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1 Introduction

Production of vector boson pairs at the LHC is an interesting process for a variety of

reasons. For definiteness, let us consider the W+W− final state. In that case, ATLAS and

CMS collaborations have recently observed that the W+W− production cross section is

about twenty percent higher than existing theoretical predictions [1–3]. This observation

prompted speculations about the possibility to explain this excess by physics beyond the

Standard Model [4, 5] and, at the same time, strongly emphasized the need to improve

predictions for W+W− production within the Standard Model itself [6, 10]. In addition,

production of W+W− pairs is an important process for studying anomalous couplings of

electroweak gauge boson. Although current limits are already quite impressive [7–9], it is

clear that studies of anomalous gauge boson couplings will intensify once the LHC Run II

is underway. Making use of higher experimental precision will require improved modeling

of W+W− production in the Standard Model. Finally, the pp → WW ∗ process with one

W -boson on the mass shell and the other off the mass-shell, is an important background

to Higgs boson production in pp → H → WW channel. Better understanding of this

background should allow improved measurements of Higgs boson couplings to W -bosons

— including the anomalous ones — in the next run of the LHC. Similar arguments can be

given for processes with other vector bosons in the final state.

It follows from these examples, that higher theoretical accuracy for vector-boson pair

production in hadron collisions is essential. It can be achieved by extending existing com-

putations of cross sections and kinematic distributions of pp → V1V2 processes [6, 10–38]

to next-to-next-to-leading order (NNLO) in perturbative QCD.1 In particular, predictions

1First NNLO QCD results for electroweak boson pair production have recently appeared, see e.g.

refs. [39–42].
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for fiducial volume cross sections, where kinematic restrictions on final state particles are

taken into account exactly, are crucial. A NNLO QCD prediction for pp → V1V2 needs

three ingredients: i) real-emission matrix elements for qq̄′ → V1V2gg, qg → V1V2qg and

qq̄ → V1V2qq̄; ii) one-loop matrix elements for qq̄ → V1V2g and qg → V1V2q and, finally,

iii) two-loop amplitudes for tree-level process qq̄′ → V1V2. Once these three ingredients

become available, they need to be put together in a self-consistent manner using existing

methods for fully differential NNLO computations [43–51]. For the V1V2 production, the

major unknown is the two-loop amplitude for qq̄′ → V1V2; the goal of this paper is to

provide it.2

The remainder of the paper is organized as follows. In section 2 we explain the general

setup of the calculation. Since two-loop scalar master integrals required for this compu-

tation have been recently computed for equal electroweak boson masses in refs. [55, 56]

and for unequal masses in refs. [57, 58], we mainly focus on the procedure that allows us

to express the various contributions to scattering amplitudes in terms of these integrals.

In section 3 we describe checks on our computation, evaluate the scattering amplitudes

numerically and discuss numerical stability of the results. We conclude in section 4.

2 The setup of the computation

We are interested in the production of a four-lepton final states in proton collisions pp →
(l1 l̄

′
1)(l2 l̄

′
2). The four-lepton final states can be produced in three distinct ways:

• through the production of a pair of off-shell vector bosons, pp → V1V2 → (l1 l̄
′
1)(l2 l̄

′
2);

• through the production of a single vector boson that decays to two vector bosons

that, in turn, decay to lepton pairs, pp → V3 → V1V2 → (l1 l̄
′
1)(l2 l̄

′
2);

• through the production of a single vector boson that decays into a pair of leptons (one

of them of-shell), followed by the emission of a vector boson by an of-shell lepton,

e.g. pp → V3 → l∗3 l̄
′
2 → (l∗3 → V1l2)l̄

′
2 → (l1 l̄

′
1)(l2 l̄

′
2).

Each of these three processes depends on different combinations of electroweak cou-

plings; therefore, they are separately invariant under QCD gauge transformations and we

can compute QCD corrections to each of them separately. We note in this respect that

QCD corrections to processes mediated by single gauge-boson production are simple since

they are directly related to QCD corrections to the quark form factor of the vector current

FV (s) whose perturbative expansion through NNLO is well-known [59–61].

However, computation of NNLO QCD corrections to process pp → V1V2 → (l1 l̄
′
1)(l2 l̄

′
2),

where vector bosons couple only to fermions and not to other vector bosons or primary

leptons, is non-trivial. Calculation of this contribution to two-loop QCD amplitudes for

four-lepton production processes is the main focus of this paper.

2We note that for the simpler case of processes involving one real photon two-loop amplitudes are known

both for the quark [52] and gluon [53] channels. For the case of on-shell WW production, the amplitude

was calculated in the high-energy approximation in [54].
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We consider quark-antiquark annihilation in to vector bosons

q(p1)q̄
′(p2) → V1(p3)V2(p4) → (V1(p3) → l(p5)l̄

′(p6)) (V2(p4) → l(p7)l̄
′(p8)), (2.1)

and work in the approximation where quarks of the first two generations are massless and

quarks of the third generation are consistently neglected. We also set the CKM matrix to

an identity matrix. Since we work with massless quarks, helicity is a conserved quantum

number; therefore, once the helicity of the incoming quark is specified, the helicity of the

incoming anti-quark is completely fixed. We will use this observation when writing the

amplitude for quark-antiquark annihilation process in eq. (2.1).

The partonic process in eq. (2.1) can proceed in two different ways since the vector

bosons can either couple directly to external fermions qq̄′ or to closed loops of virtual

fermions, see figure 1. Consequently, we write the scattering amplitude for process in

eq. (2.1) as

M(λq, λ5, λ7) = i

(

gW√
2

)4

δi1i2D3(p3)D4(p4)C
λ7
l,V2

Cλ5
l,V1

ǫµ3 (λ5)ǫ
ν
4(λ7)

×
[

C
λq

q̄′,V2
C

λq

q,V1
A(d)

µν (p
λq

1 , p3, p4, p
−λq

2 ) + C
λq

q̄′,V1
C

λq

q,V2
A(d)

νµ (p
λq

1 , p4, p3, p
−λq

2 )

+C
ng

V1V2
Ang

µν(p
λq

1 , p
−λq

2 ; p3, p4)
]

, (2.2)

where gW = e/ sin θW is the SU(2) weak coupling, Di = 1/(p2i − m2
Vi

+ imVi
ΓVi

) is the

Vi-boson propagator, λq, λ5, λ7 are helicities of the incoming quark and outgoing leptons,

respectively, C
λq

q̄′,V2
, C

λq

q,V1
and Cλ7

l,V2
Cλ5
l,V1

are helicity-dependent couplings of vector bosons

to quarks and leptons, and ǫ3,4 are matrix elements for leptonic decays of V1 and V2 that we

will specify shortly. The amplitudes A(d) describe direct coupling of the vector bosons to

external fermions and the amplitude Ang describes contributions of diagrams where vector

bosons couple to loops of virtual fermions, see figure 1. The factor C
ng

V1V2
involves sums

over couplings of virtual fermions to gauge bosons.

We note that full amplitude for qq̄′ → V1V2 in eq. (2.2) is written as the sum of two

A(d) amplitudes where two vector bosons appear in different order. These amplitudes are,

therefore, quantities similar to ordered or primitive amplitudes often used in perturbative

QCD computations. For us they are useful because we only need to compute one of them

and then obtain the other one from p3 ↔ p4 permutation. We stress that amplitudes

A(d) and A(ng) in eq. (2.2) are computed assuming that vector bosons couple to a single

quark generation and that the V qq coupling is vector-like with unit coefficient, i.e. γµ.

As we explain below, such amplitudes are sufficient to obtain physical amplitudes for pair

production of all electroweak gauge bosons.

We begin by discussing the parametrization of A(d)
µν ǫ

µ
3 ǫ

ν
4 amplitude in terms of Lorentz-

invariant form factors. A representative diagram that contributes to A(d) at two loops

in perturbative QCD is shown in figure 1. Our goal is to re-write these diagrams in

such a way that all Feynman integrals can be dealt with using the integration-by-parts

technique [62, 63]. To achieve this goal, we need to express the amplitude in terms of

– 3 –
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Figure 1. Representative diagrams that contribute to two-loop amplitude for vector boson pro-

duction in hadron collisions.

invariant form factors. To this end, we note that the most general form of A(d)
µν is

A(d)
µν (p1, p3, p4, p2)= v̄p2 p̂⊥up1A

(1,d)
µν + v̄p2γ

µup1A
(2,d)
ν + v̄p2γ

νup1A
(3,d)
µ + v̄p2γ

[ν p̂⊥γ
µ]up1A

(4,d)
4 ,

(2.3)

where γ[ν p̂⊥γ
µ] = γν p̂⊥γ

µ − γµp̂⊥γ
ν and the vector p⊥ is defined by the Sudakov decom-

position of the momenta p3,4

p3 = α3p1 + β3p2 + p⊥, p4 = α4p1 + β4p2 − p⊥. (2.4)

The transverse momentum p⊥ is orthogonal to p1,2, p⊥ · p1,2 = 0. The coefficients α3,4 and

β3,4 in eq. (2.4) can be written as

α3 =
m2

3 − u

s
, β3 =

m2
3 − t

s
, α4 =

m2
4 − t

s
, β4 =

m2
4 − u

s
, (2.5)

where we defined p23 = m2
3, p

2
4 = m2

4 and introduced standard Mandelstam variables s =

(p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2. The functions A(i,d), i = 1, . . . , 4, introduced

in eq. (2.3), depend on momenta and Lorentz indices. To make this dependence explicit,

we decompose them into invariant form factors Ti, i = 1, . . . , 17,

A(1,d)
µν = T1gµν + T2p1µp1ν + T3p1µp2ν + T4p1µp⊥ν + T5p2µp1ν + T6p2µp2ν + T7p2µp⊥ν

+T8p⊥µp1ν + T9p⊥µp2ν + T10p⊥µp⊥ν , (2.6)

A(2,d)
µ = T11p1µ + T12p2µ + T13p⊥µ, A(3,d)

ν = T14p1ν + T15p2ν + T16p⊥ν , A(4,d) = T17.

We note that not all invariant form factors that appear in eq. (2.6) give independent con-

tributions to physical amplitudes. This happens because we did not use the transversality

condition for lepton currents p3 · ǫ3 = p4 · ǫ4 = 0. As we will see shortly, when physical

amplitudes are computed, the number of relevant form factors will be reduced thanks to

the transversality condition.

To calculate the physical amplitude in eq. (2.2), we need to contract A(d)
µν with polariza-

tion vectors of external vector bosons. As we already mentioned, they are given by matrix

elements of the vector current between relevant leptonic states. Using the spinor-helicity

formalism, we write

ǫµ3 (5L) = 〈5|γµ|6], ǫµ3 (5R) = [5|γµ|6〉 = 〈6|γµ|5],
ǫν4(7L) = 〈7|γµ|8], ǫν4(7R) = [7|γµ|8〉 = 〈8|γµ|7]. (2.7)

– 4 –
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Since, as we already pointed out, the helicity of the incoming quark fully determines

the allowed helicity of the incoming antiquark, we need eight helicity amplitudes to fully

describe production of two vector bosons. They are M(qL, 5L, 7L), M(qL, 5R, 7L),

M(qL, 5L, 7R), M(qL, 5R, 7R), M(qR, 5L, 7L), M(qR, 5R, 7L), M(qR, 5L, 7R),

M(qR, 5R, 7R). We note that, according to eq. (2.7), a change in lepton helicities

can be obtained by interchanging momenta p5 ↔ p6 and p7 ↔ p8, where necessary. There-

fore, we obtain all required helicity amplitudes from M(qL, 5L, 7L) and M(qR, 5L, 7L) by

simple permutations of lepton momenta.

For left- and right-handed incoming quarks we find

A
(d)
LLL(3, 4) = A(d)

µν (p
L
1 , p3, p4, p

R
2 )ǫ

µ
3 (5L)ǫ

ν
4(7L)=−F1〈57〉[86]〈23̂1] + F2〈15〉〈17〉[16][18]〈23̂1]

+ F3〈15〉〈27〉[16][28]〈23̂1] + F5〈17〉〈25〉[18][26]〈23̂1] + F6〈25〉〈27〉[26][28]〈23̂1]
+ F11〈25〉〈17〉[16][18] + F12〈25〉〈27〉[16][28] + F14〈15〉〈27〉[16][18] + F15〈25〉〈27〉[26][18],

A
(d)
RLL(3, 4) = A(d)

µν (p
R
1 , p3, p4, p

L
2 )ǫ

µ
3 (5L)ǫ

ν
4(7L)=−F1〈57〉[86][23̂1〉+ F2〈15〉〈17〉[16][18][23̂1〉

+ F3〈15〉〈27〉[16][28][23̂1〉+ F5〈17〉〈25〉[18][26][23̂1〉+ F6〈25〉〈27〉[26][28][23̂1〉 (2.8)

+ F11[26]〈15〉〈17〉[18] + F12[28]〈15〉[26]〈27〉+ F14[28]〈15〉[16]〈17〉+ F15[28]〈25〉[26]〈17〉,

where the following nine combinations of form factors enter

F1 = −2T1,

F2 = T2 − α3α4T10 − α3T8 + α4T4,

F3 = T3 −
4T17

s
− α3β4T10 − α3T9 + β4T4,

F5 = T5 +
4T17

s
− β3α4T10 − β3T8 + α4T7,

F6 = T6 − β3β4T10 − β3T9 + β4T7,

F11 = 2T11 + 2α4T13,

F12 = 2T12 + 2β4T13,

F14 = 2T14 − 2α3T16,

F15 = 2T15 − 2β3T16.

(2.9)

We note that form factors only depend on s, t, u and m2
3,m

2
4; therefore, they are invariant

under p5 ↔ p6 and p7 ↔ p8 permutations. For this reason, it is straightforward to obtain

all the relevant amplitudes from eq. (2.8). To find T1,...,17 and F1,2,...15, we need to construct

projection operators. To accomplish this, we write a generic amplitude as a matrix element

of a string of Dirac matrices

Aµν = v̄p2Γ̂µνup1 . (2.10)

Multiplying it with ūp1Ôvp2 and summing over spinor helicities, we find

∑

Aµν ūp1Ôvp2 = Tr
[

p̂2Γµν p̂1Ô
]

. (2.11)

Choosing different operators O, we can project on individual T form factors or their com-

binations. Below we list all the projection operators and the results that we get when these

– 5 –
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operators are convoluted with the amplitude

G1 = −Tr [p̂2Γµν p̂1p̂⊥]

4p2
⊥
(p1 · p2)3

× pµ1p
ν
1 , G1 = T6,

G2 = −Tr [p̂2Γµν p̂1p̂⊥]

4p2
⊥
(p1 · p2)3

× pµ2p
ν
2 , G2 = T2,

G3 = −Tr [p̂2Γµν p̂1p̂⊥]

4p2
⊥
(p1 · p2)2

× pµ1p
ν
2 , G3 = T1 + 2T17 + (p1 · p2)T5,

G4 = −Tr [p̂2Γµν p̂1p̂⊥]

4p2
⊥
(p1 · p2)2

× pµ2p
ν
1 , G4 = T1 − 2T17 + (p1 · p2)T3,

G5 = −Tr [p̂2Γµν p̂1p̂⊥]

4p2
⊥
(p1 · p2)2

× pµ1p
ν
⊥, G5 = T7p

2
⊥ + T15,

G6 = −Tr [p̂2Γµν p̂1p̂⊥]

4p2
⊥
(p1 · p2)2

× pµ
⊥
pν1 , G6 = T9p

2
⊥ + T12,

G7 = −Tr [p̂2Γµν p̂1p̂⊥]

4p2
⊥
(p1 · p2)2

× pµ
⊥
pν2 , G7 = T8p

2
⊥ + T11,

G8 = −Tr [p̂2Γµν p̂1p̂⊥]

4p2
⊥
(p1 · p2)2

× pµ2p
ν
⊥, G8 = T4p

2
⊥ + T14,

G9 = −Tr [p̂2Γµν p̂1p̂⊥]

4p4
⊥
(p1 · p2)

× pµ
⊥
pν⊥, G9 = T1 + T10p

2
⊥ + T13 + T16,

G10 = −Tr [p̂2Γµν p̂1p̂⊥]

4p2
⊥
(p1 · p2)

× gµν , G10 = d T1 + (T3 + T5) p1 · p2 + T10p
2
⊥ + T16 + T13,

G11 = −Tr [p̂2Γµν p̂1γ
µ]

4(p1 · p2)2
× pν2 , G11 = T8 p

2
⊥ + (d− 2)T11,

G12 = −Tr [p̂2Γµν p̂1γ
µ]

4(p1 · p2)2
× pν1 , G12 = T9 p

2
⊥ + (d− 2)T12,

G13 = −Tr [p̂2Γµν p̂1γ
ν ]

4(p1 · p2)2
× pµ1 , G13 = T7 p

2
⊥ + (d− 2)T15,

G14 = −Tr [p̂2Γµν p̂1γ
ν ]

4(p1 · p2)2
× pµ2 , G14 = T4 p

2
⊥ + (d− 2)T14,

G15 = −Tr [p̂2Γµν p̂1γ
µ]

4p2
⊥
(p1 · p2)

× pν⊥, G15 = T1 + T10 p
2
⊥ + (d− 2)T13 + T16, (2.12)

G16 = −Tr [p̂2Γµν p̂1γ
ν ]

4p2
⊥
(p1 · p2)

× pµ
⊥
, G16 = T1 + T10 p

2
⊥ + T13 + (d− 2)T16,

G17 = −Tr
[

p̂2Γµν p̂1γ
[ν p̂⊥γ

µ]
]

8p2
⊥
(p1 · p2)

, G17 = −2(d− 2)(d− 5)T17 + (p1 · p2)(T5 − T3).

Each of the G1...17 projections can be calculated from Feynman diagrams by taking

traces and integrating over loop momenta. These quantities depend on the Mandelstam

invariants of the underlying 2 → 2 process qq̄′ → V1V2 but not on the polarization vectors of

electroweak bosons or on the momenta of final-state leptons. Thus, they can be expressed

in terms of Feynman integrals of the type introduced in refs. [57, 58] and then reduced to

master integrals using integration-by-parts identities.

– 6 –
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We can use projections G1,...,17 to derive the T form factors; the result reads

T1 =
G10 −G9 −G4 −G3

d− 3
, T2 = G2,

T3 = −2(d(6− d)G4 + (3− d)G3 + (d− 4)G10 − 7G4 + (4− d)G9 +G17)

s12(d− 3)(d− 4)
,

T4 = −G14 + (2− d)G8

p2
⊥
(d− 3)

,

T5 = −2((3− d)G4 −G17 − (d2 − 6d+ 7)G3 + (d− 4)G10 + (4− d)G9)

s12(d− 3)(d− 4)
,

T6 = G1, T7 = −G13 + (2− d)G5

p2
⊥
(d− 3)

, T8 = −G11 + (2− d)G7

p2
⊥
(d− 3)

,

T9 = −G12 + (2− d)G6

p2
⊥
(d− 3)

, T10 = −G15 −G4 −G3 − d G9 +G16 +G10

p2
⊥
(d− 3)

,

T11 =
G11 −G7

d− 3
, T12 =

G12 −G6

d− 3
, T13 =

G15 −G9

d− 3
, T14 =

G14 −G8

d− 3
,

T15 =
G13 −G5

d− 3
, T16 =

G16 −G9

d− 3
, T17 = −G4 −G3 +G17

2(d− 3)(d− 4)
.

(2.13)

The F form factors that are used for the evaluation of the amplitude can now be easily

computed using eq. (2.9). We do not present these results here since they are not very

illuminating.

One point worth emphasizing though is that in eq. (2.13) there are expressions (see

e.g. equation for T17) that appear to have spurious singularities in the limit d → 4. It

would have been unfortunate if these singularities survive in the final formulas for form

factors F since, in such a situation, computation of all pieces needed for the evaluation of

G’s, including master integrals, to higher orders in ǫ is required. It is therefore pleasing to

observe that this does not happen and once results for the F form factors are written in

terms of G1,...,17 projectors, all spurious (d− 4) singularities disappear.

For future reference, we give results for leading order form factors that appear in the

physical amplitudes eq. (2.8)

F1 =
2

t
, F2 = 0, F3 = − 2

st
, F5 =

2

st
, F6 = 0, F11 =

2(m2
4 − t)

st
,

F12 =
2(s+m2

3 − t)

st
, F14 = −2(s+m2

4 − t)

st
, F15 = −2(m2

3 − t)

st
.

(2.14)

We stress that these results are exact in a sense that no d → 4 limit was taken to obtain

them; in other words, all the d-dependence cancels out completely once physical form

factors are computed.

Before proceeding to the discussion of various couplings of vector bosons to fermions

introduced in eq. (2.2), we want to explain why A(d) and A(ng) amplitudes can be computed

assuming that interactions of vector bosons with quarks are mediated by vector currents.

The main reason is that we only consider here contributions of massless quarks and that,
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in such a case, the helicity is conserved. Therefore, we can always write couplings of vector

bosons to fermions as linear combinations of left- and right-handed couplings and then

move helicity projection operators to external lines. In this way the helicity-dependent

couplings are generated and amplitudes that remain can be viewed as originating from

pure vector current interactions of gauge bosons and quarks.

Of course, this discussion applies only to diagrams where vector bosons couple directly

to external quark lines; in the notation of eq. (2.2) such diagrams contribute to A(d)

amplitudes. However, we will now argue that the same parametrization eq. (2.3) can be

used to compute amplitudes A(ng), which receive contributions from diagrams where vector

bosons couple to closed fermion loops. In fact, this would have been obvious provided that

electroweak boson coupling to fermions is vector-like since in this case tracing over spin

degrees of freedom in the internal quark loop gives us diagrams that are not very different

from the ones that we already considered. Potential problems could be expected with

axial couplings and, in particular, with terms where one axial and three vector couplings

appear in ggV1V2 Green’s function. However, all such terms cancel because of C-parity

conservation for massless fermions for any final state with two vector bosons [35, 36].3

Contributions of terms with two vector and two axial couplings are not anomalous and

must be equal to those with four vector couplings. Hence, we conclude that it is sufficient

to consider vector-current couplings of gauge bosons to internal fermion loops, to account

for all non-vanishing contributions to the amplitude. The parametrization of the amplitude

A(ng) is then taken from eq. (2.3) and its expression through invariant form factors is

taken from eq. (2.8).

To complete our construction of the scattering amplitude for qq̄′ → V1V2 in eq. (2.2), it

remains to specify various helicity-dependent couplings that we introduced there. Below we

present these couplings for various pairs of electroweak gauge bosons that can be produced

in proton collisions.

2.1 γ∗γ∗ production

Photons are produced in the annihilation of a quark and an antiquark of the same flavor q =

q′. Photon interactions with both quarks and leptons are pure vector-like and, therefore,

helicity-independent. We find

CL,R
q,γ = −

√
2Qq sin θW , CL,R

q̄,γ = −
√
2Qq sin θW , CL,R

l,γ = −
√
2Ql sin θW , (2.15)

where Ql and Qq are electromagnetic quark and lepton charges in units of the positron

charge. Finally, C
ng
γγ is given by the sum of up and down quark charges of the first two

generations

C
ng
γγ = 2 sin2 θW

2
∑

iq=1

(

Q2
u +Q2

d

)

=
20 sin2 θW

9
. (2.16)

3More precisely, for C-parity argument to be applicable, all fermions in the loop should have equal

masses [35, 36].
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2.2 ZZ production

Pairs of Z bosons are produced in annihilation of quarks and anti-quarks of the same flavor.

Couplings of Z bosons to quarks and leptons depend on helicity and weak isospin of the

corresponding particle. We find

CL,R
q,Z = CL,R

q̄,Z =
1√

2 cos θW
(Vq ±Aq) , CL,R

l,Z =
1√

2 cos θW
(Vl ±Al) , (2.17)

where

Vu =
1

2
− 4

3
sin2 θW , Au =

1

2
, Vd = −1

2
+

2

3
sin2 θW , Ad = −1

2
,

Ve = −1

2
+ 2 sin2 θW , Ae = −1

2
, Vν =

1

2
Aν =

1

2
.

(2.18)

The coefficient C
ng

ZZ is given by the sum of up and down quark vector and axial charges of

the first two generations. We find

C
ng

ZZ =
1

cos2 θW

(

V 2
u + V 2

d +A2
u +A2

d

)

. (2.19)

2.3 Zγ∗ production

Production of Z and γ∗ occurs in annihilation of quarks and anti-quarks of the same

flavor. The couplings to external fermions are given in eqs. (2.15), (2.17). The coefficient

C
(ng)
γZ reads

C
ng

Zγ = −2 sin θW
cos θW

(VuQu + VdQd) . (2.20)

2.4 W+γ∗ and for W−γ∗ production

The W+γ∗ final state is produced in ud̄ annihilation, ud̄ → W+γ∗. Production of W−γ∗

occurs in dū → W−γ∗ process. Since W bosons interact with left-handed fermions, we have

Cλ
u,W+ = δλ,L, Cλ

d̄,γ
= −

√
2Qd sin θW , Cλ

u,γ = −
√
2Qu sin θW , Cλ

d̄,W+ = δλ,L,

Cλ
d,W− = δλ,L, Cλ

ū,γ = −
√
2Qu sin θW , Cλ

d,γ = −
√
2Qd sin θW , Cλ

ū,W− = δλ,L.

Cλ
l,W+ = Cλ

l,W− = δλ,L, Cλ
l,γ = −

√
2Ql sin θW .

(2.21)

Coefficients C
ng

W+γ
and C

ng

W−γ
vanish identically due to electric charge conservation.

2.5 W+Z and for W−Z production

Production processes for W±Z are identical to W±γ∗. The relevant couplings are

Cλ
u,W+ = δλ,L, Cλ

d̄,W+ = δλ,L, , Cλ
d,W− = δλ,L, Cλ

ū,W− = δλ,L, Cλ
l,W+ = Cλ

l,W− = δλ,L,

CL,R
q,Z = CL,R

q̄,Z =
1√

2 cos θW
(Vq ±Aq) , CL,R

l,Z =
1√

2 cos θW
(Vl ±Al) , (2.22)

Coefficients C
ng

W±Z
vanish identically due to electric charge conservation.
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2.6 W+W− production

Finally, we display the necessary couplings for the pair production of two W bosons.

This process can occur thanks to uū and dd̄ annihilation. First, consider the process

u(p1)ū(p2) → W+(p3)W
−(p4). In this case,

Cλ
u,W+ = δλL, Cλ

ū,W− = δλ,L, Cλ
u,W− = 0, Cλ

ū,W+ = 0. (2.23)

In case of d(p1)d̄(p2) → W+(p3)W
−(p4), the coupling constants read

Cλ
d,W+ = 0, Cλ

d̄,W− = 0, Cλ
d,W− = δλL, , Cλ

d̄,W+ = δλ,L. (2.24)

Couplings to leptons are given in eq. (2.22). The coefficient C
(ng)

W+W− receives contributions

from two generations4 and reads

C
(ng)

W+W− = 1. (2.25)

3 Calculation of the form factors and the amplitudes

Once projection operators are established, one can compute the form factors and construct

the scattering amplitudes for arbitrary di-boson final state. To this end, we note that all

integrals that appear in the calculation of form factors can be associated with one of the

six topologies, introduced in refs. [57, 58]. Integrals that belong to each of these topolo-

gies are closed under the integration-by-parts identities [62, 63]. We use QGRAF [65] to

generate Feynman diagrams and FORM [66] for algebraic manipulations and computation

of projections G1,...,17. We use FIRE [67–69] to reduce all the integrals that appear in this

calculation to master integrals. The master integrals were computed by us in refs. [57, 58].

In principle, once all the ingredients are in place, computation of the amplitude becomes

straightforward. In practice, however, it requires some effort to put all the pieces together

primarily because algebraic expressions that appear e.g. in the course of the reduction to

master integrals are quite large in size. The master integrals are expressed in terms of

Goncharov polylogarithms up to weight four; we use GiNaC [70] implementation [71] to

compute them.

The results for the amplitudes contain infra-red and ultraviolet divergences. The ul-

traviolet divergences are removed by the renormalization of the strong coupling constant.

Since tree-level scattering amplitudes are independent of αs, we only need its renormaliza-

tion through one loop. It reads

α(0)
s Sǫ = αsµ

2ǫ

(

1− β0
ǫ

(αs

2π

)

+O(α2
s)

)

, (3.1)

where α
(0)
s is the bare and αs = αs(µ) is the renormalized coupling constant. In addition,

β0 = (11CA − 4TRnf )/6 = 11/2 − nf/3 is the QCD beta-function, nf is the number of

massless flavors, CA = 3, TR = 1/2 and Sǫ = (4π)ǫe−ǫγE , with γE being the Euler constant.

4As we already mentioned several times, we do not consider the third quark generation in this paper.
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According to Catani [72], infra-red singularities of UV-renormalized amplitudes at

next-to-next-to-leading order are fully determined by leading and next-to-leading order

amplitudes. This feature can be used as an important check of the correctness of the

computation. To introduce Catani’s result, we write a UV-renormalized amplitude as

M = M0 +

(

αs(µ)

2π

)

M1 +

(

αs(µ)

2π

)2

M2 + . . . . (3.2)

Leading order amplitude M0 in this formula is finite and, in fact, d-independent. The next-

to-leading order amplitude contains infra-red divergences that, however, can be written in

a factorized form

M1 = Î1(ǫ)M0 +Mfin. (3.3)

For the process of vector boson pair production, the final state is neutral. Therefore,

I1(ǫ) = −e−ǫ(Ls−γE)

Γ(1− ǫ)
CF

(

1

ǫ2
+

3

2ǫ

)

, (3.4)

where LS = ln(−s/µ2 − i0) = ln |s/µ2| − iπ and CF = 4/3. In variance with M0, M1 and

M1,fin depend on the dimensional regularization parameter ǫ. This feature is important

for proper comparison of Catani’s formula with results of explicit computation.

The two-loop amplitude M2 can be written in a similar way

M2 = Î2(ǫ)M0 + Î1(ǫ)M1 +M2,fin, (3.5)

where

Î2 = −1

2
I21 (ǫ)−

β0
ǫ
I1(ǫ) +

e−ǫγEΓ(1− 2ǫ)

Γ(1− ǫ)

(

β0
ǫ

+ kq

)

I1(2ǫ) +
Hq

2ǫ
. (3.6)

The two constants that enter this formula read

kq =

(

67

18
− π2

6

)

CA − 10

9
TRnf , (3.7)

Hq = C2
F

(

−3

8
+

π2

2
− 6ζ3

)

+ CFnfTR

(

−25

54
+

π2

12

)

+ CFCA

(

245

216
− 23π2

48
+

13ζ3
2

)

.

We note that Catani formula can also be used for individual form factors that we

introduced earlier to describe physical amplitudes. To this end, we only need to replace

tree and loop amplitudes in the above formulas with the corresponding form factors. We

have used the above results for the infra-red poles of scattering amplitudes to check the

correctness of our computation of the amplitudes A(d). We also note that the amplitude

A(ng) appears for the first time at NNLO; therefore, according to Catani’s formula it

cannot have infra-red 1/ǫ singularities. This is an important check of the correctness of

the computation of the amplitude A(ng).

We turn to the discussion of numerical results for the scattering amplitudes A(d), A(ng).

We define those amplitudes by contracting them with polarization vectors of electroweak

bosons

A(d,ng)(λq, λ5, λ7) = A(d,ng)(p
λq

1 , pλ5
3 , pλ7

4 , p
−λq

2 ) = A(d,ng)
µν (p

λq

1 , p3, p4, p
−λq

2 )ǫµ3 (λ5)ǫ
ν
4(λ7).

(3.8)
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Helicity ǫ−2 ǫ−1 ǫ0 ǫ ǫ2

Ã
(d,1)
LLL − 4

3
−2− i4.1887902 3.2003253−i 6.2069828 5.4520124−i 2.9495550 5.3607865−i 3.1814370

Ã
(d,1)
RLL − 4

3
−2− i4.1887902 4.0059079−i 3.0593301 0.5752861+i 5.8440713 −9.6769949+i 0.9775875

Table 1. Ratios of selected one-loop helicity amplitudes and tree amplitudes, see eq. (3.9).

Momenta of external particles are given in the main text of the paper. Tree-amplitudes are A(d,0)
LLL =

4600.82746− i 17933.17244 and A(d,0)
RLL = 732.100366− i 1148.55597.

and write their perturbative expansion as

A(d) = A(d,0)
[

1 + a0 s
−ǫÃ(d,1) + a20 s

−2ǫÃ(d,2)
]

, A(ng) = A(d,0)a20 s
−2ǫÃ(ng ,2), (3.9)

where a0 = α
(0)
s (4π)ǫΓ(1+ ǫ)/(2π). We note that in eq. (3.9) we choose to expand in bare,

rather than renormalized, QCD coupling. Also, we made it explicit in eq. (3.9) that the

amplitude A(ng) appears at two loops for the first time.

To motivate our choice of kinematics for numerical results for the amplitudes that we

present below, we consider qq̄′ → W+W− production as the background to Higgs boson

signal in pp → H → W+W−. Therefore, we choose the center-of-mass energy
√
s to be the

mass of the Higgs boson
√
s = mH = 125 GeV. The invariant mass of the vector boson

V1 is set to p23 = m2
W , with mW = 80.419 GeV. The invariant mass of the second vector

boson V2 is set to 25 GeV. We take the vector boson scattering angle in the center-of-mass

collision frame to be π/3 radians. We also take decay angles of the lepton l5 in the rest

frame of the boson V1 to be θ5 = π/4 and ϕ5 = π/2 and decay angles of the lepton l7 in

the rest frame of the boson V2 to be θ7 = π/6 and ϕ7 = π. The four-momenta of initial

and final state particles are given by

p1 = (62.5, 0, 0, 62.5), p2 = (62.5, 0, 0,−62.5),

p5 = (48.2561024468725, 13.8697156788798, −28.4324101181205, 36.4400941989053),

p6 = (37.6127597971275, 12.2010429705974, 28.4324101181205, −21.3881346746519),

p7 = (19.5655688780000, −19.2853793247386, 0, 3.29933778517879),

p8 = (19.5655688780000, −6.78537932473856, 0, −18.3512973094322). (3.10)

To obtain numerical results for the amplitude, we take the number of massless fermion

species nf to be five. Results for selected helicity amplitudes A(d) and A(ng) are shown

in tables 1, 2, 3. They can be compared to predictions based on Catani’s formula.5 For

both one- and two-loop amplitudes, divergent terms agree perfectly. For the one-loop

amplitudes, we can also compare the O(ǫ0) terms against the known results [73]; we find

perfect agreement. The amplitude A(ng) that describes contributions to qq̄′ → V1V2 where

vector bosons couple to closed loops of fermions is finite as expected since those amplitudes

have no tree- and one-loop contributions.

We will now elaborate on the numerical stability of our results. This is an important

issue since amplitudes for vector boson pair productions may exhibit numerical instabil-

ities in the limit of forward or backward scattering. In fact, numerical stability depends

5Catani’s formula needs to be re-written to provide an expansion in the unrenormalized QCD coupling.
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Helicity ǫ−4 ǫ−3 ǫ−2 ǫ−1 ǫ0

Ã
(d,2)
LLL

8
9

1.388889+i 5.58505 −16.02478+i 8.625043 −29.43232−i 28.086442 23.53917−i 67.620386

Ã
(d,2)
RLL

8
9

1.388889+i 5.58505 −17.09889+i 4.42818 −8.268265−i 37.414997 73.483267+i 23.301609

Table 2. Ratios of selected two-loop helicity amplitudes and tree amplitudes, see eq. (3.9). Mo-

menta of external particles are given in the main text of the paper. The number of massless

fermion species nf is taken to be five. Tree-amplitudes are A(d,0)
LLL = 4600.82746− i 17933.17244 and

A(d,0)
RLL = 732.100366− i 1148.55597.

Helicity 1/ǫ4 1/ǫ3 ǫ2 1/ǫ ǫ0

Ã
(ng ,2)

LLL 0 O(10−14) O(10−10) O(10−8) −0.6207871 + i 0.01394607

Ã
(ng ,2)

RLL 0 O(10−13) O(10−8) O(10−7) 2.6570701 + i 4.89645656

Table 3. Ratios of finite two-loop A(ng) helicity amplitudes to tree amplitudes. Momenta of

external particles are given in the main text of the paper. Tree-amplitudes are A(d,0)
LLL = 4600.82746−

i 17933.17244 and A(d,0)
RLL = 732.100366− i 1148.55597.
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Figure 2. Absolute value squared of the ratio of 1/ǫ poles of the LLL scattering amplitude

computed from Feynman diagrams and using Catani formula, R1/ǫ = ||Ã(d,2)
LLL |2/|Ã

(d,2)
C,LLL|2−1|. The

center-of-mass energy, gauge boson masses and lepton scattering angles are given in the text.

on the vector boson transverse momentum since 1/p2
⊥
singularities appear when Feynman

integrals are reduced to master integrals. We have evidence from previous studies about

values of transverse momenta where such instabilities arise. In case of one-loop gg → V V

amplitudes, numerical instabilities start to appear for transverse momenta of an order of a

few GeV [74, 75] and sophisticated treatment is required to remove them completely [75].

To explore numerical (in)stability of our results, we study amplitudes Ã
(d,ng ,2)
LLL in depen-

dence of the vector boson scattering angle. All other kinematic variables are taken to be

identical to what we described above.

In figure 2 we show ratios of 1/ǫ singularities in the squared amplitude |Ã(d,2)
LLL|2 com-

puted directly and using Catani’s formula. Deviations of this ratio from one signal numer-

ical instabilities. We observe that |Ã(d,2)
LLL|2/|Ã

(d,2)
C,LLL|2 − 1 is of order O(10−6 − 10−10) in

the bulk of the phase-space. Significant instabilities are observed for backward scattering

(178 degrees), where the transverse momentum is close to 1 GeV. However, the situation

improves considerably already for 176 degree scattering where the transverse momentum
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Figure 3. Absolute values squared of Ã
(d,2)
LLL ( left pane) and Ã

(ng,2)
LLL (right pane) as a function

of the vector boson scattering angle. The center-of-mass energy, gauge boson masses and lepton

scattering angles are given in the text.

is 2 GeV. The forward scattering limit appears to be more stable; even at two degrees, the

1/ǫ contribution is computed properly to within a percent.

In the left pane of figure 3 we show the absolute value squared of the ratio of the finite

part of the A(d,2)
LLL amplitude and the leading order amplitude A(d,0)

LLL. To understand numer-

ical accuracy of these results, we compared the output obtained with the double-precision

version of the Fortran code with the Mathematica implementation. The advantage of the

latter is that it provides a possibility to compute amplitudes with arbitrary numerical pre-

cision thereby ameliorating the problem of numerical instability. For backward scattering,

we find that up to 174 degrees, the finite part is computed to within a per mille. For

forward direction, the situation is similar but, perhaps, slightly better.

Finally, in the right pane of figure 3 we show absolute value squared of the ratio of

the finite part of the left amplitude A
(ng ,2)
LLL and the leading order LLL amplitude A(d,0)

LLL.

Numerical instabilities are apparent for backward scattering. In fact, at 170 degrees (p⊥ ∼
5 GeV), the agreement between double-precision Fortran code and the Mathematica code

is about ten percent. In the forward direction, the situation is much better — the double-

precision Fortran results agree with the results obtained using Mathematica implementation

to better than a fraction of a percent for scattering angles as small as six degrees.

To summarize, while the two-loop amplitudes that we compute in this paper do exhibit

numerical instabilities at small values of vector boson transverse momenta, we believe the

stability is acceptable for phenomenological applications. Moreover, there are several ways

to improve the situation. For example, it is possible to extend the Fortran code to provide

results with quadruple precision. Note that computation of master integrals with arbitrary

precision is feasible since Goncharov polylogarithms implementation in GiNaC does pro-

vide this functionality [71]. Moreover, it should also be possible to construct expansion

of analytic expressions for scattering amplitudes that we obtained in this paper around

singular limits, for example for forward or backward scattering and threshold production.

If such expansions become available, computation of helicity amplitudes in singular limits

will be significantly simplified. We leave these improvements for future work.
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4 Conclusions

In this paper we described computation of two-loop scattering amplitudes for the annihila-

tion of a quark and an antiquark into four leptons, that occurs through the production of

two electroweak gauge bosons. The invariant masses of gauge bosons are kept arbitrary. We

have given explicit formulas for projection operators that allow one to compute contribu-

tions of individual Feynman diagrams to invariant form factors. We use these form factors

to construct helicity amplitudes for vector boson pair production processes including all

off-shell effects and leptonic decays of vector bosons.

Results for two-loop scattering amplitudes obtained in this paper remove the last

obstacle for computing the NNLO QCD corrections to the production of pairs of vector

bosons with identical and different invariant masses. The two-loop virtual corrections that

we compute in this paper will have to be combined with one-loop amplitudes for pp → V1V2j

and with tree amplitudes for pp → V1V2jj. While doing this consistently is non-trivial, the

relevant technology is well-understood by now [43–51]. We hope, therefore, that results

for NNLO fiducial volume cross sections for pair production of electroweak bosons can be

expected in the near future.
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boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [INSPIRE].

[38] T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production
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