

Draft Manuscript for Review

Heterogeneous oceanic arc volcanic rocks in the South Qilian Accretionary Belt (Qilian Orogen, NW China)

Journal:	Journal of Petrology
Manuscript ID	JPET-Jun-18-0063.R1
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	n/a
Complete List of Authors:	Yang, Liming; Peking University Song, Shuguang; Peking University, Department of Geology Su, Li; China University of Geosciences, Allen, Mark; University of Durham, Earth Sciences Niu, Yaoling; The University of Durham, Earth Sciences Zhang, Guibing; Peking University, Zhang, Yuqi; Peking University
Keyword:	intra-oceanic arc, ankaramite, boninite, sanukite, mantle metasomatism by subducted sediments, zircon Hf-O isotope, Qilian Orogen

SCHOLARONE[™] Manuscripts

1		
2		
3		
4	1	Heterogeneous oceanic arc volcanic rocks in the South
6	T	neerogeneous oceanic are volcanic rocks in the South
7		
8	2	Qillan Accretionary Belt (Qillan Orogen, NW Unina)
9		
10		
11	3	Liming Yang ¹ , Shuguang Song ¹ *, Li Su ² , Mark B. Allen ³ , Yaoling Niu ^{2,3} , Guibin
12		
13	4	$Zhang^1$ Yuqi $Zhang^1$
14		
15		
10	5	¹ MOE Key Laboratory of Orogenic Belt and Crustal Evolution, School of Earth and
17		
19	6	Space Sciences, Peking University, Beijing 100871, China
20		
21		
22	7	² Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
23		
24	0	³ Department of Earth Sciences, Durham University, Durham DU12LE, UK
25	8	Department of Earth Sciences, Durnam University, Durnam DH15LE, UK
26		
27	9	
20		
30		
31	10	MS for Journal of Petrology
32		
33	11	Corresponding outhor:
34	11	Corresponding author.
35		
36	12	*Shuguang Song
37		
38		4
39 40	13	E-mail: <u>sgsong@pku.edu.cn</u>
41		
42	11	
43	14	
44		
45	15	
46		
47	16	
48		
49 50	17	
51		
52	18	
53	10	
54		
55		
56		
57		1 / 68
58		
59 60		http://www.petrology.oupjournals.org/
~ ~		

19 ABSTRACT

Primitive arc magmas in oceanic island arcs are probes of sub-arc magmatic processes and are crucial for understanding oceanic subduction. We report an Early Paleozoic oceanic arc volcanic complex in the Lajishan-Yongjing terrane. South Qilian Accretionary Belt (SQAB), Qilian Orogen, with zircon U-Pb dating and Hf-O isotopes, mineral and whole-rock geochemistry, and Sr-Nd isotope compositions. New zircon ages focused on ~455-440 Ma constrain the timing of arc volcanism and the subduction of the Qilian Ocean. Based on petrography and bulk-rock composition, five lithological types have been identified, including (1) ankaramite, (2) high-Mg basaltic andesite, (3) high-Al andesite, (4) boninite, and (5) sanukite. The volcanic sequence thus is one of the few island arcs where three types of simultaneous near-primitive arc rocks including boninite, ankaramite and sanukite have been produced. All these rocks have variously enriched Sr-Nd isotopic compositions, positive to slight negative zircon $\varepsilon_{Hf}(t)$ values and elevated zircon δ^{18} O values. Boninites, ankaramites and sanukites are interpreted as contemporary, near-primitive, melts generated from different sources and conditions within an island arc setting. Boninites are characterized by low Ti, REE concentrations and high Cr# chrome spinel, and are interpreted as melts of refractory, Cpx-poor, spinel lherzolite or harzburgite with >25% degree of partial melting. Anomalous zircon δ^{18} O values of 6.57‰-7.61‰ and Sr-Nd mixing calculations suggest less than 2% incorporation of subducted oceanic sediments into their mantle source. The ankaramites are characterized by low SiO₂, high MgO (Mg#), Cr, Ni and La/Yb ratios, and have 2 / 68

similar isotopic ratios to tectonically-adjacent OIB lavas. The ankaramite lavas are likely to have derived from mantle sources similar to those of OIB, i.e., pyroxenite-bearing garnet peridotite enriched in incompatible elements. High-Mg basaltic andesites and high-Al andesites may be derived from the parental ankaramite magma. Sr-Nd-Hf isotopic mixing modeling constrain the amount of silicic melt to ~1-4% for ankaramite magma. Sanukites are of andesitic-dacitic composition with high Mg#, Cr and Ni, and enriched LILE and high La/Yb ratios. They are interpreted as having been generated by reaction of mantle peridotite with a silicic melt, itself derived from subducted sediments. Enriched Sr-Nd-Hf isotopic compositions constrain the amount of silicic melts to ~10-15% for sanukite. Large compositional variations among the volcanic rocks from the same arc reflect heterogeneous mantle sources and variable degrees of mantle metasomatism by sediment-derived hydrous fluids or silicic melts, accompanied by secondary AFC processes during ascent to the surface.

The generation of the island arc volcanic sequence in the Lajishan-Yongjing Terrane is a response to the collision between the Lajishan-Yongjing Oceanic Plateau (recorded by the Lajishan-Yongjing Ophiolite) and the pre-existing trench/continental margin. Evolution from a continental margin in the North Qilian Accretionary Belt to an oceanic island-arc in the SQAB records subduction advance and retreat in the history of the Qilian Ocean.

62 Key words: intra-oceanic arc; ankaramite; boninite; sanukite; mantle metasomatism

63 by subducted sediments; zircon Hf-O isotope; Qilian Orogen

64 INTRODUCTION

In the modern Earth, volcanic arc systems at convergent plate margins can be subdivided into (1) island arcs (e.g. Western Pacific-type Izu-Bonin-Mariana (IBM) oceanic arc) and (2) continental arcs, according to the different types of overriding plate (Gill, 1981). If the overriding plate is oceanic, resulting magmatism forms an island arc, possibly with primitive arc magmas, including primitive andesites (e.g. Kelemen et al., 2003), arc picrites (e.g. Rohrbach et al., 2005), island-arc ankaramite (e.g. Barsdell & Berry, 1990) and boninites (e.g. Crawford et al., 1989). If the overriding plate is continental, the resulting magmatism is typically more evolved, with calc-alkaline/alkaline rocks and less tholeiitic/low-K series volcanic rocks than island arcs (Miyashiro, 1974; Song et al., 2013). Erupted primitive arc magmas in island arcs are in principle probes of sub-arc mantle sources (Falloon & Danyushevsky, 2000; Green et al., 2004; Mitchell & Grove,

2015), providing direct evidence of sub-arc magmatic processes (Greene et al., 2006).

However, a major obstacle to our understanding the sources of island arc magmas is the effect of crustal evolution on volcanic products (Leeman, 1983). In this regard, primitive arc volcanic rocks are extremely useful, whether they occur in modern arcs or ancient island arcs preserved within continents by orogeny and accretion (e.g. Stern

et al., 2012; Takashima et al., 2002; Greene et al., 2006).

83 Subduction accretionary belts in continental orogens record ancient subduction and

orogenic process by accretion of microcontinents, oceanic crust (e.g. oceanic plateau, seamounts), arc magmatic complexes and finally continent-continent collision. The most abundant petrotectonic assemblage preserved in accretionary orogens is dominated by the continental arc, with subordinate oceanic terranes (arcs, crust, mélange, Large Igneous Provinces, etc.) and older, reworked crust (Condie, 2014). As most of the juvenile crust in orogens is found in continental arc assemblages produced during closure of the ocean-basin, Subduction Accretionary Belts play an important role in directly understanding continental growth and assembly in the Earth's history (Cawood et al., 2009). The Lajishan-Yongjing Terrane in the middle part of South Qilian Accretionary Belt is an Early Paleozoic subduction accretionary belt, formed by accretion of ophiolite, island arc volcanic complexes and intrusion of arc-related plutons (Yang et al., 2002; Xiao et al., 2009; Yan et al., 2012, 2015; Fu et al., 2014; Wang et al., 2016; Zhang et al., 2017; Song et al., 2017). Ophiolites in this region are composed of picrites, ocean-island alkaline and tholeiitic lava, and have been demonstrated to be an oceanic plateau which was the product of a mantle plume (Zhang et al., 2017; Song et al.,). As subduction proceeded, the oceanic plateau arrived at, then jammed the trench and finally accreted to the existing continents as an ophiolitic component (Niu et al., 2003, 2017). Thus, the accretionary complexes provide us with an opportunity to reveal the tectonic relationship between the collision of an oceanic plateau and generation of an intra-oceanic arc volcanic complex.

105 In this paper, we examine various rock types of island arc affinity from the

> Lajishan-Yongjing Terrane, and provide an integrated investigation of in situ zircon U-Pb dating and Hf-O isotopes, in combination with mineral and whole-rock chemistry and Sr-Nd isotopes. The aims are to: (1) describe an Early Paleozoic oceanic arc embedded in an ancient continental orogenic belt; (2) characterize the magmatic processes of the volcanic rocks, and place constraints on the nature of parental magmas; (3) precisely date the volcanic rocks of the island arc complex; and (4) decipher its tectonic relations with the collision between the Lajishan-Yongjing Oceanic Plateau and the Central Qilian Continental Margin.

GEOLOGICAL SETTING

The Qilian-Qaidam Orogenic Belt is a wide orogenic collage, with its width exceeding 300 km, presently located on the northern margin of the Tibetan Plateau and adjacent areas, including the Qaidam Basin to the south, the Tarim Basin to the northwest, and the Alax block to the northeast (Fig. 1a). It is offset by the Altyn Tagh fault in the west and merges with the East Kunlun Orogen to the east, and continues farther to the east merging with the Qinling-Dabie orogenic belt (Song et al., 2013, 2017). This whole region consists of two subparallel oceanic-type accretionary belts and one continental-type ultrahigh-pressure metamorphic (UHPM) belt, occurring between two Precambrian blocks. From north to south, the Qilian-Qaidam Orogenic Belt can be subdivided into 5 tectonic units, the North Qilian Accretionary Belt (NQAB), the Central Qilian Block, the South Qilian Accretionary Belt (SQAB), the Quanji-Oulongbuluke Block and the North Qaidam UHPM Belt (Fig. 1b; Song et al.,

2014).

128	The NQAB is an elongate, NW-trending orogenic belt that lies between the Alax
129	Block (north) and the Central Qilian Block (south). It is offset by the strike slip Altyn
130	Tagh Fault for up to 400 km in the northwest (Zhang et al., 2001) and is bounded by
131	the Longshoushan Fault to the Alax Block. This belt is considered as a material record
132	of a typical oceanic-type subduction-zone in the early Paleozoic that consists of two
133	ophiolite suites with zircon U-Pb ages of 560-450 Ma, arc magmatic sequences
134	including intermediate-felsic volcanic rocks (510-450 Ma) and I-type
135	granite/granodiorite plutons (510-420 Ma), and high-pressure/low-temperature
136	(HP/LT) metamorphic rocks with metamorphic ages of 490-440 Ma (Wu et al., 1993;
137	Liu et al., 2006; Song et al., 2006, 2009, 2013; Zhang et al., 2007). A boninitic
138	sequence (517-490 Ma) in the back-arc setting was also determined by Xia et al.
139	(2012).
140	The Central Qilian Block between the NQAB and the SQAB consists mainly of
141	Paleoproterozoic granitic gneiss, leucogranite and rapakivi granites with
142	Neoproterozoic granitic intrusions, which has affinities in the geochronological
143	spectrum of magmatism and rock assemblages with the Yangtze block (Wan et al.,
144	2001; Gehrels et al., 2003; Song et al., 2010, 2012; 2014; Tung et al., 2007, 2013).
145	The SQAB occurs as discontinuous, NW-SE oriented fault-bounded slivers along
146	the south margin of Central Qilian Block, and is separated from the
147	Quanji-Oulongbuluke blocks by thick (more than 5 km) and wide (exceeding 100 km)

148 Paleozoic sedimentary sequences (Song et al., 2014). It mainly consists of, from NW

to SE, the Yanchiwan Terrane, the Gangcha Terrane, the Lajishan-Yongjing Terrane and the Yongjing Terrane, and extends further east to the West Qinling and East Qinling, collectively forming the Qi-Qin Accretionary Belt (QQAB) with a total length of ~2000 km (Song et al., 2017). The SQAB composed of two sequences: a Cambrian to Ordovician ophiolite sequence and an Ordovician arc-volcanic sequence (Zhang et al., 2017; Song et al., 2017). The ophiolites crop out to the north of the arc sequence and consist of massive and pillow picrite, ocean-island tholeiitic and alkaline basalt with minor ultramafic rocks, gabbro and pelagic chert (Fu et al., 2014; Zhang et al., 2017). The arc-volcanic sequence is mainly composed of pillow metabasalt, volcaniclastic rocks and andesitic porphyry, which are imbricated with chert and minor carbonate (Xiao et al., 2009). Silurian flysch occurs as fault-bounded slices within the accretionary complex. These rocks are unconformably overlain by Devonian molasse and Carboniferous to Triassic sedimentary cover.

162 ROCK ASSEMBLAGES

The SQAB arc-volcanic complex occurs in the south part of the accretionary terranes in the NW-SE orientation with an area of ~ 200×20 km² (Fig. 1c). It is bounded by thrust faults with the ophiolite sequence, and is unconformably covered by Cretaceous strata. Samples were collected along the extension of the arc-volcanic complex within Lajishan-Yongjing terrane (see Fig. 1c for sampling localities). A cross-section in Zhaba town (Fig. 1d) shows the relations of pillowed and massive basalt-andesite with layered dacitic lava and volcaniclastic rock. The upper-crust

170	exposures are OIB-type pillow lavas (>500 Ma) as described by Zhang et al. (2017).
171	The lower part of the arc suite (~460-440 Ma) is composed of thick sequence of
172	amphibole-rich diabase, intruded by diorite, and overlain by intermediate-basic
173	volcanics. The intermediate-basic volcanics are dark-colored lavas, massive or pillow
174	structures, which are generally porphyritic and characterized by an essentially glassy
175	groundmass with varying amounts of microlites (Fig. 2a and b). The upper part of the
176	exposures of the arc suite are composed of thick sequences of light-colored lavas
177	ranging from andesite to dacite overlain by tuff and volcaniclastic debris-flow
178	deposits (Fig. 2c and d). Five types of lithologies can be recognized in the field based
179	on their colour and structure: (1) dark-green colored, pyroxene-phenocryst-rich
180	basalt-andesite (ankaramite), (2) dark-green colored, phenocryst-poor basaltic
181	andesite with pillow and massive structures (boninite and high-Mg basaltic andesite)
182	(Fig. 2a); (3) reddish andesite with plagioclase phenocrysts (high-Al andesite) (Fig.
183	2b); (4) pale-white/grey colored dacite with Pl and/or Qtz phenocrysts (mostly
184	sanukite) (Fig. 2c); and (5) volcanic breccia (Fig. 2d).

185 ANALYTICAL METHODS

186 Bulk rock major and trace element analyses

Bulk-rock major and trace element analyses were carried out at China University of Geosciences, Beijing (CUGB) and the detailed analytical procedures have been given by Song et al. (2010). Bulk-rock major element oxides were determined using inductively coupled plasma-atomic emission spectroscopy (ICP-OES). The analytical

^{9 / 68}

2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
40	
41	
42	
43	
-τ_ Λ Λ	
44	
45	
46	
47	
48	
49	
50	
51	
57	
J∠ 52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

191	uncertainties are generally less than 1% for most elements with the exception of TiO_2
192	(~1.5%) and P_2O_5 (~2.0%) based on rock standards GSR-1, and GSR-3 (national
193	geological standard reference material of China), AGV-2, W-2 (U.S. Geological
194	Survey: USGS). Loss on ignition (LOI) was determined by placing 1 g of samples in
195	the furnace at 1000°C for 3 hours before being cooled in a desiccator and reweighed.
196	The trace element analyses were accomplished on an Agilent-7500a inductively
197	coupled plasma mass spectrometer (ICP-MS). About 50 mg powder of each sample
198	was dissolved in equal mixture of distilled HF and HNO ₃ in Teflon digesting vessels
199	and heated at 195 °C for 48 hours using high-pressure bombs for digestion. The
200	sample was then evaporated to incipient dryness, refluxed with 1 ml of 6N HNO ₃ and
201	heated again. The sample was again dissolved in 2 ml of 3N HNO ₃ and heated at 165
202	°C for further 24 h to guarantee complete dissolution. Finally, they were diluted with
203	Milli-Q water (18M Ω) to a dilution factor of 2000 in 2% HNO ₃ solution for analysis.
204	Rock standards AGV-2, W-2, and BHVO-2 (USGS) were used to monitor the
205	analytical accuracy and precision. The analytical accuracy, as indicated by relative
206	difference between measured and recommended values, is better than 5% for most
207	elements, and 10~15% for Cu, Sc, Nb, Ta, Er, Tm, Gd Th, and U.

208 Mineral chemistry

In-situ mineral analyses for major element oxides, including clinopyroxene (Cpx)
and spinel, were done on a JEOL JXA-8100 Electron Probe Micro Analyzer (EPMA)
at Peking University. Analytical conditions were optimized for standard silicates and

oxides at 15 kV accelerating voltage with a 20 nA focused beam current for all the elements. In-situ mineral analyses for trace elements in Cpx were accomplished on an Agilent-7500a inductively coupled plasma mass spectrometer (ICP-MS) coupled with a New Wave UP-193 solid-state LA system in the Geological Lab Center, CUGB. Routine analyses were obtained by counting for 30s at peak and 10s on background. Repeated analysis of natural and synthetic mineral standards yielded precisions better than $\pm 2\%$ for most elements.

219 Bulk rock Sr-Nd isotope analyses

Separation and purification of Sr-Nd were carried out using conventional two-column ion exchange procedures in the ultraclean laboratory of the MOE Key Laboratory at Peking University. About 300 mg of unknown sample and ~200 mg of standard sample (BCR-2) were dissolved in mixture of HF+HNO₃ in Teflon vessels and heated at 140°C for 7days in order to be completely dissolved. The pure Sr and Nd were separated from the remaining solution by passing through conventional cation columns (AG50W and P507) and the detailed ion exchange procedures include: (1) separation of Sr and light rare earth elements (LREE) group through a cation-exchange column (packed with 200 mesh AG50W resin); (2) purification of Nd through a second cation-exchange column (packed with 200 mesh P507 resin). The bulk-rock Sr-Nd isotope analyses were performed by multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) at MOE Key Laboratory of Orogenic Belts and Crustal Evolution, Peking University. The ⁸⁷Rb/⁸⁶Sr and

¹⁴⁷Sm/¹⁴⁴Nd ratios were calculated based on Rb, Sr, Sm, and Nd contents determined by ICP-MS (CUGB). Mass fractionation corrections for Sr and Nd isotopic compositions were normalized to ${}^{86}\text{Sr}/{}^{88}\text{Sr} = 0.1194$ and ${}^{146}\text{Nd}/{}^{144}\text{Nd} = 0.7219$, respectively. All ⁸⁷Sr/⁸⁶Sr ratios have been adjusted against Sr standard NBS-987 Sr = 0.710250 and the reported ¹⁴³Nd/¹⁴⁴Nd ratios were further adjusted relative to the JNdi-1 standard of 0.512115. Initial ¹⁴³Nd/¹⁴⁴Nd ratios and corresponding ε_{Nd} (t) values were calculated on the basis of present-day reference values for CHUR: $(^{143}Nd/^{144}Nd)$ _{CHUR} = 0.512638 and $(^{147}Sm/^{144}Nd)$ _{CHUR} = 0.1967 (Jacobsen & Wasserburg, 1984). Rock standard BCR-2 was used to evaluate the separation and purification process of Rb, Sr, Sm, and Nd. Repeated analyses for the Nd and Sr standard samples (JNdi and NBS987) yielded 143 Nd/ 144 Nd = 0.512197 ± 11 (2 σ , n=7) and ${}^{87}\text{Sr}/{}^{86}\text{Sr} = 0.710229 \pm 11$ (2 σ , n=7), respectively.

245 Zircon U-Pb dating analysis

Zircons were separated by using standard density and magnetic separation techniques. Zircon grains were embedded in an epoxy mount and then polished down to expose the inner structure for analysis. Cathodoluminescence (CL) images were acquired to observe the internal structures of zircon grains, using a CL spectrometer (Garton Mono CL^{3+}) equipped on a Quanta 200F environmental scanning electron microscope at scanning conditions of 15 kV/120 nA in the School of Earth and Space Sciences, Peking University.

253 Measurements of U-Th-Pb isotopes for samples LJ15-01, LJ15-70 were conducted

254	using a Cameca IMS-1280 secondary ion mass spectrometry (SIMS) in the Institute of
255	Geology and Geophysics, Chinese Academy of Sciences, Beijing. The U-Pb dating
256	analyses were conducted after the O isotope analyses and obtained at the same
257	domain. Before the U-Pb dating analyses, the mounted zircons were carefully
258	re-ground and re-polished. The analytical procedures are similar to those reported by
259	Li et al. (2010a and b). The O^{2-} primary ion beam was accelerated at 13 kV, with an
260	intensity of ca. 8 nA. The ion beam diameter is about $20 \times 30 \ \mu m$ in size. Analysis of
261	the standard zircon Plésovice (337Ma, Sláma et al., 2008) was interspersed with
262	analysis of unknowns. Each measurement consisted of seven cycles. Pb/U calibration
263	was performed relative to zircon standard Plésovice and U, Th concentrations were
264	calibrated against zircon standard 91500 (Wiedenbeck et al., 1995). An in-house
265	zircon standard Qinghu (159.5 \pm 0.2 Ma, Li et al., 2013b) was alternately analyzed as
266	an unknown together with other unknown zircons in order to monitor the external
267	uncertainties of SIMS U-Pb zircon dating calibrated against the Plésovice standard.
268	The measurements on the Qinghu zircon yield Concordia ages of 161.1 ± 1.3 Ma. The
269	instrument description and analytical procedure is given by Li et al. (2013a).
270	Corrections are sufficiently small to be insensitive to the choice of common Pb
271	composition, and an average of present-day crustal composition (Stacey and Kramers,
272	1975) was used for the common Pb assuming that the common Pb is largely surface
273	contamination introduced during sample preparation. Data reduction was carried out
274	using the Isoplot/Ex v. 3.0 program (Ludwig, 2003). Uncertainties on individual
275	analyses in data tables are reported at 1σ level; concordia U-Pb ages are quoted with

276 95% confidence interval.

277	Measurements of U-Th-Pb isotopes in zircons for other samples were carried out on
278	an Agilent-7500a quadrupole inductively coupled plasma mass spectrometry coupled
279	with a New Wave SS UP193 laser sampler (LA-ICP-MS) at CUGB. Analytical details
280	were comprehensively described by Song et al., (2010). Laser spot size of 36 $\mu m,$
281	laser energy density of 8.5 J/cm^2 and a repetition rate of 10 Hz were applied for
282	analysis. The procedure of laser sampling is 5s pre-ablation, 20s sample-chamber
283	flushing and 40s sampling ablation. The ablated material is carried into the ICP-MS
284	by the high-purity Helium gas stream with flux of 0.8 L/min. The whole laser path
285	was fluxed with N_2 (15 L/min) and Ar (1.15 L/min) in order to increase energy
286	stability. National Institute of Standards and Technology 610 glass and zircon
287	standard 91500 (Wiedenbeck et al., 1995) were used as external standards, Si as
288	internal standard, and zircon standard Qinghu zircon as the secondary standard. The
289	software GLITTER (ver. 4.4, Macquarie University) was used to process the isotopic
290	ratios and element concentrations of zircons. The common lead correction was done
291	following Andersen (2002). Age calculations and plots of concordia diagrams were
292	made using Isoplot/Ex v. 3.0 program (Ludwig, 2003).

293 Zircon Hf-O isotope analysis

In-situ zircon Hf isotope analyses were performed on the zircons previously used for LA-ICP-MS U-Pb dating using a Geolas Pro laser-ablation system coupled to a Neptune multiple-collector ICP-MS at the Key Laboratory for the study of focused

297	Magmatism and Giant ore Deposits, MLR, in Xi'an Center of Geological Survey,
298	China Geological Survey. Details of the instrumental conditions and data acquisition
299	procedures are similar to those described by Iizuka & Hirata (2005), Wu et al. (2006)
300	and Hou et al. (2007). A stationary laser ablation spot with a beam diameter of 44 μm
301	was used for the analyses and the ablation time was 26s. The ablated aerosol was
302	carried by helium and then combined with argon in a mixing chamber before being
303	introduced to the ICP-MS plasma. Before the analysis, standard zircons (TEMORA,
304	GJ1 and FM02) were analyzed and the isotopes ¹⁷² Yb, ¹⁷³ Yb and ¹⁷⁵ Lu were
305	simultaneously monitored during each analysis to correct the interferences of ¹⁷⁶ Lu
306	and ¹⁷⁶ Yb on ¹⁷⁶ Hf. Corrections for ¹⁷⁶ Lu and ¹⁷⁶ Yb isobaric interferences on readings
307	for ¹⁷⁶ Hf used the values of ¹⁷⁶ Lu/ ¹⁷⁵ Lu = 0.02658 and ¹⁷⁶ Yb/ ¹⁷³ Yb = 0.796218,
308	respectively (Chu et al., 2002). Instrumental mass bias was corrected by normalizing
309	Hf isotope ratios to 179 Hf/ 177 Hf = 0.7325 and Yb isotope ratios to 172 Yb/ 173 Yb =
310	1.35274 (Chu et al., 2002), using the exponential mass fractionation law. Zircon GJ-1
311	was used as the reference standard and yielded a weighted mean ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratio of
312	0.282030 ± 40 (2 σ , n=30) during this study, identical to their reference values within
313	analytical error (Morel et al., 2008). A decay constant for 176 Lu of 1.865×10^{-11} year ⁻¹
314	(Scherer et al., 2001) and the present-day chondritic ratios of 176 Hf/ 177 Hf =0.282772
315	and ¹⁷⁶ Lu/ ¹⁷⁷ Hf =0.0332 (Blichert-Toft & Albaréde, 1997) were used for calculating
316	$\varepsilon_{Hf}(t)$ values. Depleted mantle model ages (T _{DM1}) were calculated using the measured
317	¹⁷⁶ Lu/ ¹⁷⁷ Hf and ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratios with reference to depleted mantle with present-day
318	values of 176 Hf/ 177 Hf = 0.28325 and 176 Lu/ 177 Hf = 0.0384 (Griffin et al., 2000). The

1 2	
3 4 319	initial ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratios of the zircon are used to calculate the average continental
5 6 320 7	crust model ages (T _{DM2}) assuming a mean crustal 176 Lu/ 177 Hf value of 0.015 (Griffin
8 9 321	et al., 2004).In-situ zircon O isotope analyses were conducted by Cameca IMS-1280
10 11 322	SIMS system at the State Key Laboratory of Lithospheric Evolution in the Institute of
12 13 323 14	Geology and Geophysics, Chinese Academy of Sciences, Beijing. The zircon O
15 16 324	isotope analysis was conducted prior to the SIMS U-Pb dating to avoid the influence
17 18 325 19	of oxygen implanted in the zircon surface from the O ²⁻ beam used for the U-Pb
20 21 326	determination. Details of the instrumentation and operating conditions have been
22 23 327 24	given by Li et al. (2010a and b). The Cs+ primary ion beam was accelerated at 10 kV,
25 26 328	with an intensity of ca. 2 nA (Gaussian mode with a primary beam aperture of 200 μ m
27 28 329	to reduce aberrations) and rastered over a 10 μ m area. The analysis spot is about
30 31 330	20µm in diameter. Oxygen isotopes were measured using multi-collection mode on
32 33 331	two off-axis Faraday Cups (FC). The NMR (Nuclear Magnetic Resonance) probe was
34 35 332 36	used for magnetic field control with stability better than 2.5 ppm over 16 h on mass
37 38 333	17. One analysis takes ~4 min including pre-sputtering (~120s), automatic beam
39 40 334 41	centering (~60s) and integration of oxygen isotopes (4s ×10 cycles, total 40s). With
42 43 335	low noise on the two FC amplifiers, the internal precision of single analysis is
44 45 336	generally better than \pm 0.2‰ for δ^{18} O values. Measured ${}^{18}O/{}^{16}$ O is normalized using
40 47 48 337	the Vienna Standard Mean Ocean Water (VSMOW) compositions and reported in
49 50 338	standard per mil notation with 2σ errors, and then corrected for instrumental mass
51 52 53 339	fractionation factor (IMF) following the methods of Li et al. (2010a). The IMF is
54 55 340	corrected using in-house zircon standard Penglai with recommended ¹⁸ O/ ¹⁶ O ratio of
56 57	

60

0.0020052 and (δ^{18} O) _{VSMOW} value of 5.31±0.10‰ (Li et al., 2010b). Twenty-nine measurements of Penglai yielded a weighted mean δ^{18} O = 5.27 ± 0.12 ‰ (2σ SD, n=29), which agrees well with the recommended (δ^{18} O) _{VSMOW} value within errors (Li et al., 2010b). During the course of this study, the secondary in-house zircon standard Qinghu was also measured as an unknown to monitor the external precision. Ten measurements of Qinghu yielded a weighted mean δ^{18} O = 5.52 ± 0.15 ‰ (2σ SD, n=10), consistent with the recommended (δ^{18} O) _{VSMOW} value of 5.4± 0.2 within errors

- 348 (Li et al., 2013b).
- **RESULTS**

Rock classification

Thin-sections of samples were carefully examined under microscope and most of them experienced, to different degrees, low grade metamorphism (e.g. zeolite or prehnite-pumpellyite facies) (Fig. 2e-i). Bulk rock major and trace element analyses are listed in Table 1 and plotted in Figs. 3 and 4. All major element contents were normalized to 100% on a volatile-free basis before plotting. In particular, a small number of samples with high LOI values (Table 1) show different degrees of alteration and thus have been removed before plotting. Most of the samples fall in the sub-alkaline field with a few samples lying in the transition field between alkaline and sub-alkaline series on the TAS diagram (Fig. 3a) and all the samples plot in the sub-alkaline field on the SiO₂-Zr/TiO₂ diagram (Fig. 3b); this can be attributed to a slight influence on the mobile elements (e.g. Na and K) by the low grade

362	metamorphism or alteration. In addition, they mainly plot in the island arc field on the
363	Hf-Th-Ta diagram (Fig. 3d) and show a calc-alkaline trend on the AFM diagram (Fig.
364	3c). Accordingly, the lavas can be identified geochemically as (1) boninite, (2)
365	ankaramite, (3) high-Mg basaltic andesite, (4) high-Al andesite and (5) sanukite.
366	Boninite. The boninites are extensively altered with the development of the
367	typical mineral assemblage of low-grade greenschist facies conditions (Fig. 2e).
368	Phenocryst pseudomorphs of pyroxene and/or olivine have been altered to chlorite,
369	serpentinite or tremolite in a groundmass of devitrified glass composed of altered
370	minerals (e.g., chlorite, sericite) and chrome spinel (Fig. 2e). The boninite samples,
371	with moderate SiO_2 (49.7-58.9 wt. %), are characterized by variably high contents of
372	MgO (5.0-19.3 wt. %), Cr (51-2486 ppm) and Ni (47-453 ppm), but low TiO_2 (mostly
373	< 0.5 wt. %), and Zr (< 55 ppm) contents. In chondrite-normalized REE patterns (Fig.
374	4a), all boninite samples display variably low REE abundances (4.1-17.8×C1), and
375	have slightly LREE depleted to enriched patterns with (La/Sm) _N ratios of 0.49-1.49,
376	and no to minor negative Eu anomaly (Eu/Eu* = $0.43-1.07$, with an average of 0.87).
377	In the multi-element spider diagrams (Fig. 4b), they are depleted in HFSEs (Nb, Ta,
378	Zr, Hf, P and Ti) and enriched in water-soluble elements (Rb, Ba, U, Pb and Sr).
379	Ankaramite. The ankaramites are porphyritic with abundant, euhedral Ca-rich
380	Cpx phenocrysts in a usually intersertal to intergranular groundmass filled with
381	plagioclase laths, chloritized glass/or diopside microlites, Fe-Ti oxides as well as
382	chrome spinel (Fig. 2f). Chromian spinel grains are visible in the matrix and as
383	inclusions in Cpx grains. The ankaramite samples are characterized by lower SiO ₂

content (48.0-49.2 wt. %), but higher contents of MgO (15.0-15.6 wt. %), Cr and Ni, relative to the boninites. In chondrite-normalized REE patterns (Fig. 4c), all samples display low REE abundances, slight LREE enrichment with (La/Sm)_N ratios of 2.70-3.09, and no Eu anomaly. In multi-element spider diagrams (Fig. 4d), they are depleted in Nb, Ta, P and Ti and enriched in water-soluble elements (Rb, Ba, U, Pb and Sr).

High-Mg basaltic andesite. The high-Mg basaltic andesites are also porphyritic with euhedral Ca-rich Cpx and amphibole phenocrysts in a usually intersertal to intergranular groundmass filled with plagioclase laths (Fig. 2g). They show variable SiO₂ (49.6-55.6 wt. %) and are characterized by low Al₂O₃ (11.7-17.5 wt. %) content but high contents of MgO (6.7-10.0 wt. %), Fe₂O_{3T} (5.6-10.5 wt. %), CaO (7.7-12.5 wt. %), TiO₂ (0.60-1.21 wt. %), Cr (253-503 ppm) and Ni (72-198 ppm). The chondrite-normalized REE patterns show light rare earth element (LREE) enrichment with $(La/Sm)_N$ ratios of 2.24-4.26 and no Eu anomalies (Fig. 4c). In the multi-element spider diagrams (Fig. 4d), they are depleted in HFSEs (Nb, Ta, Zr, Hf, P and Ti) and enriched in LILEs (e.g. Rb, Ba, Pb, Sr and Th).

High-Al andesite. The high-Al andesites have porphyritic textures with abundant euhedral, lath-shaped plagioclase and minor embayed pyroxene and amphibole pseudomorphs in an intersertal groundmass filled with plagioclase laths and glass as well as opaque minerals (Fig. 2h). They are of basaltic andesite to dacite composition with moderate SiO_2 (48.7-60.5 wt. %) and a relatively large compositional range in terms of other major elements (Table 1; Figs 3). In addition, they are characterized by

2
3
Δ
-
5
6
7
, Q
0
9
10
11
12
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
27
25
26
27
28
20
29
30
31
27
22
33
34
35
36
20
37
38
39
40
-TU 4.1
41
42
43
11
45
45
46
47
<u>4</u> 8
40
49
50
51
52
52
53
54
55
56
50
5/
58
59

406	high Al_2O_3 (16.2-23.1 wt. %) content but low contents of MgO (1.1-5.5 wt. %), Cr
407	(2.0-108.3 ppm) and Ni (1.4-38.4 ppm). The chondrite-normalized REE patterns show
408	light rare earth element (LREE) enrichment with $(La/Sm)_N$ ratios of 1.69-5.34 and no
409	to negative Eu anomalies (Eu/Eu*=0.90-1.15) (Fig. 4e). In the multi-element spider
410	diagrams, they are depleted in HFSEs (Nb, Ta, Zr, Hf and Ti) and enriched in mobile
411	elements (Rb, Ba, U, Th and Pb) (Fig. 4f). The covariation of negative Sr and Eu
412	anomalies occurred in some samples, and may result from the crystallization of
413	plagioclase.
414	Sanukite. Sanukites show a pale-white color and porphyritic texture in the field
415	with sulfide mineralization. The phenocryst minerals are mainly plagioclase, quartz,
416	plus minor pyroxene pseudomorphs (Fig. 2i). The plagioclase phenocrysts are
417	lath-shaped, and the olivine or pyroxene phenocrysts are euhedral and have altered to
418	chlorite. The matrix is mainly composed of fine-grained plagioclase and glass.
419	Geochemically, they are characterized by andesite to dacite composition of SiO_2
420	(54.5-60.7 wt. %), high K ₂ O (> 1.0 wt. %), Mg#> 65 and high Cr (384~521 ppm) and
421	Ni (111~139 ppm). The evolved equivalent of dacite samples (Mg#= 55~64) contain
422	high SiO ₂ (61.6-65.8 wt. %) and low Cr (46~113 ppm) and Ni (10~26 ppm). The
423	chondrite-normalized REE patterns show light rare earth element (LREE) enrichment
424	with $(La/Sm)_N$ ratios of 4.6~6.2 and no to minor negative Eu anomalies
425	(Eu/Eu*=0.76-1.04) (Fig. 4g). In the multi-element spider diagrams (Fig. 4h), they are
426	variously depleted in Ba, Sr, HFSEs (Nb, Ta and Ti) and enriched in LILEs (e.g. Rb,
427	Th, U and Pb). Therefore, these lavas have similar major and trace element

428	compositions to sanukite	(SiO ₂ =55~60 wt. %; Mg#>0.6; K ₂ O>1 wt.	%; Cr>200 ppm;
-----	--------------------------	---	----------------

430 Mineral Chemistry

Samples of primitive lavas from the Lajishan-Yongjing island-arc volcanic complex were chosen to characterize mineral compositions, including Cr-spinel and Cpx from two Cpx-phyric ankaramites (13QLS-68, 13QLS-72), two high-Mg basaltic andesite (13QLS-124, LJ15-42) and two boninites (LJ15-12, LJ15-15). The representative compositions for major element oxides and trace elements are given in Table 2 and Appendix Table 1-3.

Chromian spinel. Spinels from boninite are characterized by high Cr# [Cr/ (Cr+Al) =75.3-90.6], low Al₂O₃ and TiO₂ contents with normal to evolved Mg# [Mg/ $(Fe^{2+} + Mg)$] varying from cores of 35.63-52.90 to rims of 1.45-22.60 (Fig. 5). Spinels from ankaramite samples are characterized by relative lower Cr# [Cr/ (Cr+Al) =68.5-81.9], higher Al₂O₃, and TiO₂ contents than those from boninite, with normal to evolved Mg# varying from 1.74 to 43.66 (Fig. 5). Spinels from ankaramite can be subdivided in two groups: the chromian spinel grains from matrix and the chromian spinel inclusions in Cpx grains. Spinel grains in the matrix have higher Cr# (69.6-90.6), higher TiO₂, and lower Mg# and Al_2O_3 than inclusions in Cpx, which may result from mineral-melt interaction (Cao et al., 2016).

Clinopyroxene. Cpx phenocrysts are mostly Ca-rich Cpx with a formula of Wo
448 (38-47) En (43-50) Fs (5-16) and Mg# varying from 76-94. Cpx from primitive samples

2	
3	
4	
5	
5	
6	
7	
8	
õ	
9	
10	
11	
12	
12	
1.0	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
21	
32	
33	
34	
35	
20	
30	
37	
38	
39	
10	
40	
41	
42	
43	
44	
15	
45	
46	
47	
48	
40	
49	
50	
51	
52	
53	
55 E A	
54 	
55	
56	
57	
50	
20	
59	

1

449	(13QLS-68, 13QLS-72, LJ15-42) have high Mg# (87-94), Cr# (12-25), and high
450	contents of SiO ₂ (51.74-53.27 wt. %) and CaO (21.94-22.36 wt. %), but low contents
451	of TiO ₂ (0.13-0.45 wt. %), Al ₂ O ₃ (1.75-3.45 wt. %), FeO (3.67-4.67 wt. %) and Na ₂ O
452	(0.20-0.29 wt. %). In contrast, two kinds of Cpx grains occur in the evolved sample
453	(13QLS-124), including homogeneous low-Mg# grains and recrystallized Cpx grains
454	exhibiting core-rim structure with high-Mg# core and low-Mg# rim. The cores of the
455	recrystallized Cpx grains have higher Mg#, Cr#, SiO ₂ and CaO, but low TiO ₂ , Al ₂ O ₃
456	and FeO_T than either rims of recrystallized Cpx or low Mg# Cpx grains,
457	corresponding with the high Mg# Cpx grains in primitive samples (Fig. 6). The Mg#
458	of Cpx shows positive correlation with SiO ₂ , CaO and Cr#, and negative correlation
459	with TiO_2 , Al_2O_3 and Na_2O contents (Fig. 6).
460	Trace elements of Cpx grains (Appendix Table 3) are characterized by depletions

in light rare earth elements (LREEs) with $(La/Sm)_N = 0.34-0.61$, gently fractionated 461 heavy rare earth elements (HREEs) with $(Dy/Yb)_N = (1.12-2.21)$. Cpx rims from the 462 sample 13QLS-124 (Mg#=69) have higher trace elements contents than the cores 463 (Mg#=89-93), while the Cpx compositions from sample 13QLS-72 (Mg#=77) are 464 relative homogeneous and coincide with (or are slightly higher than) the Cpx cores in 465 466 sample 13QLS-124. On a primitive mantle-normalized diagram, the Cpx cores are characterized by negative anomalies in Nb, Zr, Hf and Ti, variable enrichments in Rb, 467 Sr, Pb, Th and U, while the rims show strongly negative Sr anomalies (Fig. S1). To 468 further estimate the parental magmas of the Cpx-phyric basaltic andesite, we used the 469 Cpx/basalt partition coefficients to calculate the primary melt compositions as 470

 described by Tang et al. (2012) and references therein. The back-calculated melt
concentrations for the Cpx cores with the highest Mg# from sample 13QLS-124 are
considered as the primary melt compositions (Appendix Table 3).

474 Whole-rock Sr-Nd Isotopes

We selected samples with the lowest LOI values to minimize the influence on the Sr-isotopes triggered by alteration or low grade metamorphism. Whole-rock Sr-Nd isotopic data for the Lajishan-Yongjing island arc volcanic complex are given in Table 3. Initial Sr isotopic ratios and ε_{Nd} (t) values are calculated at t = 450 Ma based on the zircon U-Pb dating. Seven boninite samples have variable initial ⁸⁷Sr/⁸⁶Sr ratios of 0.7041-0.7056 and ε_{Nd} (t) values of 1.80-8.39. Two ankaramite samples exhibit limited initial 87 Sr/ 86 Sr ratios of 0.7050-0.7052 and ε_{Nd} (t) values of 2.46-2.78. Four high-Mg basaltic andesite samples show a narrow range of initial ⁸⁷Sr/⁸⁶Sr ratios of 0.7046 to 0.7053 and ε_{Nd} (t) values of 0.95 to 2.78. Two high-Al and esite samples show limited initial ⁸⁷Sr/⁸⁶Sr ratios of 0.7050 to 0.7053 and ε_{Nd} (t) values of 1.69-2.7. They exhibit covariation between Sr and Nd isotopes. Six sanukite samples show a range of initial 87 Sr/ 86 Sr ratios of 0.7061 to 0.7073 and ε_{Nd} (t) values of -2.07 to -5.66. Two coeval meta-sedimentary samples, occurring as interlayers within volcanic rocks, show a narrow range of initial 87 Sr/ 86 Sr ratios of 0.7098 and ε_{Nd} (t) values of -6.73 to -7.40. It should be noted that the relatively high initial Sr isotopic values of some samples indicate that the Sr-isotopes may be influenced by the variable degree of alteration. However, the influence is insignificant, given that these samples form a

tight cluster in the Sr-Nd diagram (see below). Instead, all the Sr-Nd isotopic data of
volcanic samples overlap the transition field, showing the possibility of mixing
between an enriched mantle source and oceanic sediments.

495 Zircon U-Pb ages

Six volcanic samples from the Lajishan-Yongjing Terrane were selected for LA-ICP-MS and SIMS zircon U-Pb dating, including a boninite (LJ15-01), a high-Mg basaltic andesite (16LJ-27), a high-Al andesite (LJ15-70) and three sanukite samples (12LJ-15, 16LJ-55 and 16LJ-69). The CL images of representative zircon grains are illustrated in Fig. S2, and zircon U-Pb isotope data are presented in Fig. 7 and listed in Appendix Table 4. All zircons are subhedral to euhedral, colorless and transparent, and have grain sizes of 30-300µm with length to width ratios of 1:1 to 3:1. Zircons from sanukite samples (16LJ-55 and 16LJ-69) show oscillatory or banded zoning, whereas zircons from the other samples exhibit broad oscillatory zoning, weak or no obvious zoning in the CL images (Fig. S1). As shown in Appendix Table 4, most zircon U-Pb isotope data are concordant within analytical error.

Zircon U-Pb isotopic analyses from boninite sample LJ15-01 by SIMS show highly variable Th (118-2693 ppm) and U contents (67-4050 ppm) with high Th/U ratios (0.22-2.79). Nineteen analyses give a weighted 206 Pb/ 238 U mean age of 450±6 Ma (MSWD=2.3, n=16), with three relict zircons aged 523-1701Ma (Fig. 7a).

511 Zircons from the high-Mg basaltic andesite sample (16LJ-27) have moderate Th
512 (45-258 ppm) and U (115-472 ppm) contents and high Th/U ratios (0.65-1.35). Thirty

513	analyses yield a concordia age of 456±1 Ma (MSWD=0.36, n=30) (Fig. 7b).
514	Zircons from the high-Al andesite sample (LJ15-70) have variable Th (117-1641
515	ppm) and U contents (222-831 ppm) with Th/U ratios of 0.45-2.66. Seventeen
516	analyses by SIMS give a concordia age of 452±1 Ma (MSWD=0.95, n=17), and one
517	relict zircon grain yields a 206 Pb/ 238 U age of 774±11 Ma (Fig. 7c).
518	Zircons from the three sanukite samples (12LJ-15, 16LJ-55and 16LJ-69) were
519	analyzed by LA-ICP-MS method. They have consistent contents of U (183-570 ppm)
520	and Th (108-394 ppm) with high Th/U ratios of 0.44-1.12. Twenty five analyses on
521	zircon grains from12LJ-15 yield a concordia age of 440±1 Ma (MSWD=0.61) (Fig.
522	7d). Twenty six analyses of 29 zircon grains from 16LJ-55 form a concordia age of
523	448±1 Ma (MSWD=0.54), apart from three strongly discordant ages, which may due
524	to lead loss (Fig. 7e). Twenty two analyses on 25 zircon grains from 16LJ-69 yield a
525	concordia age of 455±1 Ma (MSWD=0.52), with three relict zircon ages (Fig. 7f).
526	In summary, the U-Pb dating on magmatic zircon domains for the
527	Lajishan-Yongjing arc volcanic complex yields consistent ages of 456 to 440 Ma,
528	implying that the Lajishan-Yongjing island arc was formed in a relatively short period
529	in Late Ordovician, much younger than ages of the adjacent ophiolite complex (~ 525
530	Ma, Zhang et al., 2017). Relict zircons are rare, suggesting insignificant assimilation
531	of continental crust.

532 Zircon Hf-O Isotopes

Zircon Hf isotopic data for the Lajishan-Yongjing island arc complex are given

534	in Appendix Table 5. Zircons of the high-Mg basaltic andesite (sample 16LJ-27) have
535	a narrow range of initial 176 Hf/ 177 Hf ratios (0.282819-0.282874) and the calculated ε_{Hf}
536	(t=456 Ma) values range from 11.69 to 15.38 with a weighted mean of 13.72 ± 0.57
537	(MSWD=1.4, $n = 16$). Zircons of the two sanukite samples (16LJ-55, 16LJ-69) have
538	uniform initial ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratios (0.282300-0.282569) and the calculated $\varepsilon_{Hf}(t)$ values
539	range from-3.22 to 0.44 with a weighted mean of -0.27 ± 0.43 (MSWD=1.4, n = 16)
540	and from -2.11 to 1.62 with a weighted mean of -0.60 \pm 0.43 (MSWD=2.2, n = 16),
541	respectively. It is notable that the Hf isotopic compositions of the island arc complex
542	are decoupled from the Nd isotopic compositions, showing various positive $\Delta \varepsilon_{Hf}(t)$
543	values of 10.85 for sample 16LJ-27, 4.20 for sample 16LJ-55, and 4.30 for sample
544	16LJ-69, respectively [$\Delta \varepsilon_{Hf}(t) = \varepsilon_{Hf}(t) - 1.55\varepsilon_{Nd}(t) - 1.21$; Vervoort et al., 2011].
545	Zircon O isotopic data for the Lajishan-Yongjing island arc complex are given in
546	Table 4. The δ^{18} O values for zircons of boninite (LJ15-01) mostly range from 6.57 to
547	7.61‰ with a weighted mean of 7.17 \pm 0.13‰ (MSWD=9.5, n = 17). Zircons of
548	high-Al and esite (LJ15-70) mostly have uniform $\delta^{18}O$ values of 5.4-6.24 ‰ with a
549	weighted mean of $5.90 \pm 0.09\%$ (MSWD=5.6, n = 18). The estimated whole-rock
550	$\delta^{18}O$ values roughly range from 7.44‰ to 8.49‰ (the mean of 8.05± 0.13‰) for
551	LJ15-01, and from 6.23 ‰ to 7.06‰ (the mean of 6.73± 0.09‰) for LJ15-70 [$\delta^{18}O_{WR}$
552	$=\delta^{18}O_{Zir} + 0.0612$ (wt. % SiO ₂) - 2.5; Valley et al., 2005].

DISCUSSION

Petrogenesis of the arc volcanic complex

555 Crustal assimilation/source mixing

The compositions of primitive arc magmas are determined by the composition of the mantle source, the slab-derived components (including fluids and melts) and the P-T conditions of partial melting, and can be influenced by a number of factors, such as shallow-level crustal assimilation and fractional crystallization (AFC). Generally, source mixing and crustal assimilation are the two fundamental mechanisms for incorporation of crustal components into mantle-derived magmas, and thus are capable of producing variations in elemental and isotopic compositions of arc magmas (Zheng & Hermann, 2014; Bezard et al., 2015). In contrast, fractional crystallization can also occur during arc magma ascent that produces rock types with variations in the major and trace element compositions, but do not affect the isotopic compositions.

As shown in Figs. 8 and 9, boninite samples have distinct characteristics (e.g. low La/Sm and TiO₂) and evolutionary trend from the other rock types, suggesting they derived from different sources of the mantle wedge. The other four types of rocks show positive correlations between La/Sm ratios versus La and SiO₂ content (Fig. 8a and b), indicating that the partial melting of metasomatized mantle or crustal contamination during ascent altogether readily explain the petrogenesis of the volcanic rocks. The sanukite has lowest ε_{Nd} (t) and highest (${}^{87}Sr/{}^{86}Sr)_{i}$, and is likely to

574	have undergone a high degree of source metasomatism or crustal assimilation relative
575	to other samples (Fig. 8c and d). In contrast, the boninite lavas exhibit high $\epsilon_{Nd}(t)$, low
576	La/Sm ratios relative to other rock-types, suggesting that they are derived from more
577	depleted mantle source with the least source metasomatism or crustal contamination.
578	The ankaramite, high-Mg basaltic andesite and high-Al andesite exhibit similar
579	La/Sm ratios, $\epsilon_{Nd}(t)$ and $({}^{87}Sr/{}^{86}Sr)_i$, indicating that the degree of mantle
580	metasomatism may be comparable. Based on the variations of $\epsilon_{Nd}(t),~(^{87}Sr/^{86}Sr)_i,$
581	La/Sm ratios (Fig. 8a and b) and zircon Hf-O isotopes, all the rocks can be
582	categorized into three independent magmatic series, including (1) boninite, (2)
583	ankaramite-high-Mg basaltic and esite-high-Al and esite and (3) sanukite. Besides, the
584	lithological assemblage of this region suggests an intra-oceanic arc setting, and thus
585	crustal assimilation is likely to be insignificant during their ascent en route to the
586	surface. In addition, a high degree of crustal contamination can be precluded by (1)
587	the small range of Hf-O isotope and only few xenocrystal zircons in the grain
588	population from the studied rocks (Fig. 7); and (2) the lack of enclaves in the outcrops.
589	Therefore, the source metasomatism between subducted sediments and mantle wedge
590	is likely to be the dominant mechanism responsible for the chemical variation among
591	different rock groups.

Petrogenesis of boninite

593 The boninite lavas, with low TiO_2 , low Al_2O_3 , high contents of MgO and 594 (Fe₂O₃)_T, do not show covariations between major-trace elements and SiO₂ with other

28 / 68

lavas, suggesting that the boninites are unlikely to be the evolved products of the

parent magma of other lavas. Correlations between Si₂O-MgO, Si₂O-CaO and Cr-V suggest that the parental boninite magmas might have undergone pyroxene (±Ol)-dominated fractionation (Fig. 9). Boninites may be produced by hydrous re-melting of refractory lherzolite which is fluxed by slab-derived hydrous fluids/melts at high temperature and low pressure (spinel domain) (Green et al., 2004). In the Th/Yb-Nb/Yb proxy (Pearce, 2008) for recycled crustal components and selective Th and Nd addition, samples mainly plot above the MORB-OIB array (Fig. 10a). As shown in Fig. 10b-c, the boninite was replenished by a fluid-like slab-derived component enriched in mobile elements (e.g. U and Ba), and relatively lacking in less fluid-soluble elements (e.g. Th and LREE). Although a role of slab-derived fluid in the generation of the boninite is evident from Fig. 10b-c, the slight LREE and Th-Nd (Fig. 10a) enrichment cannot be explained by fluid-like subduction components alone, and also requires the presence of melt-like subduction components. Zircon δ^{18} O values of 6.57%-7.61% from boninite (LJ15-01) are higher than that of primary mantle ($\delta^{18}O = 5.3 \pm 0.3\%$, Valley, 2003) (Fig. 11a). Similarly, the calculated whole-rock δ^{18} O range from 6.23% to 8.49%, higher than the δ^{18} O values of depleted mantle (5.7‰) and uncontaminated oceanic plume source (~6‰) (Condie, 2001 and references therein). The sediment-derived fluids with elevated δ^{18} O values can be triggered by a contamination of the pelagic sediments $(\delta^{18}$ O values of ca. 9~20%) (Bindeman et al., 2005), and thus provide an appropriate candidate. Here, we employed a simple two-end-member (peridotite plus oceanic

617	sediments) mixing model of Sr-Nd isotopes for boninite samples, restricting the
618	amount of sediment-derived fluids in the mantle source to less than 2% (Fig. 11b).
619	Therefore, we argue that the involvement of silica-rich fluids derived from the
620	recycled pelagic sediments plays a crucial role in the formation of the boninite lavas.
621	Lines of evidence for the nature of depleted harzburgitic residues of boninite
622	includes the low contents of Al_2O_3 and high Cr# in Cr-spinel and the very low whole
623	rock HREE abundances. The average value of our boninite samples is consistent with
624	average boninite compositions worldwide (Fig. 12a). We use the depleted DMM from
625	Workman & Hart. (2005) as a model mantle source for the boninite. About 10-15%
626	re-melting of depleted DMM produces a good fit to the boninite glass sample except
627	for a large discrepancy in Rb, Ba, Th, U and Sr due to input from slab-derived
628	components (Fig. 12a). Experimental studies indicate that progressive melting of
629	fertile spinel lherzolite rapidly eliminates Cpx and gradually reduces the proportion of
630	Opx at 10-20 kbar (Kelemen et al., 1995). Primary Cpx is normally exhausted after
631	20-30% partial melting of lherzolite (e.g., Niu, 1997, 2004). Thus, we argue for the
632	mantle source of boninite as refractory, spinel-bearing, Cpx-poor lherzolite or
633	harzburgite.
634	

635 Formation of ankaramite-high-Mg basaltic andesite-high-Al andesite

The rock series of ankaramite, high-Mg basaltic andesite and high-Al andesite exhibits large SiO_2 variation with relatively limited ranges of Sr-Nd isotope compositions (Fig. 8c and d). Also, they show a general linear trend between

639	major-trace elements and SiO ₂ (Fig. 9), suggesting that they may share a common
640	magmatic lineage. The variation of Cpx compositions between ankaramite and
641	high-Mg basaltic andesite is consistent with magma evolution. With the increase of
642	SiO_2 , the evolved samples show increases of TiO_2 , Al_2O_3 and decreases of MgO
643	(Mg#), $(Fe_2O_3)_T$, CaO, Cr and Ni. Combined with the correlations between V and Cr,
644	the parental magmas might have undergone Cpx-dominated fractionation from
645	ankaramite to high-Mg basaltic andesite. High-Al basaltic lavas are volumetrically
646	important lavas in many intra-oceanic island arcs and often considered as derivative
647	lavas (with plagioclase accumulation) of more primitive magmas containing 10-15%
648	MgO, derived by partial melting of peridotite in the mantle wedge above the
649	subducted slab (Crawford et al., 1987). Importantly, the negative correlation between
650	SiO ₂ and MgO, (Fe ₂ O ₃) _T , CaO, Al ₂ O ₃ contents and Sr/Y ratio, as well as the presence
651	of both negative and positive Eu anomalies, indicate that plagioclase does become an
652	important phase in the fractionating assemblage (Fig. 9). The decreases of MgO, Ni,
653	(Fe ₂ O ₃) _T , CaO from ankaramite, and high-Mg basaltic andesite to high-Al andesite
654	suggest a process from pyroxene-dominated fractionation to plagioclase accumulation
655	(Fig. 9). Crystallization of V-rich, Fe-Ti oxides within the studied rocks is reflected by
656	a trend of decreasing V/Ti and V versus SiO ₂ (e.g. Nielsen et al., 1994), and positive
657	correlation between $(Fe_2O_3)_T$ and TiO_2 (not shown).
658	The ankaramite-high-Mg basaltic andesite-high-Al andesite, as mentioned above,

658 The ankaramite-high-Mg basaltic andesite-high-Al andesite, as mentioned above,
659 are likely to be of arc basaltic magmatic lineage with various degrees of Cpx
660 fractional crystallization and Pl accumulation; the ankaramite lavas thus might be the

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10
10
20
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
50
57
20
59 60
οU

> 661 nearest to the parental magma. Island arc ankaramites (nepheline-normative, CaO-rich 662 and silica-poor) have been identified from many volcanic arcs worldwide (e.g. 663 Schiano et al., 2000; Green et al., 2004). The ankaramite samples, together with the high-Mg basaltic andesite, display enrichment of less fluid-soluble elements in Fig. 664 10a-c (e.g. Th and LREE), reflecting source input from subducted sediment-derived 665 666 melts rather than fluids. Since Hf is also generally regarded as immobile in 667 slab-derived fluids, a selective enrichment of Nd relative to Hf could be expected, 668 thereby leading to a decoupling of Hf-Nd compositions toward less radiogenic ε_{Nd} (Pearce et al., 1999) and positive $\Delta \varepsilon_{\rm Hf}$ (t) values (Vervoort et al., 2011). The positive 669 $\Delta \varepsilon_{\rm Hf}$ (t) value of high-Mg basaltic and esite (10.85) thus can be imparted through 670 source contamination of zircon-barren pelagic sediments (Chauvel et al., 2008; Choi 671 672 et al., 2013) or selective melting of a mantle source with high Lu/Hf minerals (e.g. Bizimis et al. 2003; Choi & Mukasa, 2012), the latter of which cannot lead to the 673 conspicuous elevation of O isotopic compositions (Wang et al., 2014). Given that the 674 zircons from high-Al andesite sample have elevated δ^{18} O values (Fig. 11a) relative to 675 primary mantle ($\delta^{18}O = 5.3 \pm 0.3\%$, Valley, 2003), we argue that the positive $\Delta \varepsilon_{Hf}(t)$ 676 value of high-Mg basaltic andesite (10.85) may be due to the contamination of 677 678 zircon-barren pelagic sediments. Figure 11 illustrates the results of Sr-Nd-Hf mixing 679 calculations in the case of slab dehydration and slab melting, respectively (Hanyu et 680 al., 2006). The Sr-Nd data for ankaramite, high-Mg basaltic and esite and high-Al 681 samples are well accounted for by the addition of ~2-4% of sediment-derived melts/fluids into the mantle wedge, consistent with the results of the Hf-Nd mixing 682

683	calculation	(1-3%)	for high-Mg	basaltic andesite	(Fig.	11b and c).
-----	-------------	--------	-------------	-------------------	-------	-------------

The primitive features of ankaramites, including high Mg#, Cr, Ni contents and Cr-rich spinel, are shared with other primitive arc magmas like boninites (e.g. F_0 (OI)>90; Cr# (Sp)>70: Crawford et al., 1989). Previous experimental work has shown that the primitive island-arc ankaramitic lavas are segregated from residual harzburgite at 1.5GPa, ~1320-1350 °C, fluxed by dolomitic carbonatite melts (C-H-O melts) (Green et al., 2004); Only high-pressure melts (above 1.5-1.8GPa) from peridotite are silica-undersaturated (e.g. Till et al., 2012). However, others have argued against this scenario on account of the high pressure experimental melts with insufficiently high CaO/Al₂O₃ ratios and nepheline-normative contents, as well as the presence of residual garnet in the source, which contradicts the observation of ankaramitic melt inclusions with high CaO/Al₂O₃ ratios and flat REE spectra (Elburg et al., 2007; Sorbadere et al., 2012). Therefore, another mechanism is required for the genesis of the ankaramitic melt inclusions that involves partial melting of amphibole-bearing, Cpx-rich cumulative pyroxenite lithologies at lower crustal or shallow upper mantle pressures (e.g. Schiano et al., 2000; Médard et al., 2006; Sorbadere et al., 2012). The high temperatures, however, needed to form nepheline-normative arc melt inclusions (up to 1300°); Schiano et al., 2000; Sorbadere et al., 2012) are difficult to reconcile with arc crust melting, which argues against the melting of lower-crustal cumulates as directly responsible for the common pyroxenitic signature of primitive arc magmas. Thus, both the peridotite melts and clinopyroxenite melts in the mantle wedge are indispensable. The recent experimental

results also argue for the involvement of a heterogeneous hydrous mantle source
composed of lherzolite mixed with amphibole-bearing clinopyroxenites as a more
realistic model for the formation of arc ankaramitic melt inclusions (Sorbadere et al.,
2013).

Oscillatory zoning and variation of Mg# in Cpx grains and compositional changes of the Cr-spinels in Cpx phenocrysts and in the matrix indicate several stages of disequilibrium melt evolution. Thus, it is reasonable to use the high Mg# Cpx cores to back-calculate the parental melts of ankaramite. The back-calculated melt concentrations of trace element for the Cpx cores with the highest Mg# are used for consideration as the parental magmas of the ankaramite, and illustrated in Fig. 12b. The calculated parental magmas possess low REE contents with slightly right inclined patterns of HREE (Fig. 12b), suggesting their derivation from the source region with the presence of garnet as a residual phase. Thermobarometer calculations from the Cpx compositions result in the potential temperature (T_n) of the mantle source ranging from 1267 to 1316°C (1296°C on average) and pressures of 11.6-20.0 kbar (16.6 kbar on average), using the equation of Putirka. (2008). Thus, we propose that this rock series is likely to be derived from a heterogeneous hydrous, garnet-hosted, mantle source composed of lherzolite and clinopyroxenites.

723 Formation of sanukite

The sanukite lavas have nearly constant Al_2O_3 and Sr/Y ratios over a wide range of SiO₂. The absence of an obvious Eu negative anomaly suggests insignificant

726	fractional crystallization of plagioclase. However, the decreased MgO, $(Fe_2O_3)_T$, and
727	CaO with increasing SiO ₂ , together with the correlations between Cr-Ni, and Cr-V, are
728	consistent with the fractional crystallization of pyroxene and hornblende (Fig. 9).
729	Sanukite and the equivalent of sanukitoids found in Setouchi volcanic belt, SW
730	Japan, are one type of the known high-Mg andesite (Mg#>64, Tatsumi, 2006). They
731	are likely to represent little differentiated, near-primitive andesite magmas generated
732	in the presence of sufficient H ₂ O by equilibrium reaction of a hot mantle peridotite
733	with a silicic melt derived from partial melting of a subducting sediments and/or the
734	oceanic slab (e.g., Yogodzinski et al., 1994; Shimoda et al., 1998). As mentioned
735	above, the studied sanukite lavas are similar in major and trace element composition
736	to sanukite or sanukitoids. As shown in Fig. 10a-c, the addition of sediment-derived
737	silicic melts rather than aqueous fluids are required for the petrogenesis of the
738	sanukite samples. Furthermore, sanukite samples tend to have more radiogenic
739	Sr-Nd-Hf isotopic compositions than other lavas in this study, suggesting a higher
740	degree of source mixing with a metasomatic agent. The two-end-member mixing
741	model of Sr-Nd isotopes for sanukite samples restrict the amount of additional
742	sediment-derived melts in the mantle source to 8-12% (Fig. 11b). Meanwhile, the
743	Hf-Nd isotopical data are consistent with the mixing model of Sr-Nd isotopes between
744	the sediment-derived melts and the mantle wedge, requiring 10-15% addition of
745	metasomatic melts with 9:1 mixture of sediments vs. altered oceanic crust (Fig. 11c).
746	Compared with adakites, the sanukite samples have transitional Sr/Y ratios of
747	17.5-39.9 (Fig. 9f) between adakites and typical arc magmas, implying that the
subducted slab or sediments may have melted at depths shallower than the garnetstability field.

750 The heterogeneity of the mantle source: depleted vs. plume-enriched

Primitive arc magmas, i.e. the boninites, ankaramites and sanukites of this study, are in principle ideal probes of sub-arc mantle sources (Falloon & Danyushevsky, 2000; Green et al., 2004; Mitchell & Grove, 2015; Bénard et al., 2017). Although the Lajishan-Yongjing volcanic rocks exhibit large variations in major and trace element compositions, most primitive samples have obvious geochemical signatures including high MgO contents with corresponding Mg# values, Cr and Ni concentrations, implying their derivation from partial melting of mantle source(s). Elemental and isotopic variations show the heterogeneity of mantle sources among the different rock series. The boninite lavas are derived from a depleted mantle source composed of refractory, spinel-hosted, Cpx-poor lherzolite or harzburgite. In contrast, the ankaramite lavas are derived from a heterogeneous garnet-hosted, mantle lherzolite mixed with amphibole-bearing clinopyroxenites.

Pyroxenites have been widely described either in an arc environment or in a plume-enriched intraplate mantle, and are interpreted either as lower crustal Cpx-rich cumulates from the deep arc crust, or as metasomatic rocks in the mantle on account of metasomatism from slab-derived components or plume-related components (e.g. Greene et al., 2006; Berly et al., 2006; Ishikawa et al., 2004; Sobolev et al., 2005). Specifically, the OIB-type enriched mantle source that had melt components

769	incorporated into it before onset of subduction would form a secondary pyroxenitic
770	source (Sobolev et al., 2005), which is consistent with the observed coarse-grained
771	pyroxenite in the lower part of the Lajishan-Yongjing lithologic sequence (not shown).
772	Such situations are documented for the mantle sources beneath the Ontong Java
773	Plateau (Ishikawa et al., 2004) and Hawaii (Sobolev et al., 2005). Even though the
774	mechanism of Amphibole-clinopyroxenites heterogeneities in the mantle wedge could
775	originate by density-driven delamination of lower crustal cumulates consisting of
776	clinopyroxene + amphibole ± olivine (Sorbadere et al., 2013), there is geochemical
777	evidence that the Cpx-phyric ankaramite-basaltic andesites are derived from the same
778	or similar plume-enriched mantle source for lavas from the adjacent
779	Lajishan-Yongjing Oceanic Plateau (Zhang et al., 2017). The direct evidence is that
780	the ankaramites plot between the alkaline basalt and picrite samples from the
781	Lajishan-Yongjing Ophiolite and show similar patterns except for the Nb-Ta depletion
782	and U enrichment; their La/Nb-La/Ta ratios show transitional values between
783	OIB-MORB and normal intra-oceanic arc basalt worldwide (Fig. 12b). The high TiO_2
784	contents of both Cr-spinel inclusion and Cpx (Fig. 5a and 6a), relative to those from
785	normal forearc peridotite and island-arc volcanics, suggest that the primitive magmas
786	are derived from a Ti-rich mantle source. In addition, the positive correlation for TiO_2
787	and Al ₂ O ₃ contents of Cr-spinel from boninite (15LJ-12), enriched-boninite (15LJ-15)
788	to ankaramite (13QLS-68, 72) form an obvious trend toward the Lajishan-Yongjing
789	Oceanic Plateau (Fig. 5a), showing increasing influence of the plume-enriched mantle
790	source. In contrast, the decreased Cr# of chrome spinel from those samples show the

decreased degree of partial melting of mantle source. In terms of whole rock Sr-Nd isotopic compositions, the ε_{Nd} (t) values of ankaramite (and the derivative high-Mg basaltic andesite and high-Al andesite lavas) are slightly lower than those from boninite lavas (Fig. 11b), which may reflect an enriched mantle source prior to or during the contamination of slab-derived component.

In conclusion, we have identified three primitive melt compositions from the same arc: boninite, ankaramite, and sanukite - all of which were generated at roughly the same time interval. The diversity of the studied primitive rocks can be attributed to heterogeneous mantle sources and variable degrees of mantle metasomatism by sediment-derived hydrous fluids or silicic melts. Partial melting of the oceanic crust and its overlying oceanic sediments would produce the aqueous fluids or silicic melts, which are enriched in fluid mobile incompatible elements solely (e.g. U, Ba) or with less fluid-soluble incompatible elements (e.g. Th, LREE), with various radiogenic Sr-Nd-Hf-O isotope compositions. Different amounts of slab-derived components in different proportions of fluids versus melts would incorporate into, and then react with the overlying mantle wedge. Due to the plume-related metasomatism before the onset of subduction, the subarc mantle source(s) in SQAB is likely to be of spatially compositional heterogeneity, and thus capable of producing various primitive arc magmas. Subsequently, the primitive arc magmas are likely to have undergone secondary AFC process during their ascent en route to the surface.

Tectonic implications

The geodynamic setting of intra-oceanic island arc: interaction between oceanic arc and oceanic plateaus

Accretion of an oceanic plateau to a continental margin would require that it was transferred from an oceanic to a continental setting by a subduction zone tectonic process (Coffin and Eldholm, 2001). Several different tectonic scenarios ranging from an entirely subducted model, partly preserved model to a totally accreted model have been proposed for the fate of oceanic plateaus on reaching subduction zones (e.g., Saunders et al., 1996; Petterson et al., 1999; Kerr et al., 2000). The western Pacific ocean region provides abundant examples of the interaction between oceanic arcs and oceanic plateaus; the Cenozoic Circum-Pacific oceanic plateaus are now placed into intraplate settings and trapped settings where plateaus are now trapped in an intercontinental or continental margin setting by an outward subduction (Mann and Taira, 2004; Song et al., 2017). Thus, oceanic plateaus, due to their widespread distribution on the seafloor and continental-like crustal thicknesses, might be expected to behave more like continents upon reaching subduction zones, and thus accrete rather than subduct (Nur and Ben-Avraham, 1982; Niu et al., 2017). Transference and polarity reversal are distinguished as two subclasses of the induced nucleation model where the newly formed subduction zone(s) were respectively moved to the outboard of the failed ones and behind the magmatic arc (Stern 2004, 2010). Accordingly, an oceanic plateau is an important candidate for the formation of an intra-oceanic island arc and can be preserved as fragments (Niu et al., 2003, 2017).

2
3
4
5
5
0
/
8
9
10
11
12
13
14
15
16
17
18
10
19
20 21
21
22
23
24
25
26
27
28
29
30
30 21
22
32
33
34
35
36
37
38
39
40
41
42
42 12
45
44
45
46
47
48
49
50
51
52
53
54
55
55
50
5/
58
59
60

833	The geodynamic setting of the Lajishan-Yongjing Terrane of the Qi-Qin
834	Accretionary Belt, where an extensive ophiolite fragment, island arc volcanic
835	complex and arc-related plutonism are juxtaposed, has long been the subject of
836	research and debate. Recent investigations suggest this accretionary belt composes
837	two distinct components (1) the Cambrian (>500 Ma) ophiolite complex with picrites
838	and OIB-type lavas that represent an oceanic plateau (Hou et al., 2005; Zhang et al.,
839	2017; Song et al., 2017; Yang et al., 2018); and (2) the Ordovician (< 470 Ma) island
840	arc complex in this study. As shown in Fig. 13, the Lajishan-Yongjing ophiolites were
841	the products of a Cambrian mantle plume as an oceanic plateau in the Proto-Tethys
842	Ocean, and were accreted as an ophiolitic component in the accretionary belt (Zhang
843	et al., 2017; Song et al., 2017). Subsequently, as argued above, the Lajishan-Yongjing
844	arc volcanic system could be considered as a newly-formed island arc system erupting
845	along the oceanic plateau margins in response to the collision between the oceanic
846	plateau and the pre-existing trench/continental margin. In situ zircon U-Pb data reveal
847	that the Lajishan-Yongjing arc volcanic system formed at ~460-440 Ma, much
848	younger than the ophiolite fragments, and thus constrains the ages of volcanism and
849	intra-oceanic subduction of the South Qilian Ocean.

850 Tectonic evolution from continental arc to intra-oceanic arc in North Qilian and 851 South Qilian

The mechanisms of evolution from continental arc to intra-oceanic arc include: (1) trench retreat with the corresponding extension of overriding plate and subsequent opening of a back-arc basin resulting from slab rollback, and (2) trench jamming 40/68

855	related to the incorporation of an oceanic plateau or a microcontinent. In Fig. 13,
856	based on the studied rock assemblages, the NQAB was determined to be an
857	Andean-type active continental margin with the development of a back-arc basin in
858	the Early Paleozoic era, recording a subduction history of the Qilian Ocean beneath
859	the Alax Block (Wu et al., 1993; Song et al., 2006, 2009, 2013; Zhang et al., 2007).
860	The development of a back-arc basin in NQAB (~510-450 Ma) is due to the
861	separation of continental fragments as a result of slab rollback at the continental
862	margin (Xia et al., 2012; Song et al., 2013). In contrast, the SQAB is recognized as an
863	Early Paleozoic subduction accretionary belt, formed by accretion of plume-type
864	ophiolite fragments (LYOP: Zhang et al., 2017) with outward eruption of
865	intra-oceanic arc volcanics as well as intrusion of arc-related plutons at ca. 460-440
866	Ma. The accretion of oceanic plateau and trench jamming are the main reason for the
867	cessation of the existing subduction zone and initiation of a new intra-oceanic island
868	arc. Therefore, in the Early Paleozoic subduction history of the Qilian Ocean,
869	evolution from continental margin to oceanic island-arc can be attributed to trench
870	retreat in the NQAB and trench jamming in the SQAB, respectively.

871 CONCLUSIONS

Five distinct rock lineages are recorded in the volcanic sequence in the Lajishan-Yongjing Terrane, including boninite, ankaramite, high-Mg basaltic andesite, high-Al andesite and sanukite. The assemblage shows arc-like trace element distributions and suggests an IBM-type oceanic island arc in the Early Paleozoic era. The enriched Sr-Nd and decoupled Hf-Nd isotopic systems, as well as anomalous zircon δ^{18} O values suggest the incorporation of subducted oceanic sediments into their mantle source. The boninites are derived from the refractory, Cpx-poor spinel lherzolite or harzburgite. The ankaramite and high-Mg basaltic andesite, are likely to be derived from OIB- enriched, garnet-hosted, pyroxenitic-peridotitic mixed mantle; the high-Al andesite is the evolved magma after precipitation of Cpx. The sanukite could be generated by the equilibrium reaction of a mantle peridotite with a silicic melt derived from partial melting of subducted sediments. Large compositional variations in the volcanic sequence from the same arc over such a short time interval show that oceanic-arc magmas derived from a significantly heterogeneous mantle source simultaneously, accompanied by secondary AFC process during their ascent en *route* to the surface.

The generation of the arc volcanic sequence in the Lajishan-Yongjing accretionary belt is a response to the collision between the Lajishan-Yongjing ocean plateau and the pre-existing trench/continental margin. Zircon ages of ~440-460 Ma constrain the age of volcanism, as well as the intra-oceanic subduction of Qilian Ocean. In the early Paleozoic subduction history of the Qilian Ocean, two mechanisms can be responsible for the evolution from continental margin to oceanic island-arc, including trench retreating in NQAB and trench jamming in SQAB, respectively.

895 ACKNOWLEDGEMENTS

The authors wish to thank H. Y. Zhang for helping with whole-rock analyses, G.B.

42 / 68

3	
1	
4 7	
5	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
59	
00	

Zhang and W. P. Zhu for helping with Sr-Nd isotope analyses, J. Li and Y. G. Li for helping with zircon SIMS/LA-ICP-MS U-Pb dating analysis and zircon Hf-O isotope analysis, X. L. Li and H.Y. Zhang for helping with mineral analysis. The authors are grateful to Editor John Gamble, Rod Sewell and one anonymous reviewer for their detailed and constructive peer-review comments, which greatly improved the quality of this paper.

903 FUNDING

This study was supported by the National Natural Science Foundation of China (Grant 40572040), and the Major State Basic Research Development Program (2015CB856105).

907 **REFERENCES**

Andersen, T. (2002). Correction of common lead in U-Pb analyses that do not report
 ²⁰⁴Pb. *Chemical Geology* 192, 59-79.

Barsdell, M. & Berry, R. F. (1990). Origin and evolution of primitive island-arc
ankaramites from Western Epi, Vanuatu. *Journal of Petrology* 31, 747-777.

912 Bebout, G.E. (2014). Chemical and Isotopic Cycling in Subduction Zones. In:

- 913 Turekian, K. K. & Holland, H. D. (eds) Treatise of Geochemistry, The Crust, 2nd
 914 ed. Elsevier, pp. 703-747.
- 915 Bénard, A., Nebel, O., Ionov, D.A., Arculus, R.J., Shimizu, N. & Métrich, N. (2017).
- 916 Primary silica-rich picrite and high-Ca boninite melt inclusions in pyroxenite 43/68

2
2
5
4
5
6
7
, 0
ð
9
10
11
12
12
13
14
15
16
17
10
١ð
19
20
21
22
~~ >>
23
24
25
26
27
27
28
29
30
31
32
22
33
34
35
36
37
20
38
39
40
41
42
12
C۲ ۸۸
44
45
46
47
48
40
49
50
51
52
53
55
54
55
56
57
58
50
59
60

917	veins from the Kamchatka sub-arc mantle. Journal of Petrology 57, 1955-1982.
918	Berly, T.J., Hermann, J., Arculus, R.J. & Lapierre, H. (2006). Supra-subduction Zone
919	Pyroxenites from San Jorge and Santa Isabel (Solomon Islands). Journal of
920	Petrology 47, 1531-1555.
921	Bezard, R., Turner, S., Davidson, J. P., Macpherson, C. G. & Lindsay, J. M. (2015).
922	Seeing through the effects of crustal assimilation to assess the source
923	composition beneath the Southern Lesser Antilles Arc. Journal of Petrology 56,
924	815-844.
925	Bindeman, I. N., Eiler, J. M., Yogodzinski, G. M., Tatsumi, Y., Stern, C. R., Grove, T.
926	L., Portnyagin, M., Hoernle, K. & Danyushevsky, L. V. (2005). Oxygen isotope
927	evidence for slab melting in modern and ancient subduction zones. Earth and
928	Planetary Science Letters 235, 480-496.
929	Bizimis, M., Salters, V. J. M. & Dawson, J. B. (2003). The brevity of carbonatite
930	sources in the mantle: evidence from Hf isotopes. Contributions to Mineralogy
931	and Petrology 145, 281-300.
932	Blichert-Toft, J. & Albaréde, F. (1997). The Lu-Hf isotope geochemistry of chondrites
933	and the evolution of the mantle-crust system. Earth and Planetary Science
934	Letters 148, 243-258.
935	Cao, Y., Song, S. G., Su, L., Jung, H. & Niu, Y. L. (2016). Highly refractory
936	peridotites in Songshugou, Qinling orogen: Insights into partial melting and
937	melt/fluid-rock reactions in forearc mantle. Lithos 252-253, 234-254.

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
י∠ רר	
∠∠ วว	
∠3 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
27 20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54 57	
55	
56	
57	
58	
59	
60	

938	Cawood, P.A., Kroner, A., Collins, W.J., Kusky, T.M., Mooney, W.D. & Windley, B.F.
939	(2009). Accretionary orogens through Earth history: Geological Society of
940	London Special Publications 318 , 1-36.
941	Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T. & Marini, J. C. (2008). Role of
-	
942	recycled oceanic basalt and sediment in generating the Hf-Nd mantle array.
943	Nature Geoscience 1, 64-67.
944	Choi, H. O., Choi, S. H., Lee, D. C. & Kang, H. C. (2013). Geochemical evolution of
945	basaltic volcanism within the Tertiary basins of southeastern Korea and the
946	opening of the East Sea (Sea of Japan). Journal of Volcanology & Geothermal
947	<i>Research</i> 249 , 109-122.
948	Choi, S. H. & Mukasa, S. B. (2012). Lu-Hf and Sm-Nd isotope systematics of Korean
949	spinel peridotites: A case for metasomatically induced Nd-Hf decoupling. Lithos
950	154, 263-276.
951	Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A.,
952	Germain, C. R., Bayon, G. & Burton, K. (2002). Hf isotope ratio analysis using
953	multi-collector inductively coupled plasma mass spectrometry: An evaluation of
954	isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17,
955	1567-1574.
956	Coffin, M. & Eldholm, O. (2001). Large igneous provinces: progenitors of some
957	ophiolites? In: Ernst, R., Buchan, K. (Eds.), Mantle Plumes: Their Identification
958	through Time. Geological Society of America Special Paper 352, 59-70.

c	
2	
3	
4	
5	
6	
7	
,	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
 วว	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
⊿0	
49	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	
50	
60	
00	

959	Condie, K.C. (2001). Mantle Plumes and their Record in Earth History. Cambridge:
960	Cambridge University Press, 306 pp.
961	Condie K., C. (2014). Growth of continental crust: a balance between preservation
962	and recycling. Mineralogical Magazine 78, 623-638.
963	Crawford, A.J., Falloon, T.J. & Eggins, S. (1987). The origin of island arc
964	high-alumina basalts. <i>Contributions to Mineralogy and Petrology</i> 97 , 417-430.
965	Crawford, A. J., Falloon, T. J. & Green, D. H. (1989). Classification, petrogenesis and
966	tectonic setting of boninites. In: Crawford, A. J. (ed.) Boninites and Related
967	Rocks. Unwin Hyman, pp. 1-49.
968	Dick, H.J.B. & Bullen, T. (1984). Chromian spinel as a petrogenetic indicator in
969	abyssal and alpine-type peridotites and spatially associated lavas. Contributions
970	to Mineralogy and Petrology 86 , 54-76.
971	Elburg, M.A., Kamenetsky, V.S., Foden, J.D. & Sobolev, A. (2007). The origin of
972	medium-K ankaramitic arc magmas from Lombok (Sunda arc, Indonesia):
973	Mineral and melt inclusion evidence. Chemical Geology 240, 260-279.
974	Falloon, T. J. & Danyushevsky, L. V. (2000). Melting of refractory mantle at 1.5, 2.0
975	and 2.5 GPa under H_2O -undersaturated conditions: implications for the
976	petrogenesis of high-Ca boninites and the influence of subduction components
977	on mantle melting. Journal of Petrology 41, 257-283.
978	Fu, C. L., Yan, Z., Guo, X. Q., Niu, M. L., Xia, W. J., Wang, Z. Q. & Li, J. L. (2014).

979	Geochemistry and SHRIMP zircon U-Pb age of diabases in the Lajishankou
980	ophiolitic mélange, South Qilian terrane. Acta Petrologica Sinica 30, 1695-1706
981	(in Chinese with English abstract).
082	Cabrala C. F. Vin A & Wang Y. F. (2003) Detrital ziroon geochronology of the
982	Genreis, G. E., Thi, A. & Wang, X. F. (2005). Deuthal-zheon geochronology of the
983	northeastern Tibetan plateau. Geological Society of America Bulletin 115,
984	881-896.
985	Gill, J. B. (1981). Orogenic andesites and plate tectonics. In: El Goresy, A., von
986	Engelhardt, W. & Hahn, T. (eds) Minerals and Rocks. Springer, 390 pp.
987	Green, D. H., Schmidt, M. W. & Hibberson, W. O. (2004). Island-arc ankaramites:
988	primitive melts from fluxed refractory lherzolitic mantle. Journal of Petrology 45,
989	391-403.
990	Greene, A. R., Debari, S. M., Kelemen, P. B., Blusztajn, J. & Clift, P. D. (2006). A
991	detailed geochemical study of island arc crust: the Talkeetna arc section,
992	South-Central Alaska. Journal of Petrology 47, 1051-10093.
993	Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J. & O Reilly, S.Y. (2004).
994	Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope
995	evidence from detrital zircons. Precambrian Research 131, 231-282.
996	Griffin, W. L., Pearson, N. J., Belousonva, E., Jackson, S. E., van Achterbergh, E.,
997	O'Reilly, S. Y., & Shee, S. R. (2000). The Hf isotope composition of cratonic
998	mantle: LA-MC-ICP-MS analysis of zircon megacrysts in kimberlites.
999	Geochimica et Cosmochimica Acta 64, 133-147.
	47 / 68

1	
2	
4	
5	
6 7	
8	
9	
10	
12	
13	
14	
16	
17	
18	
20	
21	
22	
23 24	
25	
26	
27 28	
29	
30	
31	
33	
34	
35 36	
37	
38	
39 40	
41	
42	
45 44	
45	
46	
47 48	
49	
50	
51	
53	
54	
55 56	
57	
58	
59	
60	

1000	Hanyu, T., Tatsumi, Y., Nakai, S. I., Chang, Q., Miyazaki, T., Sato, K., Tani, K.,
1001	Shibata, T. & Yoshida, T. (2006). Contribution of slab melting and slab
1002	dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints
1003	from geochemistry. Geochemistry Geophysics Geosystems 7, 1-29.
1004	Hou, K. J., Li, Y. H., Zou, T. R., Qu, X. M., Shi, Y. R. & Xie, G. Q. (2007). Laser
1005	ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its
1006	geological applications. Acta Petrologica Sinica 23, 2595-2604 (in Chinese with
1007	English abstract)
1008	Hou Q. Y., Zhao, Z.D., Zhang, H. F., Zhang, B. R., Zhang, L. & Chen, Y. L. (2005).
1009	Discussion on the tectonic affinity of ancient oceanic mantle in Western
1010	Qinling-Songpan continental tectonic node, China: From elemental and
1011	Sr-Nd-Pb isotopic evidences, Acta Petrologica Sinica 22, 2901-2909 (in Chinese
1012	with English abstract).
1013	Iizuka, T., & Hirata, T. (2005). Improvements of precision and accuracy in in situ hf
1014	isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique.
1015	Chemical Geology 220 , 121-137.
1016	Ishikawa, A., Maruyama, S. & Komiya, T. (2004). Layered lithospheric mantle
1017	beneath the Ontong Java Plateau: Implications from xenoliths in alnoite, Malaita,
1018	Solomon Islands. Journal of Petrology 45, 2011-2044.
1019	Jacobsen, S. B., & Wasserburg, G. J. (1984). Sm-Nd isotopic evolution of chondrites.
1020	Earth and Planetary Science Letters 50, 139-155.

Kamenetsky, V.S., Crawford, A.J. & Meffre, S. (2001). Factors controlling chemistry

1	
2	
3 ⊿	
4 5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
17	
18	
20	
21	
22	
23	
24	
25	
20	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
38	
40	
41	
42	
43	
44	
45	
47	
48	
49	
50 E 1	
51 52	
53	
54	
55	
56	
5/ 50	
50 59	
60	

1022	of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt
1023	inclusions from primitive rocks. Journal of Petrology 42, 655-671.
1024	Kelemen, P. B., Hanghøj, K. & Greene, A. R. (2003). One view of the geochemistry
1025	of subduction-related magmatic arcs with an emphasis on primitive andesite and
1026	lower crust. In: Holland, H. D. & Turekian, K. K. (eds) Treatise on Geochemistry,
1027	Vol. 4, the Crust. Elsevier, pp. 749-806.
1028	Kelemen, P. B., Shimizu, N. & Salters, V. M. (1995). Extraction of mid-ocean-ridge
1029	basalt from the upwelling mantle by focused flow of melt in dunite channels.
1030	Nature 375 , 747-753.
1031	Kerr, A., White, R. & Saunders, A. (2000). LIP reading: recognizing oceanic plateau
1032	in the geological record. Journal of Petrology 41, 1041-1056
1033	Le Maitre, R. W. (2002). Igneous Rocks: a Classification and Glossary of Terms:
1034	Recommendations of the International Union of Geological Sciences
1035	Subcommission on the Systematics of Igneous Rocks. Cambridge: Cambridge
1036	University Press, 236 pp.
1037	Leeman, W. P. (1983). The influence of crustal structure on compositions of
1038	subduction-related magmas. Journal of Volcanology & Geothermal Research 18,
1039	561-588.
1040	Li, X. H., Liu, Y., Li, Q. L., Guo, C. & Chamberlain, K. R. (2013a). Correction to
1041	"Precise determination of Phanerozoic zircon Pb/Pb age by multi collector SIMS 49/68

1042 without external standardization". Geochemistry Geophysics Geosystems 10,
1043 573-575.
1044 Li, X. H., Tang, G. Q., Gong, B., Yang, Y. H., Hou, K. J., Hu, Z. C., Li, Q. L., Liu, Y.
1045 & Li, W. X. (2013b). Qinghu zircon: A working reference for micro beam
analysis of U-Pb age and Hf and O isotopes. <i>Science Bulletin</i> 58 , 4647-4654.
1047 Li, X. H., Li, W. X., Li, Q. L., Wang, X. C., Liu, Y. & Yang, Y. H. (2010a).
1048 Petrogenesis and tectonic significance of the 850 Ma Gangbian alkaline complex
in South China: evidence from in situ zircon U-Pb dating, Hf-O isotopes and
1050 whole rock geochemistry. <i>Lithos</i> 114 , 1-15.
1051 Li, X. H., Long, W. G., Li, Q. L., Liu, Y., Zheng, Y. F., Yang, Y. H., Chamberlain, K.
1052 R., Wan, D. F., Guo, C. H., Wang, X. C. & Tao, H. (2010b). Penglai zircon
1053 megacrysts: a potential new working reference material for microbeam
determination of Hf-O isotopes and U-Pb age. <i>Geostandards and Geoanalytical</i>
1055 <i>Research</i> 34 , 117-134.
1056 Liu, Y.J., Neubauer, F., Genser, J., Takasu, A., Ge, X. H. & Handler, R. (2006).
40 Ar/ ³⁹ Ar ages of blueschist facies pelitic schists from Qingshuigou in the
1058 Northern Qilian Mountains, western China. <i>Island Arc</i> 15 , 187-198.
Ludwig, K. R. (2003), User's Manual for Isoplot 3.00: A Geochronological Toolkit for
1060 Microsoft Excel, Spec. Publ., vol. 4, Berkeley Geochronology Center, Berkeley.
1061 Mann, P. & Taira, A. (2004). Global tectonic significance of the Solomon Islands and
1062 Ontong Java Plateau convergent zone. <i>Tectonophysics</i> 389 , 137-190. 50 /68

2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
15	
45	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

1063	Marchesi, C., Garrido, C. J., Godard, M., Belley, F. & Ferré, E. (2009). Migration and
1064	accumulation of ultra-depleted subduction-related melts in the Massif du Sud
1065	ophiolite (New Caledonia). Chemical Geology 266, 171-186.
1066	Médard, E., Schmidt, M.W., Schiano, P. & Ottolini, L. (2006). Melting of
1067	Amphibole-bearing Wehrlites: an Experimental Study on the Origin of
1068	Ultra-calcic Nepheline-normative Melts. Journal of Petrology 47, 481-504.
1069	Mitchell A. L. & Grove T. L. (2015). Melting the hydrous, subarc mantle: the origin
1070	of primitive andesites. Contributions to Mineralogy and Petrology 170, 13, doi:
1071	10.1007/s00410-015-1161-4.
1072	Miyashiro, A. (1974). Volcanic rock series in island arcs and active continental
1073	margins. American Journal of Science 274, 321-355.
1074	Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., Miller, J. S. & Vroon, P. Z. (2008).
1075	Hafnium isotope characterization of the GJ-1 zircon reference material by
1076	solution and laser ablation MC-ICPMS. Chemical Geology 255, 231-235.
1077	Nielsen, R. L., Forsythe, L. M., Gallahan, W. E. & Fisk, M. R. (1994). Major- and
1078	trace-element magnetite-melt equilibria. Chemical Geology 117, 167-191.
1079	Niu, Y. L. (1997). Mantle melting and melt extraction processes beneath ocean ridges:
1080	Evidence from abyssal peridotites. Journal of Petrology 38, 1047-1074.
1081	Niu, Y. L. (2004). Bulk-rock major and trace element compositions of abyssal
1082	peridotites: Implications for mantle melting, melt extraction and post-melting

3	
4	
5	
6	
7	
8	
0 0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27 20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
۳7 ۸۵	
40 40	
49 50	
5U	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1083	processes beneath mid-ocean ridges. Journal of Petrology 45, 2423-2458.

Niu, Y. L., Shi, X. F., Li, T. G., Wu, S. G., Sun, W. D. & Zhu R.X. (2017). Testing the
mantle plume hypothesis: An IODP effort to drill into the Kamchatka-Okhotsk
Sea basement. *Science Bulletin* 62, 1464-1472.

- Niu, Y. L., O'Hara, M. J. & Pearce, J. A. (2003). Initiation of subduction zones as a
 consequence of lateral compositional buoyancy contrast within the lithosphere: a
 petrological perspective. *Journal of Petrology* 44, 764-778.
- 1090 Nur, A. & Ben-Avraham, Z. (1982). Oceanic plateaus, the fragmentation of continents,
- and mountain building. *Journal of Geophysical Research* **87**, 3644-3661.
- Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications
 to ophiolite classification and the search for Archean oceanic crust. *Lithos* 100,
 1094 14-48.
- Pearce, J. A., Kempton, P. D., Nowell, G. M. & Noble, S. R. (1999). Hf-Nd element
 and isotope perspective on the nature and provenance of mantle and subduction
 components in Western Pacific arc-basin systems. *Journal of Petrology* 40,
 1098 1579-1611.
- Pearce, T. H., Gorman, B. E. & Birkett, T. C. (1977). The relationship between major
 element chemistry and tectonic environment of basic and intermediate volcanic
 rocks. *Earth and Planetary Science Letters* 36, 121-132.
- 1102 Petterson, M., Babbs, T., Neal, C., Mahoney, J., Saunders, A., Duncan, R., Tolia, D.,

1104

1105

1

Magu, R., Qopoto, C., Mahoa, H. & Natogga, D. (1999). Geological-tectonic

framework of Solomon Islands, SW Pacific: crustal accretion and growth within

an intra-oceanic setting. Tectonophysics 301, 35-60.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
18	
19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43 11	
44 ⊿5	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 / /			/
http://w/w/w/	notrology	<u>oliniolirna</u>	c ora/
TILLD.// VV VV VV.	Dellolouv	JUDIUUIIa	13.01U/
			···

1106	Rohrbach, A., Schuth, S., Ballhaus, C., Münker, C., Matveev, S. & Qopoto, C. (2005).
1107	Petrological constraints on the origin of arc picrites, New Georgia Group,
1108	Solomon Islands. Contributions to Mineralogy and Petrology 149, 685-698.
1109	Putirka, K.D. (2008). Thermometers and Barometers for Volcanic Systems. In: Putirka,
1110	K. D. & Tepley, F. J., 3rd (eds) Mineral, Inclusions and Volcanic Process.
1111	Mineralogical Society of America and Geochemical Society, Reviews in
1112	Mineralogy and Geochemistry 69 , 61-120.
1113	Rudnick, R. L. & Gao, S. (2003). Composition of the continental crust. In: Rudnick, R.
1114	L. (ed.) The Crust. vol. 3, Elsevier, pp. 1–64.
1115	Saunders, A., Tarney, J., Kerr, A. & Kent, R. (1996). The formation and fate of large
1116	oceanic, igneous provinces. <i>Lithos</i> 37 , 81-95.
1117	Scherer, E., Munker, C. & Mezger, K. (2001). Calibration of the lutetium-hafnium
1118	clock. <i>Science</i> 293 , 683-687.
1119	Schiano, P., Eiler, J.M., Hutcheon, I.D. & Stolper, E.M. (2000). Primitive CaO - rich,
1120	silica - undersaturated melts in island arcs: Evidence for the involvement of
1121	clinopyroxene - rich lithologies in the petrogenesis of arc magmas.
1122	Geochemistry Geophysics Geosystems, 1, doi: 10.1029/1999GC000032.

1	
2	
3	
4	
5	
6	
7	
/ 0	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23 م	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1123	Shimoda, G., Tatsumi, Y., Nohda, S., Ishizaka, K. & Jahn, B.M. (1998). Setouchi
1124	high-Mg andesites revisited: geochemical evidence for melting of subducting
1125	sediments. Earth and Planetary Science Letters 160, 479-492.
1126	Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M.,
1127	Horstwood, M.S.A., Morris, G.A., Nasdala, L. & Norberg, N. (2008). Plešovice
1128	zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis.
1129	Chemical Geology 249 , 1-35.
1130	Sobolev, A. V., Hofmann, Albrecht, W., Stephan, V., Nikogosian & Igor, K. (2005).
1131	An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590-597.
1132	Song, S. G., Zhang, L. F., Niu, Y. L., Su, L., Song, B. & Liu, D. Y. (2006). Evolution
1133	from oceanic subduction to continental collision: a case study of the Northern
1134	Tibetan Plateau inferred from geochemical and geochronological data. Journal of
1135	Petrology 47, 435-455.
1136	Song, S. G., Niu, Y. L., Zhang, L. F., Wei, C. J., Liou, J. & Su, L. (2009). Tectonic
1137	evolution of Early Paleozoic HP metamorphic rocks in the North Qilian
1138	Mountains, NW China: new perspectives. Journal of Asian Earth Sciences 35,
1139	334-353.
1140	Song, S. G., Su, L., Li, X. H., Zhang, G. B., Niu, Y. L. & Zhang, L. F. (2010). Tracing
1141	the 850-Ma continental flood basalts from a piece of subducted continental crust
1142	in the North Qaidam UHPM belt, NW China. Precambrian Research 183,
1143	805-816.

1144	Song, S. G., Su, L., Li, X. H., Niu, Y. L. & Zhang, L. F. (2012). Grenville-age
1145	orogenesis in the Qaidam-Qilian block: The link between South China and Tarim.
1146	Precambrian Research 220-221, 9-22.
1147	Song, S.G., Niu, Y. L., Su, L. & Xia, X. H. (2013). Tectonics of the North Qilian
1148	orogen, NW China. Gondwana Research 23, 1378-1401.
1149	Song, S. G., Niu, Y. L., Su, L., Zhang, C. & Zhang, L. F. (2014). Continental
1150	orogenesis from ocean subduction, continent collision/subduction, to orogen
1151	collapse, and orogen recycling: The example of the North Qaidam UHPM belt,
1152	NW China. Earth-Science Reviews 129, 59-84.
1153	Song, S. G., Yang, L. M., Zhang, Y. Q., Niu, Y. L., Wang, C., Su, L. & Gao, Y. L.
1154	(2017). Qi-Qin Accretionary Belt in Central China Orogen: accretion by trench
1155	jam of oceanic plateau and formation of intra-oceanic arc in the Early Paleozoic
1156	Qin-Qi-Kun Ocean. Science Bulletin 62, 1035-1038.
1157	Sorbadere, F., Médard, E., Laporte, D. & Schiano, P. (2013). Experimental melting of
1158	hydrous peridotite-pyroxenite mixed sources: Constraints on the genesis of
1159	silica-undersaturated magmas beneath volcanic arcs. Earth and Planetary
1160	<i>Science Letters</i> 384 , 42-56.
1161	Sorbadere, F., Schiano, P. & Métrich, N. (2012). Constraints on the origin of
1162	nepheline-normative primitive magmas in island arcs inferred from
1163	olivine-hosted melt inclusion compositions. Journal of Petrology 54, 215-233.
1164	Stacey, J. S. & Kramers, J. D. (1975). Approximation of terrestrial lead isotope 55/68
	http://www.petrology.oupiourpals.org/

2	
3	
4	
5	
6	
7	
8	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
⊃∠ ⊃⊃	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
42 12	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
58	
59	
60	

1165	evolution by a two-stage model. Earth and Planetary Science Letters 26,
1166	207-221.
1167	Stern, R. J. (2004). Subduction initiation: spontaneous and induced. Earth and
1168	Planetary Science Letters 226, 275-292.
1169	Stern, R. J. (2010). The anatomy and ontogeny of modern intra-oceanic arc systems.
1170	Geological Society London Special Publications 338 , 7-34.
1171	Stern, R. A., Hanson, G. N. & Shirey, S. B. (1989). Petrogenesis of mantle-derived,
1172	LILE-enriched Archean monzodiorites and trachyandesites (Sanukitoids) in
1173	southwestern Superior Province. Canadian Journal of Earth Sciences 26,
1174	1688-1712.
1175	Stern, R. J., Reagan, M., Ishizuka, O., Ohara, Y. & Whattam, S. (2012). To understand
1176	subduction initiation, study forearc crust: To understand forearc crust, study
1177	ophiolites. <i>Lithoshere</i> 4 , 469-483.
1178	Sun, S.S. & Mcdonough, W.F. (1989). Chemical and Isotopic Systematics of Oceanic
1179	Basalts; Implications for Mantle Composition and Processes. Geological Society
1180	London Special Publications 42, 313-345.
1181	Takashima, R., Nishi, H. & Yoshida, T. (2002). Geology, petrology and tectonic
1182	setting of the Late Jurassic ophiolite in Hokkaido, Japan. Journal of Asian Earth
1183	Sciences 21, 197-215.
1184	Tang, G. J., Wang, Q., Wyman, D. A., Li, Z. X., Xu, Y. G. & Zhao, Z. H. (2012).

1185	Metasomatized lithosphere-asthenosphere interaction during slab roll-back:
1186	Evidence from Late Carboniferous gabbros in the Luotuogou area, Central
1187	Tianshan. Lithos 155, 67-80.
1188	Tatsumi, Y. (2006). High-Mg andesites in the Setouchi Volcanic Belt, Southwest
1189	Japan: analogy to Archean magmatism and continental crust formation? Annual
1190	Review of Earth & Planetary Sciences 34, 467-499.
1191	Tatsumi, Y. & Hanyu, T. (2003). Geochemical modeling of dehydration and partial
1192	melting of subducting lithosphere: Toward a comprehensive understanding of
1193	high-Mg andesite formation in the Setouchi volcanic belt, SW Japan.
1194	Geochemistry, Geophysics, Geosystems 4., 1081, doi: 10.1029/2003GC000530,
1195	9.
1196	Till, C.B. & Withers, A.C. (2012). The beginnings of hydrous mantle wedge melting.
1197	Contributions to Mineralogy and Petrology 163, 669-688.
1198	Tung, K. A., Yang, H. Y., Liu, D. Y., Zhang, J. X., Yang, H. J., Shau, Y. H. & Tseng, C.
1199	Y. (2013). The Neoproterozoic granitoids from the Qilian block, NW China:
1200	Evidence for a link between the Qilian and South China blocks. Precambrian
1201	<i>Research</i> 235 , 163-189.
1202	Tung, K., Yang, H. J., Yang, H. Y., Liu, D. Y., Zhang, J. X., Wan, Y. S. & Tseng, C. Y.
1203	(2007). SHRIMP U-Pb geochronology of the zircons from the Precambrian
1204	basement of the Qilian Block and its geological significances. Chinese Science
1205	Bulletin 52 , 2687-2701.
	57 / 68

1206	Valley, J. W., Lackey, J. S., Cavosie, A. J., Clechenko, C. C., Spicuzza, M. J., Basei,
1207	M. A. S., Bindeman, I. N., Ferreira, V. P., Sial, A. N. & King, E. M. (2005). 4.4
1208	billion years of crustal maturation: oxygen isotope ratios of magmatic zircon.
1209	Contributions to Mineralogy and Petrology 150, 561-580.
1210	Valley, J.W. (2003). Oxygen isotopes in zircon. In: Hanchar, J.M., Hoskin, P.W.O.
1211	(Eds.), Zircon. Reviews to Mineralogy and Geochemistry 53, pp. 343-385.
1212	Vervoort, J. D., Plank, T. & Prytulak, J. (2011). The Hf-Nd isotopic composition of
1213	marine sediments. Geochimica et Cosmochimica Acta 75, 5903-5926.
1214	Villa, I.M., De Bièvre, P., Holden, N.E. & Renne, P.R. (2015). IUPAC-IUGS
1215	recommendation on the half life of 87 Rb. Geochimica et Cosmochimica Acta
1216	164, 382-385.
1217	Wan, Y. S., Xu, Z. Q., Yang, J. S. & Zhang, J. X. (2001). Ages and compositions of
1218	the Precambrian high-grade basement of the Qilian terrane and its adjacent areas.
1219	Acta Geological Sinica (English edition) 75, 375-384.
1220	Wang, H., Wu, Y. B., Li, C. R., Zhao, T. Y., Qin, Z. W., Zhu, L. Q., Gao, S., Zheng, J.
1221	P., Liu, X. M. & Zhou, L. (2014). Recycling of sediment into the mantle source
1222	of K-rich mafic rocks: Sr-Nd-Hf-O isotopic evidence from the Fushui complex
1223	in the Qinling orogen. Contributions to Mineralogy and Petrology 168, 1062, doi
1224	10.1007/s00410-014-1062-у.
1225	Wang, T., Wang, Z. Q., Yan, Z., Ma, Z. H., He, S. F., Fu, C. L. & Wang, D. S. (2016).
1226	Geochronological and Geochemical evidence of amphibolite from the Hualong 58/68

1	
י ר	
2	
3	
4	
5	
6	
7	
8	
õ	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
24	
35	
36	
37	
38	
39	
40	
41	
12	
-⊤∠ ∕\?	
45	
44	
45	
46	
47	
48	
49	
50	
50	
21	
52	
53	
54	
55	
56	
57	
58	
50	
29	
00	

1227	Group, northwest China: Implication for the early Paleozoic accretionary
1228	tectonics of the Central Qilian belt. Lithos 248-251, 12-21.
1229	White, W. M. (2010). Oceanic Island Basalts and Mantle Plumes: The Geochemical
1230	Perspective. Annual Review of Earth & Planetary Sciences 38, 133-160.
1231	Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Quadt, A. V.,
1232	Roddick, J. C. & Spiegel, W. (1995). Three natural zircon standards for U-Th-
1233	Pb, Lu-Hf, trace-element and REE analyses. <i>Geostandards Newsletter</i> 19 , 1-23.
1234	Winchester, J. A. & Floyd, P. A. (1977). Geochemical discrimination of different
1235	magma series and their differentiation products using immobile elements.
1236	Chemical Geology 20 , 325-343.
1237	Wood, D. A. (1980). The application of a Th Hf Ta diagram to problems of
1237 1238	Wood, D. A. (1980). The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal
1237 1238 1239	Wood, D. A. (1980). The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. <i>Earth</i>
1237 1238 1239 1240	Wood, D. A. (1980). The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. <i>Earth and Planetary Science Letters</i> 50 , 11-30.
1237 1238 1239 1240 1241	 Wood, D. A. (1980). The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. <i>Earth and Planetary Science Letters</i> 50, 11-30. Workman, R. K. & Hart, S. R. (2005). Major and trace element composition of the
1237 1238 1239 1240 1241 1242	 Wood, D. A. (1980). The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. <i>Earth and Planetary Science Letters</i> 50, 11-30. Workman, R. K. & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). <i>Earth and Planetary Science Letters</i> 231, 1000 (DMM).
1237 1238 1239 1240 1241 1242 1243	 Wood, D. A. (1980). The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. <i>Earth and Planetary Science Letters</i> 50, 11-30. Workman, R. K. & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). <i>Earth and Planetary Science Letters</i> 231, 53-72.
1237 1238 1239 1240 1241 1242 1243 1244	 Wood, D. A. (1980). The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. <i>Earth and Planetary Science Letters</i> 50, 11-30. Workman, R. K. & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). <i>Earth and Planetary Science Letters</i> 231, 53-72. Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H. & Xu, P. (2006). Hf isotopic
1237 1238 1239 1240 1241 1242 1243 1244 1245	 Wood, D. A. (1980). The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. <i>Earth and Planetary Science Letters</i> 50, 11-30. Workman, R. K. & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). <i>Earth and Planetary Science Letters</i> 231, 53-72. Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H. & Xu, P. (2006). Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb

2	
2	
3	
4	
5	
6	
7	
,	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
27	
22	
33	
34	
35	
36	
27	
3/	
38	
39	
40	
<u>Δ</u> 1	
11	
42	
43	
44	
45	
46	
40	
4/	
48	
49	
50	
50 E 1	
21	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	
00	

1247	Wu, H.Q., Feng, Y.M. & Song, S.G., 1993. Metamorphism and deformation of
1248	blueschist belts and their tectonic implications, North Qilian Mountains, China.
1249	Journal of Metamorphic Geology 11, 523-536.
1250	Wu, Y. B., Gao, S., Zhang, H. F., Yang, S. H., Jiao, W. F., Liu, Y. S. & Yuan, H. L.
1251	(2008). Timing of UHP metamorphism in the Hong'an area, western Dabie
1252	Mountains, China: evidence from zircon U-Pb age, trace element and Hf isotope
1253	composition. Contributions to Mineralogy and Petrology 155, 123-133.
1254	Xia, X. H., Song, S. G. & Niu, Y. L. (2012). Tholeiite-Boninite terrane in the North
1255	Qilian suture zone: Implications for subduction initiation and back-arc basin
1256	development. Chemical Geology 328, 259-277.
1257	Xiao, W. J., Windley, B. F., Yong, Y., Yan, Z., Yuan, C., Liu, C. Z. & Li, J. L. (2009).
1258	Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan,
1259	NW China. Journal of Asian Earth Sciences 35, 323-333.
1260	Yan, Z., Aitchison, J., Fu, C. L., Guo, X. Q., Niu, M. L., Xia, W. J. & Li, J. L. (2015).
1261	Hualong Complex, South Qilian terrane: U-Pb and Lu-Hf constraints on
1262	Neoproterozoic micro-continental fragments accreted to the northern
1263	Proto-Tethyan margin. Precambrian Research 266, 65-85.
1264	Yan, Z., Wang, Z. & Li, J. L. (2012). Tectonic settings and accretionary orogenesis of
1265	the West Qinling Terrane, northeastern margin of the Tibet Plateau. Acta
1266	<i>Petrologica Sinica</i> 28 , 1808-1828.
1267	Yang, J. S., Xu, Z. Q., Zhang, J. X., Song, S. G., Wu, C., Shi, R. D., Li, H. & Brunel, 60/68

1269

M. (2002). Early Palaeozoic North Qaidam UHP metamorphic belt on the

north-eastern Tibetan plateau and a paired subduction model. Terra Nova 14,

1270	397-404.
1271	Yang, L.M., Song, S.G., Allen, M. B., Su, L., Dong, J.L. & Wang, C. (2018). Oceanic
1272	accretionary belt in the West Qinling Orogen: Links between the Qinling and
1273	Qilian orogens, China. Gondwana Research 64, 137-162.
1274	Yogodzinski, G.M., Volynets, O.N., Koloskov, A.V., Seliverstov, N.I. & Matvenkov,
1275	V.V. (1994). Magnesian Andesites and the Subduction Component in a Strongly
1276	Calc-Alkaline Series at Piip Volcano, Far Western Aleutians. Journal of
1277	Petrology 35 , 163-204.
1278	Zhang, J. X., Meng, F. C. & Wan, Y. S. (2007). A cold Early Palaeozoic subduction
1279	zone in the North Qilian Mountains, NW China: petrological and U-Pb
1280	geochronological constraints. Journal of Metamorphic Geology 25, 285-304.
1281	Zhang, J. X., Wan, Y. S., Xu, Z. Q., Yang, J. S. & Meng, F. C. (2001). Discovery of
1282	basic granulite and its formation age in Delingha area, North Qaidam Mountains.
1283	Acta Petrologica Sinica 17, 453-458
1284	Zhang, Y. Q., Song, S. G., Yang, L. M., Su, L., Niu, Y. L., Allen, M. B. & Xu, X.
1285	(2017). Basalts and picrites from a plume-type ophiolite in the South Qilian
1286	Accretionary Belt, Qilian Orogen: Accretion of a Cambrian Oceanic Plateau?
1287	Lithos 278-281, 97-110.
1288	Zheng, YF. & Hermann, J. (2014). Geochemistry of continental subduction-zone

fluids. *Earth, Planets and Space* **66**, 93; doi: 10.1186/1880-5981-66-93.

to per peries

1 ว

2
ر ۸
4
5
6
7
8
9
10
11
12
12
14
14
15
16
17
18
19
20
21
22
23
23
24
25
26
27
28
29
30
31
32
33
34
25
22
30
37
38
39
40
41
42
43
44
45
45 46
40
4/
48
49
50
51
52
53
54
55
56
57
57
58
59

60

1291 Figures and figure captions

Fig. 1. (a) Schematic map showing major tectonic units of China [modified after Song 1292 1293 et al. (2017)]. (b) Simplified geological map of the Central China Orogenic Belt [modified after Song et al. (2017)]. (c) Simplified geological map of the 1294 Lajishan-Yongjing Terrane and sample locations: LK-Lajishankou, XX-Xiongxian, 1295 CP-Chapu, ZB-Zhaba, SHN-Sihaning, MC-Machang, YCT-Yaocaotai 1296 and YJ-Yongjing. (d) Zhaba cross-section of the Lajishan Terrane. 1297

Fig. 2. Representative field photographs and microphotographs of island-arc volcanic
rocks from the Lajishan-Yongjing Terrane: (a) Pillow boninite; (b) Reddish, massive
andesite with plagioclase phenocrysts; (c) Dark-colored intermediate-basic lavas
overlain by light-colored felsic lavas (sanukite); (d) Volcanic breccia; (e) Boninite
(sample LJ15-12); (f) Ankaramite (sample 13QLS-71); (g) High-Mg basaltic andesite
(sample LJ15-40); (h) High-Al andesite (sample LJ15-18); and (i) Sanukite (sample
1204
12LJ-13). Cpx-clinopyroxene; Sp-spinel; Pl-plagioclase.

Fig. 3. (a) TAS diagram (Le Maitre, 2002); (b) SiO₂- Zr/TiO₂ diagram (Winchester &
Floyd, 1977); (c) AFM diagram (Pearce et al., 1977); and (d) Hf-Th-Ta diagram
(Wood, 1980).

Fig. 4. Chondrite-normalized REE patterns (a, c, e and g) and Primitive mantle
(PM)-normalized multi-element patterns (b, d, f and h) for the Lajishan-Yongjing
island-arc volcanic rocks. Normalization and OIB values are from Sun &
McDonough, (1989). Values of sanukitoids in Setouchi Volcanic Belt (SVB) for
comparison are from Tatsumi et al. (2003).

1
2
2
1
5
0
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
20
20
30
27
2∠ 22
ככ ס∢
34 25
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1313	Fig. 5. Compositional variations of Cr-spinel in island-arc volcanic rocks from the
1314	Lajishan-Yongjing Terrane. (a) Al ₂ O ₃ vs. TiO ₂ diagram (Kamenetsky et al., 2001) and
1315	(b) Cr# vs. Mg# diagram (Dick and Bullen, 1984). Cr-Spinel data of
1316	Lajishan-Yongjing Ophiolite (LYO), Hawaiian OIB (HO) are from Zhang et al. (2017)
1317	and reference therein.
1318	Fig. 6. Compositional variations of Cpx in island-arc volcanic rocks from the
1319	Lajishan-Yongjing Terrane. Fields of Cpx compositions for ocean ridge cumulates,
1320	Izu-Bonin arc volcanic rocks, island-arc cumulates (lower crustal gabbronorites) and
1321	depleted fore-arc peridotites are from Marchesi et al. (2009) and references therein.
1322	Fig. 7. Concordia diagrams of zircon U-Pb isotope data analyzed with SIMS and
1323	LA-ICP-MS for island-arc volcanic rocks from the Lajishan-Yongjing Terrane.
1324	Fig. 8. (a) La/Sm vs. La (ppm); (b) La/Sm vs. SiO ₂ (wt. %); (c) $({}^{87}Sr/{}^{86}Sr)_i$ - SiO ₂
1325	(wt. %); and (4) $\epsilon_{Nd}(t)$ - SiO ₂ (wt. %). Data of UCC (upper continental crust) and
1326	GLOSS (Global Subducting Sediments) for comparison are respective from Rudnick
1327	and Gao, (2003) and Bebout, (2014). The grey squares are the average sediment data
1328	from different island arc systems (Bebout, 2014).
1329	Fig. 9. Bulk-rock major and trace element (ratios) variation diagrams for island-arc
1330	volcanic rocks from the Lajishan-Yongjing Terrane. The information to device the
1331	vectors on these figures is from Beier et al. (2016) and Greene et al. (2006).
1227	

Fig. 10. (a) Th/Yb-Nb/Yb diagram (Pearce, 2008); Plots of Ba/Th (b) and U/Th (c) vs.

1334 chondrite-normalized La/Sm.

1336	Fig. 11. (a) Zircon O isotopic compositions for island-arc volcanic rocks from the
1337	Lajishan-Yongjing Terrane. Data source: the mantle δ^{18} O value (5.3 ± 0.3‰, Valley,
1338	2003); Pelagic sediments and Terrigenous sediments ($\delta^{18}O = 9-20$ ‰, Bindeman et al.,
1339	2005; Chauvel et al., 2008; Vervoort et al., 2011). (b) Sr-Nd isotopic compositions for
1340	the Lajishan-Yongjing volcanic rocks in the two-component mixing models. Data
1341	sources: field labelled MORB and sediments from Barbados, DSDP sites144 and 543
1342	are from Bezard et al. (2015) and reference therein. The OIB data are from White,
1343	(2010). The Lajishan OPB data without the altered samples are from Zhang et al.
1344	(2017). (c) Nd-Hf isotopic compositions for the Lajishan-Yongjing volcanic rocks in
1345	the mixing model between the mantle wedge (MW), subducted altered oceanic crust
1346	(AOC) and oceanic sediments assuming slab dehydration and melting. The dashed
1347	mixing trajectories are between mantle wedge and these different fluxing agents. The
1348	pink area is restricted by the mixing trajectories of zircon-barren pelagic
1349	sediment-derived fluids and melts. The blue area is restricted by the mixing
1350	trajectories of terrigenous sediment-derived melts and 90% terrigenous
1351	sediment-derived melts + 10% AOC-derived melts. Numbers along the pink and blue
1352	mixing trajectories are the amount of the crust-derived input and numbers along the
1353	gray lines are the proportion of AOC component. The end-member compositions are
1354	from Hanyu et al. (2006) and listed in Appendix Table 6. The I_{Sr} and $\epsilon_{Nd}\left(t\right)$ values of
1355	sediments are from the measured interlayered sedimentary rocks from the
1356	Lajishan-Yongjing volcanic rocks, and the $\epsilon_{\rm Hf}(t)$ values for the pelagic clay sediments

2
3
4
5
6
7
8
٥ ٥
10
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
20
2/
28
29
30
31
32
33
34
35
26
20
3/
38
39
40
41
42
43
13
44 AE
45
46
47
48
49
50
51
52
52
J2 7
54
55
56
57
58
59

1

1357 (PS: $\varepsilon_{Hf}(t)=0.99 \times \varepsilon_{Nd}(t)+5.34$) and terrigenous sediments (TS: $\varepsilon_{Hf}(t)=1.55 \times \varepsilon_{Nd}(t)+1.21$) are calculated using the sediments arrays recommended by Vervoort et al. 1359 (2011) and Wang et al. (2014), respectively. Symbols are bigger than the maximum 1360 analytical error isotope on isotope data, except where shown.

1361

1362 Fig. 12. Primitive mantle (PM)-normalized trace element patterns for the average 1363 compositions of (a) boninite, (b) primitive ankaramite and the calculated parental 1364 magmas of Cpx-phyric basaltic andesite in Lajishan-Yongjing Terrane. The average compositions of boninite are from near-primitive samples (15LJ-13, 16LJ-07, 09 and 1365 15) with high Mg# of 74-80; the average compositions of ankaramite are from 1366 samples of 13QLS-68-72 (Mg#=77-79). (a) Grey dashed lines represent the liquids 1367 produced by aggregated fractional melting of the depleted DMM source and the 1368 numbers represent melting degree of mantle (Workman & Hart, 2005). Data for 1369 comparison are: the OIB, E-MORB, N-MORB (Sun & McDonough., 1989) and the 1370 average composition of boninite worldwide (Kelemen et al., 2003). (b) The calculated 1371 parental magmas are based on the trace element data of high Mg# Cpx phenocryst 1372 from Cpx-phyric basaltic andesite sample (13QLS-124); the amounts of Cpx 1373 1374 phenocryst are assumed to range from 0 to 40 wt. %, and Clinopyroxene/melt 1375 partition coefficients (K_D) and their references are listed in Appendix Table 3. Data for comparison are the island arc volcanics (Kelemen et al., 2003), and the LYO 1376 (Lajishan-Yongjing Ophiolite) picrites and alkaline basalts (Zhang et al., 2017). 1377

1378 Fig. 13. Schematic cartoons illustrating the tectonic evolution of the South Qilian

1		
2		
5 Д	1379	Accretionary Belt in the Qilian Orogen.
5		
6	1380	
7		
8	1201	Table 1: Major and trace element data for volcanic rocks from the Lajishan Vongjing
9	1301	Table 1. Major and trace clement data for volcanic rocks from the Eajishan-Tongjing
10		
11	1382	lerrane.
12		
13	1383	Table 2: Average electron microprobe analyses of Cpx for volcanic rocks from the
14		
15	1384	Laiishan-Yongiing Terrane
17	1904	Eufonun Tongjing Torrano.
18	4205	T-LL-2. What we de Se Ned instantion and we de familie and a familie de famil
19	1385	Table 5: whole-rock Sr-INd isotopic compositions for volcanic rocks from the
20		
21	1386	Lajishan-Yongjing Terrane.
22		
23	1387	Table 4: In situ zircon O isotopic compositions for volcanic rocks from the
24		
25	1200	Leijshan Venejing Temene
26	1388	Lajishan-rongjing remane.
27		
28	1389	Appendix Table 1. Electron microprobe analyses of Cpx for volcanic rocks from the
29		
30	1390	Lajishan-Yongjing Terrane.
31		
32 22	1201	Annendix Table 2 Electron micronrobe analyses of Cr-spinel for volcanic rocks from
33	1371	Appendix Table 2. Election interoprobe analyses of el-spiner for volcame rocks from
35		
36	1392	the Lajishan-Yongjing Terrane.
37		
38	1393	Appendix Table 3. LA-ICP-MS analysis of Cpx and Calculated primitive magmas
39		
40	1394	for volcanic rocks from the Laiishan-Yongjing Terrane.
41		
42	1205	Annandix Table 4. In situ II Db data of zizaans for valaania rooks from the
43	1395	Appendix Table 4. In situ O-FO data of zircons for vorcanic focks from the
44		
45	1396	Lajishan-Yongjing Terrane.
40		
47	1397	Appendix Table 5. Zircon Hf isotopic data for volcanic rocks from the
40		
50	1308	Laiishan-Vongiing Terrane
51	1350	Eujishan-Tongjing Terrane.
52		
53	1399	Appendix Table 6. The elemental and isotopic compositions of end-members using
54		
55	1400	for the Sr-Nd-Hf mixing modeling.
56		
57		67 / 68
58		57755

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
1/	
10	
19 20	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50 E 1	
51 52	
52 52	
53 57	
54 55	
55 56	
50 57	
50	
50 50	
1 7	

1401 **Appendix Table 7**. Standard analyses for Major elements.

- 1402 Appendix table 8. Standard analyses for Trace elemtents
- 1403

1404 Fig. S1. Primitive mantle (PM)-normalized trace element patterns for the Cpx

- 1405 phenocrysts of ankaramite (13QLS-72) and high-Mg basaltic andesite (13QLS-124)
- 1406 from Lajishan-Yongjing Terrane.
- 1407 Fig. S2. Representative zircon Cathodoluminescence (CL) images for volcanic rocks
- 1408 from the Lajishan-Yongjing Terrane. The ovals and circles on the CL images are the
- 1409 respective SIMS and LA-ICPMS spots of in situ zircon U-Pb dating analyses. Also
- 1410 shown are the ²⁰⁶Pb/²³⁸U ages of the zircons.

Fig. 1. (a) Schematic map showing major tectonic units of China [modified after Song et al. (2017)]. (b)
 Simplified geological map of the Central China Orogenic Belt [modified after Song et al. (2017)]. (c)
 Simplified geological map of the Lajishan-Yongjing Terrane and sample locations: LK-Lajishankou, XX Xiongxian, CP-Chapu, ZB-Zhaba, SHN-Sihaning, MC-Machang, YCT-Yaocaotai and YJ-Yongjing. (d) Zhaba
 cross-section of the Lajishan Terrane.

247x282mm (300 x 300 DPI)

Fig. 2. Representative field photographs and microphotographs of island-arc volcanic rocks from the Lajishan-Yongjing Terrane: (a) Pillow boninite; (b) Reddish, massive andesite with plagioclase phenocrysts; (c) Dark-colored intermediate-basic lavas overlain by light-colored felsic lavas (sanukite); (d) Volcanic breccia; (e) Boninite (sample LJ15-12); (f) Ankaramite (sample 13QLS-71); (g) High-Mg basaltic andesite (sample LJ15-40); (h) High-Al andesite (sample LJ15-18); and (i) Sanukite (sample 12LJ-13). Cpx-clinopyroxene; Sp-spinel; Pl-plagioclase.

154x116mm (300 x 300 DPI)

Fig. 4. Chondrite-normalized REE patterns (a, c, e and g) and Primitive mantle (PM)-normalized multielement patterns (b, d, f and h) for the Lajishan-Yongjing island-arc volcanic rocks. Normalization and OIB values are from Sun & McDonough, (1989). Values of sanukitoids in Setouchi Volcanic Belt (SVB) for comparison are from Tatsumi et al. (2003).

251x315mm (300 x 300 DPI)

60

Fig. 5. Compositional variations of Cr-spinel in island-arc volcanic rocks from the Lajishan-Yongjing Terrane.
(a) Al2O3 vs. TiO2 diagram (Kamenetsky et al., 2001) and (b) Cr# vs. Mg# diagram (Dick and Bullen, 1984). Cr-Spinel data of Lajishan-Yongjing Ophiolite (LYO), Hawaiian OIB (HO) are from Zhang et al. (2017) and reference therein.

147x274mm (300 x 300 DPI)

Fig. 6. Compositional variations of Cpx in island-arc volcanic rocks from the Lajishan-Yongjing Terrane. Fields of Cpx compositions for ocean ridge cumulates, Izu-Bonin arc volcanic rocks, island-arc cumulates (lower crustal gabbronorites) and depleted fore-arc peridotites are from Marchesi et al. (2009) and references therein.

221x271mm (300 x 300 DPI)

Fig. 7. Concordia diagrams of zircon U-Pb isotope data analyzed with SIMS and LA-ICP-MS for island-arc volcanic rocks from the Lajishan-Yongjing Terrane.

232x268mm (300 x 300 DPI)

Fig. 8. (a) La/Sm vs. La (ppm); (b) La/Sm vs. SiO2 (wt. %); (c) (87Sr/86Sr)i - SiO2 (wt. %); and (4) εNd(t) - SiO2 (wt. %). Data of UCC (upper continental crust) and GLOSS (Global Subducting Sediments) for comparison are respective from Rudnick and Gao, (2003) and Bebout, (2014). The grey squares are the ick and a from different ion 155x119mm (300 x 300 DPI) average sediment data from different island arc systems (Bebout, 2014).

Fig. 9. Bulk-rock major and trace element (ratios) variation diagrams for island-arc volcanic rocks from the Lajishan-Yongjing Terrane. The information to device the vectors on these figures is from Beier et al. (2016) and Greene et al. (2006).

157x107mm (300 x 300 DPI)

203x435mm (300 x 300 DPI)

http://www.petrology.oupjournals.org/

Oceanic sediments: δ¹⁸O=~9-20‰

Boninite(LJ15-01):Mean=7.17 ± 0.13%

Mantle Zircon S

Boninite

Sanukite

OIB

Sediment-derived fluids

Sediment-derived Melts

AOC=10%

 $\epsilon_{Nd}^{-1}(t)$

Fig. 11. (a) Zircon O isotopic compositions for island-arc volcanic rocks from the Lajishan-Yongjing Terrane.

Data source: the mantle δ 180 value (5.3 ± 0.3‰, Valley, 2003); Pelagic sediments and Terrigenous

sediments ($\delta 180 = 9-20$ ‰, Bindeman et al., 2005; Chauvel et al., 2008; Vervoort et al., 2011). (b) Sr-Nd isotopic compositions for the Lajishan-Yongjing volcanic rocks in the two-component mixing models. Data

sources: field labelled MORB and sediments from Barbados, DSDP sites144 and 543 are from Bezard et al.

(2015) and reference therein. The OIB data are from White, (2010). The Lajishan OPB data without the

altered samples are from Zhang et al. (2017). (c) Nd-Hf isotopic compositions for the Lajishan-Yongjing

volcanic rocks in the mixing model between the mantle wedge (MW), subducted altered oceanic crust (AOC)

and oceanic sediments assuming slab dehydration and melting. The dashed mixing trajectories are between

mantle wedge and these different fluxing agents. The pink area is restricted by the mixing trajectories of zircon-barren pelagic sediment-derived fluids and melts. The blue area is restricted by the mixing

trajectories of terrigenous sediment-derived melts and 90% terrigenous sediment-derived melts + 10%

AOC-derived melts. Numbers along the pink and blue mixing trajectories are the amount of the crust-

http://www.petrology.oupjournals.org/

-6

0.706

Ankaramite

0.708

AOC=50%

PS-derived fluids

PS-derived Melts

TS-derived melts

TS-derived melts(90%)

4

AOC-derived melts(10%)

High-Al andesite
 High-Mg basaltic andesite

Interlayered sedimentary rocks

15%

DSDP site 144

0.710

Barbados

MW

AOC

9

AOC=90%

0.712

DSDP site 543

Lajishan OPB

High-Al andesite(LJ15-70):Mean=5.90 ± 0.09%

 $^{\circ}O=5.3\pm0.3\%$

9

7

5

3

10

5

0

-5

-10

-15

20

15

10

5

0

-5

-10

-15 -10

 $\varepsilon_{_{Hr}}(t)$

D

С

0.704

 $\varepsilon_{Nd}(t)$

MORB

0

Zircon \delta¹⁸O

a

- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15 16
- 17

19

20

21

18

22

23

24

26

27

28

29

30

31

32 33

34 35

36

37

38

39

40

41 42

43

44 45

46

47

48

49

50

51

52

53

54

55

60

derived input and numbers along the gray lines are the proportion of AOC component. The end-member compositions are from Hanyu et al. (2006) and listed in Appendix Table 6. The ISr and ϵ Nd (t) values of sediments are from the measured interlayered sedimentary rocks from the Lajishan-Yongjing volcanic rocks, and the ϵ Hf(t) values for the pelagic clay sediments (PS: ϵ Hf(t)=0.99× ϵ Nd(t)+5.34) and terrigenous sediments (TS: ϵ Hf(t)=1.55× ϵ Nd(t)+1.21) are calculated using the sediments arrays recommended by Vervoort et al. (2011) and Wang et al. (2014), respectively. Symbols are bigger than the maximum analytical error isotope on isotope data, except where shown.

195x400mm (300 x 300 DPI)

to perpension

Fig. 12. Primitive mantle (PM)-normalized trace element patterns for the average compositions of (a) boninite, (b) primitive ankaramite and the calculated parental magmas of Cpx-phyric basaltic andesite in Lajishan-Yongjing Terrane. The average compositions of boninite are from near-primitive samples (15LJ-13, 16LJ-07, 09 and 15) with high Mg# of 74-80; the average compositions of ankaramite are from samples of 13QLS-68-72 (Mg#=77-79). (a) Grey dashed lines represent the liquids produced by aggregated fractional melting of the depleted DMM source and the numbers represent melting degree of mantle (Workman & Hart, 2005). Data for comparison are: the OIB, E-MORB, N-MORB (Sun & McDonough., 1989) and the average composition of boninite worldwide (Kelemen et al., 2003). (b) The calculated parental magmas are based on the trace element data of high Mg# Cpx phenocryst from Cpx-phyric basaltic andesite sample (13QLS-124); the amounts of Cpx phenocryst are assumed to range from 0 to 40 wt. %, and Clinopyroxene/melt partition coefficients (KD) and their references are listed in Appendix Table 3. Data for comparison are the island arc volcanics (Kelemen et al., 2003), and the LYO (Lajishan-Yongjing Ophiolite) picrites and alkaline basalts (Zhang et al., 2017).

172x218mm (300 x 300 DPI)

to peer period

Table 1. Major and trace element data for Lajishan-Yongjing arc volcanics

Sample	16LJ-10	16LJ-16	16LJ-18	16LJ-26	12L.I-07	12L1-09	L115-09	L115-12	L115-13	L115-14	L115-15	L115-108	16LJ-07	16
Rocktype	Boninite	Boninite	Boninite	Boninite	Boninite	Boninite	Boninite	Boninite	Boninite	Boninite	Boninite	Boninite	Boninite	B
Location	XX	XX	XX	XX	ZB	ZB	LK	LK	LK	LK	LK	YCT	XX	
Major elemer	nt (wt.%)													
SiO ₂	51.56	50.96	50.59	52.33	51.94	49.71	51.52	50.94	57.37	54.80	54.15	55.84	56.11	
TiO ₂	0.09	0.12	0.11	0.08	0.32	0.35	0.36	0.32	0.21	0.69	0.40	0.27	0.25	
Al ₂ O ₃	5.89	7.10	6.22	5.67	11.93	12.49	11.73	13.07	11.68	15.18	10.36	12.23	10.45	
Fe ₂ O ₃ t	9.87	10.40	10.51	10.08	8.75	9.84	8.00	11.51	7.91	9.23	10.04	9.93	9.56	
MnO	0.18	0.19	0.20	0.19	0.14	0.16	0.15	0.18	0.15	0.15	0.17	0.15	0.15	
MgO	16.84	17.12	17.74	17.48	12.67	13.37	12.79	12.50	9.57	7.81	5.91	10.70	11.93	
CaO	11.91	10.25	11.46	10.67	7.15	7.48	8.75	4.92	5.12	4.85	7.83	3.78	5.32	
Na ₂ O	1.19	1.32	0.93	1.35	2.31	1.32	2.04	2.83	4.06	4.62	3.67	3.62	3.19	
K ₂ O	0.23	0.14	0.29	0.25	0.90	1.16	2.39	0.70	0.19	0.04	0.12	0.31	0.11	
P_2O_5	0.02	0.02	0.02	0.03	0.03	0.04	0.03	0.06	0.03	0.06	0.14	0.04	0.03	
LOI	1.30	1.52	1.64	1.44	3.12	3.44	2.56	3.13	3.30	2.49	6.85	2.81	1.79	
Total	99.1	99.1	99.7	99.6	99.3	99.4	100.3	100.2	99.6	99.9	99.6	99.7	98.9	
Mg#	79.9	79.3	79.7	80.2	77.1	76.0	78.8	71.7	73.8	66.3	57.8	71.5	74.4	
Trace elemer	nt (ppm)													
Sc	25.9	31.8	24.7	22.6	43.3	49.1	35.5	47.6	41.9	50.5	39.0	40.3	30.8	
Ti	586.2	953.2	673.2	502.6	2140	2348	2268	2136	1417	4930	2662	1883	1701	
V	116.2	141.0	95.5	92.3	221.0	239.6	202.8	316.8	174.3	316.8	165.7	239.2	172.8	
Cr	2150.0	2270.0	2282.0	1839.0	721.6	934.8	903.8	608.2	556.8	259.8	1702.6	823.2	653.0	
Co	59.1	70.0	64.0	67.3	40.2	46.6	49.2	54.5	43.8	46.7	78.3	53.7	46.1	
Ni	420.6	408.0	423.6	333.0	193.9	234.4	265.2	152.3	114.2	87.8	445.6	210.2	140.4	
Cu	5.5	12.6	2.0	33.5	135.8	144.7	82.0	56.6	86.6	116.3	1.7	70.2	119.8	
Zn	61.2	65.3	63.2	59.5	52.3	63.6	88.0	93.5	65.5	76.1	65.6	80.5	50.1	
Ga	6.3	8.5	6.8	5.5	8.8	10.5	9.8	14.7	10.5	14.0	7.2	12.9	11.0	
Rb	3.1	2.4	5.1	3.3	41.3	55.5	95.4	17.6	3.1	0.4	3.4	4.0	2.0	
Sr	120.1	122.8	48.8	115.1	85.9	122.0	152.5	171.4	140.4	261.2	211.0	152.0	169.2	
Y	3.5	4.5	3.2	2.7	9.6	9.6	10.4	10.6	6.4	22.2	25.8	8.4	7.8	
Zr	18.1	25.8	17.8	16.4	18.0	22.6	24.4	50.5	28.7	52.4	26.8	36.0	38.0	
Nb	0.6	0.8	0.6	0.5	1.3	1.5	2.0	1.2	1.0	0.6	0.4	0.8	1.4	
Cs	0.1	0.2	0.2	0.1	1.7	2.3	1.6	0.8	0.4	0.1	0.3	0.3	0.1	
Ba	43.6	27.8	67.0	65.2	59.6	54.9	390.0	174.8	54.5	36.2	19.7	59.5	27.9	
La	1.3	1.5	1.0	1.0	2.1	2.9	1.0	3.5	2.2	1.8	2.0	2.6	2.2	
Ce	3.4	4.1	2.9	2.5	4.8	6.3	3.0	10.0	5.4	6.3	3.3	6.7	5.7	
Pr	0.5	0.6	0.4	0.3	0.6	0.8	0.5	1.5	0.7	1.2	0.9	0.9	0.8	
Nd	2.1	2.6	1.7	1.6	2.9	3.6	2.6	6.8	3.2	6.4	4.9	4.3	3.6	
Sm	0.5	0.7	0.5	0.4	0.9	1.0	1.0	1.9	0.9	2.4	1.7	1.3	1.0	
Eu	0.2	0.2	0.2	0.2	0.3	0.4	0.4	0.7	0.3	0.9	0.7	0.4	0.4	
Gd	0.6	0.8	0.5	0.5	1.2	1.3	1.5	2.2	1.2	3.5	2.7	1.6	1.2	
Tb	0.1	0.1	0.1	0.1	0.2	0.2	0.3	0.4	0.2	0.7	0.5	0.3	0.2	
Dy	0.5	0.8	0.5	0.4	1.6	1.6	2.1	2.2	1.3	4.5	3.8	1.7	1.3	
Но	0.1	0.2	0.1	0.1	0.4	0.4	0.5	0.5	0.3	1.1	1.0	0.4	0.3	
Er	0.4	0.5	0.3	0.3	1.1	1.1	1.4	1.4	0.9	3.0	3.0	1.1	0.8	
Tm	0.1	0.1	0.0	0.0	0.2	0.2	0.2	0.2	0.1	0.5	0.4	0.2	0.1	
Yb	0.4	0.5	0.3	0.3	1.2	1.2	1.4	1.4	0.9	3.0	2.9	1.2	0.9	
Lu	0.1	0.1	0.1	0.0	0.2	0.2	0.2	0.2	0.1	0.5	0.5	0.2	0.1	
Hf	0.4	0.6	0.4	0.4	0.4	0.6	0.8	1.5	0.9	1.6	0.8	1.1	0.9	
Та	0.0	0.1	0.1	0.0	0.1	0.1	0.2	0.1	0.1	0.0	0.0	0.1	0.1	
Pb	0.8	0.8	0.7	0.6	1.2	1.8	2.1	2.5	5.7	2.8	4.8	3.4	1.8	
Th	0.2	0.3	0.2	0.1	0.3	0.3	0.4	0.1	0.1	0.4	0.4	0.1	0.4	
U	03	0.2	0.2	0.2	0.1	0.1	03	0.5	03	0.1	0.1	03	03	

Ank = ankaramite, HMBA = high-Mg basaltic andesite, HAA = high-Al andesite; LK-Lajishankou, XX-Xiongxian, CP-Chapu, ZB-Zhaba, SHN-Sihaning, MC-Machang, YCT-Yaocaotai and YJ-Yongjing.

2

57

58 59

60

Table 2. Continued

3	Sampleno.	16LJ-09	16LJ-15	16LJ-47	16LJ-48	16LJ-56	16LJ-57	16LJ-58	16LJ-59	16LJ-61	16LJ-62	16LJ-63	LJ15-106
4	Rocktype	Boninite	Boninite	Boninite									
5	Location	XX	XX	ZB	ZB	YCT							
6	Major element (wt.%)												
7	SiO ₂	58.93	53.99	51.38	54.39	56.20	56.59	57.96	58.82	57.20	54.03	53.21	57.73
8	TiO ₂	0.21	0.16	0.28	0.52	0.13	0.14	0.14	0.13	0.27	0.29	0.31	0.40
9	Al_2O_3	8.21	7.59	11.31	13.69	8.43	8.28	8.24	7.92	9.88	11.65	11.37	14.02
10	Fe ₂ O ₃ t	9.66	9.93	10.23	10.32	10.65	11.09	10.97	10.83	8.76	9.04	9.09	8.84
11	MnO	0.14	0.14	0.15	0.17	0.17	0.18	0.17	0.17	0.11	0.10	0.11	0.12
12	MgO	11.68	16.59	10.75	8.65	8.16	9.29	9.46	9.41	11.32	11.03	12.38	5.80
13	CaO	5.76	5.84	6.08	5.29	6.99	6.40	5.58	5.43	6.79	8.21	8.14	4.19
14	Na ₂ O	2.32	2.25	1.50	4.63	1.23	1.26	1.25	1.19	2.45	2.87	2.57	3.17
15	K_2O	0.09	0.12	0.35	0.23	0.03	0.04	0.03	0.04	0.34	0.51	0.50	0.09
16	P_2O_5	0.04	0.04	0.02	0.06	0.02	0.02	0.03	0.02	0.04	0.04	0.04	0.05
17	LOI	1.56	2.22	7.68	1.76	7.30	5.99	5.40	5.21	2.32	1.98	2.06	5.15
18	Total	98.6	98.9	99.7	99.7	99.3	99.3	99.2	99.2	99.5	99.8	99.8	99.5
19	Mg#	73.8	79.6	71.0	66.1	64.1	66.1	66.8	66.9	75.1	74.0	76.0	60.4
20	Trace element (ppm)												
21	Sc	28.6	36.4	47.0	42.5	27.6	27.6	30.0	29.0	41.3	35.0	37.7	46.8
22	Ti	1555	1349	1955	3358	836.2	924.4	916.2	893.2	2150	1848	2074	2866
23	V	185.6	149.6	255.8	261.6	129.9	139.5	143.3	142.0	243.8	231.0	228.4	321.4
24	Cr	699.2	2486.0	691.0	757.4	966.6	960.8	876.0	1012.8	887.6	640.0	763.6	159.5
25	Co	41.3	71.4	40.7	52.5	42.7	45.4	45.7	47.7	40.3	33.5	34.1	36.7
26	Ni	140.4	449.8	125.7	196.4	109.4	109.8	99.1	115.2	189.3	140.6	179.2	56.9
27	Cu	126.0	1.7	46.8	43.9	1.8	1.5	8.5	6.4	22.7	9.8	8.8	32.3
28	Zn	83.4	72.1	64.1	65.1	73.2	78.9	74.9	85.0	33.5	27.2	32.1	71.4
29	Ga	9.5	10.1	10.2	12.7	10.5	10.5	9.8	10.1	9.2	8.9	8.7	14.3
30	Rb	1.8	1.6	6.5	3.2	0.6	0.7	0.8	0.8	20.5	19.4	26.2	1.3
31	Sr	131.4	186.5	78.3	77.4	45.0	36.3	30.6	30.9	123.3	112.8	129.9	123.3
32	Y	7.9	6.4	7.7	13.2	9.6	9.2	5.4	6.6	11.1	9.4	10.3	12.1
33	Zr	32.4	33.3	11.7	39.4	28.5	31.5	31.4	29.2	16.8	14.1	16.3	39.7
34 25	Nb	1.2	1.1	0.4	0.5	0.9	1.0	1.1	1.0	1.3	1.1	1.3	0.7
22 26	Cs	0.1	0.4	0.5	0.0	0.3	0.2	0.2	0.2	0.8	0.5	1.0	0.0
30 27	Ва	21.9	33.5	37.7	44.5	4.8	5.1	0.7	0.5	41./	49.4	39.0	28.4
30	La	5.6	2.5	2.7	2.5	1.4	2.8	2.7	2.6	1.9	1.0	1.7	5.5
30	Pr	0.8	0.1	0.4	1.1	4.0	0.6	0.6	0.6	4.8	4.0	4.4	9.5
39 40	Nd	3.6	3.8	1.7	5.7	3.1	3.0	2.6	2.8	3.1	2.6	2.9	6.6
40	Sm	1.0	1.0	0.6	1.8	1.0	1.0	0.7	0.8	0.9	0.8	0.8	2.0
47	Eu	0.3	0.3	0.0	0.6	0.3	0.3	0.2	0.0	0.3	0.3	0.3	0.7
43	Gd	1.2	1.1	0.9	2.1	13	13	0.8	1.0	1.2	11	1.2	23
43	Th	0.2	0.2	0.2	0.4	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.4
45	Dy	13	1.2	13	2 3	13	14	0.9	1.0	1.7	1.4	1.5	2.6
46	Ho	0.3	0.3	0.3	0.5	0.3	0.3	0.2	0.2	0.4	0.3	0.4	0.6
47	Er	0.8	0.7	0.9	1.5	0.8	0.9	0.5	0.6	12	1.0	11	17
48	Tm	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.2	0.2	03
49	Yb	0.9	0.7	1.0	1.4	0.8	0.9	0.5	0.6	13	11	1.2	17
50	Lu	0.1	0.1	0.2	0.2	0.0	0.1	0.1	0.0	0.2	0.2	0.2	0.3
51	Hf	0.8	0.8	0.4	1.0	0 7	0.8	0 7	0 7	0.4	0.4	0.4	1.3
52	Та	0.1	0.1	0.0	0.0	0.1	0.1	0 1	0 1	0.1	0.1	0.1	0.1
53	Pb	1.8	16	4 2	2.9	0.5	0 4	0.6	0.6	1.0	0 7	0.9	2.2
54	Th	0.4	0.4	0.3	0.4	0.7	0.7	0.7	0.6	0.3	0.3	0.3	0.2
55	U	0.3	0.3	0.1	0.2	0.2	0.2	0.2	0.2	0.0	0.0	0.1	0.2
56	Ank = ankara	amite H	MRA =	= hioh_N	No has	altic an	desite	HAA =	high_4	1 and	site [.] I I	C-Laiisl	nankou

Ank = ankaramite, HMBA = high-Mg basaltic andesite, HAA = high-Al andesite; LK-Lajishankou, XX-Xiongxian, CP-Chapu, ZB-Zhaba, SHN-Sihaning, MC-Machang, YCT-Yaocaotai and YJ-Yongjing.

Table 2. Continued

Sample Book type	13QLS-68	13QLS-7	13QLS-7	13QLS-7	13QLS-12	13QLS-12	13QLS-13	LJ15-2	LJ15-3	LJ15-3	LJ15-4]
L continu	Alik	Alik			IIMDA	IIMDA	IIMDA		TIMBA		TIMBA	
Main alarment (art 0/		лл	лл	лл	IJ	IJ	IJ	ZD	ZD	ZD	ZD	
Sio	48 75	18 62	48.00	40.19	52.91	52 45	51 75	55 60	54 63	40.01	55 62	
5iO ₂	48.75	48.03	48.00	47.10	0.04	0.00	1.01	0.05	0.78	49.91	0.81	
1102	0.74	10.26	10.70	10.06	12 71	12.00	12.11	15.01	14.56	1.21	14.69	
Al ₂ O ₃	10.10	0.35	10.70	10.90	15./1	13.99	15.11	15.91	14.50	7.40	14.00	
Fe ₂ O ₃ t	10.19	9.35	10.13	10.27	8.93	9.20	9.21	0.82	5.62	7.44	5.82	
MnO	0.18	0.20	0.19	0.18	0.22	0.36	0.19	0.13	0.11	0.11	0.10	
MgO	15.05	15.34	15.62	14.95	8.05	8.56	7.37	7.27	6.66	7.25	7.36	
CaO	8.99	9.99	9.63	9.21	6.37	7.62	8.44	4.73	6.70	8.19	5.75	
Na ₂ O	1.94	2.06	2.19	1.82	2.74	2.04	2.43	2.47	5.00	3.82	3.69	
K ₂ O	0.82	0.86	0.39	0.72	1.34	0.95	2.81	2.36	0.46	1.19	2.18	
P_2O_5	0.39	0.40	0.43	0.40	0.32	0.30	0.27	0.20	0.19	0.40	0.20	
LOI	1.69	2.51	2.46	2.25	2.84	2.57	2.41	3.51	5.20	3.55	3.66	
Total	100.2	100.4	100.5	100.6	99.3	99.0	99.0	99.9	99.9	100.5	99.9	
Mg#	77.02	77.02	78.23	77.23	67.8	68.5	65.1	71.3	73.4	69.4	74.7	
Trace element (ppm)												
Sc	37.4	37.5	41.7	38.9	40.4	49.8	43.9	28.4	26.7	24.1	26.5	
Ti	4466	4632	4998	4780	5635	5932	6080.1	7000	5626	7644	5870	
V	206.8	203.0	223.4	211.4	245.2	341.2	299.4	190.7	158.8	154.9	170.2	
Cr	1294.8	1126.2	1341.0	1270.2	419.4	501.4	481.6	253.2	442.8	339.8	435.0	
Co	52.5	50.0	55.6	56.3	61.6	46.3	42.1	38.9	35.9	37.9	38.1	
Ni	340.4	312.0	377.4	352.0	77.9	72.8	114.2	106.9	195.7	186.6	198.5	
Cu	53.5	56.8	79.0	66.8	35.5	186.8	59.0	46.0	67.1	67.3	56.3	
Zn	65.3	61.0	66.5	67.6	129.8	87.1	76.1	181.6	110.9	60.2	60.0	
Ga	13.2	12.1	14.1	14.1	15.8	18.0	17.2	18.5	17.8	20.5	17.0	
Rb	15.2	12.3	7.6	14.1	49.8	26.4	47.8	121.5	8.8	15.9	33.5	
Sr	225.8	221.4	150.8	289.0	270.2	307.0	350.8	386.4	253.6	867.2	370.8	
Y	14.7	15.4	16.4	15.9	20.5	21.1	22.3	22.1	16.3	21.3	17.8	
Zr	76.6	81.8	86.6	81.8	90.3	87.2	94.1	148.3	116.1	181.6	121.2	
Nb	12.4	13.0	13.5	12.8	11.9	12.4	12.0	12.4	14.5	30.9	15.3	
Cs	1.5	1.2	1.0	1.7	2.3	1.5	0.4	3.1	0.7	1.8	1.2	
Ba	351.0	464.6	198.7	326.8	431.8	289.4	643.2	1219.6	123.8	452.6	842.8	
La	17.0	18.9	17.7	18.5	17.0	15.8	14.6	28.5	27.0	41.6	28.5	
Ce	37.5	41.4	40.4	41.0	34.7	34.5	30.2	58.5	51.0	81.6	54.7	
Pr	4.5	5.0	5.0	5.0	4.1	4.1	3.7	7.2	5.8	9.8	6.2	
Nd	17.4	18.9	19.6	19.1	16.8	16.7	15.3	26.4	21.0	35.9	22.2	
Sm	3.7	4.0	4.2	4.0	3.9	3.8	3.7	5.3	4.1	6.5	4.4	
Eu	1.2	1.2	1.3	1.3	1.2	1.2	1.2	1.6	1.4	2.1	1.6	
Gd	3.5	3.7	4.0	3.8	4.0	3.7	3.8	5.0	3.9	5.7	4.2	
Tb	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.8	0.6	0.8	0.6	
Dv	2.9	3.0	3.3	3.2	3.8	3.5	3.6	4.4	3.4	4.4	3.6	
Но	0.6	0.6	0.7	0.6	0.8	0.7	0.7	0.9	0.7	0.9	0.8	
Er	1.6	1.6	17	17	2.2	21	2.1	2.5	2.0	2.5	2.1	
Tm	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.4	0.3	0.4	0.3	
Yh	1 4	1.4	1.5	1.5	2.0	1.8	1 0	2.7	1.8	23	1 0	
 In	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.4	0.3	
Lu Hf	1.7	1.0	0.2	1.0	0.5	0.5	0.5	0.5	0.5	0.4	2.0	
То	1./	1.9	2.0	1.9	2.4	2.2	2.4	3.3	2.7	3./	2.9	
1a Dh	0.8	0.8	0.8	0.8	0./	0.7	0.7	0.8	1.1	1./	1.0	
ru Ti	2.8	3.9	4.6	4.2	3.6	6.5	8.5	9.2	14.9	21.0	19.3	
1 П	2.4	2.6	2.7	2.6	4.6	4.3	3.1	8.1	6.6	8.0	7.1	

Ank = ankaramite, HMBA = high-Mg basaltic andesite, HAA = high-Al andesite; LK-Lajishankou, XX-Xiongxian, CP-Chapu, ZB-Zhaba, SHN-Sihaning, MC-Machang, YCT-Yaocaotai and YJ-Yongjing.

Table 2. Continued

3	Sample	LJ15-166	LJ15-167	16LJ-27	16LJ-32	13QLS16	13QLS17	13QLS58	13QLS61	13QLS86	13QLS89	13QLS92	13QLS95	13QLS100
4	Rock type	HMBA	HMBA	HMBA	HMBA	HAA	HAA	HAA	HAA	HAA	HAA	HAA	HAA	HAA
5	Location	YJ	YJ	XX	СР	MC	MC	XX	XX	СР	СР	СР	СР	YJ
6	Major eleme	ent (wt.%)												
7	SiO_2	51.24	53.11	54.63	49.61	49.10	54.52	51.49	55.56	60.19	60.55	52.81	48.65	54.76
8	TiO ₂	1.03	0.93	0.62	0.60	0.76	0.78	0.92	0.83	0.82	0.53	0.84	0.74	0.57
9	Al_2O_3	15.94	12.91	14.26	11.74	18.72	17.90	19.17	16.38	18.00	18.70	18.78	23.06	20.82
10	Fe_2O_3t	9.55	9.57	7.69	10.51	9.71	9.15	8.46	8.57	6.92	4.98	8.28	8.73	7.11
11	MnO	0.33	0.19	0.14	0.17	0.16	0.11	0.14	0.14	0.11	0.09	0.09	0.17	0.13
12	MgO	8.40	8.80	7.53	9.86	5.48	3.63	4.63	2.86	2.19	1.14	1.63	3.92	2.97
13	CaO	7.35	10.47	7.73	12.52	6.52	3.94	8.79	6.12	2.26	2.83	9.79	4.36	6.75
14	Na ₂ O	3.04	1.62	4.16	1.27	5.07	6.59	3.41	5.44	6.84	4.78	5.99	7.40	3.85
15	K ₂ O	0.70	0.61	0.77	0.93	0.86	0.37	0.86	1.48	0.11	1.69	0.01	0.28	0.99
16	P_2O_5	0.33	0.28	0.13	0.14	0.20	0.21	0.17	0.19	0.36	0.17	0.26	0.15	0.23
17	LOI	2.45	1.76	1.63	2.19	2.91	2.22	0.96	2.01	1.61	3.36	1.79	2.59	1.92
18	Total	100.4	100.3	99.3	99.5	99.5	99.4	99.0	99.6	99.4	98.8	100.3	100.1	100.1
19	Mg#	67.2	68.2	69.5	68.6	56.8	48.1	56.0	43.8	42.4	34.7	31.5	51.2	49.3
20	Trace eleme	nt (ppm)												
21	Sc	44.7	44.8	26.8	52.0	35.1	32.8	39.4	17.4	15.1	11.3	21.4	25.2	16.5
22	Ti	6839	6414	3664	3486	4884	5102	5494	5279	5360	3570	5624	4902	3802
23	V	266.5	291.4	197.9	295.6	266.2	259.6	312.6	202.3	100.2	11.1	154.0	248.0	134.6
24	Cr	449.9	503.4	310.2	434.8	108.3	99.9	63.9	26.5	5.1	4.4	25.0	19.9	58.5
25	Co	50.5	41.5	32.6	48.3	25.6	24.5	31.5	20.6	10.9	4.9	21.4	27.5	17.4
26	Ni	76.5	72.1	87.6	87.1	38.4	35.5	22.5	14.9	3.6	2.8	18.7	12.9	24.6
27	Cu	27.9	145.5	6.7	66.5	72.3	74.8	46.3	9.4	10.7	19.2	14.4	14.1	28.0
28	Zn	90.8	82.4	64.4	57.7	77.0	76.6	74.3	63.8	63.1	46.2	51.2	76.7	66.3
29	Ga	17.7	17.3	14.8	11.8	17.9	18.0	19.4	14.8	13.3	17.5	17.7	17.3	18.5
30	Rb	20.5	17.7	15.3	14.9	8.7	5.0	22.7	28.8	1.5	39.0	0.4	4.3	23.4
31	Sr	430.8	651.4	458.6	472.6	396.2	398.6	406.2	402.1	145.0	135.3	99.5	390.6	1154.2
32	Y	21.2	20.1	13.3	14.0	13.8	14.3	21.2	18.7	29.2	42.4	19.0	21.8	15.2
33	Zr	97.7	90.1	51.5	47.0	91.9	99.5	61.8	78.2	175.7	264.4	82.2	92.3	69.9
34 25	Nb	13.7	12.2	4.2	4.3	13.2	14.4	5.6	5.6	24.2	46.2	11.6	6.4	10.6
35	Cs	1.8	0.6	2.1	1.8	0.7	0.4	2.4	2.1	0.1	1.2	0.0	0.2	1.0
30 27	Ва	296.8	269.0	259.0	342.2	326.8	138.2	254.8	288.0	51.1	235.6	26.2	234.6	360.2
2/ 20	La	18.2	18.1	9.3	9.8	13./	13.0	/.9	/.0	21.8	33.0	10.8	13.0	19.4
20	Ce Dr	35.8	35.0	20.0	21.4	28.8	27.4	17.9	17.5	47.5	08.5	23.0	27.5	40.2
39 40	PT	4.4	4.2	2.0	2.7	3.3	3.3	2.4	2.2	3.7	8.0	3.0	3.3	4./
40	Nd Sw	17.0	10.8	10.4	11.1	12.0	12.5	10.5	9.7	21.9	29.7	12.0	13.3	17.5
41	5m En	4.1	3.9	2.4	2.0	2.0	2.7	2.0	2.7	1.2	0.7	5.0	3.5	5.0
4Z 42	Eu	1.5	1.5	0.8	0.8	1.0	0.9	1.0	2.1	1.5	1.4	2.2	2.6	1.2
45	ть	4.0	4.4	0.4	2.9	2.0	2.7	0.5	0.5	0.0	1.2	0.5	0.6	0.5
44 15	Du	0.8	0.7	0.4	0.4	0.4	0.4	0.5	0.5	0.9	7.2	0.5	2.8	0.5
45	Цо	4.0	4.4	0.5	0.5	2.5	2.5	0.7	0.7	1.1	1.5	0.7	0.8	2.9
40	H0 En	1.0	1.0	0.5	0.5	0.5	0.5	1.0	0.7	1.1	1.0	2.0	0.8	1.7
47 79	EI Tm	2.7	2.0	0.2	0.2	0.2	0.2	0.2	2.1	0.5	4.7	2.0	2.4	0.2
40	Thi Vh	2.5	2.5	1.2	1.2	1.4	1.5	1.8	1.0	2.1	4.0	1.0	2.4	1.6
	Iu	2.5	2.5	1.2	1.2	1.4	1.5	1.6	0.2	0.5	4.9	1.9	2.4	1.0
50	Lu Hf	0.4	0.4	0.2	0.2	0.2	0.2	0.5	0.5	0.5	U.8	0.5	0.4	0.2
50	п	2.9	2.7	1.2	1.1	2.3	2.5	1./	1.8	3.9	0.1	2.0	2.4	1./
52 52	1a Dh	1.1	0.8	2.0	0.2	0.8	10.9	1.0	0.4	1.8	2.8 <i>C</i> A	0.7	0.5	0.7
55	ru Th	1.2	10.5	3.0	3.5	/.1	10.8	1.8	3.9	4.5	0.4	2.3	5.5 2.4	13.3
54 55	111	5.5	4./	1.5	2.0	2.5	2.0	1.2	1.2	5.8 1.6	ð./	2.0	3.4 1.2	4.0
55 56	Anle -	ontrors	mita T		- hicl	o Ma h		u.s		- high	41 and	onite: T	V Laiia	honkou

Ank = ankaramite, HMBA = high-Mg basaltic andesite, HAA = high-Al andesite; LK-Lajishankou, XX-Xiongxian, CP-Chapu, ZB-Zhaba, SHN-Sihaning, MC-Machang, YCT-Yaocaotai and YJ-Yongjing.

Table 2. Continued.

Sample	13QLS103	13QLS123	LJ15-70	LJ15-109	12LJ-13	12LJ-14	12LJ-15	Lj-3	Lj-4	Lj-5	12LJ-05	LJ15-52	LJ15
Rock type	HAA	HAA	HAA	HAA	Sanukite	Sanu							
Location	YJ	YJ	SHN	YCT	ZB								
Major element	(wt.%)												
SiO2	51.14	60.44	54.38	58.14	54.51	55.53	60.73	54.93	56.87	55.70	63.61	64.81	6
TiO2	0.55	0.78	0.79	0.70	0.76	0.77	0.68	0.71	0.73	0.77	0.52	0.44	
A12O3	19.36	16.17	17.32	18.94	13.53	13.87	12.51	13.10	14.16	14.47	14.41	13.75	1
Fe2O3t	7.66	7.06	8.16	7.42	6.66	6.49	5.67	7.08	6.75	7.50	3.44	3.58	
MnO	0.15	0.11	0.11	0.15	0.07	0.06	0.05	0.07	0.05	0.06	0.05	0.05	
MgO	4.03	2.39	2.67	3.50	6.20	6.32	4.67	6.96	5.43	7.23	2.58	2.36	
CaO	6.06	4.54	5.61	0.66	5.26	5.50	5.06	5.23	5.95	3.65	2.81	4.05	
Na2O	3.12	3.01	2.73	7.68	2.42	2.49	2.19	2.83	2.73	3.11	4.96	3.08	
K2O	4.06	1.89	0.91	0.10	1.55	1.64	1.24	1.25	1.28	1.17	1.20	1.04	
P2O5	0.24	0.16	0.13	0.39	0.25	0.25	0.22	0.21	0.22	0.22	0.19	0.17	
LOI	3.03	2.22	7.15	1.90	7.94	6.23	5.96	6.97	5.20	5.44	5.09	6.38	
Total	99.4	98.8	99.9	99.6	99.2	99.1	99.0	99.3	99.4	99.3	98.9	99.7	
Mg#	55.1	44.1	43.2	52.4	68.4	69.4	65.8	69.6	65.2	69.2	63.5	60.6	
Trace element	(ppm)												
Sc	16.2	20.5	29.9	5.6	22.0	21.6	19.7	22.2	21.4	24.0	11.1	9.8	
Ti	3670	4681	5580	4486	5048	4960	4498	5420	5380	5886	3508	3422	
v	145.2	198.3	244.6	10.7	164.0	164.4	145.6	194.0	193.3	207.6	92.1	82.1	
Cr	90.0	105.8	12.9	2.0	444.2	421.6	384.4	500.2	460.8	521.8	88.7	68.6	
Co	20.9	23.4	26.0	6.2	21.1	20.0	16.8	29.3	25.3	22.6	7.0	13.7	
Ni	23.4	34.2	9.7	1.4	135.6	125.9	110.5	138.7	127.0	130.1	16.7	19.1	
Cu	37.1	34.7	69.8	25.7	25.9	210.6	300.0	95.5	461.2	318.6	3 3	15.4	
Zn	60.9	76.5	66.3	125.5	48.6	42.4	33.9	61.5	51.2	52.4	30.6	101.7	
Ga	17.1	20.6	18.7	20.1	18.1	19.1	17.0	18.2	19.3	20.9	19.4	18.3	
Rh	74.1	66.2	21.1	1.1	63.5	86.1	61.0	72.7	74.9	70.6	70.9	50.3	
Sr	569.6	649.8	274.0	250.0	283.2	416.0	264.2	279.6	346.4	274.4	241.2	412.2	,
v	18.0	17.5	10.4	250.0	12.0	16.2	15.1	15.0	14.2	12.9	12.8	10.2	-
1 7r	108.2	145.9	70.2	278.0	13.9	150.6	125.5	13.9	14.2	124.2	142.0	144.6	
Z.I	106.5	145.0	19.2	278.0	22.0	21.0	20.2	21.1	21.0	134.5	21.0	20.8	
IND Co	15.4	14.2	4./	0.2	22.0	21.9	20.2	21.1	21.0	22.1	21.9	20.8	
CS D	0.0	2.0	1.4	0.5	5.5	2.4	3.9	2.5	3.0	2.9	4.1	3.0	
ва	/48.0	599.4	278.2	142.9	613.4	995.6	255.2	391.8	316.6	334.6	226.6	139.6	10
La	18.6	21.6	6.4	39.6	40.7	37.6	31.6	36.3	27.8	26.5	25.5	32.5	
Ce	36.7	44.7	15.2	80.2	73.4	68.3	59.5	67.8	52.0	50.0	46.5	58.7	
Pr	4.2	5.3	2.2	9.8	7.8	7.5	6.7	7.4	5.7	5.5	5.1	6.2	
Nd	15.3	20.2	9.8	37.0	27.5	27.3	25.0	26.9	21.4	20.0	19.1	20.9	
Sm	3.3	4.0	2.7	7.5	4.5	4.8	4.4	4.6	3.9	3.5	3.5	3.4	
Eu	1.0	1.1	0.7	2.2	1.3	1.4	1.2	1.3	1.2	1.0	1.0	1.0	
Gd	3.3	3.5	3.3	7.5	3.6	4.1	3.8	3.9	3.4	3.1	3.1	2.9	
Tb	0.5	0.5	0.6	1.2	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.4	
Dy	3.2	2.9	4.0	7.4	2.7	3.1	2.8	3.0	2.6	2.5	2.4	2.2	
Но	0.7	0.6	0.9	1.7	0.5	0.6	0.5	0.6	0.5	0.5	0.5	0.5	
Er	2.0	1.7	2.7	4.9	1.5	1.7	1.5	1.7	1.4	1.5	1.3	1.3	
Tm	0.3	0.2	0.4	0.8	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	
Yb	1.9	1.5	2.7	5.2	1.4	1.6	1.4	1.5	1.3	1.4	1.2	1.4	
Lu	0.3	0.2	0.4	0.8	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	
Hf	2.7	3.5	2.3	7.0	3.6	3.8	3.5	3.0	3.1	3.1	3.8	4.2	
Та	1.0	0.8	0.3	2.5	1.4	1.4	1.3	1.3	1.3	1.3	1.5	1.6	
Pb	10.5	15.5	4.9	6.2	3.5	3.5	3.6	2.0	2.8	1.4	4.4	12.7	
Th	4.7	6.9	1.1	7.1	10.1	8.9	8.0	6.6	6.9	7.1	8.0	12.0	
T	1.5	1.2	0.5	17	1 0	2.1	2.1	1.0	2.0	2.0	2.0	20	

Ank = ankaramite, HMBA = high-Mg basaltic andesite, HAA = high-Al andesite; LK-Lajishankou, XX-Xiongxian, CP-Chapu, ZB-Zhaba, SHN-Sihaning, MC-Machang, YCT-Yaocaotai and YJ-Yongjing.

2 3 4				
5	Table 2.	Ave	erage	eleo
6	Sample	n	SiO_2	TiO
/ 8	13QLS68-1	3	53.27	0.1
9	13QLS68-2	10	52.70	0.2
10	13QLS68-3	4	52.74	0.22
11	13QLS68-4	3	52.07	0.4

ectron microprobe analyses of Cpx for Lajishan-Yongjing arc volcanics.

	Sample	n	SiO ₂	TiO ₂	Al_2O_3	Cr_2O_3	FeO _T	MnO	MgO	CaO	Na ₂ O	K ₂ O	total	Si	Al(&)	Al(&)	Ti	Cr	Fe ³⁺	Fe ²⁺	Mn	Mg	Ca	Na	K	sum	Wo	En	Fs	Ac	Mg#
ł	13QLS68-1	3	53.27	0.13	1.75	0.85	3.67	0.14	17.48	22.15	0.22	0.00	99.65	1.95	0.05	0.02	0.00	0.02	0.02	0.10	0.00	0.95	0.87	0.02	0.00	4.01	44.45	48.79	5.97	0.78	0.91
))	13QLS68-2	10	52.70	0.29	2.17	0.62	4.33	0.13	16.83	22.36	0.22	0.01	99.66	1.93	0.07	0.03	0.01	0.02	0.03	0.11	0.00	0.92	0.88	0.02	0.00	4.01	45.03	47.16	7.00	0.82	0.90
0	13QLS68-3	4	52.74	0.22	2.18	0.74	3.90	0.12	16.90	21.94	0.25	0.00	98.99	1.94	0.06	0.04	0.01	0.02	0.01	0.11	0.00	0.93	0.87	0.02	0.00	4.00	44.73	47.94	6.40	0.93	0.89
1	13QLS68-4	3	52.07	0.43	2.93	0.66	4.67	0.15	16.06	22.01	0.29	0.00	99.27	1.92	0.08	0.05	0.01	0.02	0.01	0.13	0.00	0.88	0.87	0.02	0.00	4.00	45.25	45.95	7.73	1.08	0.87
2	13QLS68-5	7	53.11	0.22	2.24	0.79	4.08	0.12	16.65	22.30	0.21	0.01	99.74	1.94	0.06	0.04	0.01	0.02	0.01	0.12	0.00	0.91	0.87	0.02	0.00	4.00	45.39	47.14	6.68	0.79	0.89
13	13QLS68-6	6	52.61	0.35	2.63	0.64	4.56	0.14	16.37	22.29	0.24	0.00	99.84	1.93	0.07	0.04	0.01	0.02	0.01	0.13	0.00	0.90	0.88	0.02	0.00	4.00	45.33	46.33	7.45	0.88	0.88
14	13QLS72-1	5	51.74	0.45	3.45	0.62	4.66	0.11	15.76	22.02	0.25	0.20	99.26	1.91	0.09	0.06	0.01	0.02	0.02	0.13	0.00	0.87	0.87	0.02	0.01	4.01	45.78	45.50	7.78	0.94	0.87
15	13QLS72-3	3	52.49	0.30	2.37	0.63	4.51	0.16	16.50	22.01	0.21	0.01	99.19	1.94	0.06	0.04	0.01	0.02	0.01	0.13	0.00	0.91	0.87	0.02	0.00	4.00	44.93	46.85	7.43	0.79	0.87
16	13QLS72-7	2	52.31	0.31	2.79	0.90	4.08	0.16	16.41	22.14	0.27	0.00	99.35	1.92	0.08	0.05	0.01	0.03	0.01	0.12	0.00	0.90	0.87	0.02	0.00	4.00	45.41	46.82	6.79	0.99	0.88
17	13QLS72-9	5	52.94	0.24	2.04	0.50	4.26	0.13	16.73	22.19	0.20	0.01	99.23	1.95	0.05	0.04	0.01	0.01	0.01	0.12	0.00	0.92	0.87	0.01	0.00	4.00	45.04	47.26	6.95	0.75	0.88
18	13QLS124-1	10	50.08	0.66	3.29	0.26	8.18	0.23	15.31	19.56	0.27	0.02	97.87	1.90	0.10	0.04	0.02	0.01	0.05	0.21	0.01	0.86	0.79	0.02	0.00	4.02	40.85	44.47	13.66	1.03	0.81
19 20	13QLS124-2	6	49.69	0.71	3.44	0.13	9.01	0.27	15.11	18.85	0.30	0.00	97.50	1.89	0.11	0.05	0.02	0.00	0.05	0.23	0.01	0.86	0.77	0.02	0.00	4.02	39.57	44.13	15.15	1.15	0.79
20 21	13QLS124-3	6	51.84	0.37	2.01	0.56	5.40	0.17	16.69	21.12	0.22	0.01	98.37	1.93	0.07	0.02	0.01	0.02	0.03	0.14	0.01	0.93	0.84	0.02	0.00	4.01	43.02	47.28	8.91	0.80	0.87
22	LJ15-42-1	2	53.02	0.38	2.47	0.90	3.85	0.12	17.29	21.91	0.28	0.01	100.21	1.93	0.07	0.04	0.01	0.03	0.01	0.10	0.00	0.94	0.85	0.02	0.00	4.00	44.23	48.53	6.24	1.01	0.90
23	LJ15-42-2	2	52.39	0.43	3.19	1.06	4.06	0.11	16.93	21.58	0.33	0.00	100.05	1.91	0.09	0.05	0.01	0.03	0.02	0.11	0.00	0.92	0.84	0.02	0.00	4.00	44.06	48.10	6.64	1.22	0.90
24	LJ15-42-3	2	53.34	0.38	2.26	0.01	5.17	0.24	17.43	21.04	0.18	0.01	100.04	1.95	0.05	0.04	0.01	0.00	0.00	0.15	0.01	0.95	0.82	0.01	0.00	4.00	42.23	48.66	8.46	0.66	0.86
25	LJ15-42-4	2	53.07	0.26	2.26	0.79	3.77	0.14	17.25	22.00	0.27	0.01	99.80	1.94	0.06	0.04	0.01	0.02	0.01	0.10	0.00	0.94	0.86	0.02	0.00	4.00	44.42	48.46	6.15	0.97	0.90
26	LJ15-42-5	2	53.12	0.32	2.55	1.00	3.70	0.10	17.23	21.84	0.30	0.01	100.15	1.93	0.07	0.04	0.01	0.03	0.01	0.10	0.00	0.93	0.85	0.02	0.00	4.00	44.29	48.61	6.01	1.10	0.90
27	L115-42-6	2	52.89	0.31	2 49	0.86	3.91	0.13	17.31	21 79	0.31	0.00	99 98	1 93	0.07	0.04	0.01	0.02	0.02	0.10	0.00	0.94	0.85	0.02	0.00	4 01	43 97	48 58	6 35	1.11	0.91
28	L115-42-7	2	52 42	0.41	3.15	1.08	3 70	0.09	16.76	22.17	0.26	0.00	100.02	1 91	0.09	0.05	0.01	0.03	0.01	0.11	0.00	0.91	0.87	0.02	0.00	4 00	45 34	47.67	6.05	0.95	0.90
<u>29</u>	L 115-42-8	2	52.98	0.35	2.66	0.85	3.82	0.16	16.91	21.84	0.25	0.00	99.81	1.93	0.07	0.05	0.01	0.02	0.00	0.11	0.00	0.92	0.85	0.02	0.00	4 00	44 65	48.08	6 35	0.93	0.89
5U 0 1	1 115-42-9	-	52.30	0.50	3.12	0.87	4.07	0.12	16.73	22.05	0.27	0.01	100.10	1 01	0.09	0.05	0.01	0.03	0.02	0.11	0.00	0.92	0.86	0.02	0.00	4.00	11.02	17.13	6.66	0.98	0.89
2	LJ15-42-10	3	52.57	0.30	2 71	1.04	3.07	0.12	17.17	22.05	0.27	0.00	00.02	1.91	0.09	0.03	0.01	0.03	0.02	0.11	0.00	0.91	0.85	0.02	0.00	4.00	/3.08	48.54	6.38	1.09	0.09
3	LJ15 42 11	5	52.71	0.31	2.71	1.04	3.52	0.12	16.67	21.04	0.30	0.00	100.19	1.72	0.08	0.04	0.01	0.03	0.00	0.11	0.00	0.95	0.85	0.02	0.00	4.00	45 14	40.54	5.06	1.07	0.90
, <u>,</u> 34	LJ15-42-11	1	52.84	0.32	2.00	1.24	5.39	0.12	16.60	21.90	0.33	0.00	100.18	1.92	0.08	0.06	0.01	0.04	0.00	0.12	0.00	0.90	0.80	0.02	0.00	4.00	43.14	47.07	5.90	1.25	0.89
35	LJ15-42-12	2	52.00	0.44	2.90	1.03	4.12	0.19	10.09	21.80	0.29	0.00	100.08	1.92	0.08	0.04	0.01	0.03	0.00	0.12	0.01	0.91	0.85	0.02	0.00	4.00	44.05	47.45	0.8/	1.05	0.88
36	LJ15-42-13	2	55.08	0.29	5.58	0.52	4.68	0.18	16./4	21.01	0.44	0.00	100.30	1.93	0.0/	0.0/	0.01	0.01	0.00	0.14	0.01	0.91	0.82	0.03	0.00	4.00	42.9/	47.65	1.11	1.63	0.87

http://www.petrology.oupjournals.org/

Table 3. Whole-rock Rb–Sr and Sm–Nd isotope compositions for the Lajishan-Yongjing arc volcanics.

	Sampleno.	Rocktype	T (Ma)	Rb	Sr	87Rb/86Sr	⁸⁷ Sr/ ⁸⁶ Sr	2σ	I _{sr} (TMa)	Sm	Nd	147Sm/144Nd	143Nd/144Nd	2σ	$f_{Sm/Nd}$	143Nd/144Nd(t)	εNd(0)	εNd(t)
L	J15-01	Boninite	450	1.5	494.0	0.0088	0.704924	0.000006	0.7049	1.3	4.0	0.19	0.512801	0.000005	-0.03	0.512237	-7.8	3.48
L.	J15-12	Boninite	450	17.6	171.4	0.2964	0.706957	0.000004	0.7051	1.9	6.8	0.17	0.512989	0.000018	-0.13	0.512488	-2.9	8.39
L.	J15-13	Boninite	450	3.1	140.4	0.0638	0.706051	0.000009	0.7056	0.9	3.2	0.18	0.512740	0.000012	-0.10	0.512220	-8.1	3.17
L.	J15-14	Boninite	450	0.4	261.2	0.0043	0.704805	0.000005	0.7048	2.4	6.4	0.22	0.513127	0.000006	0.14	0.512467	-3.3	7.98
L.	J15-108	Boninite	450	4.0	152.0	0.0763	0.706052	0.000007	0.7056	1.3	4.3	0.18	0.512679	0.000010	-0.09	0.512151	-9.5	1.80
12	2LJ-07	Boninite	450	41.3	85.9	1.3583	0.713346	0.000017	0.7046	0.9	2.9	0.18	0.512752	0.000019	-0.06	0.512209	-8.4	2.94
12	2LJ-09	Boninite	450	55.5	122.0	1.2838	0.712350	0.000018	0.7041	1.0	3.6	0.18	0.512772	0.000014	-0.10	0.512253	-7.5	3.80
13	3QLS-68	Ankaramite	450	15.2	225.8	0.1942	0.706281	0.000010	0.7050	3.7	17.4	0.13	0.512578	0.000010	-0.35	0.512200	-8.5	2.78
13	3QLS-70	Ankaramite	450	12.3	221.4	0.1611	0.706210	0.000006	0.7052	4.0	18.9	0.13	0.512556	0.000012	-0.36	0.512184	-8.9	2.46
L	J15-40	HMBA	450	33.5	370.8	0.2615	0.706338	0.000010	0.7047	4.4	22.2	0.12	0.512524	0.000005	-0.40	0.512175	-9.0	2.27
L	J15-42	HMBA	450	46.2	399.0	0.3347	0.706750	0.000009	0.7046	4.2	21.4	0.12	0.512461	0.000002	-0.40	0.512115	-10.2	1.11
L	J15-166	HMBA	450	17.7	651.4	0.0784	0.705760	0.000007	0.7053	3.9	16.8	0.14	0.512522	0.000003	-0.28	0.512107	-10.4	0.95
16	6LJ-27	HMBA	450	15.3	458.6	0.0967	0.705711	0.000007	0.7051	2.4	10.4	0.14	0.512531	0.000003	-0.28	0.512113	-10.2	1.07
13	3QLS-100	HAA	450	23.4	1154.2	0.0586	0.705336	0.000007	0.7050	3.6	17.5	0.12	0.512565	0.000003	-0.37	0.512197	-8.6	2.70
13	3QLS-103	HAA	450	74.1	569.6	0.3759	0.707711	0.000006	0.7053	3.3	15.3	0.13	0.512526	0.000002	-0.34	0.512145	-9.6	1.69
L.	J15-53	Sanukite	450	63.7	498.0	0.3695	0.709438	0.000006	0.7071	4.6	25.7	0.11	0.512086	0.000003	-0.45	0.511769	-17.0	-5.66
L.	J15-54	Sanukite	450	79.0	432.4	0.5284	0.710103	0.000008	0.7067	4.1	24.9	0.10	0.512244	0.000007	-0.50	0.511952	-13.4	-2.07
10	6LJ-55	Sanukite	450	39.8	388.4	0.2965	0.709206	0.000008	0.7073	4.4	25.2	0.10	0.512180	0.000005	-0.47	0.511871	-15.0	-3.66
16	6LJ-69	Sanukite	450	31.4	257.8	0.3516	0.708843	0.000007	0.7066	3.5	19.7	0.11	0.512170	0.000003	-0.46	0.511857	-15.2	-3.94
12	2LJ13	Sanukite	450	63.5	283.2	0.6335	0.710690	0.000017	0.7066	4.5	27.5	0.10	0.512174	0.000014	-0.48	0.511871	-15.0	-3.66
12	2LJ15	Sanukite	450	61.0	264.2	0.6524	0.710295	0.000018	0.7061	4.4	25.0	0.11	0.512215	0.000012	-0.43	0.511884	-14.7	-3.39
L.	J15-76	Sediments	450	97.4	106.3	2.6487	0.726746	0.000006	0.7098	3.7	19.9	0.11	0.512045	0.000002	-0.43	0.511714	-18.0	-6.73
L	J15-77	Sediments	450	112.8	234.0	1.3937	0.718771	0.000006	0.7098	5.1	28.0	0.11	0.512004	0.000006	-0.44	0.511679	-18.7	-7.40

Note:

(1) $I_{Sr} = {}^{87}Sr / {}^{86}Sr - {}^{87}Rb / {}^{86}Sr \times (e^{\lambda T} - 1)$, where $\lambda_{Rb} = 1.3972 \times 10^{-11}$ year ⁻¹ (IUPAC; Villa et al., 2015);

(2) $\varepsilon_{Nd}(t) = \{(^{143}\text{Nd}/^{144}\text{Nd} - ^{147}\text{Sm}/^{144}\text{Nd} \times (e^{\lambda T} - 1))/(^{143}\text{Nd}/^{144}\text{Nd})_{\text{CHUR}} - (^{147}\text{Sm}/^{144}\text{Nd})_{\text{CHUR}} \times (e^{\lambda T} - 1)\} - 1\} \times 10,000, \text{ where } \lambda_{\text{Sm}} = 6.54 \times 10^{-12} \text{ year}^{-1}; (^{143}\text{Nd}/^{144}\text{Nd})_{\text{CHUR}} = 0.512638; (^{147}\text{Sm}/^{144}\text{Nd})_{\text{CHUR}} = 0.1967 \text{ (Jacobsen & Wasserburg, 1984)};$

(3) HMBA=High-Mg basaltic andesite; HAA=High-Al andesite

1	
2	
3	
4	
5	
6	
7	
8	
9	
1	ი
1	1
1	י ר
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	3
2	<u>ک</u>
2	5
2	5
2	0
2	/
2	8
2	9
3	0
3	1
3	2
3	3
3	4
3	5
3	6
3	7
ך 2	, R
2	a
ر ۸	פ ה
4	1
4	1
4	2
4	3
4	4
4	5
4	6
4	7
4	8

 Table 4: In situ zircon O isotopic data for the Lajishan-Yongjing island arc volcanics

14016 4. 11		0 isotopic	uata I	of the Lajis	11a11 - 1	ongjing
Sample	O ¹⁶ /O ¹⁸ Mean	d ¹⁸ O (‰) _{ZIR}	±2s	d ¹⁸ O (‰) _{WR}	$\pm 2s$	
LJ15-01@1	0.002023	6.97	0.13	7.84	0.13	
LJ15-01@2	0.002022	6.70	0.14	7.58	0.14	
LJ15-01@3	0.002024	7.47	0.14	8.34	0.14	
J15-01@4	0.002023	7.20	0.15	8.08	0.15	
LJ15-01@5	0.002019	5.82	0.17	6.69	0.17	
LJ15-01@6	0.002018	4.66	0.26	5.53	0.26	
LJ15-01@7	0.002024	7.61	0.17	8.49	0.17	
LJ15-01@8	0.002026	8.63	0.14	9.50	0.14	
LJ15-01@9	0.002023	7.35	0.14	8.22	0.14	
LJ15-01@10	0.002024	7.59	0.21	8.46	0.21	
LJ15-01@11	0.002023	7.20	0.27	8.08	0.27	
LJ15-01@12	0.002023	7.13	0.19	8.00	0.19	
LJ15-01@13	0.002023	7.06	0.20	7.93	0.20	
LJ15-01@14	0.002022	6.57	0.31	7.44	0.31	
LJ15-01@15	0.002023	7.09	0.16	7.97	0.16	
LJ15-01@16	0.002024	7.43	0.21	8.30	0.21	
LJ15-01@17	0.002023	7.17	0.16	8.04	0.16	
LJ15-01@18	0.002023	7.22	0.19	8.09	0.19	
LJ15-01@19	0.002023	6.96	0.16	7.84	0.16	
LJ15-01@20	0.002023	7.21	0.15	8.08	0.15	
LJ15-70@1	0.002019	5.73	0.12	6.56	0.12	
LJ15-70@2	0.002021	6.85	0.18	7.68	0.18	
LJ15-70@3	0.002015	3.86	0.35	4.68	0.35	
LJ15-70@4	0.002026	9.33	0.20	10.16	0.20	
LJ15-70@5	0.002020	6.04	0.09	6.86	0.09	
LJ15-70@6	0.002020	5.96	0.21	6.79	0.21	
LJ15-70@7	0.002018	5.40	0.19	6.23	0.19	
LJ15-70@8	0.002019	5.74	0.26	6.57	0.26	
LJ15-70@9	0.002020	6.09	0.21	6.92	0.21	
LJ15-70@10	0.002019	5.74	0.19	6.57	0.19	
LJ15-70@11	0.002019	5.77	0.12	6.60	0.12	
LJ15-70@12	0.002019	5.61	0.18	6.44	0.18	
LJ15-70@13	0.002016	4.16	0.26	4.98	0.26	
LJ15-70@14	0.002019	5.81	0.14	6.64	0.14	
LJ15-70@15	0.002019	5.88	0.22	6.71	0.22	
LJ15-70@16	0.002020	6.04	0.08	6.87	0.08	
LJ15-70@17	0.002020	5.96	0.17	6.79	0.17	
LJ15-70@18	0.002020	6.02	0.19	6.85	0.19	
LJ15-70@19	0.002020	6.00	0.28	6.83	0.28	
LJ15-70@20	0.002020	5.81	0.25	6.64	0.25	
L115-70@21	0.002019	6 24	0.20	7.06	0.20	
L 115_70@21	0.002020	5.80	0.20	6.63	0.20	
LJ1J-70(W22	0.002019	5.00	0.20	0.05	0.20	

Note: $\delta^{18}O_{WR} = \delta^{18}O_{Zir} + 0.0612 \text{ (wt. \% SiO2)} - 2.5 \text{ (Valley et al., 2005)}$