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Abstract

We present a comprehensive and precise description of the Sagittarius (Sgr) stellar stream’s 3D geometry as traced
by its old stellar population. This analysis draws on the sample of ∼44,000 RR Lyrae (RRab) stars from the Pan-
STARRS1 (PS1) 3π survey, which is ~80% complete and ~90% pure within 80kpc, and extends to 120 kpc
with a distance precision of~3%. A projection of RR Lyrae stars within < ∣ ˜∣B 9 of the Sgr stream’s orbital plane
reveals the morphology of both the leading and the trailing arms at very high contrast across much of the sky. In
particular, the map traces the stream near-contiguously through the distant apocenters. We fit a simple model for
the mean distance and line-of-sight depth of the Sgr stream as a function of the orbital plane angle L˜ , along with a
power-law background model for the field stars. This modeling results in estimates of the mean stream distance
precise to~1% and it resolves the stream’s line-of-sight depth. These improved geometric constraints can serve as
new constraints for dynamical stream models.
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1. Introduction

Stellar streams around galaxies, and in particular around the
Milky Way, are of great interest because their orbits are sensitive
tracers of a galaxy’s formation history and gravitational potential
(e.g., Eyre & Binney 2009; Law & Majewski 2010; Newberg
et al. 2010; Sanders & Binney 2013). In the Milky Way, the
Sagittarius (Sgr) stream is the dominant tidal stellar stream of the
Galactic stellar halo, and its extent has been traced around much
of the sky. The stream shows two pronounced tidal tails, each
extending~ 180 and reaching Galactocentric distances from 20
to more than 100kpc, also referred to as “leading arm” and
“trailing arm” (Majewski et al. 2003).

Stellar streams are sets of stars on similar orbits and therefore
lend themselves to constraining the dynamical mass within their
orbit. The distribution of the Sgr stream’s stars can therefore serve
as a probe of the Galactic mass profile and shape, including the
dark matter halo. This is best done with six-dimensional phase-
space information available for the stars, as has been shown for
relatively nearby streams such as GD-1 (Koposov et al. 2010;
Bovy et al. 2016) and Ophiuchus (Sesar et al. 2016).

Since its discovery by Ibata et al. (1994), several studies on
sections of the Sagittarius stream have been carried out. The
first modeling attempt was done by Johnston et al. (1995), but
it found that the progenitor, the Sagittarius dwarf galaxy,
disrupted after only two orbits, while observations show the
completion of about 10 orbits. As a solution to the problem,
Ibata & Lewis (1998) concluded from an extensive numerical
study that the Sagittarius dwarf galaxy must have a stiff and
extended dark matter halo if it still has about 25% of its initial
mass and is still bound today.

Early pencil-beam surveys before the era of large-scale surveys
were used by Mateo et al. (1998) and Martínez-Delgado et al.
(2001, 2003), reporting detections of tidal debris in the northern
stream of the Sagittarius dwarf galaxy and leading to the
publication of one of the first models of the Sagittarius stream to
be in good agreement with the observations (Martínez-Delgado
et al. 2003). Since the first detailed mapping by Majewski et al.
(2003), there have been quite a number of attempts to map and
trace the Sgr stream over larger fractions of its extent, building at
least in part, e.g., on the seminal work by Majewski et al. (2003).
Such work was carried out by Niederste-Ostholt et al. (2010), who
traced the Sgr stream out to ~D 50 kpc using main-sequence,
red giant, and horizontal branch stars from the Sloan Digital Sky
Survey (SDSS) as well as M giants from the Two Micron All-sky
Survey (2MASS), by Koposov et al. (2012), who used main-
sequence turn-off (MSTO) stars to measure the stream’s distance
gradients in the range L =  ˜ –90 130 in the southern Galactic
hemisphere, and by Slater et al. (2013) using color-selected
MSTO stars from the Pan-STARRS1 survey to present a
panoramic view of the Sgr tidal stream in the southern Galactic
hemisphere spanning L =  ˜ –70 130 .
Wide-area surveys of the Galactic halo, employing RR Lyrae as

tracers, have already been used in the past: Vivas et al. (2001)
carried out a study on 148 RR Lyrae within the first 100 deg2 of
the Quasar Equatorial Survey Team (QUEST) RR Lyrae survey,
and after publishing a catalog (Vivas et al. 2004) they continued
using QUEST for finding substructure near the Virgo overdensity
(Vivas et al. 2008). Duffau et al. (2014) (with Vivas) have
extended the sample and found various velocity groups from
QUEST and QUEST–La Silla (Zinn et al. 2014). Sesar et al.
(2012) found two new halo velocity groups using RR Lyrae from
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the Palomar Transient Factory (PTF) survey; Sesar et al. (2013)
used a sample of~5000 RR Lyrae over~8000 deg2 of sky from
the the Lincoln Near-Earth Asteroid Research asteroid survey
(LINEAR) to analyze the Galactic stellar halo profile for
heliocentric distances between 5 kpc and 30 kpc. Drake et al.
(2014) produced a catalog of RR Lyrae and other periodic
variables from the Catalina Surveys Data Release-1 (CSDR1).

A number of these attempts have been able to map parts of
the Sagittarius stream. An extensive map was made by Drake
et al. (2013, 2014), which confirms the presence of a halo
structure that appears as part of the Sagittarius tidal stream but
is inconsistent with N-body simulations of that stream such as
the model of Law & Majewski (2010). Recently, this feature
was confirmed by Belokurov et al. (2014) based on M giants.

In more recent work, Belokurov et al. (2014) have
demonstrated that the trailing arm of the Sgr stream can be
traced out to its apocenter at ~100 kpc. They also give a fit of
the stream’s leading arm to its apocenter at ~50 kpc. The
extent of the Sgr stream has therefore only recently become
fully apparent, spanning an unparalleled range of distances
when compared to other stellar tidal streams in the Milky Way.

In contrast to the aforementioned partial mapping of the Sgr
stream, showing the stream only piecewise mapped by tracers from
different surveys and often relying on different kinds of sources as
tracers, the data we have at hand—RR Lyrae stars from Pan-
STARRS1—enable us to trace the complete angular extent of the
Sgr stream as well as to look even at the outskirts of the stream.

There have also been attempts to model the Sagittarius tidal
stream (e.g., Law & Majewski 2005; Peñarrubia et al. 2010;
Gibbons et al. 2014), which has complex geometry and
incomplete (so far) phase-space information.

Helmi (2004a, 2004b) claim that the trailing arm is too
young to be a probe of the dark matter profile, whereas the
leading arm, being slightly older, provides direct evidence for
the prolate shape of the dark matter halo. Helmi (2004a, 2004b)
have used numerical simulations of the Sgr stream to probe the
profile of the Milky Way’s dark matter halo. They find that the
data available for the stream are consistent with a Galactic dark
matter halo that could be either oblate or prolate, with a ratio of
minor to major density axes that can be as low as 0.6 within the
region probed by the Sgr stream. In agreement with Martínez-
Delgado et al. (2003), they state that the dark matter halo
should thus not be assumed to be nearly spherical.

The modeling efforts have also included N-body simulations
constrained by observational data (e.g., Fellhauer et al. 2006;
Law & Majewski 2010; Peñarrubia et al. 2010; Dierickx &
Loeb 2017). Consistent 3D stream constraints from a single
survey, as we set out to provide here, aid the comparison to
models of the Sgr stream, usually based on N-body simulation
(e.g., Law & Majewski 2010; Dierickx & Loeb 2017).

The main aim of this paper is to map the geometry (in
particular the distance) of the Sgr stream more precisely,
accurately, and comprehensively than before, using exclusively
RR Lyrae (RRL) stars from a single survey to trace the stream’s
old stellar population. For our analysis, we use the RRab
sample of Sesar et al. (2017c), which covers 3/4 of the sky, is
rather pure, and has precise distances (to 3%). It was generated
from data of the Pan-STARRS1 survey (PS1) (Kaiser
et al. 2010), using structure functions and a machine-learning
algorithm by Hernitschek et al. (2016) and a subsequent
multiband light-curve fitting and another machine-learning
algorithm as described in Sesar et al. (2017c).

This provides us with an RRL map of the old Galactic stellar
halo that is of high enough contrast to fit the Sgr stream geometry
directly by a density model: its distance and line-of-sight depth as
a function of angle in its orbital plane. In particular, we can derive
precise apocenter positions of both the leading and trailing arms
and thus the Galactocentric orbital precession of the stream.
The structure of the paper is as follows: in Section 2 we

describe the PS1 survey and the RRL sample derived from it; in
Section 3 we describe and apply the distance distribution model
for the Sgr stream that we fit to these data; in Section 4 we
present and discuss our results obtained from evaluating the fit,
describe our findings regarding geometrical properties of the
stream, and compare them to earlier work; we conclude with a
discussion in Section 5and a summary in Section 6.
This work is part of a series of papers exploring the

identification and astrophysical exploitation of RRL stars in the
PS1 survey. The basic approach for applying multiband structure
functions to PS1 3π light curves, and subsequently using a
classifier evaluating variability and color information to select RR
Lyrae and QSO candidates, has been laid out in Hernitschek et al.
(2016), with results from the preliminary PS1 3π version, PV2.
We then applied multiband fitting of the period to all these RRL
candidates (Sesar et al. 2017c), using light curves from the final
PS1 3π version, PV3. The quality and plausibility of these fits
aided in the classification, increasing the purity of the sample and
leading to precise distance estimates for the sample of RRab stars.
Sesar et al. (2017b) show new detections within the Sgr stream,
made using the RRab sample without further fitting or modeling;
in particular, they show the detection of spatially distinct “spur”
and clump features reaching out to more than 100 kpc on top of
the apocenters of the Sgr stream, which is in good agreement with
recent dynamical models (Gibbons et al. 2014; Fardal et al. 2015;
Dierickx & Loeb 2017).

2. RR Lyrae Stars from the PS1 Survey

Our analysis is based on a sample of highly likely RRab
stars, as selected by Sesar et al. (2017c) from the Pan-
STARRS1 3π survey. In this section, we describe the pertinent
properties of the PS1 3π survey and its obtained light curves,
recapitulate briefly the process of selecting the likely RRab, as
laid out in Sesar et al. (2017c), and briefly characterize the
obtained candidate sample.
The Pan-STARRS1 (PS1) survey (Kaiser et al. 2010) is

collecting multiepoch, multicolor observations via a number of
surveys, among which the PS1 3π survey (Stubbs et al. 2010;
Tonry et al. 2012; Chambers et al. 2016) is currently the
largest. It has observed the entire sky north of decl. - 30 in
five filter bands (g r i z y, , , ,P1 P1 P1 P1 P1) with 5σ single-epoch
depths of 22.0, 21.8, 21.5, 20.9, and 19.7 magnitudes in
g r i z, , ,P1 P1 P1 P1, and yP1, respectively (Chambers et al. 2016).

For more than ´1.1 109 PS1 3π PV3 sources, we constructed
a set of data features for source classification: the sources’ mean
magnitudes in various bands, as well as multiband variability
features such as a simple c2-related variability measure ĉ2, and
multiband structure function parameters, w t( ),r , describing the
characteristic amplitude and timescale of variability (Hernitschek
et al. 2016). Based on these features, including a multiband light-
curve fit resulting in period estimates, a machine-learned
classifier, trained on PS1 3π sources within SDSS S82,
then selects plausible RRL candidates (Sesar et al. 2017c).
Their distances were calculated based on a newly derived
period–luminosity relation for the optical/near-infrared PS1
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bands, because the majority of the PS1 sources lack metallicities.
The complete methodology on how to derive the distances and
verify their precision is given in Sesar et al. (2017c).

Overall, this highly effective identification of RR Lyrae stars
has resulted in the widest (3/4 of the sky) and deepest (reaching
>120 kpc) sample of those stars to date. The RRab sample from
Sesar et al. (2017c) was selected uniformly from the set of sources
in the PS1 3π survey in the area and range of apparent magnitude
available for this survey. Sesar et al. (2017c) have shown that the
selection completeness and purity for sources at high Galactic
latitudes ( > ∣ ∣b 15 ) are approximately uniform over a wide range
of apparent magnitude up to a flux-averaged r-band magnitude of
20 mag, maintaining a sample completeness for the RRab stars of
∼80% and a purity of ∼90% within 80kpc (see their Figure 11).

We thus explicitly refer to high-latitude completeness on PS1
3π overlapping with SDSS Stripe 82 (Sesar et al. 2017c), but we
have no reason to believe that the purity and completeness vary
strongly across high-latitude areas. A detailed map of the purity
and completeness including not only their distance but their spatial
distribution would require that we have “ground truth” (i.e.,
knowledge about the true type of star for every source) in all
directions, which of course is not available. For the definition of
completeness and purity, we refer to Sesar et al. (2017c), where
the completeness is defined as the fraction of recovered RR Lyrae
stars on a test area (e.g., SDSS Stripe 82), and the purity is defined
as the fraction of true RR Lyrae stars in the selected sample of RR
Lyrae candidates.

There are 44,403 likely RRab stars in this PS1 sample with
distance estimates that are precise to 3%. In the further analysis,
we refer to this sample (Hernitschek et al. 2016; Sesar
et al. 2017c) as “RRab stars.”

While the sample covers the entire sky above decl.- 30 , we
focus on stars near the orbital plane of the Sgr stream. We use
the heliocentric Sagittarius coordinates L ( ˜ ˜ )B, as defined by
Belokurov et al. (2014), where the equator = B̃ 0 is aligned
with the plane of the stream. We restrict our subsequent
analysis to RRab from our sample that lie within < ∣ ˜ ∣B 9 as
also seen in the plots by Belokurov et al. (2014), resulting in

~15,000 stars. This sample is plotted in Figure 1 in the L( ˜ )D,
plane of longitudinal coordinates L˜ and heliocentric distances
D, with the angular distance to the Sgr plane B̃ indicated by
color coding. A table for these stars within < - ∣ ˜ ∣B 9 is given
in the Appendix, Table 1. A machine-readable version of this
table is available in the electronic version of the Journal.

3. A Simple Model to Characterize the Geometry
of the Sgr Stream

We aim at a simple quantitative description of the Sgr stream,
by providing the mean distance and line-of-sight (l.o.s.) depth of
presumed member stars as a function of angle in the orbital plane.
We only consider stars within < ∣ ˜ ∣B 9 , and marginalize over
their distribution perpendicular to the orbital plane, resulting in a
set of distances as a function of L˜ . In practice, the overall
distance distribution ( )p DRRL toward any L˜ is modeled as the
superposition of a “stream” and a “halo” component. For each L˜
bin, the halo is modeled as a power-law rhalo in Galactic
coordinates, describing the background of field stars. The
heliocentric distance distribution of stream stars is modeled as a
Gaussian, characterized by Dsgr and the l.o.s. depth, ssgr:

  q q q
r

r s

= +
= - ´

+ ´

( ∣ ) ( ∣ ) ( ∣ )
( ) ˆ ( )

ˆ ( ) ( )

p p p

f l b D q n

f l b D D

1 , , , ,

, , , , , 1

RRL halo stream

sgr halo

sgr sgr sgr sgr

where

ò
r

r

r
ºˆ ( )

( )

( )
( )l b D q n

l b D q n

l b D q n D
, , , ,

, , , ,

, , , , d
, 2

D

Dhalo
halo

halo
min

max

with an analogous definition of r̂sgr. The data set is given as
 d= ( )D D l b, , , . The parameters are q s= ( )f D n, , ,sgr sgr sgr ,
composed of the fraction of stars fsgr that lie in the Sgr stream

at the given L˜ slice, the heliocentric distance of the stream

Figure 1. RRab stars within < ∣ ˜ ∣B 9 as obtained after fitting of the period (Sesar et al. 2017c). The Sgr stream is clearly visible up to~130 kpc. The color indicates
the median angular distance B̃ of a  ´5 5 kpc bin (in L˜ and D coordinates) from the Sgr orbital plane = B̃ 0 . This was chosen due to the high source density in
some regions. In this figure, the angular coordinate L˜ runs from- 20 to 380 with repeated data points for L < ˜ 0 and L > ˜ 360 , to better show the distribution
near L ~ ˜ 0 . The locations of the Sun, Galactic anticenter, Sgr dSph, and the Virgo overdensity (Vivas et al. 2001; Newberg et al. 2003; Jurić et al. 2008) are
indicated. The dashed line marks the position of the Galactic plane. The centroid for Sgr dSph was taken from Karachentsev et al. (2004). The Cetus stream should
cross the Sgr stream at L ~ ˜ 270 , ~ B̃ 1 (Newberg et al. 2009). Evidence from our data is marginal.
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Dsgr, its l.o.s. depth ssgr, and the power-law index n of the halo
model. Dmin and Dmax are the minimum and maximum D we
consider in each L˜ slice.

We adopt a simple power-law halo model rhalo (Sesar et al.
2013) to describe the “background” of field stars in the
direction of (l, b):

r r=  ( ) ( ) ( )X Y Z R r, , 3q
n

halo RRL

with

= -
=-
=

= + +



( )

X R D l b
Y D l b
Z D b

r X Y Z q

cos cos
sin cos

sin

.q
2 2 2

Sesar et al. (2013) also give the halo parameters

r

=
=
=
= -





n
R

q

2.62
8.0 kpc
0.71

4.5 kpc .RRL
3

Here, rRRL is the number density of RR Lyrae at the
position of the Sun; q gives the halo flattening along the Z
direction. In our analysis, all “background halo” parameters
except the fitting parameter n are kept fixed.

The stream is modeled as a normal distribution centered on
Dsgr and with variance ssgr as follows. It is defined in Galactic
coordinates (l, b) and Galactocentric distance R, where R is
given as a function of the heliocentric distances D, Dsgr, and
distance uncertainty dD, as follows:

r d s

p s d s d
=

+
-

-

+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( )

( ( ) ( ))
( )

( )

l b D D D

D

R D R D

D
D

, , , , ,

1

2
exp

2
. 4

sgr sgr sgr

sgr
2 2

sgr
2

sgr
2 2

2

For the distance uncertainties of RRab stars, we adopt a dD
of 3% according to Sesar et al. (2017c).

3.1. Fitting the Sgr Model

For fitting this model, the sample of RRab stars near the Sgr

orbital plane is split into bins of L  DL


˜ ˜

2
, each DL = ˜ 10

wide; the data are not binned in D. In each bin, we fit
(independently) the parameters of the stream, Dsgr and ssgr,
along with the halo model parameter n. Whereas it is obvious
why the stream-related model parameters should be fitted
individually for each L˜ bin, the reason for also fitting the halo
power-law index n individually is to account for incomplete-
ness of the data. The flattening parameter q is kept fixed at
0.71, because fitting for q did not improve the results for the
stream-related model parameters.

To constrain the geometry of the Sgr stream in a probabilistic
manner, we calculate the joint posterior probability q( ∣ )pRRL
of the parameter set q s= ( )f D n, , ,sgr sgr sgr , given the data set
 d= ( )D D l b, , , . The marginal posterior probability of the
parameter set q, q( ∣ )pRRL is related to the marginal likelihood

 q( ∣ )pRRL through

 q q qµ( ∣ ) ( ∣ ) ( ) ( )p p p 5RRL RRL

where q( )p is the prior probability of the parameter set.

We evaluate

 åq q q= +( ∣ ) ( ∣ ) ( ) ( )p p pln ln ln 6
i

iRRL RRL

with  q( ∣ )p iRRL given by Equation (1), and i indexes the RRab
stars.
We use the following prior probability for the model

parameters, q( )p : for ssgr, we choose a prior that is uniform
in ln, whereas for the other parameters, we adopt uniform
priors. Specifically, we adopt




q s=-
+ <

+ <

+ L

( ) ( )
( )
( )

( ∣ ˜ ) ( )

p

f

n

p D

ln ln

Uniform 0.05 1

Uniform 1.7 5.0

. 7

sgr

sgr

sgr

The prior for Dsgr depends on L˜ , and is uniform within
L( ˜ )Dminprior , L( ˜ )Dmaxprior as indicated in Figure 4 and listed

in Tables 2 and 3. Whereas the prior is generally wide, a quite
restrictive prior was chosen for  L < ˜20 30 and

 L < ˜30 40 , because the fit otherwise behaves poorly
because of the background sources along these l.o.s.

Dminprior, Dmaxprior are basically constrained by the minimum
and maximum distances in the L˜ slice in particular case, but
are also defined in order to mask dense regions at short
heliocentric distances as well as to separate the leading and
trailing arms where both are present at the same l.o.s.
The most probable model given the data is explored using

the Affine Invariant Markov Chain Monte Carlo (MCMC)
ensemble sampler (Goodman & Weare 2010) as implemented
in the emcee package (Foreman-Mackey et al. 2013).
The approach was verified with mock data, using a halo

component that was sampled from the underlying halo model,
superimposed by a mock stream that was inserted as a stellar
density sheet; its number density is uniform perpendicular to the l.
o.s. and Gaussian along it. The fraction of stream stars with respect
to the halo stars, described by fsgr, was then successively lowered;
i.e., the fit was carried out in the limits of many and few stars in
each L˜ slice to make sure that reasonable fits can be obtained
for densities such as that present for the PS1 3π RR
Lyrae candidates, which is∼0.5–1 deg−2 for most parts of the sky.

3.2. Fits to Individual L˜ Bins

We now illustrate which practical issues are entailed in
fitting the model to the data in a L˜ bin. Each distance and
depth estimate s( )D ,sgr sgr is obtained by optimizing
Equation (6) using an MCMC procedure (Foreman-Mackey
et al. 2013). Figures 2 and 3 show fits to individual slices in
L˜ . Figure 2 gives the fit for a 10 wide slice centered on
L = ˜ 50 . In this direction, only the leading arm is present.
The plot indicates the prior on Dsgr, in this case, set only by
the minimum and maximum distances available from
sources in the L˜ slice in the particular case. The
distribution of the sources is shown, overplotted with the
model from the best-fit parameters given as a solid blue line.
The transparent blue lines represent samples drawn from the
parameter probability density function, illustrating the
spread of models; the downturn of the models at small
distances below 40kpc is also a reflection of our sample
incompleteness (here at the bright end). In the case in
Figure 2, showing L = ˜ 55 , a halo profile much steeper
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than expected from n=2.62 given in the model of Sesar
et al. (2013) is obvious; local variations in n presumably
reflect simply the halo substructure. The estimate of Dsgr and
ssgr is clearly seen as being sensible in Figure 2. Here, the
variance on the estimated parameters is very small, and the
parameters fit well to what one would guess by visual
inspection. Even for L˜ slices where the fit is poorer (both
by visual inspection and by the variance of the distance
estimate) a sensible distance estimate, not driven by the
priors, is found as we show below.

Figure 3 gives the fit for L = ˜ 155 , where both leading and
trailing arms are along the l.o.s. Using distinct priors on Dsgr
separates the two debris streams and gives precise estimates on
distance and depth of both leading and trailing arms (see also
Figure 4 around L = ˜ 155 ). This illustrates the importance of
carefully set priors.

4. Results

The modeling from Section 3 was then applied to the
complete sample of RRab stars within < ∣ ˜ ∣B 9 . Figure 4
shows the resulting geometric characterization of the Sgr
stream, its fitted distance, and l.o.s. depth (actually s´2 sgr). It
is apparent that the estimates of distance and l.o.s. depth trace
the stream well all the way out to more than 100kpc. From this
detailed picture of the Sgr stream, many features can be seen in
great detail, some of them reported previously. The distances
Dsgr are shown as black points centered on the L˜ slice in each
case. The l.o.s. depth ssgr is indicated by black bars. The gray
shaded areas mark the priors set on D ;sgr clearly, in most cases
the priors have no significant effect on the probability density
function. The fitted parameter values are given in Tables 4 and
5 in the Appendix.

Figure 2. Combined halo and stream fit for a 10 wide slice centered on L = ˜ 55 . In this slice, only the leading arm of the Sgr stream is present. The source distance
distribution is shown, overplotted with the model from the best-fit parameters given as the solid blue line. The spread of transparent blue lines gives the spread of
models obtained by the MCMC procedure. The best-fit parameters are given along with their 1σ uncertainties. The plot indicates the prior on Dsgr, set by the minimum
and maximum distances available from sources in this L˜ slice.

Figure 3. Combined halo and stream fit for a 10 wide slice centered on L = ˜ 155 where both the leading and trailing arms of the Sgr stream are present. For this
plot, the fitting was executed twice, with the different priors indicated. The figure is similar to Figure 2, but shows the influence of a carefully chosen prior to separate
the two debris streams. By using distinct priors on Dsgr, precise estimates of distance and depth of both leading and trailing arms are possible.
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Figure 4. Source distance distribution is shown with the same color coding and symbols as in Figure 1, overplotted with the fitted extent of the Sgr stream obtained
from the method presented in Section 3.1. (a) The extent of the Sgr stream from the RR Lyrae candidates within  9 of the Sagittarius plane, shown in Sagittarius
coordinates from Belokurov et al. (2014). The best-fit model, given by Dsgr, ssgr as obtained for 10 slices in L˜ , is overplotted. The angular distance of the sources to
the Sgr plane = B̃ 0 is indicated by color coding. The locations of the Sun, Galactic anticenter, Sgr dSph, and the Virgo overdensity are indicated. The dashed line
marks the position of the Galactic plane. The black points indicate the center of the L˜ slices used to estimate the distance Dsgr. (b) Projection of the model fit to the
stream and distance in cylindrical coordinates centered on the Sun. The same data, symbols, and color coding apply as in (a).
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Qualitatively the aspects of the Sgr stream shown in Figure 4
can be summarized as follows.

(i) The stream shows clearly distinct leading and trailing
arms. The shape and extent look similar to what was
found earlier (Majewski et al. 2003; Belokurov et al.
2014), see also Section 5.1.

(ii) The leading arm’s apocenter lies between L = ˜ 60
and 70 where Dsgr reaches –48.5 49.6 kpc, and the
trailing arm’s apocenter is near L ~ ˜ 170 , reaching its
largest extent of 92.0kpc. This agrees with Belokurov
et al. (2014), who give the leading arm’s apocenter as
being located at L =   ˜ 71 .3 3 .3 and the trailing
arm’s apocenter at L =   ˜ 170 .5 1 . The precise
position of the apocenters will be derived in
Section 4.3.

(iii) At both the apocenter of the main leading arm (L ~ ˜ 70 )
and that of the trailing arm (L ~ ˜ 180 ) our RRab map
reveals substructure that is readily apparent to the eye and
has been further discussed in Sesar et al. (2017b, 2017c):
two “clumps” (at ~D 60 and 80kpc) beyond the leading
arm’s apocenter, and a “spur” of the trailing arm reaching
up to 130kpc. Such features were previously predicted by
dynamical models of the stream (e.g., Gibbons et al. 2014).
These new Sgr stream features are discussed in detail in
Sesar et al. (2017c).

4.1. The l.o.s. Depth of the Sagittarius Stream

Figure 5 shows the estimated ssgr of the stream (being half the
l.o.s. depth) versusL˜ for both the leading and trailing arms along
with its uncertainty. Figure 5 quantifies what was qualitatively
apparent from Figure 4(a): the stream tends to broaden along its
orbit from ∼1.75 to 6kpc for the leading arm, reaching even
∼10kpc for the trailing arm. As expected, ssgr and thus the l.o.s.
depth are largest close to the apocenters. This is the first
systematic determination of the l.o.s. depth, although the
uncertainties are still quite large for some parts of the stream.
The leading arm’s l.o.s. depth rises (and falls) toward (and away)
from the apocenter. In contrast, ssgr for the trailing arm remains

larger in the range  < L < ˜200 300 . At least in part, this is
presumably because our l.o.s. direction forms a shallower angle
with the stream direction than the leading arm. Except toward the
apocenters, ssgr also rises toward the “end” (the largest L˜ ) of the
respective trailing or leading arm.
In addition to the l.o.s. depth of the Sgr stream, its actual depth

would be of great interest. As we know the angle between the
normal to the stream and the l.o.s., we could deproject the l.o.s.
depth ssgr to get the actual width of the stream.
First, we convert the polar coordinates of the projected

L ( ˜ ˜ )B, , as shown in Figure 4, into their Cartesian counter-
parts ( )x y,sgr sgr . We then calculate the deprojected depth s̃sgr for

each bin i in L˜ as

s s a= L -˜ ( ˜ ) ( )cos 8i i i isgr, sgr, ,

with

a =
-

-
+ -

+ -

⎛
⎝⎜

⎞
⎠⎟ ( )

y y

x x
tan . 9i

i i

i i

sgr, 1 sgr, 1

sgr, 1 sgr, 1

Equation (9) approximates the tangent in ( )x y,i isgr, sgr, with a
line through - -( )x y,i isgr, 1 sgr, 1 and + +( )x y,i isgr, 1 sgr, 1 , thus the first
and last ssgr of the leading and trailing arms are not deprojected.
The deprojected depths along with their uncertainties are

given in Tables 6 and 7 in the Appendix. Figure 6 shows how
the l.o.s. and deprojected depth of the Sgr stream vary strongly
during the orbital period. The s̃sgr profile is flatter than the ssgr
profile, and as expected, the trailing arm’s deprojected depth s̃sgr
is not noticeably boosted, in contrast to ssgr, which is. But a
variation during the orbital period is still present. Comparing the
two depths emphasizes that the greater depth at the apocenters is
a combination of the projection effect and the true broadening
when the velocities become small near the apocenters.

4.2. The Amplitude of the Sagittarius Stream

We can also quantify the amplitude A of the stream fit from
Section 3, defined as the number of RRab stars in the stream

Figure 5. Depth ssgr of the Sagittarius stream from the RRab stars within 9 of the Sagittarius plane. Error bars indicate the range dD Dsgr sgr. A trend in the depth
can be seen, reaching a maximum around the apocenter and toward the largest L˜ of the leading and trailing arms, respectively. We find the leading arm’s apocenter at

L =   
˜ 63 . 2 1 . 2

L
, and the trailing arm’s apocenter at L =   

˜ 167 . 58 0 . 44
T

. The apocenter positions are indicated here as dashed lines.
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Figure 6. l.o.s. and deprojected depth of the Sgr stream. (a) Projection of the stream and its depth in cylindrical Sagittarius coordinates centered on the Sun. The orange bars
indicate the deprojected depth, s̃sgr. The source distance distribution is shown with the same data, symbols, and color coding as in Figure 4. (b) The deprojected depth s̃sgr of
the Sagittarius stream from the RRab stars within 9 of the Sagittarius plane. Error bars indicate the range dD Dsgr sgr. The general trend in the depth, seen in Figure 5 for
the l.o.s. depth ssgr, is still present here, but the profile is flatter than the ssgr profile from Figure 5, because projection effects contribute to broadening near the apocenters. As
in Figure 5, the apocenter positions are indicated as dashed lines. The deprojected depths along with their uncertainties are given in Tables 6 and 7 in the Appendix.
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per degree as a function of L˜ , i.e.,

s= # L 
DL

´ DL ´



⎛
⎝⎜

⎞
⎠⎟

˜ ˜
( ˜ )

( )

A fsources within
2

.

10

sgr sgr

The amplitudes for both the leading and trailing arms are
given in Tables 8 and 9 in the Appendix.

Figure 7 shows the amplitudes plotted versus the L˜ bins.
The value of A increases near the apocenter of the leading
arm to about twice as much as away from its apocenter. Also
near the apocenter of the trailing arm, A rises with respect to
the value it has away from the apocenter, but not as strikingly
as found for the leading arm. As the angular velocity
decreases near the apocenter, we had expected to find an
increased source density, and thus larger A, near the
apocenters than in sections of the stream away from
apocenters. In addition to this general statement, we find
that the source density is about six times larger at the leading
arm’s apocenter than at the trailing arm’s (compare also
Figure 7 to Figure 4). We checked whether this can be
partially explained by a selection effect, because the leading
arm’s apocenter has a smaller heliocentric distance than the
trailing arm’s. Using the selection function from Sesar
et al. (2017c), we find that this falls far short of accounting
for the difference in apocenter source densities between the
leading and trailing arms, so incompleteness is not an issue
here. Additionally, simulations like that of Dierickx & Loeb
(2017) also show a similar behavior, see, e.g., their Figure 9,
which shows a higher source density at the leading arm’s
apocenter.

4.3. The Apocenters and Orbital Precession
of the Sagittarius Stream

Sources orbiting in a potential show a precession of their
orbits, which means that they do not follow an identical orbit
each time, but actually trace out a shape made up of rotated
orbits. This is because the major axis of each orbit is rotating
gradually within the orbital plane.

Orbits in the outer regions of galaxies with a spherically
symmetric gravitational potential are expected to have a
precession between 0 and 120 (Belokurov et al. 2014).
Assuming a spherically symmetric potential, the precession
depends primarily on the shape of the potential and thus on the
radial mass distribution (Belokurov et al. 2014). Additionally it
is also a function of the orbital energy and angular momentum
distribution (Binney & Tremaine 2008).
The estimates of angular mean distance Dsgr of the Sgr

stream that were obtained during this work enable us to make
statements about the precession of the orbit. To do so, the angle
between the leading and trailing apocenters is measured.
We calculate this angle by fitting a model to the distance data in

both the leading and trailing arms, namely fitting a Gaussian and a
(shifted and scaled) log-normal. A comparable fit was carried out
by Belokurov et al. (2014). The models used here are unphysical,
but can be applied here because they describe the angular distance
distribution L( ˜ )Dsgr adequately in order to find the apocenters
along with their uncertainties. As the angular distance distribution

L( ˜ )Dsgr of the leading arm appears to be symmetrical with
respect to the assumed apocenters, and also appears to be
Gaussian-like, a Gaussian model is fitted to the L( ˜ )Dsgr of the
leading arm. In contrast, the trailing arm shows a clear asymmetry.
For this reason, we fit the trailing arm’s distance distribution using
a (shifted and scaled) log-normal, fitted for the range

  L ˜105 265 . With comparable results, a parabola can be
fitted to the data.
The best-fit Gaussian model for the leading and trailing

apocenters is shown in Figure 8. In this figure, blue and red
lines show the best-fit Gaussian model for both the leading and
trailing arms. The positions of the apocenters are each denoted
by a circle symbol. Dashed lines mark the corresponding L˜ of
each apocenter.
We find the leading apocenter at L =   

˜ 63 .2 1 .2
L

,
reaching = D 50.88 0.45 kpcL

sgr , and the trailing apocenter

at L =   
˜ 167 .6 0 .44

T
, reaching = D 91.12 0.09 kpcT

sgr .
For a more detailed discussion of the apocenter substructure,

reaching up to 120 kpc from the Sun, we refer to Sesar et al.
(2017c), Section 3.

Figure 7. Amplitude of the stream, s= # L  ´ DL ´DL
 

( ˜ ) ( ˜ )
˜

/A fsources within
2 sgr sgr , for the L˜ bins. A shows an increase toward the apocenters, and is

about six times larger near the leading arm’s apocenter than near the trailing arm’s. As in previous figures, the apocenter positions are indicated as dashed lines.
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The differential orbital precession w = L - L  
˜ ˜T L

is
  104 .4 1 .3, corresponding to a difference in heliocentric

apocenter distances of 40.24±0.45kpc.
The actual Galactocentric orbital precession is slightly lower

than the difference between the heliocentric apocenters. The
Galactocentric distances and angles of the leading and trailing
apocenters are calculated by taking into account that the
Galactocentric distance of the Sun is 8kpc. Consequently, the
opening angle between the positions of the two apocenters, as
viewed from the Galactic center, is then w =   96 .8 1 .3GC .
The Galactocentric distance of the leading apocenter is then
47.8±0.5kpc, and that of the trailing apocenter 98.95±
1.3kpc, resulting in a difference in mean Galactocentric
apocenter distances of 47.45±1.4kpc.

4.4. Precession of the Orbital Plane of the Sagittarius Stream

Aside from the apocenter precession of the stream (see
Section 4.3), the orbital plane itself might show a precession.
To test this we obtain the weighted latitude of the stream RRab,
á ñB̃ , as a function of L˜ . The weight of each star is the
probability that the star is associated with the Sgr stream.

The fit as described in Section 3.1 was carried out for each bin i
in L˜ , resulting in a parameter set q s= ( )f D n, , ,i i i i isgr, sgr, sgr,

describing the stream and halo properties in the L˜ bin in
each case.

We now again make use of the model for the observed
heliocentric distances, Equation (1) with the halo described by
Equation (3) and the stream described by Equation (4). We
calculate q( ∣ )p l b D, ,j j j isgr as the fraction of the likelihood that a
star j is associated with the Sgr stream divided by the sum of
the likelihood that it is associated with the Sgr stream and the

likelihood that it is associated with the halo:

q
q

q q
=

+
( ∣ )

( ∣ )
( ( ∣ ) ( ∣ ))

( )p l b D
p D

p D p D
, , . 11j j j j i

i

i i
sgr,

stream

halo stream

The weighted latitude á ñB̃ in a bin i is then calculated as

å
å

á ñ =
´


˜

( ˜ )

(
( )

)
B

B p

p
. 12i

j i j

j j

, sgr,

sgr,

We then use the difference in á ñB̃ for the leading and
trailing arms to quantify the precession of the orbital plane.
The resulting á ñB̃ for both the leading and trailing arms are

given in Tables 8 and 9 in the Appendix. Figure 9 shows á ñB̃
plotted versus the L˜ bins.
This gives evidence for the leading arm staying in or close to

the plane defined by = B̃ 0 , whereas the trailing arm is found
within within- 5 to 5 around the plane. From this, we find a
separation of ~ 10 , as also derived by Law et al. (2005).

5. Discussion

We can now place our results in the context of existing work,
and discuss the prospect of using them for dynamical stream
modeling.

5.1. Comparison to the Model by Belokurov et al. (2014)

The best previous estimates of the heliocentric distances for a
large part of the Sgr stream come from Belokurov et al. (2014),
who used blue horizontal branch (BHB) stars, subgiant branch
(SGB) stars, and red giant branch (RGB) stars from the Sloan
Digital Sky Survey Data Release 8 (SDSS DR8). In Figure 10 we
compare our heliocentric distances, dD Dsgr sgr, to those from
Belokurov et al. (2014) (Figure 6 therein). We show the s1

Figure 8. Apocenters of the Sgr stream by fitting L( ˜ )Dsgr with a Gaussian for the leading arm and a log-normal for the trailing arm. We derive the position of the

leading apocenter as L =   
˜ 63 . 2 1 . 2

L
, reaching = D 50.88 0.45 kpcL

sgr , and that of the trailing apocenter as L =   
˜ 167 . 6 0 . 44

T
, reaching

= D 91.12 0.09 kpcT
sgr . From this, we calculate the differential heliocentric orbital precession w = L - L =     

˜ ˜ 104 . 4 1 . 3
T L

. The corresponding difference
in heliocentric apocenter distances is 40.24±0.45kpc. Blue and red lines show the best-fit models for both the leading and trailing arms. The position of the
apocenters is denoted by a circle symbol in the corresponding color. Dashed lines mark the corresponding L˜ of each apocenter.
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uncertainties from Belokurov et al. (2014) where available, and
assume the uncertainties to be 10% if not stated otherwise.

Overall, the two estimates are in good agreement, attesting to
the quality of the analysis by Belokurov et al. (2014). The
distances from Belokurov et al. (2014) may be systematically
slightly larger; the fact that the RRab distances we use are
directly tied to parallaxes from the Hubble Space Telescope
(HST) and Gaia DR1 (Sesar et al. 2017a) should lend
confidence to the distance scale of this work. Our new
estimates for the mean distance are three times more precise,
and presumably also accurate. The typical mean distance
uncertainty in Belokurov et al. (2014) is 1–2 kpc and up to 0.1
Dsgr for most parts of the stream, whereas our work shows
comparable or smaller dDsgr (see Tables 4 and 5).

As mentioned before, our new map of the Sgr stream also
has considerably more extensive angular coverage.
The high individual distance precision to the RRab of 3%

allows us to map the l.o.s. depth of the stream, which
Belokurov et al. (2014) could not do, or at least did not. For
these reasons, our work improves the knowledge of the
geometry of the Sgr stream significantly.
However, care must be taken in parts of the Sgr stream

where the number of sources is comparatively low. The trailing
arm’s distance estimate for the bin centered on L = ˜ 125
results from only 28 sources within the prior indicated by
Figure 4(a), i.e., >D 40 kpc. In this bin, the estimated Dsgr is
smaller than the Dsgr estimated for nearby bins, and the same
applies for the estimated width of the stream, which appears to

Figure 10. Comparison of the heliocentric distance estimates of the Sgr stream between this work and Belokurov et al. (2014). The Dsgr, shown as black points
together with their range dD Dsgr sgr and estimated stream depth ssgr (gray bars), are compared with the estimates from Belokurov et al. (2014) (blue points), who
traced parts of the Sgr stream, together with their uncertainties. The distances from Belokurov et al. (2014) show a slight trend toward larger values. Overall, the
distance estimates are in good agreement. Uncertainties from our results are given as ranges dD Dsgr sgr; uncertainties from Belokurov et al. (2014) are given as their
s1 ranges if available, and assumed to be 10% if not stated otherwise.

Figure 9.Weighted latitude of the stream RRab, á ñB̃ , for theL˜ bins. The weight of each star is the probability that the star is associated with the Sgr stream, and á ñB̃
is then calculated from Equation (12). Except for L = ˜ 15 , the leading arm stays in or is close to the plane defined by = B̃ 0 . In contrast, the trailing arm is found
within - 5 to 5 around the plane. This results in a separation of ~ 10 , as also derived by Law et al. (2005).
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be too narrow.
In both analyses, the apocenters of the leading and trailing

arms are derived. We find the leading apocenter at
L =   
˜ 63 .2 1 .2

L
, reaching = D 50.88 0.45 kpcL

sgr , and

the trailing apocenter at L =   
˜ 167 .6 0 .44

T
, reaching

= D 91.12 0.09 kpcT
sgr . The differential orbital precession

w = L - L  
˜ ˜T L

is   104 .4 1 .3, with a difference in helio-
centric apocenter distances of 40.24±0.45kpc. Taking into
account that the Galactocentric distance of the Sun is 8kpc, the
corresponding Galactocentric angle from our analysis is
w =   96 .8 1 .3GC . The Galactocentric distance of the leading
apocenter is then 47.8±0.5kpc, and that of the trailing
apocenter 98.95±1.3kpc, resulting in a difference in mean
Galactocentric apocenter distances of 47.45±1.4kpc.

If we assume that the trailing arm’s apocenter is close to the
maximum extent of the derived Dsgr, as is done by fitting a
Gaussian to the five closest points near the maximum extent, we
find the trailing apocenter at L =   

˜ 173 4 2 .0
T

, reaching
= D 92.7 1.3 kpcT

sgr . The differential orbit precession w =

L - L 
˜ ˜T L

is then   108 .9 2 .4, with a difference in heliocentric
apocenter distances of 41.82±0.45kpc. The Galactocentric angle
is then slightly larger than for the log-normal fit,
w =   101 .0 2 .4GC ; the Galactocentric distance of the leading
apocenter is 49.2±0.5kpc and that of the trailing apocenter is
100.7±1.3kpc, resulting in a difference in mean Galactocentric
apocenter distances of 51.5±1.4kpc.

Belokurov et al. (2014) give the position of the leading
apocenter as L =   

˜ 71 .3 3 .5
L

with a Galactocentric distance
= R 47.8 0.5 kpcL , and the position of the trailing apocenter

as L =   
˜ 170 .5 1

L
with a Galactocentric distance =RL

102.5 2.5 kpc. They state the derived Galactocentric orbital
precession as w =   93 .2 3 .5.

To summarize the comparison:

1. Our analysis is done from one single survey and type of
star, whereas the work by Belokurov et al. (2014) relies on
BHB, SGB, and RGB stars. The extent and depth of PS1 3π
enables us to provide a more extensive angular coverage of
sources. This has resulted in the first complete (i.e.,
spanning  < L < ˜0 360 ) trace of the Sgr stream’s
heliocentric distance from a single type of star originating
from a single survey.

2. The heliocentric mean distances of the stream from
Belokurov et al. (2014) may be systematically slightly
larger; the fact that the RRab distances we use are directly
tied to HST and Gaia DR1 parallaxes (Sesar et al. 2017c)
should lend confidence to the distance scale of this work.

3. Along with the extent of the Sgr stream, we can give its
l.o.s. depth ssgr, and deproject ssgr in order to get its true
width.

4. Our analysis shows a Galactocentric orbital precession about
4 larger than measured by Belokurov et al. (2014), or 8
larger if assuming that the trailing arm’s apocenter is close
to the maximum extent of the derived Dsgr. This is within
the error range given by Belokurov et al. (2014). Generally
speaking, the higher the Galactocentric orbital precession,
the smoother the dark matter density is as a function of the
Galactocentric radius. Logarithmic haloes should show an
orbital precession of about 120 (Belokurov et al. 2014),
whereas a smaller orbital precession angle indicates a profile

with a sharper drop in the radial dark matter density
(Belokurov et al. 2014). Finding this result, together with the
result of Belokurov et al. (2014) as well as the simulation by
Dierickx & Loeb (2017), is a strong indicator that a steeper
profile than the logarithmic one should be considered for the
dark matter halo of the Milky Way.

5.2. Bifurcation of the Leading Arm

Part of the Sgr stream’s leading arm in the Galactic northern
hemisphere is “bifurcated,” or branched, in its projection on the
sky (Belokurov et al. 2006). Starting at ~ R.A. 190 , the lower
and upper declination branches of the stream, labeled A and B
respectively (Belokurov et al. 2006), can be traced at least until

~ R.A. 140 . As stated by Fellhauer et al. (2006), the bifurcation
likely arises from different stripping epochs, the young leading
arm providing branch A and the old trailing arm branch B of the
bifurcation. Belokurov et al. (2006) state that the SGB of branch B
is significantly brighter and hence probably slightly closer than A,
but the branch itself is reported to have much lower luminosity
than A.
Their Figure 4 shows a noticeable, but small, difference in

the distances estimated for branches A and B of 3–15kpc,
qualitatively consistent with the simulations by Fellhauer et al.
(2006). However, Ruhland et al. (2011) found from an analysis
of BHB stars in the stream that the branches differ by at most
2kpc in distance. To follow up on this, we measured the RRab
mean distances for small patches in both branches, as shown by
the polygons in Figure 11, fitting a halo and stream model as
described above in Section 3. This fitting led to the distance
estimates as shown in Figure 11 and in Table 10 in the
Appendix. Indeed a small difference in distance between the
two branches can be found, branch B being closer than branch
A, as in the simulation by Fellhauer et al. (2006). But the sparse
sampling by the RR Lyrae makes this analysis inconclusive.

5.3. Bifurcation of the Trailing Arm

Analogous to the bifurcation of the leading arm found by
Belokurov et al. (2006), Koposov et al. (2012) found a similar
bifurcation in the trailing arm of the Sgr stream, consisting of
two branches that are separated on the sky by ~ 10 .
This bifurcation was later confirmed and studied in greater detail

by Slater et al. (2013), using MSTO and red clump (RC) stars from
the Pan-STARRS1 survey, and by Navarrete et al. (2017), who
have examined a large portion of approximately 65 of the Sgr
trailing arm available in the imaging data from the VLT Survey
Telescope (VST) ATLAS survey, using BHB and SGB stars, as
well as RR Lyrae from the Catalina Real-Time Transient Survey.
They found the trailing arm appearing to be split along the

l.o.s., with the additional stream component following a distinct
distance track, and a difference in heliocentric distances exists
of ~5 kpc. The bulk of the “bright stream” (Slater et al. 2013)
is below the Sgr orbital plane (thus < B̃ 0 ), while the “faint
stream” lies mostly above the plane ( > B̃ 0 ).
We compare here our distance distributions to the findings of

Slater et al. (2013) and Navarrete et al. (2017) for different
regions in L ( ˜ ˜ )B, .
Navarrete et al. (2017) report a bifurcation in the L ( ˜ ˜ )B,

plane with a separation of ~ 10 . Likely due to our relatively
sparse source density, we cannot find an indicator for a
bifurcation in the L ( ˜ ˜ )B, plane that would lead to a “bright
stream” and a “faint stream.”
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We then checked whether we can identify l.o.s. substructures,
and made histograms of the heliocentric distance distribution for
several patches along the trailing arm of the Sgr stream.

In Figure 12, we give a histogram of our distance estimates in
one of the regions probed by Navarrete et al. (2017) and Slater
et al. (2013). This specific region was also probed using RR Lyrae
by Navarrete et al. (2017) (see their Figure 9). We give our
estimates of the heliocentric distance D and the distance modulusm
−M (Sesar et al. 2017c). Blue markers represent substructures
found by Navarrete et al. (2017). A similar shape of the distance
distribution is found, and we also detect the substructures they call
“SGB 1” and “SGB 2.” We find “SGB 1” at a slightly larger
distance than Navarrete et al. (2017). We find “SGB 2” split into
two components.

We were also able to identify similar substructures to those
found by Navarrete et al. (2017) and Slater et al. (2013) within
other patches of the trailing arm of the Sgr stream, and count
them as tentative but marginally significant because of the
relatively low density of our tracers.

6. Summary

In this work, we quantified the geometry of the Sagittarius
stream, approximating the l.o.s. density of the Sagittarius stream
by a Gaussian distribution centered on the distance Dsgr with l.o.
s. depth ssgr. This model was used to estimate the distance and
depth of the Sgr stream as given by RR Lyrae candidates (RRab
with completeness  0.8, purity=0.9 up to 80kpc, distance
precision of 3%) resulting from the classification that incorporates
fitting of the period.

The fitting resulted in the best and first basically complete (i.e.,
spanning  < L < ˜0 360 ) trace of the Sgr stream’s heliocentric
distance as well as l.o.s. depth. This model further allows one to
measure many properties of the Sgr stream. We have measured the
depth ssgr as well as the deprojected depth of the stream. The
function of ssgr versus L˜ can be partially explained by projection
effects, and partially by projection effects due to the angle our
l.o.s. direction forms with the stream direction. Deprojection
removes the l.o.s. effects and thus results in a depth of the stream
that will be very helpful when comparing simulations to
observational data. Furthermore, we computed the amplitude of

the Sgr stream as the number of RRab stars in the stream per degree
as a function of its longitude L˜ . The fit allows us to precisely
determine the apocenter positions, from which we then calculate the
orbital precession. We also find a strong indicator for a precession
of the orbital plane. We have measured the Galactocentric angle
between the apocenters of the leading and trailing arms of the Sgr
stream and the difference between their respective distances.
We now have a model of the geometry of the Sgr stream at hand

that can be used to further constrain the Milky Way’s potential.
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Figure 12. Heliocentric distance distribution for RRab stars in the trailing tail.
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substructures found by Navarrete et al. (2017).
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Appendix
Tables

Table 1 gives the PS1 RRab stars with < - ∣ ˜ ∣B 9 that this
analysis is based on.

Tables 2 and 3 give the minimum and maximum priors on Dsgr,
Dminprior and Dmaxprior, as indicated in Figure 4. The annotation
“max” within the tables state that the given value is the maximum
observed heliocentric distance D in the given L˜ interval.

Tables 4 and 5 give the geometry of the Sagittarius stream,
represented by its extent and depth as inferred from the analysis
presented in this paper.

Tables 6 and 7 give the deprojected depth of the Sagittarius
stream.

Tables 8 and 9 give the amplitude of the Sagittarius stream,
as well as its weighted latitude á ñB̃ , as calculated by
Equation (12).

Table 10 gives the distance estimates for branches A and B
of the Sagittarius stream.

Table 1
PS1 RRab Stars with < - ∣ ˜ ∣B 9

R.A. Decl. score3,ab
a DMb Period f0

c Ar
d

(deg) (deg) (mag) (day) (day) (mag)

181.40332 7.77677 1.00 17.08 0.6752982619 0.24526 0.75
181.12043 8.28025 0.91 12.79 0.5382632283 0.44801 0.63
180.08748 9.10501 1.00 17.76 0.5203340425 −0.46188 0.88

Notes.
a Final RRab classification score.
b Distance modulus. The uncertainty in distance modulus is

( ) ( )0.06 rnd 0.03 sys mag.
c Phase offset (see Equation (2) of Sesar et al. 2017c).
d PS1 r-band light-curve amplitude.

(This table is available in its entirety in machine-readable form.)

Table 2
Dsgr Prior, Leading Arm

L˜ Interval (deg) Dminprior (kpc) Dmaxprior (kpc)

[10, 20[ 5 27.3 (max)
[20, 30[ 30 35
[30, 40[ 30 37
[40, 50[ 10 77.5 (max)
[50, 60[ 10 110.1 (max)
[60, 70[ 10 98.9 (max)
[70, 80[ 10 97.2 (max)
[80, 90[ 20 70
[90, 100[ 20 60
[100, 110[ 25 50
[110, 120[ 20 50
[120, 130[ 15 40
[130, 140[ 20 40
[140, 150[ 15 40
[150, 160[ 15 40

Table 3
Dsgr Prior, Trailing Arm

L˜ Interval (deg) Dminprior (kpc) Dmaxprior (kpc)

[100, 110[ 50 95.1 (max)
[110, 120[ 50 98.9 (max)
[120, 130[ 40 92.6 (max)
[130, 140[ 10 92.7 (max)
[140, 150[ 40 106.0 (max)
[150, 160[ 40 134.2 (max)
[160, 170[ 10 125.1 (max)
[170, 180[ 10 131.7 (max)
[180, 190[ 10 103.6 (max)
[190, 200[ 10 72.6 (max)
[200, 210[ 40 73.8 (max)
[210, 220[ 10 64.6 (max)
[220, 230[ 30 60
[230, 240[ 30 60
[240, 250[ 20 50
[250, 260[ 10 40
[260, 270[ 10 50
[270, 280[ 10 50
[280, 290[ 10 50
[290, 300[ 10 50
[300, 310[ 10 50
[310, 320[ 10 80.0 (max)
[320, 330[ 10 84.7 (max)
[330, 340[ 10 64.6 (max)
[340, 350[ 10 86.4 (max)
[350, 360[ 10 50.0
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Table 4
Fitted Parameters for Sagittarius Stream, Leading Arm

L˜ (deg) fsgr
a Dsgr (kpc)

b d-( )Dsgr d+( )Dsgr d-( )D2 sgr d+( )D2 sgr ssgr (kpc)
c d s-( )sgr d+( )Dsgr d s-( )2 sgr d s+( )2 sgr

5 0.18 28.830 0.10 0.094 0.20 0.18 1.621 0.079 0.091 0.15 0.18
15 0.052 14.3 7.1 9.7 9.1 12.0 2.8 1.5 6.5 1.7 15
25 0.050 34.14 1.8 0.66 3.8 0.83 2.8 1.4 3.3 1.7 9.3
35 0.051 36.65 0.60 0.27 1.9 0.34 4.1 1.7 1.9 2.9 4.6
45 0.38 45.94 0.24 0.25 0.48 0.52 3.68 0.19 0.20 0.36 0.43
55 0.51 50.50 0.17 0.17 0.34 0.33 3.33 0.18 0.18 0.34 0.38
65 0.61 52.59 0.21 0.21 0.43 0.44 4.52 0.27 0.27 0.54 0.53
75 0.41 49.19 0.26 0.27 0.52 0.53 3.75 0.30 0.33 0.57 0.72
85 0.36 46.22 0.40 0.39 0.83 0.78 4.66 0.44 0.47 0.79 0.99
95 0.21 40.59 0.48 0.53 0.95 1.1 3.88 0.72 0.83 1.3 1.9
105 0.26 34.8 6.7 1.9 9.4 2.8 6.3 2.2 6.0 3.2 8.8
115 0.22 31.19 0.57 0.54 1.3 1.0 3.08 0.51 0.66 0.91 1.7
125 0.25 25.9 5.9 1.9 9.9 3.0 5.0 1.9 3.7 2.8 6.2
135 0.067 21.34 0.92 2.1 1.3 8.9 2.7 1.3 2.7 1.7 6.5
145 0.13 19.66 0.87 0.80 2.2 20.0 2.05 0.68 1.0 0.99 2.5
155 0.15 16.2 1.1 3.2 1.1 3.2 3.4 2.2 2.6 2.2 2.6

Notes.
a Fraction of sources in the Sgr stream.
b Mean heliocentric distance of the Sgr stream.
c Line-of-sight depth of the Sgr stream.

Table 5
Fitted Parameters for Sagittarius Stream, Trailing Arm

L˜ (deg) fsgr
a Dsgr (kpc)

b d-( )Dsgr d+( )Dsgr d-( )D2 sgr d+( )D2 sgr ssgr (kpc)
c d s-( )sgr d+( )Dsgr d s-( )2 sgr d s+( )2 sgr

105 0.055 55.4 3.9 1.9 5.2 3.5 3.2 1.5 7.2 2.0 13
115 0.056 62.3 6.0 5.8 11 10 3.5 2.2 7.3 2.5 14
125 0.059 57.2 1.9 1.4 11 11 2.3 0.97 2.2 1.3 12
135 0.084 66.9 2.6 3.2 5.0 7.2 5.8 2.4 4.0 4.1 9.9
145 0.095 81.3 4.1 2.7 8.7 4.4 6.1 3.1 3.0 4.6 6.2
155 0.31 83.1 1.9 1.8 1.9 1.8 5.2 1.7 3.0 1.7 2.0
165 0.36 89.02 0.72 0.74 1.5 1.5 5.13 0.64 0.85 1.2 2.0
175 0.63 92.98 0.79 0.81 1.6 1.6 8.99 0.64 0.68 1.3 1.4
185 0.40 86.7 3.0 2.2 7.0 4.6 10.5 2.8 5.2 4.6 8.7
195 0.082 60.0 7.1 9.0 17 12 2.8 1.5 5.8 1.8 15
205 0.55 53.0 1.2 1.1 2.6 2.1 6.78 0.82 0.95 1.5 2.2
215 0.61 43.15 1.1 0.88 2.4 1.8 6.65 0.97 1.2 1.8 2.4
225 0.71 36.55 0.87 0.75 1.8 1.4 6.28 0.49 0.61 0.97 1.4
235 0.55 31.17 0.70 0.80 1.1 1.6 6.16 0.65 0.71 1.3 1.5
245 0.58 28.41 0.85 0.69 1.9 1.3 4.66 0.60 0.75 1.1 1.7
255 0.62 25.57 0.85 0.72 1.9 1.4 5.14 0.54 0.64 1.0 1.4
265 0.43 24.7 1.2 0.87 2.8 1.6 4.86 0.90 1.1 1.7 2.4
275 0.60 18.0 3.1 2.1 7.0 3.9 7.7 1.8 2.1 3.3 4.2
285 0.32 20.34 1.1 0.83 2.7 1.6 4.44 0.67 0.90 1.2 2.2
295 0.27 21.2 1.8 1.2 5.4 2.2 4.7 1.2 1.7 2.0 4.2
305 0.37 20.8 1.3 1.0 3.4 1.9 5.17 0.88 1.1 1.6 2.8
315 0.45 21.66 0.95 0.80 2.0 1.5 4.84 0.67 0.80 1.3 1.8
325 0.48 22.00 0.75 0.62 1.7 1.2 4.41 0.52 0.63 0.97 1.5
335 0.40 20.1 2.3 1.4 7.3 2.3 5.3 1.2 1.9 2.1 4.6
345 0.47 19.7 1.7 1.3 4.7 2.4 6.43 0.73 0.92 1.4 2.3
355 0.43 27.605 0.054 0.053 0.11 0.11 1.245 0.048 0.047 0.091 0.096

Notes.
a Fraction of sources in the Sgr stream.
b Mean heliocentric distance of the Sgr stream.
c Line-of-sight depth of the Sgr stream.
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Table 6
Deprojected Depth s̃sgr for the Sagittarius Stream (see Section 4.1),

Leading Arm

L˜ (deg) s̃sgr d s-(˜ )sgr d s+˜sgr

15 1.79 0.83 6.0
25 2.6 1.3 5.7
35 3.6 2.1 5.2
45 2.7 2.6 2.9
55 3.1 2.9 3.3
65 4.5 4.2 4.8
75 3.5 3.2 3.8
85 4.1 3.7 4.5
95 3.0 2.5 3.7
105 5.1 3.3 9.9
115 2.4 2.0 2.9
125 3.4 2.2 6.0
135 2.2 1.2 4.3
145 1.7 1.2 2.6

Table 7
Deprojected Depth s̃sgr for the Sagittarius Stream (see Section 4.1),

Trailing Arm

L˜ (deg) s̃sgr d s-(˜ )sgr d s+˜sgr

115 0.61 0.24 1.9
125 2.2 1.3 4.4
135 4.2 2.5 7.0
145 5.2 2.5 7.7
155 5.1 3.4 7.0
165 4.9 4.3 5.7
175 9.0 8.3 9.6
185 6.6 4.8 9.9
195 1.65 0.76 5.1
205 5.0 4.4 5.7
215 4.6 3.9 5.4
225 4.6 4.3 5.1
235 5.0 4.5 5.6
245 4.1 3.5 4.7
255 4.8 4.3 5.4
265 3.5 2.8 4.3
275 6.8 5.2 8.6
285 4.0 3.4 4.9
295 4.7 3.5 6.3
305 5.2 4.3 6.3
315 4.8 4.1 5.6
325 4.3 3.8 4.9
335 5.1 3.9 6.9
345 4.1 3.7 4.7

Table 8
Amplitude A (see Section 4.2) and Weighted Latitude á ñB̃ (see Section 4.4) for

the Sagittarius Stream, Leading Arm

L˜ (deg) A (deg−1 kpc−1) á ñB̃ (deg)

5 24 0.48
15 0.53 4.3
25 3.9 −0.41
35 1.2 0.40
45 7.4 0.90
55 11 0.14
65 9.5 −0.11
75 5.4 0.39
85 3.0 −0.67
95 1.9 −0.47
105 1.1 −0.74
115 1.5 −1.4
125 0.70 −0.65
135 0.44 −1.4
145 1.0 −0.25
155 0.62 −2.0

Table 9
Amplitude A (see Section 4.2) and weighted latitude á ñB̃ (see Section 4.4) for

the Sagittarius Stream, Trailing Arm

L˜ (deg) A (deg−1kpc−1) á ñB̃ (deg)

105 0.47 −2.1
115 0.33 −0.51
125 0.37 −0.96
135 0.26 −1.5
145 0.25 −2.0
155 0.85 −1.8
165 1.2 −1.2
175 1.6 0.59
185 0.46 −0.18
195 0.067 −4.2
205 0.93 −2.6
215 1.2 −0.60
225 1.8 −0.15
235 1.2 −0.34
245 1.6 0.91
255 1.6 0.55
265 1.2 −0.12
275 1.1 −0.48
285 1.1 −0.08
295 1.3 −0.20
305 1.6 1.3
315 1.8 2.4
325 3.1 4.2
335 2.3 4.3
345 3.6 4.3
355 54 0.88
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Table 10
Possible Bifurcation in the Sagittarius Stream

R.
A. (deg)a

Decl.
(deg)a fsgr

b

Dsgr

(kpc)c d-( )Dsgr d+( )Dsgr sd-( )D2 sgr sd+( )D2 sgr

ssgr

(kpc)d d s-( )sgr d s+( )sgr sd s-( )2 sgr sd s+( )2 sgr

215 5 0.49 49.77 0.31 0.32 0.63 0.66 3.18 0.43 0.52 0.83 1.1
204.783 8.391 0.41 46.37 0.51 0.49 1.0 0.94 4.56 0.52 0.57 1.0 1.2
189.524 8.333 0.32 41.22 1.1 0.87 2.8 1.7 5.48 1.0 1.3 1.9 3.3
189.444 15.667 0.44 20.0 6.0 6.6 9.1 15 16.14 3.5 2.5 8.9 3.6
169.63 12.333 0.40 21.7 7.8 6.5 11 12 12.0 4.2 4.3 8.7 6.8
170.256 22.641 0.33 17 5.8 12 7.4 13 10.1 7.4 2.6 8.7 4.5
150.556 13.972 0.15 25.18 1.4 0.96 4.5 1.7 2.0 0.72 1.4 0.99 4.2
149.841 26.27 0.11 19.46 4.3 1.4 8.7 50 2.9 1.5 4.0 1.9 10

Notes.
a For each polygon, the centroid of its a d( ), is given, as used in Figure 11.
b Fraction of sources in the Sgr stream.
c Mean heliocentric distance of the Sgr stream.
d Line-of-sight depth of the Sgr stream.
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