with v → v + 2πiw3 and µ3 → µ3 − πi
2 gives D−, D̄−, so the two

defect potentials, while not linked by any redefinitions of the auxiliary fields, are linked by

a shift of the bulk fields. Using the same shift and set of redefinitions on D−, D̄− returns

D+, D̄+.

Finally acting onD+, D̄+ with v → v+2πiw4, the shifts µ2 → µ2+πi, µ3 → µ3− πi
2 and

the redefinition σ → −σ gives D−, D̄−. Unsurprisingly the same set of field redefinitions

take D−, D̄− to D+, D̄+.

A shift of a 2πi multiple of fundamental weights w1,2 has no effect on either defect

potential beyond utilising the freedom to make auxiliary field redefinitions which is already

encapsulated by the presence of the arbitrary function f in the potentials. A shift which

is a 2πi multiple of fundamental weights w3,4 links the two distinct defect potentials.

3 Zero curvature for systems with defects

We have now given all the necessary background on the generalised type II defects from [1].

In this section we first give the defect zero curvature condition, then apply it to the defects

given in sections 2.1–2.4.

3.1 General defect zero curvature condition

Consider a defect at x = 0. There will be an integrable theory in the region x ≤ 0 with the

Lax pair a<0 (t, x), a
<
1 (t, x) dependent on the field u and satisfying the zero curvature con-

dition in eq. (1.5), and an integrable theory in the region x ≥ 0 with the Lax pair a>0 (t, x),

a>1 (t, x) dependent on the field v and also satisfying eq. (1.5). We consider the transport of

the vector Ψ in the region of the defect, where some time dependent defect matrix K acts
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to move from the left of the defect to the right of the defect without changing position.

Ψ(t; 0)

Ψ(t+ δt; 0)

e−
R
a
<

0

Ψ(t+ δt; 0)

Ψ(t; 0)

e−
R
a
>

0

u v

K

K
(3.1)

The defect transport matrix K depends on both the u and v fields evaluated at x = 0

and on any auxiliary fields which are confined to the defect. The Lax matrices on either

side of the defect will be dependent on the same spectral parameter λ, and K will also be

dependent on λ. These Lax matrices and the defect transport matrix K can then be used

together to give the monodromy matrix which transports Ψ from x → −∞ to x → ∞. For

this transport to be path independent we require

K(t+ δt)Pe−
∫ t+δt
t

dt′a<0 (t′,0) = Pe−
∫ t+δt
t

dt′a>0 (t′,0)K(t) (3.2)

and expanding this in δt we have

Kt = Ka<0 − a>0 K (3.3)

evaluated at x = 0. This calculation of the defect zero curvature condition is not specific

to defects in ATFTs, but can be applied to a defect in any integrable theory. The zero

curvature condition is the same as that found in [3].

The bulk zero curvature condition in eq. (1.5) is satisfied if and only if the bulk equa-

tions of motion are satisfied, and this extra defect zero curvature condition must be sat-

isfied if and only if the defect equations are satisfied. Note that eq. (3.3) is equivalent

to K being a gauge transformation between the operators ∂t + a<0 and ∂t + a>0 , with

∂t + a<0 = K−1(∂t + a>0 )K. Carrying out a gauge transform of G on a<0 and G′ on a>0 (as

given in eq. (1.6)) along with the gauge transformation K → K ′ = G′KG−1 leaves this

defect zero curvature condition unchanged.

3.2 Zero curvature for a defect in an ATFT

Using the ATFT a0 matrix given in eq. (1.9) and taking it to depend on u = p+ q to give

a<0 and v = p− q to give a>0 the zero curvature condition on the defect becomes

2Kt = pj,x [K,Hj ] + qj,x{K,Hj}

+
1√
2

r
∑

i=0

√
ni|αi|e

1
2
(αi)jpj

(

λ
(

e
1
2
(αi)jqjKEαi

− e−
1
2
(αi)jqjEαi

K
)

− 1

λ

(

e
1
2
(αi)jqjKE−αi

− e−
1
2
(αi)jqjE−αi

K
)

)

(3.4)
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where square brackets indicate a commutator and curly brackets an anticommutator (not

a Poisson bracket).

We will begin by taking the defect to be of the general form given in eq. (2.8), which has

defect equations given in eqs. (2.13)–(2.18), where D and D̄ must have the dependencies

given in eqs. (2.10), (2.11) and satisfy the additional momentum conservation condition in

eq. (2.12). Using eqs. (2.13)–(2.16) to remove all x derivatives from eq. (3.4) gives

2Kt =

(

p
(1)
j,t − 2q

(1)
k,tAkj −

1

2
D

q
(1)
j

− 1

2
D̄

q
(1)
j

)

[

K,H
(1)
j

]

+

(

p
(2)
j,t − 2µ

(2)
j,t − 1

2
D

q
(2)
j

− 1

2
D̄

q
(2)
j

)

[

K,H
(2)
j

]

+

(

−q
(1)
j,t − 1

2
D

p
(1)
j

)

{K,H
(1)
j }+

(

−q
(2)
j,t − 1

2
D

p
(2)
j

)

{K,H
(2)
j }

+
1√
2

r
∑

i=0

√
ni|αi|e

1
2
(αi)jpj

(

λ
(

e
1
2
(αi)jqjKEαi

− e−
1
2
(αi)jqjEαi

K
)

− 1

λ

(

e
1
2
(αi)jqjKE−αi

− e−
1
2
(αi)jqjE−αi

K
)

)

. (3.5)

Every Cartan generator is associated with one of the orthonormal basis vectors of the root

space, so H(1) denotes the Cartan generators which are associated with the orthonormal

basis vectors which form a basis of the 1-space and H(2) denotes the Cartan generators

associated with the orthonormal basis vectors of the 2-space. The t derivatives on the right

hand side can be removed by applying the transformation

K = e−
1
2
(pj+qj)Hj+q(1)jAjkH

(1)
k

+µ
(2)
j H

(2)
j K̂e

1
2
(pj−qj)Hj−q

(1)
j AjkH

(1)
k

−µ
(2)
j H

(2)
j (3.6)

to give

4K̂t +Dpj{K̂,Hj}+ (Dqj + D̄qj )
[

K̂,Hj

]

=
√
2

r
∑

i=0

√
ni|αi|

(

λe(αi)jpj+(αi)
(1)
j Ajkq

(1)
k

−(αi)
(2)
j µ

(2)
j

[

K̂, Eαi

]

− 1

λ
e−(αi)

(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j

(

e(αi)jqjK̂E−αi
− e−(αi)jqjE−αi

K̂
)

)

. (3.7)

If K̂ is dependent on a field then the term K̂t introduces a t derivative of that field,

which will not appear anywhere else in eq. (3.7). For the fields q(2) and ξ we can remove

the t derivative using eq. (2.17) and eq. (2.18) respectively. For the fields p(1), q(1), p(2)

and µ(2) the t derivative cannot be removed (except by the introduction of an x derivative,

which returns us to the previous step in our calculation) so K̂ cannot be dependent on these

fields. The same argument can be used to show that K̂ cannot depend on the derivatives

of fields as well. With K̂ only dependent on q(2) and ξ we have K̂t = K̂
q
(2)
i

q
(2)
i,t + K̂ξiξi,t,
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and using this and eqs. (2.17), (2.18) the zero curvature condition becomes

K̂
q
(2)
i

(D
µ
(2)
i

+ D̄
µ
(2)
i

)− 4K̂ξiWij(Dξj + D̄ξj ) +Dpj{K̂,Hj}+ (Dqj + D̄qj )
[

K̂,Hj

]

=
√
2

r
∑

i=0

√
ni|αi|

(

λe(αi)jpj+(αi)
(1)
j Ajkq

(1)
k

−(αi)
(2)
j µ

(2)
j

[

K̂, Eαi

]

− 1

λ
e−(αi)

(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j

(

e(αi)jqjK̂E−αi
− e−(αi)jqjE−αi

K̂
)

)

. (3.8)

To progress further we now need a specific form for the defect potential. In section 2.2

we stated that for a defect in an ATFT to be momentum conserving D and D̄ must be of

the form given in eqs. (2.19), (2.20). Using this in the zero curvature condition we have

σ
r

∑

i=0

e(αi)jpj+(αi)
(1)
j Ajkq

(1)
k

−(αi)
(2)
j µ

(2)
j )

(

− xi(αi)
(2)
j K̂

q
(2)
j

+ 4xi,ξjWjkK̂ξk

+ xi(αi)
(1)
j Ajk

[

K̂,H
(1)
k

]

+ x
i,q

(2)
j

[

K̂,H
(2)
j

]

+ xi(αi)j{K̂,Hj}
)

+
1

σ

r
∑

i=0

e−(αi)
(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j

(

yi(αi)
(2)
j K̂

q
(2)
j

+ 4yi,ξjWjkK̂ξk

− yi(αi)
(1)
j Ajk

[

K̂,H
(1)
k

]

+ yi,qj

[

K̂,Hj

]

)

=
√
2

r
∑

i=0

√
ni|αi|

(

λe(αi)jpj+(αi)
(1))jAjkq

(1)
k

−(αi)
(2)
j µ

(2)
j

[

K̂, Eαi

]

− 1

λ
e−(αi)

(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j

(

e(αi)jqjK̂E−αi
− e−(αi)jqjE−αi

K̂
)

)

. (3.9)

Equating exponents of p splits this into r + 2 equations,

√
2
√
ni|αi|ρ

[

K̂, Eαi

]

= −xi(αi)
(2)
j K̂

q
(2)
j

+ 4xi,ξjWjkK̂ξk

+ xi(αi)
(1)
j Ajk

[

K̂,H
(1)
k

]

+ x
i,q

(2)
j

[

K̂,H
(2)
j

]

+ xi(αi)j{K̂,Hj} (3.10)

for i = 0, . . . , r and

−
√
2

r
∑

i=0

√
ni|αi|e−(αi)

(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j

(

e(αi)jqjK̂E−αi
− e−(αi)jqjE−αi

K̂
)

= ρ
r

∑

i=0

e−(αi)
(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j

(

− yi(αi)
(1)
j Ajk

[

K̂,H
(1)
k

]

+ yi,qj

[

K̂,Hj

]

+ yi(αi)
(2)
j K̂

q
(2)
j

+ 4yi,ξjWjkK̂ξk

)

(3.11)

where we have set ρ = λσ−1. We cannot split eq. (3.11) by equating exponentials of µ(2),

as two different roots αi amd αj may have the same projection onto the 2-space.
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Multiplying K by a constant does not affect the zero curature condition in eq. (3.3),

so we can always take the highest power of ρ appearing in K to be zero. Therefore we can

always expand K̂ in ρ as

K̂ =

∞
∑

s=0

ρ−sks. (3.12)

The ks are matrices, and any of them may be zero. We do not know if this expansion

terminates. We will assume that, like the bulk Lax pair, this defect matrix will consist of

generators of the Lie algebra. More specifically, since it appears as part of the monodromy

matrix, we would expect to be able to write it as an exponential or combination of ex-

ponentials of the generators. Expanding such an exponential in terms of ρ (which should

appear in the exponent by comparison with the bulk monodromy matrix) we therefore

expect that the matrices ks will be some combination of generator matrices.

Substituting this expansion into the zero curvature relations in eqs. (3.10), (3.11) and

equating powers of ρ gives a set of recursion relations,

√
2
√
ni|αi| [ks+1, Eαi

] = −xi(αi)
(2)
j k

s,q
(2)
j

+ 4xi,ξjWjkks,ξk (3.13)

+ xi(αi)
(1)
j Ajk

[

ks, H
(1)
k

]

+ x
i,q

(2)
j

[

ks, H
(2)
j

]

+ xi(αi)j{ks, Hj}

for i = 0, . . . , r and

−
√
2

r
∑

i=0

√
ni|αi|e−(αi)

(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j

(

e(αi)jqjksE−αi
− e−(αi)jqjE−αi

ks

)

=
r

∑

i=0

e−(αi)
(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j

(

− yi(αi)
(1)
j Ajk

[

ks+1, H
(1)
k

]

+ yi,qj [ks+1, Hj ]

+ yi(αi)
(2)
j k

s+1,q
(2)
j

+ 4yi,ξjWjkks+1,ξk

)

. (3.14)

We can now attempt to solve these relations, which would ensure zero curvature across

any momentum conserving defect of the form given in eq. (2.8) in an ATFT. Unfortunately

it is not possible to solve the recursion relations for all values of s for a general defect in

an ATFT, but the s = −1, s = 0 and s = 1 recursion relations give us an idea of the form

all ks matrices will take, and if the expansion terminates then the recursion relation for

the highest value of s gives some potentially useful constraints on the splitting of the root

space into the 1-space and 2-space.

Beginning with s = −1 we have

0 =
√
2
√
ni|αi| [k0, Eαi

] (3.15)

for i = 0, . . . , r and

0 =
r

∑

i=0

e−(αi)
(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j

(

− yi(αi)
(1)
j Ajk

[

k0, H
(1)
k

]

+ yi,qj [k0, Hj ]

+ yi(αi)
(2)
j k

0,q
(2)
j

+ 4yi,ξjWjkk0,ξk

)

. (3.16)
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If k0 is to commute with all simple root generators and the lowest weight root generator

then by Schur’s lemma it must be proportional to the identity matrix. This ensures the first

r+1 equations are satisfied. We will take k0 to be a scalar multiple of the identity matrix

(satisfying the final equation), and using the fact that K may be multiplied by a constant

without affecting the defect zero curvature condition, set k0 = 1. There may be some

choices of k0 which are dependent on q(2) and ξ and satisfy eq. (3.16), but it is certainly

not obvious. No defects found thus far have contained auxiliary fields which couple only

to other auxiliary fields, and if these is no ξ field vector then for eq. (3.16) to be satisfied

we must have k
0,q

(2)
i

= 0 and so k0 will always be a scalar multiple of the identity matrix.

Now consider s = 0. The recurrence relations give

√
2
√
ni|αi| [k1, Eαi

] = 2xi(αi)jHj (3.17)

for i = 0, . . . , r and

−
√
2

r
∑

i=0

√
ni|αi|e−(αi)

(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j

(

e(αi)jqj − e−(αi)jqj
)

E−αi

=
r

∑

i=0

e−(αi)
(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j

(

− yi(αi)
(1)
j Ajk

[

k1, H
(1)
k

]

+ yi,qj [k1, Hj ]

+ yi(αi)
(2)
j k

1,q
(2)
j

+ 4yi,ξjWjkk1,ξk

)

, (3.18)

and we can immediately see that the first r + 1 equations in eq. (3.17) are satisfied by

k1 = − 1√
2

r
∑

j=0

1
√
nj

|αj |xjE−αj
(3.19)

using the fact that a simple root plus the negative of a simple root is never a root and that

the highest (lowest) weight root plus any positive (negative) root cannot be a root. The

final equation, eq. (3.18), then becomes

2
r

∑

i=0

√
ni|αi|e−(αi)

(1)
k

Aklq
(1)
l

+(αi)
(2)
k

µ
(2)
k

(

e(αi)kqk − e−(αi)kqk
)

E−αi

=

r
∑

i=0

r
∑

j=0

1
√
nj

|αj |e−(αi)
(1)
k

Aklq
(1)
l

+(αi)
(2)
k

µ
(2)
k

(

yi(αi)
(2)
k x

j,q
(2)
k

+ 4yi,ξkWklxj,ξl + xjyi,qk(αj)k

− xjyi(αi)
(1)
k Akl(αj)

(1)
l

)

E−αj
(3.20)

where we have made use of eq. (1.11). Because the generators of the simple and lowest

weight roots are linearly independent we can equate the coefficients of these matrices to give

2ni

(

e(αi)kqk − e−(αi)kqk
)

=
r

∑

j=0

e(αi−αj)
(1)
k

Aklq
(1)
l

+(αj−αi)
(2)
k

µ
(2)
k

×
(

yj(αj)
(2)
k x

i,q
(2)
k

+ 4yj,ξkWklxi,ξl + xiyj,qk(αi)k − xiyj(αj)
(1)
k Akl(αi)

(1)
l

)

(3.21)
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for i = 0, . . . , r. But this is identical to the set of differential equations appearing in

eq. (2.21), which came from taking D and D̄ to be of the form in eqs. (2.19), (2.20) then

substituting these into the momentum conservation condition in eq. (2.12) to give a set of

differential equations which must be satisfied by xi and yi if the defect is to be momen-

tum conserving. We have not quite shown that momentum conservation is necessary for a

system with a defect to have zero curvature, as we made the assumption that k0 did not

depend on ξ. We also have not shown that momentum conservation is a sufficient condition

as this would require the recursion relations to be satisfied for all values of s. However, this

highlights the link between momentum conservation and integrability, and for all defects

found in [1] their momentum conservation is necessary if they are to be integrable.

These first two terms indicate some sort of pattern of grading, with the nth power of ρ

in the expansion of K̂ containing the product (or rather a sum of products) of n generators

E−αi
(i = 0, . . . , r). From eq. (1.14) we see that the generators of roots which are not

simple or the lowest weight root can still be written as a sum of products of the generators

of simple or lowest weight roots. This also implies some cyclicity, as by taking commutators

of E−α0 with E−αi
(i = 1, . . . , r) we can eventually reach H. So the Cartan generators can

be written as a sum of products of
∑r

i=1 ni +1 generators of negatives of simple roots and

the generator associated with the highest weight root. So (from eq. (1.11)) the generators

E−αi
(i = 0, . . . , r) can be written as a sum of products of

∑r
i=1 ni + 2 such generators.

So if this grading pattern continues then the terms in the expansion in eq. (3.12) with

ρ−
∑

ni−1−i are a rewriting of the terms with ρ−i.

By inspection of the s = 1 recursion relations it appears that the grading described here

will give the correct matrices from the commutators appearing in the recursion relation.

However, actually calculating k2 is too difficult, as we do not know anything about the

root structure of the underlying Lie algebra and so do not know the exact form of the

commutation relations for the generators. To actually calculate this defect zero curvature

matrix we will need to consider specific ATFTs.

However, there is still some useful information about defects in ATFTs to be gleaned

from these recursion relations if we consider what happens if the expansion for K̂ termi-

nates. Let us assume that for all s > n we have ks = 0. Then take s = n for the recursion

relations, giving

0 = −xi(αi)
(2)
j k

n,q
(2)
j

+ 4xi,ξjWjkkn,ξk

+ xi(αi)
(1)
j Ajk

[

kn, H
(1)
k

]

+ x
i,q

(2)
j

[

kn, H
(2)
j

]

+ xi(αi)j{kn, Hj} (3.22)

for i = 0, . . . , r and

r
∑

i=0

√
ni|αi|e−(αi)

(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j

(

e(αi)jqjknE−αi
− e−(αi)jqjE−αi

kn

)

= 0. (3.23)

We will not solve these equations, but can use eq. (3.23) to get some information on the

form of defects with zero curvature.

For the right hand side of eq. (3.23) to be zero the terms appearing there must either

be equal to zero or proportional to another term, enabling cancellations to occur. For a
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term to disappear kn must annihilate E−αi
or vice versa. However, to know whether this

happens and for which terms we need to know not just kn but also what the underlying

Lie algebra is and what representation we are using. We will therefore assume that this is

never the case, and so every term in eq. (3.23) is non-zero. This assumption is acceptable

as we are not trying to prove every defect with zero curvature must take a particular form.

Instead we are looking for constraints which apply in certain cases which may be useful in

finding momentum conserving defects for the E series ATFTs, which were not covered by

the trial-and-error method used in [1].

Every term in eq. (3.23) must cancel with at least one other term. First consider a

cancellation between terms knE−αi
and knE−αj

. Because kn is only dependent on q(2) and

ξ any dependence on q(1) and µ(2) appearing in these two terms must match. From the

exponentials appearing in these terms this requires

(αi)
(1)
k q

(1)
k − (αi)

(1)
k Aklq

(1)
l + (αi)

(2)
k µ

(2)
k = (αj)

(1)
k q

(1)
k − (αj)

(1)
k Aklq

(1)
l + (αj)

(2)
k µ

(2)
k . (3.24)

Because A is real and antisymmetric the matrix 1±A has complex eigenvalues which are all

non-zero, so is invertible. Therefore requiring eq. (3.24) to hold gives αi = αj , so we cannot

have a cancellation between two terms of the form knE−αi
. Next consider a cancellation

between terms E−αi
kn and E−αj

kn. This requires

−(αi)
(1)
k q

(1)
k −(αi)

(1)
k Aklq

(1)
l +(αi)

(2)
k µ

(2)
k = −(αj)

(1)
k q

(1)
k −(αj)

(1)
k Aklq

(1)
l +(αj)

(2)
k µ

(2)
k , (3.25)

which again immediately gives αi = αj , and so no cancellations. So all cancellations must

be between a term of the form knE−αi
and another term of the form E−αj

kn. This requires

every root αi to have another root αj for which it satisfies

(αi)
(1)
k q

(1)
k − (αi)

(1)
k Aklq

(1)
l +(αi)

(2)
k µ

(2)
k = −(αj)

(1)
k q

(1)
k − (αj)

(1)
k Aklq

(1)
l +(αj)

(2)
k µ

(2)
k . (3.26)

If the assumptions we have made about the K̂ series terminating and the kn matrix

not annihilating any Eα operators hold (and for the Tzitzéica and D4 defect matrices we

find in the following sections they do hold) then we have some fairly restrictive constraints

on the projections of the roots onto the 1-space and 2-space. Either the root αi must have

(αi)
(1) = 0, in which case the knEαi

term is able to cancel with Eαi
kn, or there must be some

other root αj with (1+A)α
(1)
i = (−1+A)α

(1)
j and α

(2)
i = α

(2)
j . By their projections onto the

2-space we should be able to find sets of roots whose projections onto the 1-space are linked.

For the Ar ATFTs found in [3] there is no 2-space and these constraints give the

relations between simple roots which were required for a type I defect to be momentum

conserving. For the Tzitzéica defect there is no 1-space and so the constraints obviously

hold. These constraints can also be checked to hold for all defects and choices of 1-space

and 2-space found in [1], including the D4 defect given in more detail here. Whilst we

have not proved anything definite the fact that these constraints have held for all previous

momentum conserving defects certainly gives a possible direction for future calculations of

defects in E series ATFTs.

As mentioned it is difficult to progress further without any knowledge of the generators

appearing in the zero curvature condition, so we will now use these results to show that the

momentum conserving Tzitzéica and D4 defects given in section 2.2 have zero curvature.
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3.3 Zero curvature for the Tzitzéica defect

The roots for Tzitzéica are given in eq. (2.22), the momentum conserving ATFT de-

fect based on these roots in eq. (2.24) and the momentum conserving defect potential in

eqs. (2.31), (2.32). The defect zero curvature conditions in eqs. (3.10), (3.11) then become

2
√
2ρ

[

K̂, Eα0

]

= e2f (eq + e−q)2
(

K̂q − {K̂,H}+ fq

[

K̂,H
])

+ e2f (eq + e−q)(eq − e−q)
[

K̂,H
]

(3.27)

2ρ
[

K̂, Eα1

]

= e−f
(

−K̂q + {K̂,H} − fq

[

K̂,H
])

(3.28)

ρe−2f
(

K̂q + fq

[

K̂,H
])

=
√
2
(

e−2qK̂E−α0 − e2qE−α0K̂
)

(3.29)

2ρef
(

(eq + e−q)
(

K̂q + fq

[

K̂,H
])

+ (eq − e−q)
[

K̂,H
]

)

= −
(

eqK̂E−α1 − e−qE−α1K̂
)

, (3.30)

where eq. (3.11) has been split into two equations by equating powers of µ and f is some

arbitrary function which is present due to our freedom to carry out redefinitions of the

auxiliary fields.

In order to solve eqs. (3.27)–(3.30) we will choose a representation, write down the

generator matrices explicitly, then solve the matrix equations entry by entry to find the

elements of K̂. For notation we will take eni,j to denote an n × n matrix with zeroes

everywhere except position (i, j), where the entry is 1. Our chosen representation is

H =
(

e31,1 − e33,3
)

Eα0 = e33,1 Eα1 =
√
2
(

e31,2 + e32,3
)

(3.31)

and we recall that E−α = E†
α.

Using Maple to solve eqs. (3.27)–(3.30) as described then gives

K̂ =







1− 1
4
√
2
ρ−3e2q 1

2ρ
−2efeq(eq + e−q) − 1√

2
ρ−1e2f (eq + e−q)2

− 1√
2
ρ−1e−f 1− 1

4
√
2
ρ−3 1

2ρ
−2efe−q(eq + e−q)

1
4ρ

−2e−2f − 1√
2
ρ−1e−f 1− 1

4
√
2
ρ−3e−2q






. (3.32)

This matrix fits into the proposed form of K̂ as a finite series in ρ. The structure of this

matrix is identical to the Tzitzéica defect matrix found in [34]. When writing K̂ as given

in eq. (3.32) in terms of the expansion in ρ given in eq. (3.12) one possible choice is

k0 = 1

k1 = − 1√
2
e2f (eq + e−q)2E−α0 −

1

2
e−fE−α1

k2 =
1

2
√
2
ef (eq + e−q)

(

eqE−α0E−α1 + e−qE−α1E−α0

)

+
1

8
e−2fE−α1E−α1

k3 = − 1

8
√
2

(

e2qE−α0E−α1E−α1 + E−α1E−α0E−α1 + e−2qE−α1E−α1E−α0

)

. (3.33)
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This fits into the grading hypothesised in the previous section, with ks consisting of prod-

ucts of s generators. Because K appears as part of the monodromy matrix we would hope

that K̂ could be written as an exponential of generators, but so far such a form of eq. (3.32)

has not been found. This is due to difficulties with the calculation (at least when carried

out in Maple) and there is no proof that it is not possible.

The defect transport matrix satisfying eq. (3.3) is given by

K = e−
1
2
(p+q−2µ)HK̂e

1
2
(p−q−2µ)H . (3.34)

One interesting observation is that there is some additional gauge freedom to that

already discussed for the bulk Lax pairs and the defect. Applying no transformations to

the bulk Lax pair we can take K → eg(q)HKe−g(q)H , so K̂ → eg(q)HK̂e−g(q)H , to give

K̂ =







1− 1
4
√
2
ρ−3e2q 1

2ρ
−2ef+geq(eq + e−q) − 1√

2
ρ−1e2f+2g(eq + e−q)2

− 1√
2
ρ−1e−f−g 1− 1

4
√
2
ρ−3 1

2ρ
−2ef+ge−q(eq + e−q)

1
4ρ

−2e−2f−2g − 1√
2
ρ−1e−f−g 1− 1

4
√
2
ρ−3e−2q






. (3.35)

This transformation obviously corresponds to making the field redefinition µ → µ + g(q),

and so the defect matrix for defects with different definitions of the auxiliary fields are

linked by this gauge transformation. The transformed matrix will also satisfy the zero

curvature condition, but where before we had f in the defect equations of motion we will

now have f + g.

3.4 Zero curvature for the D4 ATFT defect

The roots for D4 are given in eq. (2.35) and the momentum conserving defect Lagrangian

in eq. (2.38). The two possible momentum conserving defect potentials are given in

eqs. (2.44), (2.45) and eqs. (2.46), (2.47). Using the first defect potential (F = D+ + D̄+)

in eqs. (3.10), (3.11) gives

2ρ
[

K̂, Eα0

]

= efq2
(

K̂q2 − {K̂,H1} − {K̂,H2}
)

+ efq2fq2q2

[

K̂,H2

]

+ efq2fq2q3

[

K̂,H3

]

(3.36)

2ρ
[

K̂, Eα1

]

= efq2
(

K̂q2 + {K̂,H1} − {K̂,H2}
)

+ efq2fq2q2

[

K̂,H2

]

+ efq2fq2q3

[

K̂,H3

]

(3.37)

√
2ρ

[

K̂, Eα2

]

= e−fq2+fq3 (eq2 + e−q2)
(

−K̂q2 + K̂q3 + {K̂,H2} − {K̂,H3}
)

+ e−fq2+fq3
(

(−fq2q2 + fq2q3) (e
q2 + e−q2) + eq2 − e−q2

)

[

K̂,H2

]

+ e−fq2+fq3 (−fq2q3 + fq3q3) (e
q2 + e−q2)

[

K̂,H3

]

(3.38)

2ρ
[

K̂, Eα3

]

= e−fq3 (eq3 + e−q3)
(

−K̂q3 + {K̂,H3} − {K̂,H4}
)

− e−fq3fq2q3(e
q3 + e−q3)

[

K̂,H2

]

+ e−fq3
(

−fq3q3(e
q3 + e−q3) + eq3 − e−q3

)

[

K̂,H3

]

(3.39)
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2ρ
[

K̂, Eα4

]

= e−fq3 (eq3 + e−q3)
(

−K̂q3 + {K̂,H3}+ {K̂,H4}
)

+−e−fq3fq2q3(e
q3 + e−q3)

[

K̂,H2

]

+ e−fq3
(

−fq3q3(e
q3 + e−q3) + eq3 − e−q3

)

[

K̂,H3

]

(3.40)

− 2
(

e−q1−q2K̂E−α0 − eq1+q2E−α0K̂ + eq1−q2K̂E−α1 − e−q1+q2E−α1K̂
)

= ρe−fq2

(

− (eq1 + e−q1)(eq2 + e−q2)K̂q2 + (eq1 − e−q1)(eq2 + e−q2)
[

K̂,H1

]

+
(

−fq2q2(e
q1 + e−q1)(eq2 + e−q2) + (eq1 + e−q1)(eq2 − e−q2)

)

[

K̂,H2

]

− fq2q3(e
q1 + e−q1)(eq2 + e−q2)

[

K̂,H3

]

)

(3.41)

− 2
√
2
(

eq2−q3K̂E−α2 − e−q2+q3E−α2K̂
)

= ρefq2−fq3

(

(eq3 + e−q3)
(

K̂q2 − K̂q3

)

+ (fq2q2 − fq2q3) (e
q3 + e−q3)

[

K̂,H2

]

+
(

(fq2q3 − fq3q3) (e
q3 + e−q3) + eq3 − e−q3

)

[

K̂,H3

]

)

(3.42)

− 2
(

eq3−q4K̂E−α3 − e−q3+q4E−α3K̂ + eq3+q4K̂E−α4 − e−q3−q4E−α4K̂
)

= ρefq3

(

(eq4 + e−q4)K̂q3 + fq2q3(e
q4 + e−q4)

[

K̂,H2

]

+ fq3q3(e
q4 + e−q4)

[

K̂,H3

]

+ (eq4 − e−q4)
[

K̂,H4

]

)

(3.43)

and using the second defect potential (F = D− + D̄−) gives

2ρ
[

K̂, Eα0

]

= efq2
(

−K̂q2 + {K̂,H1}+ {K̂,H2}
)

− efq2fq2q2

[

K̂,H2

]

− efq2fq2q3

[

K̂,H3

]

(3.44)

2ρ
[

K̂, Eα1

]

= efq2
(

K̂q2 + {K̂,H1} − {K̂,H2}
)

+ efq2fq2q2

[

K̂,H2

]

+ efq2fq2q3

[

K̂,H3

]

(3.45)

√
2ρ

[

K̂, Eα2

]

= e−fq2+fq3 (eq2 − e−q2)
(

K̂q2 − K̂q3 − {K̂,H2}+ {K̂,H3}
)

+ e−fq2+fq3
(

(fq2q2 − fq2q3) (e
q2 − e−q2)− eq2 − e−q2

)

[

K̂,H2

]

+ e−fq2+fq3 (fq2q3 − fq3q3) (e
q2 − e−q2)

[

K̂,H3

]

(3.46)

2ρ
[

K̂, Eα3

]

= e−fq3 (eq3 − e−q3)
(

K̂q3 − {K̂,H3}+ {K̂,H4}
)

+ e−fq3fq2q3(e
q3 − e−q3)

[

K̂,H2

]

+ e−fq3
(

fq3q3(e
q3 − e−q3)− eq3 − e−q3

)

[

K̂,H3

]

(3.47)

2ρ
[

K̂, Eα4

]

= e−fq3 (eq3 − e−q3)
(

−K̂q3 + {K̂,H3}+ {K̂,H4}
)
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− e−fq3fq2q3(e
q3 − e−q3)

[

K̂,H2

]

+ e−fq3
(

−fq3q3(e
q3 − e−q3) + eq3 + e−q3

)

[

K̂,H3

]

(3.48)

− 2
(

e−q1−q2K̂E−α0 − eq1+q2E−α0K̂ + eq1−q2K̂E−α1 − e−q1+q2E−α1K̂
)

= ρe−fq2

(

(eq1 − e−q1)(eq2 − e−q2)K̂q2 − (eq1 + e−q1)(eq2 − e−q2)
[

K̂,H1

]

+
(

fq2q2(e
q1 − e−q1)(eq2 − e−q2)− (eq1 − e−q1)(eq2 + e−q2)

)

[

K̂,H2

]

+ fq2q3(e
q1 − e−q1)(eq2 − e−q2)

[

K̂,H3

]

)

(3.49)

− 2
√
2
(

eq2−q3K̂E−α2 − e−q2+q3E−α2K̂
)

= ρefq2−fq3

(

(eq3 − e−q3)
(

K̂q2 − K̂q3

)

+ (fq2q2 − fq2q3) (e
q3 − e−q3)

[

K̂,H2

]

+
(

(fq2q3 − fq3q3) (e
q3 − e−q3) + eq3 + e−q3

)

[

K̂,H3

]

)

(3.50)

− 2
(

eq3−q4K̂E−α3 − e−q3+q4E−α3K̂ + eq3+q4K̂E−α4 − e−q3−q4E−α4K̂
)

= ρefq3

(

(eq4 − e−q4)K̂q3 + fq2q3(e
q4 − e−q4)

[

K̂,H2

]

+ fq3q3(e
q4 − e−q4)

[

K̂,H3

]

+ (eq4 + e−q4)
[

K̂,H4

]

)

(3.51)

where in both cases eq. (3.11) has been split into three equations by equating powers of µ.

Again in order to solve these matrix equations we must choose a representation of D4.

Using the same notation as in the Tzitzéica case we take

H1 = e81,1 − e82,2 H2 = e83,3 − e84,4 H3 = e85,5 − e86,6 H4 = e87,7 − e88,8 (3.52)

Eα1 = e81,3 + e84,2 Eα2 = e83,5 + e86,4 Eα3 = e85,7 + e88,6 Eα4 = e85,8 + e87,6

Eα0 = e82,3 + e84,1. (3.53)

Using this representation and the expansion of K̂ in ρ given in eq. (3.12) we solve the matrix

equations (3.36)–(3.43) for the first defect potential, given by eqs. (2.44), (2.45), to give

k0 = 1

k1 = −efq2 (E−α0 + E−α1)−
√
2e−fq2+fq3(eq2 + e−q2)E−α2

− e−fq3(eq3 + e−q3) (E−α3 + E−α4)

k2 = e2fq2E−α0E−α1 +
√
2efq3

(

eq2E−α0E−α2 + e−q2E−α2E−α0

)

+
√
2efq3

(

eq2E−α1E−α2 + e−q2E−α2E−α1

)

+
√
2e−fq2 (eq2 + e−q2)

(

eq3E−α2E−α3 + e−q3E−α3E−α2

)

+
√
2e−fq2 (eq2 + e−q2)

(

eq3E−α2E−α4 + e−q3E−α4E−α2

)

+ e−2fq3 (eq3 + e−q3)2E−α3E−α4
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k3 = −
√
2efq2+fq3

(

eq2E−α0E−α1E−α2 + e−q2E−α2E−α0E−α1

)

−
√
2
(

eq2+q3E−α0E−α2E−α3 + e−q2−q3E−α3E−α2E−α0

)

−
√
2
(

eq2+q3E−α0E−α2E−α4 + e−q2−q3E−α4E−α2E−α0

)

−
√
2
(

eq2+q3E−α1E−α2E−α3 + e−q2−q3E−α3E−α2E−α1

)

−
√
2
(

eq2+q3E−α1E−α2E−α4 + e−q2−q3E−α4E−α2E−α1

)

−
√
2e−fq2−fq3 (eq2 + e−q2)(eq3 + e−q3)

(

eq3E−α2E−α3E−α4 + e−q3E−α3E−α4E−α2

)

k4 = 2e2fq3E−α2E−α0E−α1E−α2 + 2e−2fq2 (eq2 + e−q2)2E−α2E−α3E−α4E−α2

+
√
2efq2

(

eq2+q3E−α0E−α1E−α2E−α3 + e−q2−q3E−α3E−α2E−α0E−α1

)

+
√
2efq2

(

eq2+q3E−α0E−α1E−α2E−α4 + e−q2−q3E−α4E−α2E−α0E−α1

)

+
√
2e−fq3 (eq3 + e−q3)

(

eq2+q3E−α0E−α2E−α3E−α4 + e−q2−q3E−α3E−α4E−α2E−α0

)

+
√
2e−fq3 (eq3 + e−q3)

(

eq2+q3E−α1E−α2E−α3E−α4 + e−q2−q3E−α3E−α4E−α2E−α1

)

k5 = −
√
2efq2−fq3 (eq3 + e−q3)

×
(

eq2+q3E−α0E−α1E−α2E−α3E−α4 + e−q2−q3E−α3E−α4E−α2E−α0E−α1

)

− 2efq3
(

eq3E−α2E−α0E−α1E−α2E−α3 + e−q3E−α3E−α2E−α0E−α1E−α2

)

− 2efq3
(

eq3E−α2E−α0E−α1E−α2E−α4 + e−q3E−α4E−α2E−α0E−α1E−α2

)

− 2e−fq2 (eq2 + e−q2)
(

eq2E−α0E−α2E−α3E−α4E−α2 + e−q2E−α2E−α3E−α4E−α2E−α0

)

− 2e−fq2 (eq2 + e−q2)
(

eq2E−α1E−α2E−α3E−α4E−α2 + e−q2E−α2E−α3E−α4E−α2E−α1

)

k6 = 2e2q2E−α0E−α1E−α2E−α3E−α4E−α2

+ 2e−2q2E−α2E−α3E−α4E−α2E−α0E−α1

+ 2e2q3E−α2E−α0E−α1E−α2E−α3E−α4

+ 2e−2q3E−α3E−α4E−α2E−α0E−α1E−α2

+ 2E−α0E−α2E−α3E−α4E−α2E−α0

+ 2E−α1E−α2E−α3E−α4E−α2E−α1

+ 2E−α3E−α2E−α0E−α1E−α2E−α3

+ 2E−α4E−α2E−α0E−α1E−α2E−α4 . (3.54)

Solving eqs. (3.44)–(3.51) for the second defect potential, given by eqs. (2.46), (2.47), we

have

k0 = 1

k1 = efq2 (E−α0 − E−α1) +
√
2e−fq2+fq3(eq2 − e−q2)E−α2

+ e−fq3(eq3 − e−q3) (E−α3 − E−α4)

k2 = −e2fq2E−α0E−α1 +
√
2efq3

(

eq2E−α0E−α2 − e−q2E−α2E−α0

)

−
√
2efq3

(

eq2E−α1E−α2 − e−q2E−α2E−α1

)

+
√
2e−fq2 (eq2 − e−q2)

(

eq3E−α2E−α3 − e−q3E−α3E−α2

)

−
√
2e−fq2 (eq2 − e−q2)

(

eq3E−α2E−α4 − e−q3E−α4E−α2

)

− e−2fq3 (eq3 − e−q3)2E−α3E−α4
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k3 = −
√
2efq2+fq3

(

eq2E−α0E−α1E−α2 − e−q2E−α2E−α0E−α1

)

+
√
2
(

eq2+q3E−α0E−α2E−α3 + e−q2−q3E−α3E−α2E−α0

)

−
√
2
(

eq2+q3E−α0E−α2E−α4 + e−q2−q3E−α4E−α2E−α0

)

−
√
2
(

eq2+q3E−α1E−α2E−α3 + e−q2−q3E−α3E−α2E−α1

)

+
√
2
(

eq2+q3E−α1E−α2E−α4 + e−q2−q3E−α4E−α2E−α1

)

−
√
2e−fq2−fq3 (eq2 − e−q2)(eq3 − e−q3)

(

eq3E−α2E−α3E−α4 − e−q3E−α3E−α4E−α2

)

k4 = 2e2fq3E−α2E−α0E−α1E−α2 + 2e−2fq2 (eq2 − e−q2)2E−α2E−α3E−α4E−α2

−
√
2efq2

(

eq2+q3E−α0E−α1E−α2E−α3 + e−q2−q3E−α3E−α2E−α0E−α1

)

+
√
2efq2

(

eq2+q3E−α0E−α1E−α2E−α4 + e−q2−q3E−α4E−α2E−α0E−α1

)

−
√
2e−fq3 (eq3 − e−q3)

(

eq2+q3E−α0E−α2E−α3E−α4 + e−q2−q3E−α3E−α4E−α2E−α0

)

+
√
2e−fq3 (eq3 − e−q3)

(

eq2+q3E−α1E−α2E−α3E−α4 + e−q2−q3E−α3E−α4E−α2E−α1

)

k5 =
√
2efq2−fq3 (eq3 − e−q3)

×
(

eq2+q3E−α0E−α1E−α2E−α3E−α4 + e−q2−q3E−α3E−α4E−α2E−α0E−α1

)

+ 2efq3
(

eq3E−α2E−α0E−α1E−α2E−α3 − e−q3E−α3E−α2E−α0E−α1E−α2

)

− 2efq3
(

eq3E−α2E−α0E−α1E−α2E−α4 − e−q3E−α4E−α2E−α0E−α1E−α2

)

+ 2e−fq2 (eq2 − e−q2)
(

eq2E−α0E−α2E−α3E−α4E−α2 − e−q2E−α2E−α3E−α4E−α2E−α0

)

− 2e−fq2 (eq2 − e−q2)
(

eq2E−α1E−α2E−α3E−α4E−α2 − e−q2E−α2E−α3E−α4E−α2E−α1

)

k6 = −2e2q2E−α0E−α1E−α2E−α3E−α4E−α2

− 2e−2q2E−α2E−α3E−α4E−α2E−α0E−α1

− 2e2q3E−α2E−α0E−α1E−α2E−α3E−α4

− 2e−2q3E−α3E−α4E−α2E−α0E−α1E−α2

− 2E−α0E−α2E−α3E−α4E−α2E−α0

− 2E−α2E−α2E−α3E−α4E−α2E−α1

− 2E−α3E−α2E−α0E−α1E−α2E−α3

− 2E−α4E−α2E−α0E−α1E−α2E−α4 . (3.55)

These solutions also fit into the proposed grading. We have not checked whether the

solutions given here and in eq. (3.33) are representation independent.

The defect transport matrix satisfying eq. (3.3) is given by

K = e−
1
2
((p1+q1)H1+(p2+q2−2µ2,t)H2+(p3+q3−2µ3,t)H3+(p4+q4)H4)K̂

× e
1
2
((p1−q1)H1+(p2−q2−2µ2,t)H2+(p3−q3−2µ3,t)H3+(p4−q4)H4). (3.56)

Once again we have K → eg(q2,q3)q2H2+g(q2,q3)q3H3Ke−g(q2,q3)q2H2−g(q2,q3)q3H3 taking the

K matrix from that of the original defect to that of a defect which is the original defect

with the auxiliary fields shifted by µ2 → µ2 + g(q2, q3)q2 , µ3 → µ3 + g(q2, q3)q3 .

The structure of these defect transport matrices is clearer if we write out the matrices

in full. To do this we simplify the situation slightly by setting f = 0, knowing that

the above expression could immediately be used to restore the efq2,3 multipliers to their
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correct terms. We also take K̂ → 1√
2
K̂, which does not affect whether K satisfies the zero

curvature condition in eq. (3.3). We use Q±
2,3 to denote the brackets (eq2,3 ± eq2,3). The

defect matrix for the defect with the first defect potential is

K̂=







































1√
2

√
2

ρ6
−

√
2eq2Q

+
2

ρ5
− 1√

2ρ

eq2+q3Q
+
3

ρ4
eq2

ρ2
− eq2+q3

ρ3
− eq2+q3

ρ3

√
2

ρ6
1√
2

−
√
2eq2Q

+
2

ρ5
− 1√

2ρ

eq2+q3Q
+
3

ρ4
eq2

ρ2
− eq2+q3

ρ3
− eq2+q3

ρ3

− 1√
2ρ

− 1√
2ρ

1√
2
+

√
2e2q2

ρ6
1√
2ρ2

− eq2+q3Q
+
3

ρ5
− eq2

ρ3
eq2+q3

ρ4
eq2+q3

ρ4

−
√
2e−q2Q

+
2

ρ5
−

√
2e−q2Q

+
2

ρ5

√
2Q+2

2
ρ4

1√
2
+

√
2e−2q2

ρ6
− eq3Q

+
2 Q

+
3

ρ3
−Q

+
2
ρ

eq3Q
+
2

ρ2

eq3Q
+
2

ρ2

e−q2

ρ2
e−q2

ρ2
−Q

+
2
ρ

− e−q2

ρ3
1√
2
+

√
2e2q3

ρ6

√
2

ρ4
−

√
2eq3

ρ5
−

√
2eq3

ρ5

e−q2−q3Q
+
3

ρ4

e−q2−q3Q
+
3

ρ4
− e−q3Q

+
2 Q

+
3

ρ3
− e−q2−q3Q

+
3

ρ5

Q
+2
3√
2ρ2

1√
2
+

√
2e−2q3

ρ6
− Q

+
3√
2ρ

− Q
+
3√
2ρ

− e−q2−q3

ρ3
− e−q2−q3

ρ3

e−q3Q
+
2

ρ2
e−q2−q3

ρ4
− Q

+
3√
2ρ

−
√
2e−q3

ρ5
1√
2

√
2

ρ6

− e−q2−q3

ρ3
− e−q2−q3

ρ3

e−q3Q
+
2

ρ2
e−q2−q3

ρ4
− Q

+
3√
2ρ

−
√
2e−q3

ρ5

√
2

ρ6
1√
2







































(3.57)

and for the second defect potential we have

K̂=
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(3.58)

With these defect contributions to the Lax pair which give zero curvature if and only

if the equations of motion for a momentum conserving D4 defect are satisfied we have

made a step towards proving the integrability of the general momentum conserving defects

found in [1]. In both the Tzitzéica and D4 case momentum conservation gave sufficient

constraints on the defect for the generation of an infinite number of conserved quantities.

It is very likely that in all cases momentum conservation is necessary for integrability.

4 Conclusions

In this paper we have made some small additions to the results found in [1], with the more

complete D4 defect potential given in section 2.4. The likely constraints on the 1-space

and 2-space splitting found in section 3.2 may help to further expand the set of momentum

conserving defects in ATFTs if they can be applied to the E series root space.

Most importantly we have applied the defect zero curvature condition to the Tzitzéica

andD4 ATFT defects and found that requiring momentum conservation was both necessary
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and sufficient for systems containing these defects to have an infinite number of conserved

quantities.

While we have successfully shown that two specific defects have zero curvature, and

thus an infinite number of conserved quantities, there is still much work to be done on the

integrability of defects. It is not clear how the general ATFT defects could be shown to

satisfy the zero curvature condition. Beginning by checking whether the Tzitzéica and D4

defect matrices found in sections 3.3, 3.4 are representation independent, it may be useful

to attempt to carry out a representation independent calculation of these matrices. Unlike

these two specific examples the zero curvature condition for the defect matrix of a general

defect in an ATFT cannot be written explicitly as a matrix equation, and so some more

general method of solving it will be necessary.

We have also made no attempt to approach these defects from a Hamiltonian per-

spective, as has been carried out in [35–38], and have yet to prove that these defects are

integrable. It would be interesting to apply the method given in [6] of moving from a

Lagrangian to a Hamiltonian picture to these defects.

Finally we have only considered classical integrability in this paper. Quantum defects

are well studied, having been introduced in [25, 26] and with defects of the type appearing

in this paper being investigated in [4, 41, 42]. The quantum forms of the defects found in [1]

have not yet been investigated, but once the quantum transmission matrices are known

the quantum integrability of these defects could be investigated.
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Nucl. Phys. B 911 (2016) 212 [arXiv:1603.04688] [INSPIRE].

[39] V. Caudrelier, Multisymplectic approach to integrable defects in the sine-Gordon model,

J. Phys. A 48 (2015) 195203 [arXiv:1411.5171] [INSPIRE].

[40] V. Caudrelier and A. Kundu, A multisymplectic approach to defects in integrable classical

field theory, JHEP 02 (2015) 088 [arXiv:1411.0418] [INSPIRE].

[41] E. Corrigan and C. Zambon, A transmission matrix for a fused pair of integrable defects in

the sine-Gordon model, J. Phys. A 43 (2010) 345201 [arXiv:1006.0939] [INSPIRE].

[42] E. Corrigan and C. Zambon, Integrable defects in affine Toda field theory and infinite

dimensional representations of quantum groups, Nucl. Phys. B 848 (2011) 545

[arXiv:1012.4186] [INSPIRE].

– 31 –

https://doi.org/10.1016/S0550-3213(98)00712-3
https://arxiv.org/abs/hep-th/9703085
https://inspirehep.net/search?p=find+EPRINT+hep-th/9703085
https://doi.org/10.1016/0550-3213(95)00153-J
https://arxiv.org/abs/hep-th/9501098
https://inspirehep.net/search?p=find+EPRINT+hep-th/9501098
https://doi.org/10.1016/0550-3213(83)90256-0
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B215,470%22
https://doi.org/10.1016/0550-3213(83)90504-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B220,491%22
https://doi.org/10.1088/0951-7715/19/6/012
https://arxiv.org/abs/nlin/0512038
https://inspirehep.net/search?p=find+EPRINT+nlin/0512038
https://doi.org/10.1088/1751-8121/aa7612
https://arxiv.org/abs/1612.06904
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.06904
https://doi.org/10.1007/BFb0081158
https://doi.org/10.1007/JHEP12(2011)056
https://arxiv.org/abs/1110.1589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.1589
https://doi.org/10.1007/JHEP01(2012)040
https://arxiv.org/abs/1110.4728
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4728
https://doi.org/10.1007/JHEP11(2012)008
https://arxiv.org/abs/1205.1661
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1661
https://doi.org/10.1016/j.nuclphysb.2015.02.002
https://arxiv.org/abs/1407.7777
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.7777
https://doi.org/10.1016/j.nuclphysb.2016.08.006
https://arxiv.org/abs/1603.04688
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.04688
https://doi.org/10.1088/1751-8113/48/19/195203
https://arxiv.org/abs/1411.5171
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.5171
https://doi.org/10.1007/JHEP02(2015)088
https://arxiv.org/abs/1411.0418
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0418
https://doi.org/10.1088/1751-8113/43/34/345201
https://arxiv.org/abs/1006.0939
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0939
https://doi.org/10.1016/j.nuclphysb.2011.03.007
https://arxiv.org/abs/1012.4186
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4186

	Introduction
	Momentum conserving defects
	Generalised momentum conserving type II defects
	Momentum conserving defects in ATFTs
	Momentum conserving defects in the Tzitzeica model
	Momentum conserving defects in the D(4) ATFT

	Zero curvature for systems with defects
	General defect zero curvature condition
	Zero curvature for a defect in an ATFT
	Zero curvature for the Tzitzeica defect
	Zero curvature for the D(4) ATFT defect

	Conclusions

