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Abstract 1 

The reward processing network is implicated in the aetiology of obesity. Several lines of 2 

evidence suggest obesity-linked genetic risk loci (such as DRD2 and FTO) may influence 3 

individual variation in body mass index (BMI) through neuropsychological processes 4 

reflected in alterations in activation of the striatum during reward processing. However, no 5 

study has tested the broader hypotheses that a) the relationship between BMI and reward-6 

related brain activation (measured through the blood oxygenation-dependent (BOLD) signal) 7 

may be observed in a large population study and b) the overall genetic architecture of these 8 

phenotypes overlap, an assumption critical for the progression of imaging genetic studies in 9 

obesity research. Using data from the Human Connectome Project (N = 1055 healthy, young 10 

individuals: average BMI = 26.4), we first establish a phenotypic relationship between BMI 11 

and ventral striatal (VS) BOLD during the processing of rewarding (monetary) stimuli (β= 12 

0.44, P = 0.013) accounting for potential confounds. BMI and VS BOLD were both 13 

significantly influenced by additive genetic factors (H2r = 0.57; 0.12, respectively). Further 14 

decomposition of this variance suggested that the relationship was driven by shared genetic 15 

(ρg = 0.47, P = .011), but not environmental (ρE = -0.07, P = 0.29) factors. To validate the 16 

assumption of genetic pleiotropy between BMI and VS BOLD, we further show that 17 

polygenic risk for higher BMI is also associated with increased VS BOLD response to 18 

appetitive stimuli (calorically-high food images), in an independent sample (N=81; PFWE-ROI < 19 

0.005). Together, these observations suggest that the genetic factors link risk to obesity to 20 

alterations within key nodes of the brain’s reward circuity. These observations provide a 21 

basis for future work exploring the mechanistic role of genetic loci that confer risk for obesity 22 

using the imaging genetics approach.   23 
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Introduction 1 

Genome-wide association studies (GWAS) demonstrate that obesity (as measured 2 

via body mass index; BMI) has a complex polygenic architecture where a large number of 3 

common risk alleles are likely to confer susceptibility 1, 2. However, the mechanisms by which 4 

these loci confer risk are largely unknown. Neuroimaging studies provide evidence that 5 

individuals with higher BMI have alterations in the processing of hedonic stimuli such as 6 

calorific food images 3-5, monetary reward 6-8. Individuals at high risk for obesity also show a 7 

similar neural phenotype, suggesting that the altered reward response may be a neural 8 

antecedent to weight gain 9. Using functional magnetic resonance imaging (fMRI), studies 9 

have also begun to elucidate mechanistic roles for candidate obesity risk loci (such as loci 10 

within DRD2, FTO) in the reward circuitry of the human brain 10-13. These studies suggest 11 

that obesity risk loci may alter eating behaviour via the regulation of key reward processing 12 

nodes such as the striatum 14, 15.  13 

However, under a polygenic model of obesity 16, 17, single genetic risk factors (such 14 

as loci within / near to FTO, DRD2) are likely to exert modest influence over BMI and 15 

associated putative neural risk mechanisms such as altered brain networks 18, 19. This makes 16 

it difficult to gain adequate power to detect the effects of single obesity risk loci in small 17 

populations, which may hinder progress towards therapeutic and intervention strategies.  In 18 

the current study, we aim to test the broader hypothesis of polygenetic pleiotropy between 19 

BMI and the neural response to reward.   Elucidating the contribution of these potential 20 

causal factors (e.g. risk genes) is essential for understanding the neurobiological 21 

mechanisms by which risk for obesity is conferred (and ultimately for the appropriate 22 

targeting of interventions in at-risk populations).  23 

The present investigation therefore aims to explore the genetic relationship between 24 

BMI and reward-related function (blood oxygen level dependency (BOLD) in a well-powered 25 

and deeply phenotyped multi-modal genetic neuroimaging consortium 26 

(http://www.humanconnectome.org/). As obesity is associated with altered BOLD during 27 
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monetary rewards as well as appetitive stimuli, we anticipate that the BOLD response for 1 

rewarding stimuli will be linked to BMI 5-7. We choose to restrict our neural response 2 

phenotype to BOLD within the ventral striatum (VS) as it has been previously demonstrated 3 

to be robustly activated during the Gambling paradigm acquired as part of the Human 4 

Connectome Project (HCP) 20.  In the HCP data; we first aim to demonstrate an association 5 

between BMI and the striatal reward response. This will build on previous associations 6 

between BMI and striatal BOLD in response to monetary rewarding stimuli 5, 6. We then aim 7 

to estimate the heritability of BMI and the VS BOLD responses.  Lastly, we exploit the 8 

kinship structure (the twin pairs) within the HCP consortium in a bivariate correlation analysis 9 

to decompose the putative phenotypic association into shared genetic and/or environmental 10 

influence. We anticipate that a potential association between BMI and VS BOLD may be 11 

explained by genetic and /or environmental factors. Together, these analyses aim to a) 12 

establish and b) decompose phenotypic associations between BMI and systems-level 13 

alterations in the brain’s reward system into genetic and / or environmental influences.  Any 14 

notable sources of phenotypic covariance (e.g. additive genetic, environmental) may be 15 

useful in informing mechanisms that link BMI and reward circuitry.  In an independent 16 

genetic neuroimaging sample we also aim to validate potential (genetic) pleiotropy between 17 

BMI and VS BOLD.  In this study, we explore the putative genetic relationship using a risk 18 

profile score (RPS) approach to index impact of BMI related risk alleles on the VS BOLD 19 

during the processing of appetitive food. In this analysis we anticipated a positive 20 

relationship between BMI-RPS and VS BOLD in response to appetitive stimuli. Together, 21 

these analyses will decompose the causal (genetic) mechanisms that may underpin the 22 

association between alterations in BMI and responsiveness to rewarding stimuli.  23 

 24 

  25 
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Methods and Materials 1 

Participants 2 

Human Connectome Project sample: Participants were drawn from the March 2017 public 3 

data release from the Human Connectome Project (N=1200). All participants were aged 4 

from 22 – 35, for all inclusion / exclusion criteria see Van Essen et al 21. Briefly, the study 5 

excluded individuals with a history of psychiatric disorder, substance abuse, neurological or 6 

cardiovascular disease and associated hospitalization or long–term (> 12 months) 7 

pharmacological / behavioural treatment. BMI was measured as self-reported weight (kg) 8 

divided by self-reported height (cm) squared. Participants were excluded from the current 9 

analyses if they lacked good-quality structural magnetic resonance imaging data, or had 10 

missing relevant interview/questionnaire data (Table 1; for demographic details of each 11 

analysis). The overall sample size, including non-related individuals was N=1055, which has 12 

over 90% power to detect a small effect (R2=.1). For further information on the HCP pedigree 13 

/ kinship structure see 14 

http://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_R15 

elease_Reference_Manual.pdf. 16 

Cardiff sample:  One hundred right-handed Caucasian (of western European descent) 17 

volunteers aged 19-47 were recruited from Cardiff University (staff and/or students) for a 18 

study involving several MRI, MEG and behavioural paradigms. No participants reported any 19 

psychiatric illness 22 or use of psychotropic medication. Informed consent was obtained for all 20 

individuals prior to the study, which was approved by the ethics committee of the School of 21 

Psychology, Cardiff University (EC.12.01.10.3071). A sample of N= 81 (appetitive picture 22 

viewing) participants were included in the final sample after removing individuals with failed 23 

quality control of genetic data (n = 10) or incomplete imaging data (n=9).  24 

***TABLE 1 HERE *** 25 

DNA extraction, genotyping & generation of BMI Risk Profile Scores 26 
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Cardiff sample: Genomic DNA was obtained from saliva using Oragene OG-500 saliva kits. 1 

Genotyping was performed using custom genotyping arrays (Illumina HumanCoreExome-24 2 

BeadChip) which contain 570,038 genetic variants (Illumina, Inc., San Diego, CA). Quality 3 

control was implemented in PLINK 23 , to ensure genotypes did not display ambiguous sex, 4 

cryptic relatedness up to third degree relatives by identity of descent, or genotyping 5 

completeness < 97%. We also removed non-European ethnicity admixture detected as 6 

outliers in iterative EIGENSTRAT analyses of an LD-pruned dataset 24. SNPs were excluded 7 

where the minor allele frequency was < 1%, if the call rate <98% or if the χ2-test for Hardy-8 

Weinberg Equilibrium had a P-value < 1 e-04. Body mass index (BMI) RPS was calculated 9 

using the method described by the International Schizophrenia Consortium 25. BMI genetic 10 

risk was estimated using publicly available results data from an international GWAS 2. 11 

Briefly, SNPs (single nucleotide polymorphisms) were removed from the BMI GWAS data if 12 

they had a low MAF (minor allele frequency <0.01), and were subsequently pruned for 13 

linkage disequilibrium (R2 < 0.2). As SNPs may be correlated, pruning the SNPs ensured all 14 

SNPs included in each BMI-RPS model were fairly independent. BMI-RPS were estimated 15 

using the ‘score’ command in PLINK. For each individual, the ‘score’ command averages the 16 

number of risk alleles for each BMI-increasing SNP (provided by the independent BMI 17 

GWAS summary statistics) and weights each allele by the size of the effect (coefficient) for 18 

the allele, as estimated in the BMI GWAS. For our analysis, we restricted the BMI-RPS to 19 

SNPs in the GWAS that were nominally associated with BMI (i.e. BMI-RPS P-threshold (PT  20 

< 0.05)), a BMI- RPS threshold shown to capture substantial variance in BMI in an large 21 

independent sample 26,27.  The BMI-RPS was normally distributed (Shapiro test = 0.53) in our 22 

sample.  23 

Data Acquisition  24 

Human Connectome Project sample: Images were acquired using a customized Siemens 25 

Skyra 3-T scanner with a 32-channel head coil. For details on data acquisition and 26 

preprocessing, see Glasser et al 28.  27 
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Cardiff Sample: Gradient echoplanar imaging data was acquired for each subject using an 1 

3T GT HDx system with an eight channel receiver  at CUBRIC (Cardiff University Brain 2 

Research Imaging Centre), School of Psychology, Cardiff University (parameters: 35 slices, 3 

slice thickness; 3mm/1mm gap, acquisition matrix; 64 x 64; FOV; 220mm, TR 2000ms, TE 4 

35ms, flip angle 90°, acceleration (ASSET) factor; 2). High-resolution three-dimensional T1-5 

weighted images were also acquired using a three-dimensional FSPGR (fast spoiled 6 

gradient echo sequence) with 172 contiguous sagittal slices of 1 mm thickness (TR 7.9s, TE 7 

3.0ms, TI 450ms, flip angle 20°, FOV 256 x 256 x 176mm, matrix size 256 x 256 x 192 to 8 

yield 1mm isotropic voxel resolution images). All functional images were first motion 9 

scrubbed, where TRs with a frame wise displacement > 0.9 were removed, as previously 10 

recommended 29.  11 

Description of fMRI paradigms 12 

Human Connectome Project sample (Incentive processing): Reward-related BOLD signal 13 

was measured with fMRI during a card-guessing gambling task played for monetary reward, 14 

as previously described 30, 31. Briefly, participants completed a card guessing game where 15 

they are required to guess the number (ranging from 1 – 9) on a mystery card in order to win 16 

or lose money. Participants were instructed to guess if the mystery card number was more 17 

or less than 5 by pressing one of two buttons on the response box. Feedback was provided 18 

as the revealed card number and a cue to inform the participant if they received a monetary 19 

reward, loss or neutral (no reward / loss; for number 5) trial. The task was presented in 20 

blocks of 8 trials that were either mostly reward (6 reward trials pseudo randomly interleaved 21 

with neutral and/or loss trials) or mostly loss (6 loss trials interleaved with reward and/or loss 22 

trials). For each of the two runs, there were 2 mostly reward and 2 mostly loss blocks, 23 

interleaved with 4 fixation blocks (15 seconds each). Although the participants gambled for 24 

potential monetary reward, all participants are rewarded with a standard amount of money 25 

during the task. 26 

 27 
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Cardiff Sample (Appetitive picture viewing): Participants viewed appetitive food images and 1 

neutral stimuli taken from the International Affective Picture System (IAPS) 32 or Internet 2 

resources. We included 18 neutral IAPS pictures having a mean normative valence rating of 3 

4.87 (1 = very unpleasant, 9 = very pleasant) and mean arousal rating of 2.62 (1 = low-4 

arousing, 9 = high-arousing) and 9 positive IAPS pictures having a mean normative valence 5 

rating of 6.99 with a mean arousal rating of 4.58. Images taken from other resources had 6 

been used and validated in a previous study 11. Picture categories were comparable with 7 

regard to semantic homogeneity and perceptual complexity: Neutral pictures showed 8 

household objects and positive images depicted appetitive food. Each block lasted 8 9 

seconds, in which an array consisting of either four random positive or four random neutral 10 

images were presented at a rate of 2 seconds per image. This process was repeated ten 11 

times for each participant. To keep individuals engaged in the task, we included a 1-back 12 

monitoring task in which participants had to confirm with a button press each time an image 13 

was presented twice in a row within a trial block. For each participant, we embedded 4 14 

picture repetitions at random positions within the entire sequence of picture viewing blocks. 15 

The number of picture repetitions was balanced across picture categories. There were 4 16 

picture repetitions for each participant, with an equal number of repetitions occurring for 17 

each picture category. Participants viewed a total of 40 stimuli per condition. Inter stimulus 18 

intervals (ISI) were randomly jittered (6-10 seconds) in order to sample the hemodynamic 19 

response at different time points.  20 

BOLD parameter estimate acquisition 21 

Human Connectome Project sample: Individual, pre-processed tfMRI (task fMRI) directories 22 

for the gambling task were downloaded from the WU-Minn HCP Data - 1200 Subjects + 7T 23 

data release at https://db.humanconnectome.org/, package type = MSM-Sulc-+MSM-All. For 24 

preprocessing steps and preliminary analysis, see 30. Briefly, the HCP ‘fMRIVolume’ pipeline 25 

performs gradient unwarping, motion correction, fieldmap unwarping and grand mean 26 

intensity normalisation on the 4D timeseries. These volumes are segmented (Brain 27 
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Boundary Registration), registered to the T1 anatomical volume using non-linear 1 

transformation (FNIRT) and warped to standard (MNI152) space.   Parameter estimates 2 

were estimated for preprocessed timeseries using a general linear model (GLM) using 3 

FMRIB's Improved Linear Model with autocorrelation correction (FILM). Predictors 4 

(described in Methods: Incentive Processing Paradigm) were convolved with a double 5 

gamma canonical hemodynamic response function to generate regressors. Temporal 6 

derivatives of each regressor where added to the GLM as covariates of no interest. 7 

Parameter estimates (BOLD) for the contrast (reward > punishment; cope6.feat) were 8 

available for 1082 individuals. We chose this contrast, to establish potential relationships 9 

specifically with reward, rather than punishment processing in the VS 20. As the paradigm 10 

was a card-guessing task, the contrast models reward receipt but did not include an 11 

anticipation phase like other paradigms such as the monetary incentive delay (MID) task 33, 12 

34.  Using the ‘wb_command’ from the connectome-workbench 13 

(https://www.humanconnectome.org/software/connectome-workbench.html), we then 14 

extracted BOLD parameter estimates from individual subject pre-processed data 15 

(cope6.feat; reward > punishment) for the bilateral nucleus accumbens (VS) as defined by 16 

the Harvard-Oxford Subcortical Structural Atlas.  17 

Cardiff sample: Image processing and statistical analyses were conducted using statistical 18 

parametric mapping methods as implemented in FMRI Expert Analysis Tool (FEAT, Version 19 

5.98, part of FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The following pre-statistics 20 

processing was applied; motion correction using MCFLIRT 35 ; slice-timing correction using 21 

Fourier-space time-series phase-shifting; non-brain removal using BET (Brain Extraction 22 

Tool) 36; spatial smoothing using a Gaussian kernel of FWHM 5mm; grand-mean intensity 23 

normalisation of the entire 4D dataset by a single multiplicative factor; high-pass temporal 24 

filtering (Gaussian-weighted least-squares straight line fitting, with sigma=50.0s). 25 

Registration to high resolution structural (single subject GLM (general linear model)) and 26 

standard space (group-level GLM) images was carried out using FLIRT35. Time-series 27 
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analysis was carried out using FMRIB's Improved Linear Model (FILM) with local 1 

autocorrelation correction 37. Group level analysis was carried out using FLAME (FMRIB's 2 

Local Analysis of Mixed Effects)38.  To index neural responses to positive emotional stimuli in 3 

experiment 1, BOLD signal changes were regressed by task predictor functions (positively 4 

affective stimuli > neutral stimuli) convolved with a canonical hemodynamic response 5 

function.  6 

VS BOLD quality control 7 

Human Connectome Project sample: Outliers (N=24) were removed from the bilateral striatal 8 

BOLD parameter estimates using the IQR outlier labelling rule (1.5 × interquartile range (Q3-9 

Q1)) as previously described 39. After the removal of statistical outliers, VS BOLD was 10 

normally distributed (Shapiro test, P > 0.05).  11 

Statistical inferences  12 

Human Connectome Project sample: Linear mixed modelling: We first aimed to explore the 13 

average relationship between BMI and the VS BOLD across the whole sample (N=1055). 14 

Based on prior recommendations 40, we first employed linear mixed-effects models, 15 

estimated in R (https://www.r-project.org/) using the lme4 and lmeTest packages 41, 42. BMI 16 

was entered into the model as the independent variable with age, sex, education level, 17 

height and handedness and head motion (FDFSL) as potential confounds. To account for 18 

kinship, family structure (Family ID) and zygosity (monozygotic twins, dizygotic and 19 

unrelated individuals; coded as a percent DNA shared; 1, 0.5, 0, respectively) were entered 20 

into each model as random effects, which under the model assumptions, could be freely 21 

correlated with each other 40. We assumed independence between these random slopes to 22 

control for potential genetic (as assayed by the random effect of zygosity) and familial 23 

environmental (as measured by kinship) correlations. These random effects were modelled 24 

to control for potential genetic influence over the phenotypic relationship between BMI and 25 

VS BOLD – which we formally explore in the next section.  Regression diagnostics complied 26 

with assumptions; normal distribution of residuals (Shapiro test: P = 0.23) and non-27 
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independence of errors (autocorrelation tests performed with Durbin-Watson Statistic: 2.007) 1 

and was taken forward for interpretation.  2 

Human Connectome Project sample: Heritability and co-heritability of BMI and VS BOLD: 3 

Heritability and co-heritability for BMI and VS BOLD were estimated using SOLAR 4 

(Sequential Oligogenic Linkage Analysis Routines: http://solar.txbiomedgenetics.org 43). 5 

SOLAR adopts maximum likelihood variance component methods to analyse family-based 6 

quantitative data by partitioning the observed covariance into genetic and environmental 7 

components, as a function of genetic proximity 43,46.  Pedigree information was calculated 8 

using publically available tools for HCP data (https://brainder.org/2016/08/01/three-hcp-9 

utilities/). Heritability (H2r) is defined as the proportion of total phenotypic variance explained 10 

by additive genetic factors. The shared genetic variance between BMI and VS BOLD was 11 

calculated using bivariate genetic correlation analysis methods, also implemented in 12 

SOLAR. Bivariate genetic correlation analysis is performed to calculate the proportion of 13 

common genetic variance that influences both BMI and VS BOLD. If the genetic correlation 14 

coefficient (ρG) is significantly different from zero, then a significant portion of the variability 15 

in the two traits is considered to be influenced by shared genetic factors 44.  16 

Cardiff Sample: We ran multiple regression using the combined first - level contrasts 17 

(appetitive food image > neutral pictures) for each subject co-varying for BMI-RPS and 18 

potential confounds (age, sex). We explored the a) group level contrasts (one sample t-tests) 19 

and b) BMI-RPS effects (multiple regression) in the VS region of interest (ROI), defined as 20 

the bilateral accumbens in the Harvard-Oxford Subcortical Structural Atlas. The family-wise 21 

error rate was controlled in all cases with nonparametric permutation testing (5000 22 

permutations) and threshold free cluster enhancement (TFCE) which effectively controls for 23 

multiple comparisons, compared to cluster extent thresholding 45. 24 

Head motion confounds  25 
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Human Connectome Project sample: As previously reported, there are considerable 1 

phenotypic and genetic correlations between BMI and head motion during resting state fMRI 2 

46, suggesting the same genetic variation contributes to both traits. To control for putative 3 

confounding effects of head motion on the relationship between BMI and VS BOLD in the 4 

HCP data, we used estimations of frame-wise displacement 5 

(Movement_RelativeRMS_mean.txt) for the two tfMRI gambling runs and included the log 6 

transformed mean of the two runs in all phenotypic and genetic analysis.  7 

Cardiff sample: To further correct for any potential movement confounds in the Cardiff 8 

Sample; motion regressors estimated via MCFLIRT and scrubbed TRs were added as 9 

covariates of no interest to the 1st level design matrix.  10 

 11 

  12 
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Results 1 

Head Motion and BMI 2 

Human Connectome Project sample: Consistent with previous reports 46, we observed 3 

phenotypic and genetic correlations between head motion (FD(FSL)) and BMI (ρP = .63, ρg = 4 

.78, respectively). We therefore included the log-transformed mean FD(FSL) as a covariate in 5 

all univariate and bivariate analysis.  6 

Linear mixed modelling 7 

Human Connectome Project sample: After quality control and diagnostics, BMI was 8 

regressed against the bilateral VS BOLD phenotype.  After controlling for fixed effects 9 

(covariates) and familial confounds (random effects of familial environmental and genetic 10 

correlations), we identified a positive association between BMI and VS BOLD (β =0.44 ± 11 

0.172; t 954.4 = 2.469, P = 0.0128). This association was robust to socio-economic status 12 

(employment, relationship status, income). 13 

Heritability and Co-heritability between BMI and VS BOLD   14 

Human Connectome Project sample: We then proceeded to decompose the observed 15 

phenotypic relationship between BMI and VS BOLD, in order to establish whether familial 16 

genetic and/or environmental factors contributed to the association. Both BMI and VS BOLD 17 

were significantly heritable (BMI H2r = 0.57; VS BOLD H2r = 0.12), controlling for age, sex, 18 

years of education, height and head motion (Table 2 for statistics). The bivariate analysis in 19 

Solar also demonstrated a positive phenotypic relationship between BMI and VS BOLD (ρP = 20 

0.08, P= .012), controlling for the same covariates. Further decomposition of the variance 21 

suggested that BMI and VS BOLD had a shared genetic aetiology (ρg = 0.47±0.21, P = 22 

.011). There was no evidence for shared environmental aetiology (ρe = -0.07±0.06, P = 23 

0.29). All univariate and bivariate correlations were also retained when controlling for socio-24 

economic status (employment, relationship status, income).  25 

*** TABLE 2 HERE *** 26 
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BMI-RPS regression  1 

Cardiff sample: While we did not have a BMI measure for the Cardiff sample, the BMI – RPS 2 

was positively associated with sex-adjusted weight (kg) in the sample (t1,79 = 2.362, P = 3 

0.021), supporting the validity of the BMI-RPS approach. A one-sample t-test (appetitive 4 

food > neutral images) showed a significant recruitment of the bilateral VS as previously 5 

described 47. Crucially, there was a significant positive association between BMI – RPS and 6 

BOLD in clusters within the right (k = 123, PFWE-ROI = 0.005 [ x = 10 , y  =10 , z = -6)) and left 7 

(k = 77, PFWE-ROI = 0.017 [ x = -10 , y  =12 , z = -4)) VS (Figure 1). There were no significant 8 

associations between BMI – RPS and BOLD across the whole brain or negative associations 9 

across the whole brain or within the VS (P > .1 in all cases). This relationship between BMI-10 

RPS and VS BOLD remained after controlling for sex-adjusted weight (PFWE-ROI = 0.013; 11 

PFWE-ROI = 0.034). The direction of the association between VS-BOLD and sex-adjusted 12 

weight was positive as expected, but not significant (PFWE-ROI = 0.16). This association was 13 

attenuated when BMI-RPS was added into the model (PFWE-ROI = 0.45). 14 

*** FIGURE 1 HERE ***  15 

  16 
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Discussion 1 

We first establish a positive relationship between BMI and striatal activation in a large 2 

sample of healthy individuals. While previous studies have shown genetic links between BMI 3 

and structural imaging measures (such as reduced grey matter volume in orbitofrontal areas 4 

48), ours is the first large study to demonstrate an association between BMI and BOLD. We 5 

also established that BMI and reward-dependent striatal activation were heritable traits. 6 

While several lines of evidence show that additive genetic factors contribute to adiposity 2,  7 

we suggest that this study is the first to show evidence for additive genetic factors in VS 8 

BOLD during a gambling task, although there are previous accounts of heritability in other 9 

reward - related fMRI tasks 49. While previous studies have linked candidate loci (variants 10 

within/near DRD2, FTO) to appetitive stimuli processing 18 and related BOLD networks 19, we 11 

further suggest that our study provides the first evidence for a genetic overlap between the 12 

two traits, by demonstrating an association between polygenic risk for adiposity and striatal 13 

activation. These observations were robust to potential demographic (age, years of 14 

education, socioeconomic status), anthropomorphic (gender, height) and motion (frame-wise 15 

displacement) confounds. We also suggest that the association between BMI and VS BOLD 16 

may be observed across a range of rewarding stimuli (such as monetary, appetitive food), 17 

consistent with previous reports 6, 9. It is also worth noting that this association was obtained 18 

in a sample of young adults (HCP), suggesting it is unlikely that is was a consequence of 19 

any metabolic changes or neurodegeneration associated with longstanding obesity.  20 

Recent evidence also suggests pleiotropy between BMI and other complex, 21 

polygenic traits such as cognitive function 50, 51, supporting the broader hypothesis of genetic 22 

overlap between BMI and dynamic brain systems. The neural response to reward (as 23 

measured via VS BOLD) may also be genetically-linked to other complex polygenic traits 24 

such as psychosis 52 and positive emotion 47, suggesting the phenotype’s clinical relevance 25 

for a spectrum of psychiatric disorders characterised by alterations in reward / hedonic tone. 26 

The risk profile scores (RPS) approach that we used to index an individual’s cumulative 27 
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genetic risk for adiposity has also shown utility in identifying brain structural mechanisms 1 

associated with increased risk for obesity 53, future studies could use the RPS approach to 2 

identify specific biological pathways that link obesity related phenotypes and genetic risk loci.  3 

Although VS BOLD was heritable, one limitation of the study is that the estimates for 4 

additive genetic factors influencing VS BOLD were relatively small (H2r = 0.12). This 5 

suggests either a) a limited role for additive genetic variation in the processing of reward 6 

stimuli, or b) fMRI methods are more susceptible to noise that structural MR measures of the 7 

VS which was moderately heritable, as previously reported 54, 55.  Even though we attempted 8 

to control for the (genetic) head motion confounding, we also issue caution interpreting the 9 

impact of heritable traits that are genetically and phenotypically linked movement confounds, 10 

as our movement measure (FDFSL) attenuated the observed associations. It is also worth 11 

noting that while we chose to explore BOLD in the VS (to limit comparisons and maximise 12 

power 20), this observation may not be specific to the VS and may apply to the other regions 13 

in the appetitive regulatory network as well.  There is also the further consideration that the 14 

contrast used in the HCP analysis models the receipt of reward, but not the anticipation - 15 

another key reward processing construct which could not be modelled in the current design. 16 

There are also between sample discrepancies in participant age and paradigm (monetary & 17 

appetitive stimuli) which may limit the generalisation of our findings. We further suggest that 18 

the neural networks that support monetary reward and appetitive viewing may also be further 19 

modulated by other cognitive networks implicated in the pathophysiology of obesity (such as 20 

those that support working memory / executive function 56-58).   Although our study aims to 21 

identify causal explanations for the association between BMI and reward-related striatal 22 

BOLD, we are aware of the limitations of the cross-sectional design. We also note that we 23 

did not have a formal measurement of BMI in the Cardiff sample, although the BMI-RPS was 24 

positively associated with sex-adjusted weight, showing evidence for predictive utility. This is 25 

a limiting factor due to the complex interplay between obesity and reward processing across 26 

the lifespan, where the neural response to reward may be attenuated in middle / older age 27 
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59, which may not be accounted for in the current samples. The impact of elevated BMI 1 

across the lifespan may also further confound causal links between genetic risk and 2 

appetitive processing, which has not been explored in this study.  Furthermore, we do not 3 

have the genetic HCP data to identify specific candidate mechanisms / pathways by which 4 

the shared genetic influence affects both BMI and reward-related striatal BOLD. Due to 5 

these considerations, we suggest that the evidence for a broad genetic overlap between BMI 6 

and VS BOLD should be preliminary rather than confirmatory. 7 

In conclusion, this study confirms the presence of a phenotypic and genetic 8 

correlation between BMI and reward-related striatal BOLD in young adults. These findings 9 

suggest that shared genetic risk factors may explain why individuals who have higher BMI 10 

(and risk for obesity) are also more likely to have an elevated striatal reward response. 11 

Understanding mechanisms of genetic risk on reward-related striatal BOLD may be 12 

instrumental in the prediction, diagnosis and intervention for individuals at risk for obesity.    13 

  14 
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Figure 1 Legend.  Positive association between BMI – RPS and VS BOLD in the appetitive 1 

food > neutral stimuli contrast in the Cardiff sample (N=81). Image is (1-P value) map, where 2 

all active voxels (in black) are voxels which survive the family wise error correction (PFWE-ROI-3 

CORRECTED < 0.05) across the VS using Threshold Free Cluster Enhancement (TFCE).  4 

 5 
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Table 1. Demographic for both samples. MZ / DZ twin pairs represent complete the number 

of twin pairs used in all the univariate and bivariate correlations for BMI and VS BOLD, 

controlling for all covariates. Descriptive statistics for the HCP sample were calculated from 

the complete sample, used in the linear mixed model regression. 

Sample MZ / DZ 

Pairs 

N (All) Mean FD (±SD) Age (±SD) Sex 

(M/F) 

BMI (±SD) 

HCP  126/72 1055 0.086  ± ( 0.033) 28.77 ±3.69 483/572 26.44 ±5.11 

Cardiff  n/a 81 0.083 ± (0.055) 23.9±3.55 32/49 n/a 
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Table 2. Heritability of traits in the HCP data (twin data). H2r = Additive genetic variance for 

each IDP. H2rStd.Error = standard error of heritability estimate. All analysis remained 

significant before / after controlling for covariates. BOLD = parameter estimates, extracted 

from native masks from pre-processed single subject 

tfMRI_GAMBLING_hp200_s2_level2_MSMAll.feat/GrayordinatesStats/cope6.feat data.  

 

Phenotype H2 H2r Std. Error: P 

Head Motion  0.30 0.064 < 0.001 

BMI 0.57 0.056 < 0.001 

VS BOLD 0.12 0.062 0.023 


	Article File
	Figure 1
	Table 1
	Table 2

