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Abstract

The rise of antimicrobial resistance, coupled with a lack of industrial focus on antimicrobial
discovery over preceding decades, has brought the world to a crisis point. With both human
and animal health set to decline due to increased disease burdens caused by near untreatable
microbial pathogens, there is an urgent need to identify new antimicrobials. Central to this is
the elucidation of new, robustly validated, drug targets. Informed by industrial practice and
concerns, the use of both biological and chemical tools in validation is key. In parallel, repur-
posing approved drugs for use as antimicrobials may provide both new treatments and iden-
tify new targets, whilst improved understanding of pharmacology will help develop and
progress good ‘hits’ with the required rapidity. In recognition of the need to increase research
efforts in these areas, in 14-16 September 2017, the British Society for Parasitology (BSP)
Autumn Symposium was hosted at Durham University with the title: Microbial Protein
Targets: towards understanding and intervention. Staged in collaboration with the Royal
Society of Chemistry (RSC) Chemistry Biology Interface Division (CBID), the core aim was
to bring together leading researchers working across disciplines to imagine novel approaches
towards combating infection and antimicrobial resistance. Sessions were held on: ‘Anti-infect-
ive discovery, an overview’; ‘Omic approaches to target validation’; ‘Genetic approaches to tar-
get validation’; ‘Drug target structure and drug discovery’; ‘Fragment-based approaches to
drug discovery’; and ‘Chemical approaches to target validation’. Here, we introduce a series
of review and primary research articles from selected contributors to the Symposium, giving
an overview of progress in understanding antimicrobial targets and developing new drugs.
The Symposium was organized by Paul Denny (Durham) for the BSP and Patrick Steel
(Durham) for RSC CBID.

Introduction

The threat posed by anti-microbial resistance (AMR) has been well publicized with respect to
bacterial pathogens, and the need to identify, validate and exploit new drug targets emphasized
(Brown and Wright, 2016). However, similar pressures exist for protozoan pathogens (Tuteja,
2017; Uliana et al. 2017). The Special Issue of Parasitology introduced here is focused on glo-
bal infectious disease, namely the causative agents of the bacterial disease tuberculosis (TB;
Mycobacterium tuberculosis) and the protozoal infections malaria, toxoplasmosis, leishmania-
sis, African Sleeping Sickness and Chagas disease (the apicomplexans Plasmodium spp. and
Toxoplasma gondii; and the kinetoplastids Leishmania spp., Trypanosoma brucei sp. and
T. cruzi, respectively). Each of these poses serious challenges to health and wellbeing, and
offer a multitude of challenges to effective treatment. Responsible for 1-8 m deaths, and with
nearly 5% of the 10 million or more new cases each year showing multi-drug resistance,
M. tuberculosis remains a serious problem, particularly in low- and middle-income countries
(WHO, 2015). Similarly, although incidence levels fell more than 20% during 2010-2015,
infection with mosquito-borne Plasmodium falciparum, the causative agent of serious malaria,
remains a major global health problem leading to more than 200 M new cases and 400 000
deaths/year (WHO, 2016a). The related apicomplexan protozoa Toxoplasma, classified
by the Centers for Disease Control as causing a Neglected Parasitic Disease, chronically infects
30-60 M people in the USA alone, where it is considered a major food-borne pathogen (CDC,
2017). The kinetoplastid parasites Leishmania spp., T. cruzi and T. brucei sp. are insect-borne
causes of Neglected Tropical Diseases (NTDs). However, whilst cases for African Sleeping
Sickness caused by the later are declining [<3000 in 2015; (WHO, 2016b)], there are up to
1 M new cases of leishmaniasis per year, leading to 20 000 deaths and 6-7 M people remain
infected with the parasite that causes Chagas disease (WHO, 2017). Indeed, the battle against
Leishmania spp. and T. cruzi infection has recently been described as a losing one (Hotez and
Aksoy, 2017).

For the global infections outlined above, the available drugs have limitations of efficacy, tol-
erance and/or administration, and cases of AMR are emerging or rampant. To address these
problems, for both bacterial and protozoal pathogens there is a well recognized need to identify
new targets for antimicrobial intervention (Brown and Wright, 2016; Muller and Hemphill,
2016). However, the identification, validation and understanding of new protein targets is
not a straightforward process. For example, within the pharmaceutical industry there are wide-
spread concerns regarding the reproducibility of drug target validation studies across a range
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of disease states (Jones, 2016). Against this backdrop, the British
Society for Parasitology 2016 Autumn Symposium focused on the
identification, understanding and exploitation of targets for anti-
bacterial and anti-protozoal intervention. In recognition of the
industry concerns outlined above, the focus on cross-disciplinary
analyses of putative targets was designed to answer the call to
‘embrace chemistry at the interface with biology’ (Jones, 2016)
and provide more robustly triaged drug targets. This approach
necessitates the application of both state-of-the-art genetic and
chemical tools to answer key questions in bioscience and robustly
validate new drug targets in both bacterial and protozoan
pathogens.

Search for antimicrobial targets

With a crisis in antimicrobial resistance upon us, and the persist-
ence of neglected infectious diseases (e.g. NTDs), new drug leads
need to be rapidly identified. High-throughput screening (HTS)
remains at the centre of drug discovery and can be carried out
using either in vitro assays against validated targets or phenotypic
assays against the pathogen itself (Denny and Steel, 2014;
Norcliffe et al. 2014). Recent high content phenotypic screening
across the kinetoplastids gave a disappointingly low number of
novel potent hits against Leishmania donovani when compared
with the related parasite T. brucei (Pena et al. 2015). Phenotypic
HTS has been successfully carried out against M. tuberculosis,
for example using genetically modified bacteria in a resistance
based screen (Cox et al. 2016). However, as for the kinetoplastids
this has proven problematic, due in large part to the slow growth
rate of M. tuberculosis (White et al. 2016). These studies demon-
strated that target-based screening remains vital of for antimicro-
bial discovery and, of course, this relies upon the provision of high
quality, fully validated, antimicrobial drug targets.

Natural product antibacterials (antibiotics) targeting the
cell wall have long been in clinical use, many of these are directed
against peptidoglycan, the principle component of Gram-positive
and -negative bacterial walls (Muller et al. 2017). Such antimicro-
bials show excellent selectivity for the synthesis of this non-
mammalian structure; however, they are at the forefront of con-
cerns regarding AMR. Likewise, several anti-TB agents target
cell wall synthesis, however the M. tuberculosis wall has several
unique features, which present challenges for the development
new chemotherapeutics. For example, the long-chain mycolic
acids which cover the cell surface facilitate the intercalation of
acyl lipids forming a waxy outer membrane, which forms a hydro-
phobic barrier. Despite these obstacles the M. tuberculosis wall
and its biosynthesis remains an important and attractive target
for novel anti-TB drugs, as concluded in the first review in this
Special Issue (Abrahams and Besra, 2016). Abrahams and Besra
present the biosynthesis of this essential structural and permeabil-
ity barrier as being the ‘Achilles heel” of this pathogen and open
up the prospect of modern approaches to drug discovery (e.g.
HTS) identifying novel therapeutics.

Similarly, the protozoan sphingolipid biosynthetic pathway has
been proposed as a possible drug target for kinetoplastid (e.g.
Leishmania spp. and T. brucei) and apicomplexan (Plasmodium
spp. and Toxoplasma) eukaryotic pathogens (Mina et al. 2010,
2011; Young et al. 2012; Coppens, 2013; Pratt et al. 2013).
Against the backdrop of ancient, toxic therapies and rising
AMR (Barrett and Croft, 2014) the essentiality of sphingolipids,
and the potential to target their biosynthesis, has seen growing
interest. In a ‘state-of-the-art’ review in this Special Issue, Mina
and Denny discuss possibilities and pitfalls of targeting this bio-
synthetic pathway, considering both parasite de novo synthesis
and host scavenging (Mina and Denny, 2017). Key differences
between the mammalian host sphingolipid biosynthetic pathway
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and that of both kinetoplastid (Denny et al. 2006; Zhang et al.
2010) and apicomplexan (Coppens, 2013; Pratt et al. 2013; Mina
and Denny, 2017) protozoan parasites, have fuelled this endeavour.
In a companion piece, Alqaisi et al. (2017) describe an investigation
of the mode of action of a reported inhibitor of Toxoplasma
sphingolipid biosynthesis, aureobasidin A. However, whilst this
natural compound is antiparasitic against both acute and chronic
forms, parasite sphingolipid biosynthesis was unaffected.

Remaining in the field of lipid biochemistry, protein acylation
has long been proposed as a target of novel antiprotozoals, with
the enzyme responsible for the essential N-myristoylation of pro-
teins [N-myristoyl transferase (NMT)] identified as a potential
drug target in apicomplexan (Gunaratne et al. 2000) and kineto-
plastid (Price et al. 2003) protozoan parasites. In this Issue, the
use of chemical proteomic approaches to analyse and validate
such post-translation modifications is discussed, with reference
to both N-myristoylation and S-palmitoylation (Ritzefeld et al.
2017). The use of chemical tools (such as acyl biotin exchange
and metabolic tagging with click chemistry) is essential to fully
understand the downstream effects of enzyme inhibition and pro-
vide further validation of targets and inhibitors (Tate et al. 2014;
Ritzefeld et al. 2017).

A unique target in kinetoplastid protozoa is the mitochondrial
protein, trypanosome alternative oxidase (TAO). This target is
now well characterized in T. brucei where it has ubiquinol oxidase
activity and is expressed more than 100-fold more in pathogenic
bloodstream forms (Chaudhuri et al. 1998). Functionally it is
thought to protect the parasite from oxidative damage (Fang
and Beattie, 2003). As reviewed in this issue, inhibitors of TAO
have been identified which are able to clear infection in vivo
(Menzies et al. 2016).

Collectively, these studies and associated reviews emphasize
the place for a target-directed approach in antimicrobial discover
and emphasize the importance of chemical approaches for the
understanding and validation of drug targets.

Exploration and exploitation of antimicrobial targets

As discussed above, screening of phenotypic changes in response to
chemical assault is one approach to identifying new leads as anti-
parasitics, although obtaining informative readouts from such
assays can be complex (Denny and Steel, 2014; Norcliffe et al.
2014). In this Special Issue, the use of in silico synchronization,
using defined cell parameters, to more readily analyse the cell
cycle of T. brucei is proposed (Morriswood and Engstler, 2017).
Such an automated process could increase throughput and stand-
ardize data quantitation, perhaps providing more robust pheno-
typic data. However, if an antimicrobial target is in hand, the
search for inhibitors for use as drug leads or chemical tools for fur-
ther validation and understanding, can employ conventional HTS.
Typically, this involves screening a large, diverse compound library
(>100 k) against a protein target in a multiwell formatted biochem-
ical assay (Denny and Steel, 2014; Norcliffe et al. 2014). However,
fragment-based approaches are now often run alongside such
HTS, and have been the key to success in several drug discovery pro-
grammes (Congreve et al. 2008; Scott et al. 2012). The application of
this approach in the discovery of inhibitors of M. tuberculosis targets
is reviewed here by Marchetti et al. A fragment-based approach
involves screening a small library (1000-5000) of fragments
(<250 Da) against a protein target, and identifying weak binders
by using a variety of biophysical tools such as surface plasmon res-
onance and nuclear magnetic resonance (Marchetti et al. 2016).
Notable successes include the identification, using thermal shift
assays, of fragments binding to EthR, a TetR-type transcriptional
repressor that underlies M. tuberculosis resistance to the second-
line drug ethionamide (Villemagne et al. 2014). Following analyses
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of an X-ray co-crystal structure, a virtual library was designed and
screened in silico, leading to the identification of derivatives with
high in vitro activity (Tatum et al. 2013; Villemagne et al. 2014).
This demonstrates the centrality of high resolution protein struc-
tures to fragment-based ligand-discovery approaches (Murray
and Blundell, 2010), and the potential of in silico screening.

Such structure-based approaches can be considered as applic-
able to all protein targets, in this Issue the calcium-dependent
protein kinases (CDPK) from Toxoplasma are considered as tar-
gets for such an approach (Cardew et al. 2017). CDPK are
restricted to plants and protozoa and have been genetically
demonstrated to be essential in multiple systems, including
Toxoplasma, presenting them as attractive drug targets (Long
et al. 2016; Wang et al. 2016). Structure-based approaches have
led to the discovery of potent CDPK inhibitors, with specificity
with respect to mammalian kinases and good antiparasitic activity
(Lourido et al. 2013; Zhang et al. 2014; Moine et al. 2015).

This work, taken together, illustrates the power of utilising
diverse chemical and biophysical approaches to identify novel
inhibitors and antimicrobial lead compounds.

Alternative approaches and downstream necessity

Whilst target-based approaches to antimicrobial discovery remain
central, the exceedingly long history of repurposing drugs for use
as antiparasitics demonstrates that we should not be too narrow in
our thinking. As reviewed in this Special Issue repurposing has
the potential to significantly reduce the costs of antimicrobial dis-
covery by bypassing the initial development phases necessary for
new chemical entities (Charlton et al. 2017). Charlton et al. dis-
cuss the current prominence of such drugs in the treatment of
leishmaniasis, for example amphotericin B, which was developed
as an antifungal but is currently in use in the South Asian visceral
leishmaniais elimination programme (Gurunath et al. 2014). In
addition, they review the history and potential of other drugs
developed as, for example, antiviral and anticancer agents, for
use as antileishmanials. However, as Charlton et al. recognize,
whilst the discovery and repurposing of existing pharmaceuticals
will save time and money in the vital search for safe, effective and
affordable antileishmanials, the identification of the mode of
action of such drugs is essential of further development
(Ritzefeld et al. 2017).

The discovery and validation of antimicrobial targets and potent
inhibitors is, of course, a vital component of a drug discovery pro-
gramme. However, these in vitro approaches provide no indication
as to the ability of identified chemical entities to reach the target
pathogen within the host. The particularly acute challenges of
this stage in the discovery pipeline for pathogens sequestered
within host cells, such as Leishmania spp. and M. tuberculosis, is
reviewed in this Issue (Croft, 2017). The integration of pharmaco-
kinetics (PK), pharmacodynamics (PD) and physiological-
modelling into the antimicrobial drug discovery process has been
previously reviewed (Edginton et al 2008; Nielsen and Friberg,
2013), and the importance of PK-PD analyses in M. tuberculosis
drug design demonstrated (Davies and Nuermberger, 2008;
Dartois, 2014). Given that Leishmania spp. occupy a similar intra-
cellular site to M. tuberculosis, Croft considers the application of
these approaches to antileishmanial discovery, concluding that uni-
form approaches at all levels of the pipeline are vital to ensure the
development process can proceed as rapidly as possible.

Concluding remarks

The collection within this Special Issue illustrates the centrality of
high quality target validation (using both biological and physical
methodologies); the importance of multifaceted inhibitor

discovery (integrating HTS and biophysical approaches); and
the requirement to consider physiological factors (such as PK-
PD) in antimicrobial discovery. In summary, the adoption of
the multidisciplinary approaches outlined is essential to accelerate
the discovery of new drugs to treat the most prevalent, and often
intractable, global infections caused by both bacterial and proto-
zoal pathogens.

Financial support. The British Society for Parasitology and I would like to
thank the Royal Society of Chemistry, GSK, Durham University Wolfson
and Biophysical Research Institutes, and Cambridge University Press for spon-
sorship of the 2016 Autumn Symposium held at Durham University. PWD is
supported by grants from the Medical Research Council (MR/P027989/1)
and Biotechnology and Biological Research Council (BB/M024156/1 and
NPRONET).

References

Abrahams KA and Besra GS (2016) Mycobacterial cell wall biosynthesis: a
multifaceted antibiotic target. Parasitology 1-18. This issue. doi: 10.1017/
S0031182016002377.

Alqaisi AQI, Mbekeani AJ, Llorens MB, Elhammer AP and Denny PW
(2017) The antifungal Aureobasidin A and an analogue are active against
the protozoan parasite Toxoplasma gondii but do not inhibit sphingolipid
biosynthesis. Parasitology 1-8. This issue. doi: 10.1017/50031182017000506.

Barrett MP and Croft SL (2014) Emerging paradigms in anti-infective drug
design. Parasitology 141, 1-7.

Brown ED and Wright GD (2016) Antibacterial drug discovery in the resist-
ance era. Nature 529, 336-343.

Cardew E, Verlinde CLM]J and Pohl E (2017) Calcium-dependent protein
kinases from Toxoplasma gondii as targets for structure-based drug design.
Parasitology. This issue.

CDC (2017) https://www.cdc.gov/parasites/toxoplasmosis/index.html.

Charlton RL, Rossi-Bergmann B, Denny PW and Steel PG (2017) Repurposing
as a strategy for the discovery of new anti-leishmanials: the-state-of-the-art.
Parasitology 1-18. This issue. doi: 10.1017/S0031182017000993.

Chaudhuri M, Ajayi W and Hill GC (1998) Biochemical and molecular
properties of the Trypanosoma brucei alternative oxidase. Molecular &
Biochemical Parasitology 95, 53-68.

Congreve M, Chessari G, Tisi D and Woodhead AJ (2008) Recent develop-
ments in fragment-based drug discovery. Journal of Medicinal Chemistry
51, 3661-3680.

Coppens I (2013) Targeting lipid biosynthesis and salvage in apicomplexan
parasites for improved chemotherapies. Nature Reviews Microbiology 11,
823-835.

Cox JA, Mugumbate G, Del Peral LV, Jankute M, Abrahams KA, Jervis P,
Jackenkroll S, Perez A, Alemparte C, Esquivias J, Leliévre J, Ramon F,
Barros D, Ballel L and Besra GS (2016) Novel inhibitors of
Mpycobacterium tuberculosis GuaB2 identified by a target based high-
throughput phenotypic screen. Scientific Reports 6, 38986.

Croft SL (2017) Leishmania and other intracellular pathogens: selectivity, drug
distribution and PK PD. Parasitology. This issue.

Dartois V (2014) The path of anti-tuberculosis drugs: from blood to lesions to
mycobacterial cells. Nature Reviews Microbiology 12, 159-167.

Davies GR and Nuermberger EL (2008) Pharmacokinetics and pharmaco-
dynamics in the development of anti-tuberculosis drugs. Tuberculosis
(Edinb) 88(Suppl 1), S65-S74.

Denny PW and Steel PG (2014) Yeast as a potential vehicle for neglected trop-
ical disease drug discovery. Journal of Biomolecular Screening 20, 56-63.
Denny PW, Shams-Eldin H, Price HP, Smith DF and Schwarz RT (2006)
The protozoan inositol phosphorylceramide synthase: a novel drug target
that defines a new class of sphingolipid synthase. Journal of Biological

Chemistry 281, 28200-28209.

Edginton AN, Theil FP, Schmitt W and Willmann S (2008) Whole body
physiologically-based pharmacokinetic models: their use in clinical drug
development. Expert Opinion in Drug Metabolism and Toxicology 4,
1143-1152.

Fang ] and Beattie DS (2003) Alternative oxidase present in procyclic
Trypanosoma brucei may act to lower the mitochondrial production of
superoxide. Archives of Biochemistry & Biophysics 414, 294-302.

Downloaded from https://www.cambridge.org/core. Durham University Library, on 17 Nov 2017 at 14:29:35, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50031182017002037


https://www.cdc.gov/parasites/toxoplasmosis/index.html
https://www.cdc.gov/parasites/toxoplasmosis/index.html
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0031182017002037
https://www.cambridge.org/core

Gunaratne RS, Sajid M, Ling IT, Tripathi R, Pachebat JA and Holder AA
(2000) Characterization of N-myristoyltransferase from plasmodium falcip-

arum. Biochemical Journal 348(Pt 2), 459-463.

Gurunath U, Joshi R, Agrawal A and Shah V (2014) An overview of visceral
leishmaniasis elimination program in India: a picture imperfect. Expert

Review of Anti-Infective Therapies 12, 929-935.

Hotez P and Aksoy S (2017) PLOS neglected tropical diseases: ten years of
progress in neglected tropical disease control and elimination...more or

less. PLoS Neglected Tropical Diseases 11, €0005355.

Jones LH (2016) An industry perspective on drug target validation. Expert

Opinion on Drug Discovery 11, 623-625.

Long S, Wang Q and Sibley LD (2016) Analysis of noncanonical calcium-
dependent protein kinases in Toxoplasma gondii by targeted gene deletion

using CRISPR/Cas9. Infection & Immunity 84, 1262-1273.

Lourido S, Jeschke GR, Turk BE and Sibley LD (2013) Exploiting the unique
ATP-binding pocket of Toxoplasma calcium-dependent protein kinase 1 to

identify its substrates. ACS Chemical Biology 8, 1155-1162.

Marchetti C, Chan DS, Coyne AG and Abell C (2016) Fragment-based
approaches to TB drugs. Parasitology 1-12. This issue. doi: 10.1017/

$0031182016001876.

Menzies SK, Tulloch LB, Florence GJ and Smith TK (2016) The trypano-
some alternative oxidase: a potential drug target? Parasitology 1-9. This

issue. doi: 10.1017/S0031182016002109.

Mina JGM and Denny PW (2017) Everybody needs sphingolipids, right!
mining for new drug targets in protozoan sphingolipid biosynthesis.

Parasitology 1-14. This issue. doi: 10.1017/S0031182017001081.

Mina JG, Mosely JA, Ali HZ, Shams-Eldin H, Schwarz RT, Steel PG and
Denny PW (2010) A plate-based assay system for analyses and screening
of the Leishmania major inositol phosphorylceramide synthase.

International Journal of Biochemistry & Cell Biology 42, 1553-1561.

Mina ]G, Mosely JA, Ali HZ, Denny PW and Steel PG (2011) Exploring
Leishmania major inositol phosphorylceramide synthase (LmjIPCS):
insights into the ceramide binding domain. Organic & Biomolecular

Chemistry 9, 1823-1830.

Moine E, Dimier-Poisson I, Enguehard-Gueiffier C, Loge C, Penichon M,
Moire N, Delehouze C, Foll-Josselin B, Ruchaud S, Bach S,
Gueiffier A, Debierre-Grockiego F and Denevault-Sabourin C (2015)
Development of new highly potent imidazo[1,2-b]pyridazines targeting
Toxoplasma gondii calcium-dependent protein kinase 1. European Journal

of Medicinal Chemistry 105, 80-105.

Morriswood B and Engstler M (2017) Let’s get fISSical: fast in silico
synchronization as a new tool for cell division cycle analysis. Parasitology

1-14. This issue. doi: 10.1017/S0031182017000038.

Muller J and Hemphill A (2016) Drug target identification in protozoan para-

sites. Expert Opinions on Drug Discovery 11, 815-824.

Muller A, Klockner A and Schneider T (2017) Targeting a cell wall biosyn-

thesis hot spot. Natural Product Reports 34, 909-932.

Murray CW and Blundell TL (2010) Structural biology in fragment-based

drug design. Current Opinions in Structural Biology 20, 497-507.

Nielsen EI and Friberg LE (2013) Pharmacokinetic-pharmacodynamic mod-

eling of antibacterial drugs. Pharmacological Reviews 65, 1053-1090.

Nordliffe JL, Alvarez-Ruiz E, Martin-Plaza JJ, Steel PG and Denny PW
(2014) The utility of yeast as a tool for cell-based, target-directed high-

throughput screening. Parasitology 141, 8-16.

Pena I, Manzano MP, Cantizani J, Kessler A, Alonso-Padilla J, Bardera Al,
Alvarez E, Rodriquez A, Gray DW, Navarro M, Kumar V, Sherstnev A,
Drewry DH, Brown JR, Fiandor JM and Julio Martin J (2015) New

Paul W. Denny

compound sets identified from high throughput phenotypic screening against
three kinetoplastid parasites: an open resource. Scientific Reports 5, 8771.

Pratt S, Wansadhipathi-Kannangara NK, Bruce CR, Mina JG,
Shams-Eldin H, Casas J, Hanada K, Schwarz RT, Sonda S and
Denny PW (2013) Sphingolipid synthesis and scavenging in the intracellu-
lar apicomplexan parasite, Toxoplasma gondii. Molecular & Biochemical
Parasitology 187, 43-51.

Price HP, Menon MR, Panethymitaki C, Goulding D, McKean PG and
Smith DF (2003) Myristoyl-CoA:protein N-myristoyltransferase, an essen-
tial enzyme and potential drug target in kinetoplastid parasites. Journal of
Biological Chemistry 278, 7206-7214.

Ritzefeld M, Wright MH and Tate EW (2017) New developments in probing
and targeting protein acylation in malaria, leishmaniasis and African sleeping
sickness. Parasitology 1-18. This issue. doi: 10.1017/S0031182017000282.

Scott DE, Coyne AG, Hudson SA and Abell C (2012) Fragment-based
approaches in drug discovery and chemical biology. Biochemistry 51,
4990-5003.

Tate EW, Bell AS, Rackham MD and Wright MH (2014)
N-Myristoyltransferase as a potential drug target in malaria and leishman-
iasis. Parasitology 141, 37-49.

Tatum NJ, Villemagne B, Willand N, Deprez B, Liebeschuetz JW,
Baulard AR and Pohl E (2013) Structural and docking studies of potent
ethionamide boosters. Acta Crystallographica C 69, 1243-1250.

Tuteja R (2017) Introduction to the Special Issue on Malaria. FEBS Journal
284, 2550-2552.

Uliana SR, Trinconi CT and Coelho AC (2017) Chemotherapy of
leishmaniasis: present challenges. Parasitology 1-17. doi: 10.1017/
S0031182016002523

Villemagne B, Flipo M, Blondiaux N, Crauste C, Malaquin S, Leroux F,
Piveteau C, Villeret V, Brodin P, Villoutreix BO, Sperandio O,
Wohlkénig A, Wintjens R, Deprez B, Baulard AR and Willand N
(2014) Ligand efficiency driven design of new inhibitors of
Mycobacterium tuberculosis transcriptional repressor EthR using fragment
growing, merging, and linking approaches. Journal of Medicinal
Chemistry 57, 4876-4888.

Wang JL, Huang SY, Li TT, Chen K, Ning HR and Zhu XQ (2016)
Evaluation of the basic functions of six calcium-dependent protein kinases
in Toxoplasma gondii using CRISPR-Cas9 system. Parasitology Research
115, 697-702.

White EL, Tower NA and Rasmussen L (2016) Mycobacterium tuberculosis
high-throughput screening. Methods in Molecular Biology 1439, 181-195.

WHO (2015) http:/www.who.int/mediacentre/factsheets/fs104/en/.

WHO (2016a) http://www.who.int/malaria/en/.

WHO (2016b) http:/www.who.int/trypanosomiasis_african/en/.

WHO (2017) http:/www.who.int/mediacentre/factsheets/fs375/en/.

Young SA, Mina JG, Denny PW and Smith TK (2012) Sphingolipid and
ceramide homeostasis: potential therapeutic targets. Biochemistry Research
International 2012, 248135.

Zhang K, Bangs JD and Beverley SM (2010) Sphingolipids in parasitic proto-
zoa. Advances in Experimental Medical Biology 688, 238-248.

Zhang Z, Ojo KK, Vidadala R, Huang W, Geiger JA, Scheele S, Choi R,
Reid MC, Keyloun KR, Rivas K, Siddaramaiah LK, Comess KM,
Robinson KP, Merta PJ, Kifle L, Hol WG, Parsons M, Merritt EA,
Maly DJ, Verlinde CL, Van Voorhis WC and Fan E (2014). Potent and
selective inhibitors of CDPK1 from T. gondii and C. parvum based on a
5-aminopyrazole-4-carboxamide scaffold. ACS Medical Chemistry Letters
5, 40-44.

Downloaded from https://www.cambridge.org/core. Durham University Library, on 17 Nov 2017 at 14:29:35, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms. https://doi.org/10.1017/50031182017002037


http://www.who.int/mediacentre/factsheets/fs104/en/
http://www.who.int/mediacentre/factsheets/fs104/en/
http://www.who.int/malaria/en/
http://www.who.int/malaria/en/
http://www.who.int/trypanosomiasis_african/en/
http://www.who.int/trypanosomiasis_african/en/
http://www.who.int/mediacentre/factsheets/fs375/en/
http://www.who.int/mediacentre/factsheets/fs375/en/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0031182017002037
https://www.cambridge.org/core

	Microbial protein targets: towards understanding and intervention
	Introduction
	Search for antimicrobial targets
	Exploration and exploitation of antimicrobial targets
	Alternative approaches and downstream necessity
	Concluding remarks

	References


