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The material point method is an increasingly popular method for tackling solid mechanics problems
involving large deformations. However, there are issues associated with applying boundary conditions
in the method and, to date, no general approach for imposing both Neumann and Dirichlet boundary con-
ditions has been proposed. In this paper, a new B-spline based boundary method is developed as a com-
plete methodology for boundary representation, boundary tracking and boundary condition imposition
in the standard material point method. The B-spline interpolation technique is employed to form contin-
uous boundaries which are independent of the background mesh. Dirichlet boundary conditions are
enforced by combining the B-spline boundaries with an implicit boundary method. Neumann boundary
conditions are included by direct integration of surface tractions along the B-spline boundary. This gen-
eral boundary method not only widens the problems that can be analysed by all variants of the material
point method, when implemented using an implicit solver, but is also applicable to other embedded and
non-matching mesh approaches. Although the Dirichlet boundary conditions are restricted to implicit
methods, boundary representation, tracking and Neumann boundary condition enforcement can be
applied to explicit and implicit methods.
� 2018 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

For decades, the finite element method (FEM) has dominated
the computational analysis of structures and solid mechanics.
However, as a method that is based on a pure Lagrangian descrip-
tion, the standard FEM exhibits some weaknesses for certain appli-
cations, one of which is its inability to model large deformation and
fracture problems, such as landslides, without going through the
expensive processes of re-meshing and mapping of the state vari-
ables. Meshless Methods (MMs) provide an alternative to the FEM.
Early developments include the Smoothed Particle Hydrodynamics
method [1], the Element-Free Galerkin method [2] and the Repro-
ducing Kernel Particle method [3]. Although the elimination of a
Lagrangian mesh allows MMs to be able to model problems that
are challenging for the FEM, these methods are not without disad-
vantages. As the governing equations are solved on the particles,
searching of the neighbour particles is essential and high order
integration is required to accurately integrate the rational shape
functions [4]. An alternative to all the choices mentioned above
is the material point method (MPM).

The MPM, developed originally by Sulsky and co-workers [5,6],
discretises a problem domain by a finite number of particles, or
material points (MPs), on which the material properties and his-
tory dependent variables are prescribed and carried throughout a
simulation. Each material point is assigned a weight representing
the volume of the domain under its influence. In addition to these
Lagrangian particles, an Eulerian background mesh is employed to
solve the governing equations, which fully eliminates the need for
neighbourhood searching. Mapping between the material points
and mesh nodes is usually achieved through interpolation func-
tions, and the positions of the material points are effectively inte-
gration points within each element. Although there are no
restrictions placed on the form of the background mesh, a struc-
tured grid with regular elements is often chosen due to its high
computational efficiency [7]. Major improvements of the MPM
include the development of the generalised interpolation material
point (GIMP) method [8], the convected particle domain interpola-
tion (CPDI) method [9] and the second-order convected particle
domain interpolation (CPDI2) method [10]. The GIMP method
overcomes stress oscillations when material points move from
one element to another by assigning a physical domain to each
material point, and uses interpolation functions that have a higher
continuity. These modifications allow the material points to par-
tially maintain influence on elements other than the one in which
they are located due to the overlap of the material point’s domain
with adjacent elements. However, the issue of material separation
is not eliminated by the GIMP method as it does not consider the
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change in shapes of the volumes linked to the material points dur-
ing deformation. This problem is improved by both the CPDI and
the CPDI2 methods by allowing the domains of the material points
to deform. However, the CPDI techniques are effectively dual mesh
methods with the mesh representing the material point domains
being convected through a background mesh. This increases the
memory requirement of the method, and also introduces addi-
tional approximations through the calculation of the basis func-
tions between the overlapping meshes. In this paper we adopt
the standard MPM as the focus of the paper is on the imposition
of boundary conditions rather than the reduction of cell crossing
instabilities; however the techniques developed in this paper are
applicable to all material point variants.1

The MPM and its variants have been widely applied to analyse
fluid-structure interaction problems [11–13], impact, penetration
and explosion problems [14–18], materials [19–21], landslides
[22–25] and crack propagation [26,27]. Despite this, the lack of
effective boundary representationwhen the boundaries of the phys-
ical problem do not coincide with the backgroundmesh in the stan-
dard MPM has limited the nature of boundary conditions (BCs) and
hence the scope of problems to which the MPM can be applied.
Unlike the standard FEM, the boundaries of a physical domain in
the MPM do not necessarily align with the background mesh. This
makes the application of boundary conditions troublesome espe-
cially for tractions (Neumann) and non-zero prescribed displace-
ment (Dirichlet) boundary conditions. Although one can always
adjust the position of the problem domain to achieve boundary-
mesh alignment, this is not convenient or even possible if a regular
background mesh is used, especially when non-zero essential
boundary conditions are applied through multiple load steps.

However, this drawback of the MPM is rarely discussed. The
most common approach to date to introduce tractions into the sys-
tem is via boundary particles which normally are the outer layer of
the material points [28]. Prescribed tractions are carried by the
boundary particles, and then mapped onto the nodes of elements
that contain these particles through shape functions. The downside
of this approach is that tractions are applied not on a surface but
across a boundary band, which increases the thickness of the
actual boundary and leads to errors [28,29]. Some papers have
made the effort to improve the accuracy of this standard approach
with different weighting parameters [30–32], but the accuracy of
these methods is limited by the element size, and mesh refinement
around the boundaries is required to maintain sufficient accuracy.
Alternatively, the moving mesh concept, introduced by Kafaji in
2013 [29], allows Dirichlet boundary conditions to be imposed
directly in the same way as standard finite elements, but only if
the essential boundary does not change shape [33] and moves in
one direction [32]. Another potential solution to the problem of
boundary condition imposition is the dual-grid approach [34],
which uses a string of elements to locate essential boundaries with
respect to the background mesh. Unfortunately, simple 1D tests
have shown that this method is sensitive to the location and ele-
ment size of the boundaries [35] and an improvement to the
method has yet to be reported. A similar problem occurs in the
FEM when using non-conforming meshes and different weighted
interpolation methods have been developed to solve this issue.
For example, Höllig et al. [36–38] introduced a new set of interpo-
lation functions called weighted extended B-splines (Web-splines).
By adopting these Web-splines as the shape functions in the for-
mation of the Galerkin weak form, homogeneous Dirichlet bound-
1 The only exception to this is the Dirichlet boundary conditions that can only be
applied to implicit versions of the material point method. However, the boundary
representation and tracking techniques described in this paper can be applied to all
material point methods as can the method for inhomogeneous Neumann boundary
condition (non-zero tractions) enforcement.
ary conditions can be imposed without generating an additional
mesh for the boundary conditions. Recently Remmerswaal [39]
presented a boundary detection approach for the MPM based on
concepts from the fluid mechanics community. However, the work
was restricted to moving Neumann boundary conditions and did
not include a general method for the imposition of Dirichlet condi-
tions on arbitrary boundaries.

The implicit boundary method (IBM) [33,40–44] enforces
Dirichlet boundary conditions by introducing extra penalty stiff-
ness in the system through ‘‘Dirichlet functions” which approxi-
mate step functions. Implementation of fixed Dirichlet boundary
conditions with problem boundaries parallel to one of the coordi-
nates has been demonstrated in [40–42]. In Zhang and Kumar [43],
formulations to enforce displacements that do not align with the
global coordinate system has been suggested. This method has
recently been applied to the MPM framework and also extended
to include the imposition of ‘‘roller” boundary conditions on
inclined boundaries [33,44]. Another method that uses implicit
equations to apply Dirichlet boundary conditions is the weighted
finite cell method [45,46]. Because this method uses implicit equa-
tions directly instead of step functions, it is capable of enforcing
inhomogeneous Dirichlet boundary conditions exactly without
mesh generation. However, the accuracy of the overall solution lar-
gely depends on the level of the quadtree refinement that is per-
formed around the problem boundaries and it has not been
applied to MPMs.

Despite the development of methods to impose boundary con-
ditions in the standard MPM, a general method for boundary rep-
resentation and boundary condition imposition is still lacking and
this deficiency is resolved by the method proposed in this paper.
The most obvious advantage gained from having defined bound-
aries is that it allows the analyser to visualise the deformed shape
of the problem domain in post-processing. More importantly, gen-
eral boundary conditions, tractions (Neumann boundary condi-
tions) and prescribed displacements (inhomogeneous Dirichlet
boundary conditions) in particular, can be enforced. This paper
provides, for the first time, a general way to track boundaries
and to impose Neumann conditions in all variants of the MPM
and also Dirichlet boundary conditions for implicit implementa-
tions of the MPM. Inspired by Kim and Young [47–49], the method
presented in this paper uses a B-spline interpolation technique to
represent boundaries. B-splines have been adopted as they provide
a general method for the description of complex boundaries whilst
being independent of the background mesh. Tractions are imposed
through direct integration of the traction over the B-spline bound-
ary segment on which it is applied and displacements are pre-
scribed via the IBM.

This paper is organised as follows. The MPM formulation is pre-
sented in Section 2 which is followed by a brief description of the
B-spline boundary representation technique in Section 3. Section 3
also details the imposition of Neumann and Dirichlet boundary
conditions over the B-spline represented boundary. The proposed
method is validated by a number of numerical examples in Sec-
tion 4 and conclusions are drawn in Section 5. Matrix/vector nota-
tion is used to present the formulation, and linear elastic materials
are considered as the focus of the paper is on the boundary condi-
tions. The techniques presented in this paper can also be applied to
non-linear material behaviour and finite deformation mechanics.
2. Material point method formulation

The MPM combines the advantages of both Lagrangian and
Eulerian approaches to solid mechanics. An implicit FEM imple-
mentation is adopted for the standard MPM formulation in this
paper. Although the majority of MPM implementations use an
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explicit approach to solve the governing equations, the implicit
approach has the benefit that it allows larger load steps to be used
in analyses, which reduces the number of load steps required.
Additionally, Guilkey and Weiss [50] have shown that implicit
MPM formulations give more accurate results than explicit meth-
ods for certain classes of problems.

A background mesh, as used in the FEM, is generated at the start
of the simulation. The problem domain is then discretised using
material points which are placed in the relevant elements. The
background mesh should cover the physical domain, however no
requirement is placed on the alignment of the background grid
with the domain; the background mesh can be changed through
the simulation and should be adapted, extended or replaced if
the physical problem exceeds the mesh extent. At the beginning
of each load step, the location of each material point is identified.
Information carried by the material points is mapped to the nodes
where the governing equations are solved.

The focus of this paper is on the imposition of boundary condi-
tions within the MPM. Therefore, we restrict the MPM formulation
to quasi-static analysis with the assumptions of small strains and
linear elastic material behaviour. With these assumptions, the
weak form of equilibrium within an element is given byZ
X

B½ �T De½ � B½ �dV|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ke½ �

de� � ¼
Z
@X

M½ �T tf gdSþ
Z
X

M½ �T f b
n o

dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f extf g

; ð1Þ

where X represents the domain of the element, B½ � is the strain-
displacement matrix, De½ � is the linear elastic stiffness matrix, ke

� �
denotes the element stiffness matrix and de� �

is the element nodal
displacement; @X represents the domain boundary of the element,
M½ � contains the standard finite element shape functions, tf g is the

traction applied to boundary @X; f b
n o

is the body forces and f ext
n o

denotes the external force vector.
The calculation of the stiffness matrix in the MPM is similar

to that used in the standard FEM, except that material points,
regardless of their positions inside the element of interest, along
with their global volumes are used directly to perform the
numerical integration. The element stiffness matrix is then cal-
culated as

ke
� � ffiXnmp

i¼1

B½ �Ti De½ � B½ �iV i; ð2Þ

where nmp is the number of material points inside the element of
interest and Vi is the volume associated with material point i.

Although f ext
n o

in (1) includes both tractions and body forces,

only the calculation of body forces is presented at this stage as
traction boundary conditions are detailed in Section 4 of this paper.
The nodal body forces for an element containing material points
are obtained through

f ext
n o

ffi
Xnmp

i¼1

Mi½ �T f bmpi

n o
Vi; ð3Þ

where f bmpi

n o
is the body force assigned to material point i. The ele-

ment stiffness matrix and the element nodal force vector are assem-
bled into the structure stiffness matrix K½ � and the structure force
vector ff g respectively. These form the linear system

K½ � df g ¼ ff g; ð4Þ

by which the global vector of nodal displacements in the current
loadstep, df g, can be obtained.
After evaluating the nodal displacements, the strain and stress
increments at material points resulting from the current load step
can be computed by

Def g ¼ B½ � de� �
and Drf g ¼ De½ � Def g: ð5Þ

Then the positions of the material points are updated. For mate-
rial point i within element e, its displacement increment over the
loadstep, Dump

� �
, is found by mapping the nodal displacement

de� �
to the particle through

Dump
� � ¼ Mi½ � de� �

: ð6Þ
Global coordinates of the material points are then updated as

xmp
� �

nþ1 ¼ xmp
� �

n þ Dump
� �

; ð7Þ
where n represents the number of load steps. The total displace-
ment of a material point, ump

� �
, can be obtained by summing the

incremental displacement, Dump
� �

, over the n loadsteps. The strains
and the stresses are updated in the same fashion at the end of the
load step by using the strain and stress increments respectively,
that is

enþ1f g ¼ enf g þ Def g and rnþ1f g ¼ rnf g þ Drf g: ð8Þ
In order to have a stationary background mesh throughout the

simulation, the positions of the mesh nodes are reset at the end of
each load step. This leaves the deformed problem domain being
represented by the new positions of the material points within
the original background mesh.

The mapping of spatial variables from material points to
grid nodes is a key aspect of the MPM. In this paper we adopt
the standard mapping procedure using the basis functions of
the background grid. As discussed by Sulsky and Gong [51] this
is a special case of Shepard function interpolation and, in gen-
eral, is only exact for constant functions and this mapping can
limit the convergence rate of the method. However, the focus
of this paper is on the imposition of boundary conditions in
the MPM and not on the accuracy of the material point to grid
mapping.

3. B-spline boundary conditions

As mentioned in the previous sections, a key feature that is
missing from the standard MPM is the capacity to apply traction
boundary conditions and this requires a method to track the evolv-
ing boundary of the physical domain. A local cubic B-spline inter-
polation method is chosen here to achieve the boundary
representation and tracking. Full details of the construction of B-
spline curves and the local cubic method can be found in [52,53];
only the essential equations are reviewed here.

3.1. B-spline basics

A pth-degree B-spline curve is defined using a vector with a
sequence of non-decreasing real numbers (the knots)

Nf g ¼ 0; . . . ;0|fflfflfflffl{zfflfflfflffl}
pþ1

; npþ1; . . . ; nr�p�1;1; . . . ;1|fflfflfflffl{zfflfflfflffl}
pþ1

8><
>:

9>=
>;; ð9Þ

where r þ 1 is number of knots and n is the local coordinate within
the knot vector. Here we adopt an open knot vector, with pþ 1
repeated knots at the beginning and the end (normally taking the
value of 0 and 1 respectively) of the knot vector, which ensures
interpolation with the initial and final control points. Combining
this knot vector with a set of n control points, Pif g, a B-spline curve
can be expressed as
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C nð Þf g ¼
Xn
i¼0

Ni;p nð Þ Pif g; ð10Þ

where Ni;p nð Þ are the pth-degree B-spline basis functions defined
recursively; for p ¼ 0

Ni;0 nð Þ ¼ 1 if ni 6 n < niþ1

0 otherwise

�
ð11Þ

and for p > 0

Ni;p nð Þ ¼ n� ni
niþp � ni

Ni;p�1 nð Þ þ niþpþ1 � n

niþpþ1 � niþ1
Niþ1;p�1 nð Þ: ð12Þ
3.2. Local cubic interpolation for boundary representation

In order to impose boundary conditions in the MPM we first
need to establish a B-spline boundary representation. The first step
in developing a boundary representation technique for the stan-
dard MPM is to identify a set of boundary material points. These
can be additional boundary tracking points2 inserted along the
desired boundaries or simply the outer layer of material points for
the physical domain. Spline curve segments are then fitted between
adjacent sampling points to calculate the control points. Finally, a
suitable knot vector is determined and the overall cubic B-spline
curve is formed by (10). It should be highlighted that the calculated
control points are not convected with the physical deformation,
instead they are recalculated based on the deformed material point
coordinates at the start of each load or time step.

The reasons for choosing the local cubic interpolation method
relate to the nature of the fitting and the order of the spline. In con-
trast to an approximation method which only gives an estimated
fitting to the sampling points, the interpolation approach passes
through the sampling points precisely. This means there is greater
control on the B-spline represented boundaries and ensures that
the spline passes through key boundary points. Although a global
fitting [52] results in a curve with higher continuity, it is incapable
of reproducing sharp corners which are important features in engi-
neering problems. Local fitting, on the other hand, constructs
curves in a piecewise fashion. Only local data are used at each step,
so a fluctuation in data only affects the curve locally. More impor-
tantly, sharp corners can be handled properly by the local method.
In terms of the spline order, the local cubic interpolation has a
more straightforward formulation than the local quadratic interpo-
lation [52]; no special cases or angle calculations are involved in
the former method. Although the local quadratic interpolation is
more robust when a large number of sampling points are used
[53], the inability of this method to handle more complicated
shapes that include sharp corners means that the local cubic inter-
polation method is adopted here. It should also be noted that
changing the local B-spline fitting technique does not impact on
the rest of the algorithm presented in this paper and a different
B-Spline order could be adopted if appropriate.

3.3. Intersection of boundaries and the background mesh

Having described a method of boundary representation in the
previous subsection, the issue of enforcing boundary conditions
can now be discussed. Tractions are applied by integrating over
the B-spline represented boundary directly, and prescribed dis-
placements are imposed with the IBM [33]. In order to minimise
numerical quadrature errors, integration is performed over the
boundaries element by element. Therefore, a search algorithm is
2 Boundary tracking points are essential material points with zero volume (or
mass) so that they do not contribute to the stiffness or internal force calculations.
required to determine the intersection points of the boundary
and the mesh. To find the values of n at the points where the inter-
polated boundary intersects with the background mesh, a search
algorithm based on the Newton-Raphson method is adopted. As
the focus of this paper is the imposition of boundary conditions,
the search algorithm is not detailed here for the sake of brevity
(see Bing [53] for details of the search algorithm).

3.4. Neumann boundary conditions

With a robust boundary definition using B-splines, the applica-
tion of traction to a boundary is straightforward. Recall that

f t
n o

¼
Z
@X

M½ �T tf gdS; ð13Þ

where f t
n o

is the resultant nodal force due to traction, M½ � contains
the standard finite element shape functions and tf g is the pre-
scribed traction.

A pth-degree B-spline curve can be integrated numerically by
using p� 1ð Þth order Gauss quadrature [54]. The local coordinate
of 1D Gauss quadrature has a range of �1;1½ �, whereas, the local
coordinate of a B-spline curve has positive values only, therefore
mapping between these two coordinate systems is required (in
addition to the standard map between the local and global coor-
dinates, or physical space). To allow for this, a separate space,
called the parent domain [55], is introduced over which the
numerical quadrature is conducted. Fig. 1 shows an illustration
of the three spaces: the physical space, xf g, the parametric
space, n, and the parent domain, ~n. In the physical space, the
boundary geometry is defined in global coordinates. The para-
metric space contains the knots (local coordinates) which run
along the curve from one end to the other. The parent domain
is simply a local system where ~n 2 �1;1½ � on which numerical
integration is performed.

To perform the integration, the desired B-spline curve segment
is pulled back from the physical space to the parametric space. In
other words, the local coordinates (nj and njþ1) of the start and
the end point of the segment are identified by using their global
coordinates. A linear transformation between the parent domain,
~n 2 �1;1½ �, and the parametric space, [nj; njþ1], is adopted to map
the locations of Gauss points between these two spaces. By inspec-
tion, we can obtain the following link between the parent and
parametric spaces

n ¼ nj þ
~nþ 1
� 	

njþ1 � nj

 �
2

: ð14Þ

As we are applying Gauss quadrature to integrate (13), a Jaco-
bian mapping is required between the parent and physical spaces
to map the Gauss quadrature lengths, which are defined over the
local coordinates ~n 2 �1;1½ �, to the physical space. Due to the use
of a two local coordinate systems, the Jacobian contains two
components

JBf g ¼ dC

d~n

� �
¼ dC

dn

� �
dn

d~n
; ð15Þ

where

dn

d~n
¼ njþ1 � nj

2
: ð16Þ

Applying Gauss quadrature to (13), we obtain

f t
n o

ffi
Xngp
i¼1

Mi½ �T tf gk JBf gikwi; ð17Þ



Fig. 1. Physical and parametric spaces for numerical integration of boundary conditions.

Fig. 2. D-function variation as a function of distance from the boundary, /, where
the physical domain resides in the region / > 0.
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where ngp is the number of Gauss points used to integrate over the
segment within the background grid element, wi is the weight asso-
ciated with Gauss point i; k �ð Þk denotes the L2 norm of �ð Þ and in
this case the L2 norm of the Jacobian, JBf g, which maps the length
of the boundary between the parent and physical spaces.

3.5. Dirichlet boundary conditions

The methodology behind the IBM [40–42] is that essential
boundary conditions are enforced by introducing extra stiffness
to the system via the use of Dirichlet functions (D-functions) which
constrain displacement on essential boundaries.

The approximation for displacements used in the IBM is

uf g ¼ D½ � M½ � de� �þ uaf g; ð18Þ

where uaf g contains the essential boundary conditions and D½ � is a
diagonal matrix that contains the D-functions, i.e. D½ � ¼ diag Dið Þ
i ¼ 1; . . . ; ndð Þ and nd is the dimensionality. Deriving the weak form
of equilibrium by using (18) alters the element stiffness matrix ke

� �
,

more specifically, the entries within the conventional strain-
displacement matrix, B½ �. For 2D plane stress and strain problems
using the IBM, the strain displacement matrix is a 3� 2nen matrix
that takes the following form, with k ¼ 1; . . . ;nen and nen is the num-
ber of nodes per element,

Bk

� � ¼
D1

@Mk
@x þMk

@D1
@x 0

0 D2
@Mk
@y þMk

@D2
@y

D1
@Mk
@y þMk

@D1
@y D2

@Mk
@x þMk

@D2
@x

2
664

3
775; ð19Þ

where the bar has been included to distinguish the matrix from the
conventional strain-displacement matrix, B½ �. Examples of suitable
D-functions can be found in [33,40,41]. Here we follow the
approach of Cortis et al. [33] and adopt a D-function of the form

D /ð Þ ¼
0 / < 0

1� 1� /
d


 �2
0 6 / 6 d

1 / > d:

8><
>: ð20Þ

An illustration of the variation of D /ð Þ over the bandwidth is
shown in Fig. 2. This D-function provides an approximation of a
step function using a signed distance function / which has a value
of zero on the boundary of interest, and / < 0 indicates the exterior
whereas / > 0 implies the interior of the problem domain (see
Fig. 3). When / < 0;D /ð Þ ¼ 0 and no stiffness integration is per-
formed over the mesh that is outside of the domain as no material
points should be outside of the domain. When / > d;D /ð Þ ¼ 1
which allows B½ � to return to its regular form.

The stiffness matrix for the IBM can be obtained by decompos-
ing B

� �
into two matrices ( B1½ � which contains the gradient of the
shape functions and B2½ � which contains the gradient of the
D-functions), which allows the stiffness matrix be expanded as

ke
� � ffi Z

X
B1½ �T De½ � B1½ �dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ke1½ �

þ
Z
X

B1½ �T De½ � B2½ �dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ke2½ �

þ
Z
X

B2½ �T De½ � B1½ �dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ke2½ �T

þ
Z
X

B2½ �T De½ � B2½ �dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ke3½ �

; ð21Þ

where for a single node, k, of an element containing an implicit
boundary the B1½ � and B2½ � matrices are given by

B1k½ � ¼

D1
@Mk
@x 0

0 D2
@Mk
@y

D1
@Mk
@y D2

@Mk
@x

2
66664

3
77775 ¼

D1 0 0 0

0 D2 0 0

0 0 D1 D2

2
664

3
775

@Mk
@x 0

0 @Mk
@y

@Mk
@y 0

0 @Mk
@x

2
666666664

3
777777775
¼ D1
� �

B1k
� �

;

ð22Þ

and

B2k½ � ¼
Mk

@D1
@x 0

0 Mk
@D2
@y

Mk
@D1
@y Mk

@D2
@x

2
664

3
775 ¼

@D1
@x 0

0 @D1
@y

@D1
@y

@D1
@x

2
664

3
775 Mk 0

0 Mk


 �
¼ D2
� �

B2k
� �

:

ð23Þ
ke1
� �

can be viewed as the regular stiffness matrix when / > d and
ke2
� �

and ke3
� �

contribute additional stiffness terms that only exist
if the element contains an essential boundary. As proposed in
[33], ke2

� �
and ke3

� �
can be determined by using a local coordinate

system based on the tangent and the normal of the boundary, i.e.
t;nð Þ, as



Fig. 3. Implicit boundary coordinate system and integration scheme.
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ke2
� � ¼ Z

S
B1½ �T De½ � B2½ �dS

¼
Z
t

B1
� �T Z d

0
D1
� �

De½ � D2
� �

JT½ �dn
� �

B2
� �

dt; ð24Þ

ke3
� � ¼ Z

S
B2½ �T De½ � B2½ �dS

¼
Z
t

B2
� �T Z d

0
JT½ �T D2
� �

De½ � D2
� �

JT½ �dn
� �

B2
� �

dt; ð25Þ

where JT½ � is a transformation matrix that provides the mapping
between t;nð Þ and x; yð Þ. Because D1

� �
only contains the D-

functions which are invariant with respect to the coordinate system
while D2

� �
is populated by the derivatives of the D-functions with

respect to x; yð Þ, and the latter has a significantly larger value than
the former, JT½ � is only applied to transform D2

� �
. The transformation

matrix has been shown in [33] to be

JT½ � ¼
@n
@x

@n
@y

@t
@x

@t
@y

" #
¼ cos h sin h

� sin h cos h


 �
; ð26Þ

where h, as indicated in Fig. 3a, is the angle required to align direc-
tion n with x and t with y.

Roller boundary conditions, permitting the material to have free
movement in the tangential direction, requires D2 to have a con-
stant value of 1 throughout the band, while D1 depends on (20).

Incorporating the IBMwith the B-spline represented boundaries
only requires a separate calculation of ke2

� �
and ke3

� �
in addition to

ke1
� �

. In most of the examples shown later, the additional stiffness
matrices are evaluated by using the Gauss quadrature scheme
shown in Fig. 3b for each element. The Gauss points that are placed
on the boundary are responsible for the outer integral of (24) and
(25) and the Gauss points that are placed across the band are used
to perform the inner integral. In this paper we adopt two-point
Gauss quadrature in the tangential direction and three-point
quadrature in the normal direction; giving a total of six Gauss
points for each boundary segment within each element (see
Fig. 3b). For boundaries with high curvature it may be necessary
to increase the quadrature order in the tangential direction.

Applying Gauss quadrature to (24) and (25), ke2
� �

and ke3
� �

can be
approximated as

ke2
� � ffiXngp1

i¼1

B1
� �T Xngp2

j¼1

D1
� �T

De½ � D2
� �

JT½ � det JD½ �j
� 	

wj

 !
B2
� �

det JB½ �i

 �

wi; ð27Þ
and

ke3
� � ffiXngp1

i¼1

B2
� �T Xngp2

j¼1

JT½ �T D2
� �T

De½ � D2
� �

JT½ � det JD½ �j
� 	

wj

 !
B2
� �

det JB½ �i

 �

wi;

ð28Þ
respectively. JT½ � is the transformation matrix formulated by (26);
JD½ � provides the mapping between the implicit boundary coordi-
nate n and the Gauss quadrature coordinate; JB½ � is the link between
the global coordinates and the boundary integration domain (15);w
indicates the weights associated with the Gauss points, and ngp1 and
ngp2 are the number of Gauss points along the boundary and across
the band respectively.

One thing to note here is that in order to compute the angle h
within JT½ �, the inward normal, nf g, of the B-spline boundary at
the Gauss point positions is required. nf g of a point with local coor-
dinate n and global coordinates C nð Þf g ¼ Cx;Cy

� �
on a B-spline

curve takes the following form [56],

nf g ¼ nx

ny

� �
with nx ¼ 1

J nð Þ
dCy

dn
; ny ¼ �1

J nð Þ
dCx

dn
: ð29Þ

Computation of the derivatives of the B-spline curve with
respect to the knot coordinate, n, in (29)2 and (29)3 can be found
in [52], and the Jacobian transformation J nð Þ is defined as

J nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dCx

dn

� �2

þ dCy

dn

� �2
s

: ð30Þ
3.5.1. Inhomogeneous Dirichlet boundary conditions
Inhomogeneous (or non-zero) Dirichlet boundary conditions

introduce an additional term into the external force vector [41,42]

f ext
n o

¼
Z
@X

M½ �T tf gdSþ
Z
X

M½ �T f b
n o

dV �
Z
X

B
� �T raf gdV ; ð31Þ

where raf g ¼ De½ � eaf g is the stress associated with the inhomoge-
neous Dirichlet boundary condition, uaf g, which is imposed through
nodal displacements, da� �

; eaf g ¼ B½ � da� �
is the strain associated

with Dirichlet boundary condition and B½ � is the conventional
strain-displacement matrix. This additional inhomogeneous Dirich-
let force can be expressed as

f d
n o

¼
Z
X

B
� �T raf gdV ¼

Z
X

B
� �T

De½ � B½ � da� �
dV ð32Þ

and expanding (32) gives
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f d
n o

¼
Z
X

B1½ � þ B2½ �½ �T De½ � B½ � da� �
dV ; ð33Þ

which can be evaluated in a similar way to the stiffness integrals
(27) and (28). An important aspect of imposing inhomogeneous
Dirichlet boundary conditions is the determination of the nodal dis-
placements, da� �

. It is straightforward to determine the required
displacements if the entire boundary segment is subjected to the
same non-zero boundary condition.3 However, in the case where
the required uaf g varies along the boundary, an error minimisation
technique must be adopted to globally minimise the difference
between the required displacement solution along the boundary,
uaf g, and the finite element approximation, uh

� � ¼ M½ � da� �
. In this

paper we minimise the following residual integrated over the B-
spline boundaryZ
@X

k Rf gkdS ¼
Z
@X

k uh
� �� uaf gkdS; ð34Þ

using a least squares weighted residual techniqueZ
@X

@R
@da


 �
Rf gdS ¼

Z
@X

M½ �T M½ � da� �� uaf g� �
dS ¼ 0f g: ð35Þ

Rearranging in terms of the unknown nodal displacements,
da� �

, gives

da� � ¼
Z
@X

M½ �T M½ �dS

 ��1 Z

@X
M½ �T uaf gdS

� �
; ð36Þ

where the integrals can be approximated using Gauss quadrature.
Note that da� �

must be evaluated globally, not on an element by
element basis, in order to minimise the residual across the entire
boundary. This requires the integrals in (36) to be assembled into
a global matrix and vector, respectively.

4. Numerical examples

This section will present a series of numerical examples to val-
idate the method of imposing boundary conditions described in the
previous section. Body forces are not included in the analyses as
the focus of this paper is on the imposition of Neumann and Dirich-
let boundary conditions.

The performance of the methods is measured by errors between
the numerical results and the analytical solutions. Relative stress
error Rri

at material point i is computed as

Rri
¼ j rh

i � ra
i


 �j
jra

i j
; ð37Þ

where rh and ra are one component of the numerical and analytical
stresses, and j �ð Þj is the absolute value of �ð Þ. Similarly, error of dis-
placements at a material point can be calculated as

Rdi ¼
j dh

i � da
i

� 	
j

jda
i j

; ð38Þ

where dh and da are one component of the numerical and analytical
displacements, respectively. Note that u and v are used later to indi-
cate horizontal and vertical displacements respectively. Absolute
errors are used when the analytical results contain zero values in
the domain, which are

Ari
¼ j rh

i � ra
i


 �j and Adi ¼ j dh
i � da

i

� 	
j: ð39Þ
3 In that case the essential boundary displacements of the nodes associated with
the elements containing the boundary are simply set to the required value.
In order to have an overview of the performance, global errors
over the problem domains are used. Measures at material point i
are weighted by the global volume of the material point, Vgi , before
summing together and then the error summation is divided by the
total volume of the problem domain, VG ¼Pnmp

i¼1Vgi . For example,
the global error in a particular stress component is calculated as

Rr ¼ 1
VG

Xnmp

i¼1

Rri
Vgi : ð40Þ

Four numerical examples are presented in the following
subsections:

1. compression of a 2D square: to validate the imposition of
Dirichlet boundary condition for boundaries both aligned with
and inclined to the background mesh. The example covers both
roller displacement boundary conditions and non-zero tractions
and investigates convergence with: background element size,
number of material points and the boundary width, d;

2. cantilever beam under an applied traction: to demonstrate the
imposition of Neumann (traction) boundary conditions over
an evolving boundary;

3. pressurised thick-walled cylinder: to validate the imposition of
Neumann boundary conditions over a curved boundary and to
demonstrate convergence with: background element size and
number of material points; and

4. circular hole in an infinite plate: to validate the imposition of
complex Neumann and inhomogeneous Dirichlet boundary
conditions, involving spatially-varying non-normal tractions,
and displacements, and demonstrate convergence with back-
ground element size.

4.1. Compression of a 2D square domain

The first numerical example is the one-dimensional compres-
sion of a 2D plane strain square domain, as shown in Fig. 4a. The
material had a Young’s modulus of E ¼ 1 MPa and Poisson’s ratio
of m ¼ 0:25. Three sides of the square were subjected to roller
boundary conditions and a constant traction of 8 kPa imposed per-
pendicular to the fourth edge over a single load step. This example
has been included to investigate the errors and convergence of the
proposal B-spline boundary method under different combinations
of boundary conditions, namely:

4.1.1. physical domain aligned with the background grid (0� -
model, Fig. 4a): conventional Dirichlet roller boundary con-
ditions on three sides and B-spline applied traction on the
fourth; and

4.1.2. implicit homogeneous Dirichlet boundary conditions to
impose the roller boundary conditions on three sides of
the problem domain and B-spline applied normal traction
on the fourth boundary.

This is a constant stress problem and the stress over the whole
domain should be equal to

rxx ryy rxy
� �T ¼ 8� 3�1 1 0

n oT
kPa ð41Þ

with the strain in the y-direction of eyy ¼ 6:67� 10�3 and zero
strain in the other directions.

4.1.1. Conventional Dirichlet and B-spline Neumann boundary
conditions

Fig. 5a shows the initial discretisation of the problem with a
domain size of 1 m by 1 m. A 2 by 2 background mesh of quadrilat-
eral elements with h ¼ 0:5 m and 4 material points per element



Fig. 4. Uniaxial compression of a square.

264 Y. Bing et al. / Computers and Structures 212 (2019) 257–274
was used to model the domain. These material points were posi-
tioned such that they had the same distance, a ¼ h=2, between
the adjacent material points and a=2 between the mesh and mate-
rial points that were located closest to the mesh. All boundaries
were coincident with the mesh. The roller boundary conditions
were imposed directly on the background mesh and 5 zero-
volume boundary material points were inserted to form a B-
spline description of the boundary, on which the traction was
applied (marked by the dot-dash line in Fig. 5a).

The average errors in Rrxx ;Rryy and Av all achieved machine pre-

cision (order of 10�16 for the stress errors and 10�18 for the dis-
placements, despite only using 16 material points), indicating
that the traction boundary conditions have been implemented
correctly.
Fig. 5. Discretisation of th

Fig. 6. Implicit homogeneous Dirichlet with B-spline Neumann boundary condition
4.1.2. Implicit homogeneous Dirichlet and B-spline Neumann
boundary conditions

As this is a constant stress problem, the size of the problem
domain does not have an impact on the comparison of results. To
test the B-spline based IBM, the problem boundaries were modi-
fied to coincide with the outer layer of the material points, as
shown in Fig. 5b. Due to the intersection of the boundary with
the material points, volumes of the material points on the bound-
aries were adjusted accordingly to maintain the correct overall vol-
ume. That is, material points at the domain corners had their
volumes set to a quarter of their original volumes, and the volumes
of the other boundary material points were halved.

Convergence plots of the average stress and displacement errors
with respect to the number of material points in each direction per
element with h ¼ 0:5 m are shown in Fig. 6. Results are shown for
e 2D square domain.

s for 2D compression (0� model): convergence with material points/element.



Fig. 7. Implicit homogeneous Dirichlet with B-spline Neumann boundary conditions for 2D compression (0� model): 1=d convergence with 322 material points/element.

Table 1
Implicit homogeneous Dirichlet with B-spline Neumann boundary conditions for 2D
compression: global relative errors.

Model 45� 60�

Rv 4:84� 10�7 4:90� 10�7

Rryy 9:68� 10�9 7:25� 10�9
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both the case where the original material point volumes are used
and for where the volumes are adjusted as described above. For
stress errors, adjusting the material point volumes increases the
convergence rate as the discretised domain maintains the correct
volume. The convergence rates of the displacement errors are the
same but the simulation with the correct volume starts at, and
maintains, a lower overall error.

Fig. 7a and b illustrates the convergence rates of stress and dis-
placement errors with respect to d for the 0� model with 322 mate-
rial points per element. Errors of rxx and ryy converge to a value of

8:18� 10�5, and d < 10�6 m does not reduce the stress errors. Au

and Av reach their minimum with a value of 1:20� 10�5 when
d ¼ 10�2 m and 1:14� 10�15 when d ¼ 10�9 m respectively. Verti-
cal displacement error settles to 1:64� 10�5 for d < 10�5 m;
whereas, horizontal displacement error starts increasing after the
minimum because the impact on the minor changes to the condi-
tioning of the stiffness matrix on results that are close to machine
precision. Conducting the same analysis with various numbers of
material points per element found that to achieve the minimum
stresses errors, the optimum bandwidth needs to be reduced when
the number of material points increases. As for displacement
errors, there was little variation in the optimum bandwidth when
the number of material points was changed. Therefore, consistent
with the work of Cortis et al. [33], a d=h value of the order of
10�6 is recommended.

To test the ability of the B-spline based IBM on modelling
inclined boundaries, the problems shown in Fig. 4b and c were
analysed using the discretisation of Cortis et al. [33]. In this case
the problem domain was 100 mm by 100 mm and the background
mesh consisted of 142;h ¼ 10 mm elements with one material
point per element in the physical domain. Additional zero-
volume boundary points were introduced along the boundaries
to form B-spline descriptions and the roller boundary conditions
were imposed using the IBM. Global relative errors of displacement
v and stress ryy for both models using the new discretisation are
shown in Table 1. Error distributions illustrated in Fig. 8 indicate
that both roller and traction boundary conditions have been
applied successfully on the inclined boundaries. Consistent with
the findings of Cortis et al. [33], the larger errors are located in
partially-filled elements where errors are introduced through
non-optimum placement of the material points in terms of the
stiffness integration.

Convergence analyses of the displacement and stress errors
with respect to the bandwidth, d, for both rotated models were
performed and the results are shown in Fig. 9. Average stress error,
Rryy , of the 45� model reaches its minimum when d ¼ 10�6 mm;

whereas, Rv reaches its minimum with d ¼ 10�5 mm. The same
pattern also occurs for the 60� model: the optimum bandwidth
for ryy is 10�6 mm and that for v is 10�5 mm. All errors converge
at relatively the same rate towards their minimum and then
diverge after the optimum bandwidth. The divergence shown is
due to the increasing condition number of the stiffness matrix as
the bandwidth reduces. Therefore, in accordance with the values
suggested in Cortis et al. [33] and with the results from the previ-
ous section, a relative bandwidth of approximately d=h ¼ 10�6 is
recommended.
4.2. Cantilever beam with applied traction

The second example is of a plane strain cantilever beam sub-
jected to a uniform traction that remains perpendicular to the
top surface of the beam throughout the analysis (as shown in
Fig. 10). There is no analytical solution for this problem but it is
included to demonstrate the boundary representation abilities of
the proposed method. In particular, this example includes a per-
pendicular traction on an evolving boundary. The cantilever beam
had a length of 10 m and a depth of 2 m and the material had a
Young’s modulus of E ¼ 1 MPa and Poisson’s ratio of m ¼ 0:25.
The left hand side boundary was fixed at the middle and rollers
above and below. A constant pressure of 1500 Pa was applied along
the top boundary.

A background mesh with 1.5 m by 1.5 m elements was used,
and the problem domain was discretised using 896 uniformly dis-
tributed material points (arranged in a regular 56 by 16 grid as
shown in Fig. 11a). The material points were positioned such that
none of the boundaries coincided with the mesh; the x and y coor-
dinates of the material points were perturbed by 0:25 and 0:50
from the background mesh position. The outer layer of the material
points were identified as the problem boundaries which were
approximated using B-splines. boundary conditions on the left
boundary ware applied by the B-spline based IBM and the pressure
applied through 5 equal load steps. The initial discretisation and
the final deformed cantilever beam are shown in Fig. 11a. The



Fig. 8. Implicit homogeneous Dirichlet with B-spline Neumann boundary conditions for 2D compression: error distribution.

Fig. 9. Implicit homogeneous Dirichlet with B-spline Neumann boundary conditions for 2D compression: error convergence plots vs. bandwidth 1=d.

Fig. 10. Cantilever beam geometry.
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advantage of this approach is that boundaries can be tracked after
each load step without plotting out all the material points (see
Fig. 11b) and that tractions can be applied to the deformed
B-spline boundary over a number of loadsteps. Fig. 11b also shows
that the deformed shape has been successfully captured by the B-
spline approximation.

The material point method presented in this paper makes the
assumption of infinitesimal strains, resulting in an incrementally
linear method but global response that is non-linear due to updat-
ing the position of the material points at the end of each linear load
step. Therefore it is not possible to compare the results of this anal-
ysis with a finite deformation solution of this problem. Instead, a
convergence test on the displacement at the centre of the beam
tip was carried out by performing both h-refinement of the
background mesh and increasing the number of material points



Fig. 11. Cantilever beam deformation.

Fig. 12. Cantilever beam: convergence of mid-tip displacement with (a) increasing numbers of material points for h ¼ 3:0;1:5;0:75 and 0:375 m and (b) convergence with h
refinement..

Fig. 13. Cantilever beam: deformed material point positions coloured according to
rxx for h ¼ 0:75 m, 28� 8 material points and a surface traction of 300 Pa.
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representing the problem domain. As shown in Fig. 12a, for all four
mesh configurations, the mid-tip displacement converges with
increasing numbers of material points.4 However, it is important
to note that increasing the number of material points reduces the
errors associated with integrating the internal force and stiffness
of the material and, unlike h refinement with optimally integrated
finite elements (via Gauss-Legendre quadrature, for example),
monotonic convergence is not guaranteed, as shown by the
h ¼ 1:5 m analyses.

As there is no analytical solution to this problem it is only pos-
sible to demonstrate the convergence of the method by comparing
the material point tip displacement with a reference solution. In
this case the reference solution was determined through analysing
the problem with a bi-linear four noded quadrilateral finite ele-
ment mesh with h ¼ 2�7 m (327,680 elements arranged in a regu-
lar 1280 � 256 grid). The elements were integrated using 2 by 2
Gauss quadrature and the traction was imposed directly on the
upper boundary of the elements. The mid-tip vertical downwards
displacement from this analysis was 2.8220 m, which was taken
as the reference value in order to determine the convergence of
the material point analysis which is shown in Fig. 12b. The material
point analyses are clearly converging towards the reference finite
element solution. Note that, due to the incrementally linear nature
of the formulation, the final value of displacement will depend on
the number of load steps used to analyse the problem.

To further demonstrate the ability of the method to applied
Neumann boundary conditions to problems with significant
4 Note that for the h ¼ 0:375 m mesh, 56 material points (arranged in a 14 by 4
grid) is insufficient to analyse the problem, as shown by the grey-dashed circle in
Fig. 12a.
deformation, Fig. 13 shows the deformed material point positions
coloured according to rxx for h ¼ 0:75 m and 28� 8 material
points. In this case the surface traction was increased to 3000 Pa
and applied over 10 loadsteps and the mid-tip displacement at
the end of the analysis was 5:09 m.

4.3. Internally pressurised thick-walled cylinder

The next example is an internally pressurised plane strain thick-
walled cylinder. Only a quarter of the cross-section was analysed
due to symmetry; the problem domain and boundary conditions
are shown in Fig. 14a where ri ¼ 1 m and ro ¼ 5 m. The material
had a Young’s modulus of E ¼ 1 MPa and Poisson’s ratio of
m ¼ 0:25. Using the analytical solution [57], it was calculated that
an internal pressure of 0:756 MPa would double the inner radius,



Fig. 14. Thick-walled cylinder: geometry and discretisation.

Fig. 15. Thick-walled cylinder: convergence and deformation.
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and this pressure was then applied in the simulation in a single
load step.

To discretise the cylinder, the same number of material points
were placed uniformly along the circumferences and across the
radii on a 6 m by 6 m background mesh with 1 m by 1 m elements.
Fig. 14b illustrates the discretisation with 102 material points.
Boundaries were approximated by interpolating the outer layer
of material points using cubic B-splines.

Average relative errors of the deformed inner and outer radii are
used to demonstrate convergence. Numerical values of the
deformed inner and the outer radii were found by sampling at
1000 points along the deformed B-spline curve and calculating
the distance between each point and the origin. Starting with 82

material points, the average relative error of both the inner and
outer radii converge when the number of material points was
increased (see Fig. 15a). However, the inner radius shows an error
almost two orders of magnitude higher than that seen at the outer
radius. This is because of the higher curvature within the inner ele-
ments which is not captured by the linear basis of the background
mesh, whereas, the outer boundary has lower curvature within



Fig. 16. Infinite plate with a circular hole and B-spline outer boundary: initial problem definition and deformed material point positions and outer boundary for h ¼ 0:125 m
and 22 material points per element.

Fig. 17. Infinite plate with a circular hole (Neumann): convergence under uniform
h-refinement with 82 material points per element.
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each element. Support for this explanation is provided in Fig. 15b
and c which show the original and deformed inner and outer
boundaries with h ¼ 1 m and h ¼ 0:25 m, respectively (1282 mate-
rial points were used for both analyses). It is visually clear that a
more accurate simulation of the deformation at the inner radius
is achieved with a finer mesh.

To quantify the errors in the analyses, a convergence study of
the inner radius error with decreasing h was performed and the
results are shown in Fig. 15d. 5122 material points were used for
all of the analyses. This number of material points was chosen as
further increasing the number of material points only reduced
the error by less than 1% with the same mesh. Enforcing the roller
boundary conditions using the B-spline based IBM results in a con-
vergence rate that is very similar to that using the conventional
boundary conditions imposed directly on the background mesh.
The reason behind this high convergence rate could be that the
high curvature of the inner radius was represented more accu-
rately as the mesh was refined.
5 For plane strain analysis k ¼ 3� 4m.
4.4. Infinite plate with a circular hole under far field stress

The final example is that of a plane stress infinite plate with a
circular hole under a far field stress in the x-direction of
S ¼ 10 MPa applied in a single load step. Due to symmetry only
one quarter of the plate was analysed and the extent of the plate
was truncated by a B-spline boundary defined using 11 zero-
volume material points with the following global coordinates

xp
� �T
yp
� �T
" #

¼ 0:00 0:10 0:35 0:60 0:73 1:00 1:50 1:75 2:00 1:78 1:50
1:50 1:75 1:95 1:80 1:31 1:15 1:35 1:30 0:75 0:21 0:00


 �
m:

The circular hole at the centre of the plate had a radius of
ri ¼ 0:5 m, and the material used to model this problem had a
Young’s modulus of E ¼ 10 MPa and Poisson’s ratio of m ¼ 0:2.
The problem geometry along with the boundary conditions are
shown on a regular finite element grid with h ¼ 0:125 m in the left
hand subfigure of Fig. 16. In all cases the roller boundary condi-
tions at x ¼ 0 and y ¼ 0 were applied through the B-spline based
IBM and the implicit boundary bandwidth, d, was set to 10�6h.
The boundary material points are shown by the grey-filled circles
and the standard material points, arranged in a 2-by-2 grid, are
shown by the black dots. The figure also shows the control points
(white-filled squares) used to construct the B-spline outer bound-
ary. The material points were uniformly distributed within each
element any material point with a distance from the origin less
than the circle’s radius, i.e. 0.5 m, were deleted. Material points
outside the outer B-spline boundary were also removed from the
analysis. The right hand subfigure of Fig. 16 shows the original
and deformed outer boundary along with the original and
deformed material point positions, shown by light and dark grey
points, respectively. A 2-by-2 grid of material points is only shown
for illustrative purposes; all of the analyses reported in this section
used 82 material points per element.

The analytical displacement solution [57] for this problem is

u ¼ Sri
8l

r
ri

kþ 1ð Þ cos bð Þ þ 2ri
r

1þ kð Þ cos bð Þ þ cos 3bð Þð Þ � 2r3i
r3

cos 3bð Þ
� �

ð42Þ
and

v ¼ Sri
8l

r
ri

k� 3ð Þ sin bð Þ þ 2ri
r

1� kð Þ sin bð Þ þ sin 3bð Þð Þ � 2r3i
r3

sin 3bð Þ
� �

ð43Þ
where l ¼ E= 2 1þ mð Þð Þ and k ¼ 3� mð Þ= 1þ mð Þ for plane stress
analysis.5 r is the distance from the centre of the circle to a point
on the plate, b is the angle between r and the positive x-direction
as shown in Fig. 16, ri is the radius of the circular hole and S is the



Fig. 18. Infinite plate with a circular hole (Neumann): original material point positions coloured according to rxy for h ¼ 2�3;2�4;2�5 and 2�6 m with 82 material points per
element.

270 Y. Bing et al. / Computers and Structures 212 (2019) 257–274
far field normal stress acting in the x-direction. The analytical stress
solution [57] described in the Cartesian coordinate system is given
by

rxx ¼ S� S
r2i
r2

� �
3
2
cos 2bð Þ þ cos 4bð Þ

� �
þ S

3r4i
2r4

� �
cos 4bð Þ; ð44Þ

ryy ¼ �S
r2i
r2

� �
1
2
cos 2bð Þ þ cos 4bð Þ

� �
� S

3r4i
2r4

� �
cos 4bð Þ and ð45Þ

rxy ¼ �S
r2i
r2

� �
1
2
sin 2bð Þ þ sin 4bð Þ

� �
þ S

3r4i
2r4

� �
sin 4bð Þ; ð46Þ

The problem was analysed using two different boundary condi-
tions on the outer B-spline boundary:

1. inhomogeneous Neumann boundary condition, obtained by
determining the appropriate traction at each Gauss point using
the analytical stress solution (44)–(46); and

2. inhomogeneous Dirichlet boundary condition using the IBC
based on the displacement solution (42) and (43).

The analysis of the problem using a Neumann condition will be
presented first.

4.4.1. Inhomogeneous Neumann
The problem was analysed using 6 different background grid

sizes, with h ¼ 2�1 to h ¼ 2�6 m, in each case 82 material point
points per background grid cell were used.6 The traction was inte-
6 82 material point points per background grid cell were adopted in these analyses
to ensure that the convergence rate of the analyses were not limited by integration
inaccuracies of the material stiffness and internal force. The impact of reducing the
number of material points is explored in Section 4.4.2.
grated using 4 Gauss points per element segment. Fig. 17 shows the
absolute displacement error and relative stress error convergence
under this uniform h refinement. The correct convergence rates for
both stress and displacement are obtained demonstrating the correct
implementation of the non-uniform Neumann boundary condition.

Fig. 18 shows the original material point positions coloured
according to rxy for h ¼ 2�3;2�4;2�5 and 2�6 m. The smoothness
of the stress solution increases with h refinement with the finest
two discretisations obtaining good agreement with the analytical
stress solution.

Fig. 19 shows the displacement error distribution for h ¼ 2�5 m
and 82 material points per element, where the error scales are

Au 2 0;1:5� 10�4
h i

m and Av 2 0;1:0� 10�4
h i

m. Although the

maximum errors in Fig. 19 are 5:61� 10�4 m and 3:59� 10�4 m,
for Au and Av , respectively, the error scales have been truncated
to make the error distribution more apparent. Oscillations in the
displacement errors can be observed on the outer B-spline bound-
ary. These are primarily due to the poor integration of the global
stiffness matrix caused by partially filled background elements.
Other areas of high error are associated with the inner boundary,
again partially due to non-full elements but also due to the higher
stress gradients in this area.
4.4.2. Inhomogeneous Dirichlet
The same problem was analysed by imposing the analytical dis-

placement solution on the outer B-spline boundary using the
implicit boundary method (as described in Section 3.5.1). The
nodal displacements for the elements containing the outer bound-
ary, da� �

, were determined using the least squares weighted resid-
ual technique described in Section 3.5.1. The convergence of this



Fig. 19. Infinite plate with a circular hole (Neumann): displacement error distribution (top) and displacement solution (bottom) for h ¼ 2�5 m and 82 material points per
element. The error scales are Au 2 0;1:5� 10�4

h i
m and Av 2 0;1:0� 10�4

h i
m and the displacement scales uh 2 0;0:22½ �m and vh 2 �0:055;0½ �m.

Fig. 20. Infinite plate with a circular hole (inhomogeneous Dirichlet): boundary
displacement convergence under uniform h-refinement.
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least squares fit with h refinement is shown in Fig. 20. The average
convergence rate was super-quadratic at 2.26, providing confi-
dence in the determination of da� �

. These displacements where
used to determine the additional external force required in (31)
in order to impose the required inhomogeneous Dirichlet bound-
ary condition.

Fig. 21 shows the convergence of the relative stress and abso-
lute displacement errors with h refinement. As with the Neumann
condition, the errors converge towards the correct solution with
grid refinement. The minor oscillations in the displacement
convergence are likely to be due to the poor approximation of
the analytical displacement solution in the bi-linear elements con-
taining the outer boundary. The errors are also similar in magni-
tude to those given in Fig. 17 for the Neumann analysis.
However, the convergence rate for the displacements are lower
than the equivalent inhomogeneous Neumann analysis. This is
due to the fact that imposing Dirichlet conditions on the outer
boundary creates discontinuities in the displacement field that
do not agree with the analytical solution to the problem as they
are determined via the least squares fitting approach described
in Section 3.5.1. That is, the nodal values, da� �

, ensure that the dis-
placement along the boundary, uaf g, converges towards the analyt-
ical solution on the boundary (as shown by Fig. 20) but there is no
guarantee that the nodal displacements themselves agree with the
analytical solution at their nodal locations. The discontinuities, and
associated error oscillations, therefore limit the convergence rate
of the method. The sub-optimal convergence rate is consistent
with other papers that adopt the implicit boundary method for
Dirichlet boundary conditions [40–43].

Fig. 21b also shows the convergence of u and rxx under h refine-
ment with different numbers of material points per background
grid cell, specifically 22;42 and 82 material points per element.
The overall convergence rate of the analyses with different num-
bers of material points are similar, however degradation in the
convergence rate is seen for the lower numbers of material points
with progressive h refinement due to integration inaccuracies that
start to limit the convergence rate with finer meshes.

Fig. 22 shows the original material point positions coloured
according to rxx for h ¼ 2�3;2�4;2�5 and 2�6 m. As with Fig. 18,
the smoothness of the stress solution increases with h refinement.



Fig. 21. Infinite plate with a circular hole (inhomogeneous Dirichlet): convergence under uniform h-refinement.

Fig. 22. Infinite plate with a circular hole (inhomogeneous Dirichlet): original material point positions coloured according to rxx for h ¼ 2�3;2�4;2�5 and 2�6 m with 82

material points per element.
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Fig. 23 shows the displacement error distribution for h ¼ 2�6 m
with 82 material points per element, where the error scales are

Au 2 0;5:0� 10�5
h i

m and Av 2 0;8:0� 10�5
h i

m. The maximum

errors in Fig. 23 are max Auð Þ ¼ 3:160� 10�5 m and
max Avð Þ ¼ 1:93� 10�5 m. It should be observed that, unlike the
Neumann error distribution shown in Fig. 19, the displacement
error along the outer boundary is near-zero for both displacement
components, this is particularly evident in the enlarged subfigures
at the bottom of Fig. 23. Oscillations in the error distribution are
still observed on the inner boundary, where a homogeneous Neu-
mann (traction free) condition is automatically enforced, caused in
part by partially filled elements.
This challenging problem demonstrates the capabilities of the
proposed B-spline boundary formulation in analysing problems
involving complex geometry and loading conditions which would
not be possible using existing boundary enforcement methods
available in the MPM literature.

5. Conclusions

This paper has presented, for the first time, a general method for
boundary representation and boundary condition imposition in the
standard MPM. A local cubic B-spline interpolation technique has
been employed for boundary representation. This boundary repre-
sentation technique has been combined with the IBM for homoge-



Fig. 23. Infinite plate with a circular hole (inhomogeneous Dirichlet): displacement error distribution for h ¼ 2�6 m and 82 material points per element. The error scales are

Au 2 0;5� 10�5
h i

m and Av 2 0;8� 10�5
h i

m.
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neous and inhomogeneous Dirichlet boundary conditions whereas
inhomogeneous Neumann boundaries are imposed via integration
of the tractions over the boundary segment. Previous approaches
to boundary condition imposition within the MPM have focused
on one type of boundary condition, are only applicable to piece-
wise linear segments [33] or are only applicable to one form of
the MPM. This complete methodology of boundary representation
and boundary condition imposition developed in this paper makes
it possible for the standard MPM to analyse problems that were
previously not feasible. Additionally, this B-spline boundary
method could also be used in other non-matching mesh
approaches and other types of MPM. Although the approaches for
imposing Dirichlet boundary conditions presented in this paper
are only applicable to implicit formulations, the boundary repre-
sentation, tracking and inhomogeneous Neumann boundary condi-
tion enforcement can be applied to implicit and explicit
approaches.

The focus of this paper has been on extending the boundary
condition enforcement capabilities of the MPM such that it can
be applied to problems that were previously not feasible, for exam-
ple those containing complex, spatially varying, Neumann and
Dirichlet conditions. This has been achieved through combining
B-splines with the implicit boundary method and direct integra-
tion of surface tractions. However, in cases with simple boundaries,
that can be represented by piecewise linear segments, the
approach of Cortis et al. [33] will be more computationally efficient
as it does not require B-spline reconstruction.
Throughout the paper it has been assumed that boundaries
remain as boundaries through the analysis. However, when analys-
ing large deformation problems, particularly in the area of soil
mechanics, there are cases where external boundaries could come
into self contact and cease to be boundaries, new boundaries could
also be created. In this case special treatment, and appropriate
detection routines, would be required to determine when this
occurs and remove/introduce boundary tracking points as needed.
This is an interesting, and challenging, area of future research but it
is outside of the scope of the work presented in this manuscript.
However, provided that suitable boundary points can be identified
the reconstruction, representation, tracking and boundary enforce-
ment methods presented in this paper can be adopted.
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