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We study dynamics of an (anomalous) Galilean superfluid up to first order in derivative expansion, both
in parity-even and parity-odd sectors. We construct a relativistic system—null superfluid, which is a null
fluid (introduced in N. Banerjee, S. Dutta, and A. Jain Akash, [Phys. Rev. D 93, 105020 (2016).]) with a
spontaneously broken global U(1) symmetry. A null superfluid is in one-to-one correspondence with a
Galilean superfluid in one lower dimension; i.e., they have the same symmetries, thermodynamics,
constitutive relations and are related to each other by a mere choice of basis. The correspondence is based
on null reduction, which is known to reduce the Poincaré symmetry of a theory to Galilean symmetry in
one lower dimension. To perform this analysis, we use off-shell formalism of (super)fluid dynamics,
adopting it appropriately to null (super)fluids. We also verify these results via c → ∞ limit of a parent
relativistic system.
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I. INTRODUCTION AND SUMMARY

Hydrodynamics is an effective description of low energy
fluctuations of a quantum system around thermodynamic
equilibrium. In this description, we assume the hydro-
dynamic system, known as a fluid, to be at a finite
temperature, and study its fluctuations at length scales
much larger than the mean free path of the system. In this
limit and far away from any second order phase transition
point, a fluid can be described by a small number of degrees
of freedom known as hydrodynamic modes: temperature,
chemical potential(s) and normalized fluid velocity.
Various conserved currents of the system can then be
written in terms of these hydrodynamic modes, arranged as
a perturbative expansion in derivatives, known as fluid
constitutive relations. At any particular order in derivative
expansion, constitutive relations contain all the possible
independent tensor structures allowed by symmetry at that
order, multiplied with unknown coefficients known as
transport coefficients. If the underlying quantum theory
has a continuous global symmetry which is spontaneously
broken in the ground state, then the low energy fluctuations
can contain massless Goldstone modes corresponding to
the broken symmetry. Therefore for fluids with a sponta-
neously broken symmetry, known as superfluids, hydro-
dynamic modes also contain these Goldstone modes. This
leads to a considerable modification of the constitutive
relations, adding new tensor structures containing the

derivatives of the Goldstone modes and hence new trans-
port coefficients. In this paper, we work out the most
generic constitutive relations of a Galilean superfluid up to
first order in the derivative expansion.
Superfluidity was first observed in liquid helium by [1,2]

in 1938, while studying its flow through a thin capillary.
They observed that liquid helium flows through the
capillary without any dissipation, hence inspiring the name
“superfluid.” Other than this dissipationless flow, super-
fluids have many more striking features, such as upon
rotation they develop vortices (quasi-one-dimensional
strings whose number is proportional to the externally
imposed angular momentum). Furthermore, their specific
heat shows a sudden change in behavior at a certain critical
temperature. Above the critical temperature system behaves
like an ordinary fluid, though as the temperature drops
below the critical temperature, system undergoes a phase
transition from the ordinary fluid phase to the super-
fluid phase.
Study of superfluid dynamics has been a topic of interest

for a long time. First theory of superfluid dynamics was
written down by London [3] in 1938, followed by a two-
fluid model of superfluids proposed by Landau and Tisza
[4,5] in 1940s. They studied ideal superfluids in a non-
relativistic setting, which was later generalized to describe a
relativistic superfluid by [6–11]. The subject was recently
revisited by [12–14] (see also [15]), who rederived the
relativistic superfluid constitutive relations using the sec-
ond law of thermodynamics and equilibrium partition
function. Among other interesting results, they found that
up to first order in derivative expansion, a relativistic
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superfluid is characterized by pressure (at ideal order), 23
parity-even and 7 parity-odd first-order transport coeffi-
cients and two undetermined constants including the
anomaly constant (after imposing Onsager relations and
CPT invariance these numbers drop down to 16 parity-even
and 6 parity-odd transport coefficients and one anomaly
constant). See Table I for a summary and Sec. II for more
details.
In this paper, we perform a similar exercise for Galilean

superfluids. We derive the constitutive relations for a
Galilean superfluid consistent with the second law of
thermodynamics, up to first order in derivative expansion,
both in parity even and odd sectors. Study of Galilean
superfluids is important because it provides a laboratory to
probe many-body physics in extreme quantum regime with
high-precision [16]. Relativistic effects are important in
high-energy superfluids, where mass of the constituents is
small compared to their kinetic energy, e.g. quark super-
fluidity in compact stars. In contrast, for low-energy
systems such as liquid helium and ultracold atomic gases,
a Galilean framework is more ideal.
Recently in [17,18], we established that one can derive

the most generic constitutive relations for an ordinary
Galilean fluid starting from a relativistic system, namely
a null fluid in one higher dimension, followed by a null
reduction.1 [20,21]. Loosely speaking, null fluid is a fluid
coupled to a background with fields: a metric gMN ,
a U(1) gauge field AM and a covariantly constant null
isometry V ¼ fVM;ΛVg with VMAM þ ΛV ¼ constant.
We call this background a null background.2 Theories on
a null background, which we call null theories, are
demanded to be invariant under V preserving diffeomor-
phisms and gauge transformations. Upon performing null
reduction, i.e. choosing a basis fxMg ¼ fx−; t; xig such

that V ¼ fV ¼ ∂−;ΛV ¼ 0g, these restricted transforma-
tions reduce to the well known Galilean transformations on
the background spanned by coordinates ft; xig. It suggests
that null theories are entirely equivalent to Galilean
theories, and are related by merely this choice of basis.
It follows that a fluid on null background—null fluid—is
entirely equivalent to a Galilean fluid. Their constitutive
relations, conservation laws, thermodynamics etc. match
exactly to all orders in derivative expansion. Due to
presence of an additional vector field VM, constitutive
relations of a null fluid are vastly different from those of a
relativistic fluid and contain many more transport coef-
ficients. This accounts for the additional transport coef-
ficients in a Galilean fluid as compared to a relativistic
fluid,3 while at the same time establishing that the most
generic Galilean fluid cannot be gained by null reduction of
an ordinary relativistic fluid.
In this paper we take the construction of null fluids one

step further to include null superfluids, i.e. we construct a
null fluid with a spontaneously broken U(1) symmetry. The
corresponding Goldstone mode is a new field in the theory
and modifies the constitutive relations of an ordinary null
fluid. Once we have the constitutive relations for a null
superfluid, corresponding Galilean superfluid constitutive
relations follow trivially via null reduction. We find that up
to first order in derivatives, a Galilean superfluid is
described by pressure P (at ideal order), a total of 51
first-order transport coefficients and two unknown con-
stants including the anomaly constant. Out of these 51
coefficients, 38 lie in parity-even sector while 13 are in

TABLE I. Counting of the independent first-order transport coefficients consistent with the second law of thermodynamics. The
numbers with a “tilde” represent the parity-odd count (in three spatial dimensions) while the “un-tilde” numbers are the parity-even
count. The coefficients with an “asterisk” drop out on imposing Onsager relations (microscopic time-reversal invariance). Finally, in the
last row we have given the number of undetermined constants including the anomaly constant. In both relativistic and Galilean cases, we
have gotten rid of a hydrostatic coefficient by redefinition of the U(1) phase φ.

Relativistic fluid Relativistic superfluid Galilean fluid Galilean superfluid

Hydrostatic 0þ ~0 2þ ~2 0þ ~0 3þ ~3
Nonhydrostatic nondissipative 0þ ~0 7� þ ~4 1� þ ~0 13� þ ~7
Dissipative 3þ ~0 14þ ~1� 5þ ~0 22þ ~3�

Total 3þ ~0 ¼ 3 23þ ~7 ¼ 30 6þ ~0 ¼ 6 38þ ~13 ¼ 51

Total (with Onsager) 3þ ~0 ¼ 3 16þ ~6 ¼ 22 5þ ~0 ¼ 5 25þ ~10 ¼ 35

Hydrostatic constants ~3þ ~1anomaly
~1þ ~1anomaly

~4þ ~1anomaly
~1þ ~1anomaly

1Null reduction of an ordinary relativistic fluid gives us a
constrained Galilean fluid as found in [19].

2Here, definition of null backgrounds has been adapted to a
torsionless spacetime. For backgrounds with torsion, look at [22].

3The reader might wonder how a Gailean (super)fluid can have
more transport coefficients than a relativsitic one. Though the
Galilean symmetry has more generators than Poincaré symmetry
(accounting for the additional mass conservation operator), a
Galilean system has an additonal U(1) mass current in its
spectrum. Therefore the most generic Galilean (super)fluid can
admit more transport coefficients than a relativistic (super)fluid.
More discussion can be found in Sec. V.
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parity-odd sector. Furthermore, only 22 parity-even and 3
parity-odd coefficients are dissipative. Out of the non-
dissipative coefficients, 3 parity-even and 3 parity-odd
coefficients describe equilibrium physics, while the remain-
ing 13 parity-even and 7 parity-odd coefficients describe
nondissipative effects away from equilibrium. Finally,
following the intuition from relativistic superfluids and
known Galilean results in [23], there are hints that the 7
parity-even nondissipative, nonhydrostatic coefficients and
3 parity-odd dissipative coefficients are switched off using
Onsager relations (imposing microscopic reversibility of
field theories). This would imply that the parity-odd sector
is purely nondissipative. However, a detailed microscopic
calculation is required to establish confidence in these
Galilean Onsager relations, which we do not perform in this
paper. In Table I, we have summarized the counting of
transport coefficients for the most generic Galilean super-
fluid, along with a comparison with relativistic superfluids
reviewed in Sec. II and known results for ordinary Galilean
and relativistic fluids.
Another recent development in hydrodynamics is off-

shell formalism introduced by [24–26], which streamlines
the analysis of constitutive relations in accordance with the
second law of thermodynamics, up to arbitrarily high
orders in derivative expansion. We have reviewed this
formalism in Sec. II. In a nutshell, for ordinary fluids the
formalism requires us to consider a version of the second
law of thermodynamics which is valid for thermodynami-
cally nonisolated fluids,

∇μJ
μ
S þ

uμ
T
ð∇νTμν − FμρJρ − Tμ⊥

H Þ þ μ

T
ð∇μJμ − J⊥HÞ

¼ Δ ≥ 0: ð1:1Þ
Since the fluid is not thermodynamically isolated, it is
allowed to interact with its surrounding and hence conser-
vation laws are no longer satisfied. Therefore the original
second law ∇μJ

μ
S ≥ 0 has been modified with combinations

of the conservation laws. We need to find the most generic
constitutive relations for Tμν, Jμ allowed by symmetries
(modulo terms related to each other by conservation laws)
which satisfy Eq. (1.1) for some entropy current JμS and
Δ ≥ 0. When we move to superfluids, we have an additional
field φ (the Goldstone mode) which comes with its own
equation of motion K ¼ 0, the Josephson equation. Going
offshell in φ, conservation equations get modified by
combinations of K, and the second law of thermodynamics
for thermodynamically nonisolated superfluids takes the
form (see [27] for more details),

∇μJ
μ
S þ

uμ
T
ð∇νTμν − FμρJρ − Tμ⊥

H − ξμKÞ

þ μ

T
ð∇μJμ − J⊥H þ KÞ ¼ Δ ≥ 0: ð1:2Þ

Note that contrary to the philosophy of [24–26], though we
have gone offshell in φwe have not modified the second law

with a multiple of K. Rather, we require the second law of
thermodynamics to be satisfied even for offshell configura-
tions of φ. Next, we find the most generic “superfluid
constitutive relations” Tμν; Jμ, K allowed by symmetries
(modulo terms related to each other by conservation laws or
the Josephson equation) which satisfy Eq. (1.2) for some
entropy current JμS and Δ ≥ 0. In Sec. III, we have extended
this formalism to null (super)fluids, and used it to work out
the constitutive relations of a null/Galilean superfluid up to
first order in derivative expansion.
The paper is organized as follows: we start Sec. II with a

review of offshell formalism for relativistic hydrodynamics.
Readers well familiar with this formalism can skip to
Sec. II B, where we have reviewed offshell formalism for
relativistic superfluids and later used it to work out
respective constitutive relations up to first order in deriva-
tive expansion. Next in Sec. III, we introduce offshell
formalism for null superfluids and find respective con-
stitutive relations up to first order in derivative expansion.
The null superfluid results have been reduced to Galilean
superfluids in Sec. IV. In Sec. V, we have argued how these
results can also be obtained by c → ∞ limit of a parent
relativistic theory. These are the main results of this paper.
Finally, we conclude with some discussion in Sec. VI. The
paper contains three Appendices: in Appendix Awe give a
detailed derivation of first-order constitutive relations of a
relativistic superfluid in offshell formalism, and in
Appendix B we present equilibrium partition function
for null superfluids. Finally, in Appendix C, we give details
of some computations glossed over in the main text.

II. REVISITING RELATIVISTIC SUPERFLUIDS

Before going to null superfluids, it is instructive to revisit
the relativistic superfluids first. It will help us appreciate the
similarities between the two systems, while at the same
time allowing for an isolation of the differences. Needless
to say, all the results in this section have already been
worked out in the literature [12–14]; however, our approach
will be slightly different. We will work in the “off-shell
formalism of hydrodynamics,” which was introduced for
ordinary (nonsuper) fluids in [24,26], and later extended to
superfluids in [27].

A. Off-shell formalism for relativistic ordinary fluids

Let us begin with ordinary relativistic fluids. Consider a
d-dimensional manifold Md equipped with the back-
ground fields: a metric gμν and a U(1) gauge field Aμ.
Physical theories coupled to Md are required to be
invariant under diffeomorphisms and U(1) gauge trans-
formations. These act on the said background fields as

δXgμν ¼ £χgμν ¼ ∇μχν þ∇νχμ;

δXAμ ¼ £χAμ þ ∂μΛχ ¼ ∂μðΛχ þ χνAνÞ þ χνFνμ; ð2:1Þ
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for some diffeomorphism and U(1) gauge parameters
X ¼ fχμ;Λχg respectively. In this work we will only be
interested in a particular class of these theories—fluids,
which are the universal near equilibrium limit of quantum
field theories. Near equilibrium, the spectrum of any
quantum field theory on Md must contain an energy
momentum tensor Tμν and a charge current Jμ. These
quantities satisfy a set of conservation laws (here ∇μ is
the covariant derivative associated with gμν, Fμν ¼ ∂μAν −
∂νAμ is the field strength associated with Aμ and Tμ⊥

H ; J⊥H
are Hall currents carrying the anomalous contribution to
the conservation equations),

∇μTμν − FνρJρ − Tν⊥
H ¼ 0; ∇μJμ − J⊥H ¼ 0; ð2:2Þ

provided that the system is thermodynamically isolated. In
fact, Eq. (2.2) can be taken as a definition of thermody-
namic isolation for near equilibrium quantum systems. The
conservation laws Eq. (2.2) can also be thought of as a
“near equilibrium version” of the first law of thermody-
namics, which imposes the conservation of not just energy,
but also momentum and U(1) charge. Formally, we define
an (ordinary) fluid as a near equilibrium system charac-
terized by the currents Tμν, Jμ, with dynamics given by the
conservation laws Eq. (2.2) imposed as the “equations of
motion.” Since Eq. (2.2) are (dþ 1) equations in d
dimensions, they can provide dynamics for a fluid
described by an arbitrary set of (dþ 1) variables. We
choose these to be a normalized fluid velocity uμ (with
uμuμ ¼ −1), a temperature T and a chemical potential μ,
collectively known as the hydrodynamic fields (modes).
A fluid hence is completely characterized by a gauge-
invariant expression of Tμν, Jμ in terms of gμν, Aμ, uμ, T, μ,
known as the hydrodynamic constitutive relations. The near
equilibrium assumption allows us to arrange these con-
stitutive relations as a perturbative expansion in derivatives
(known as derivative or gradient expansion), consistently
truncated at a finite order in derivatives.
Being a thermodynamic system, a fluid is also required

to satisfy a version of the second law of thermodynamics. It
states that there must exist an entropy current JμS whose
divergence is positive semidefinite everywhere, i.e.,

∇μJ
μ
S ¼ Δ ≥ 0; ð2:3Þ

as long as the fluid is thermodynamically isolated (i.e.
conservation laws Eq. (2.2) or equivalently the first law(s)
of thermodynamics are satisfied). The job of hydrodynam-
ics now is to find the most general constitutive relations
Tμν, Jμ and an associated JμS, Δ order by order in derivative
expansion, such that Eq. (2.3) is satisfied for thermody-
namically isolated fluids. This task has been extensively
undertaken in the literature [28–33].
The problem stated in this language, however, turns out

to be increasingly hard to solve as we go to second or

higher orders in derivative expansion [34]. Fortunately, it
was realized in [24] that most of the complication in the
aforementioned computation comes from the fact that we
need to maintain the thermodynamic isolation (i.e. satisfy
the conservation equations) perturbatively at every order.
A much easier problem to solve is to allow for the fluid to
interact with its surroundings, i.e. break the conservation
laws Eq. (2.2) by introducing an arbitrary external momen-
tum Pμ

ext and a charge Qext source,

∇μTμν − FνρJρ − Tν⊥
H ¼ Pν

ext;

∇μJμ − J⊥H ¼ Qext: ð2:4Þ

The lhs of the second law in Eq. (2.3) will also need to be
augmented with an arbitrary combination of Pμ

ext, Qext for
the inequality to be satisfied,

∇μJ
μ
S þ βνPν

ext þ ðΛβ þ Aμβ
μÞQext ¼ Δ ≥ 0;

⇒ ∇μJ
μ
S þ βνð∇μTμν − FνρJρ − Tμ⊥

H Þ
þ ðΛβ þ Aμβ

μÞð∇μJμ − J⊥HÞ ¼ Δ ≥ 0; ð2:5Þ

for some fields B ¼ fβμ;Λβg. This version of the second
law is known as the off-shell second law of thermody-
namics, because the conservation laws, which are imposed
as equations of motion on the fluid, are not required to be
satisfied. Equation (2.5) can be recast into a yet another
useful form by defining a free-energy current Gμ as

−
Gμ

T
¼ Nμ ¼ JμS þ βνTμν þ ðΛβ þ Aνβ

νÞJμ;

−
G⊥

H

T
¼ N⊥

H ¼ βμT
μ⊥
H þ ðΛβ þ Aνβ

νÞJ⊥H: ð2:6Þ

Having done that, Eq. (2.5) implies a free-energy con-
servation,

∇μNμ − N⊥
H ¼ 1

2
TμνδBgμν þ JμδBAμ þ Δ; Δ ≥ 0;

ð2:7Þ

where, similar to Eq. (2.1), we have defined

δBgμν ¼ £βgμν ¼ ∇μβν þ∇νβμ;

δBAμ ¼ £βAμ þ ∂μΛβ ¼ ∂μðΛβ þ βνAνÞ þ βνFνμ: ð2:8Þ

Recall that the hydrodynamic fields uμ, T, μ introduced
earlier were some arbitrary (dþ 1) fields chosen to
describe the fluid. Like in any field theory, they are
permitted to admit an arbitrary redefinition among them-
selves without changing the physics. This huge amount of
freedom can be fixed by explicitly choosing,
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T ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
−βνβν

p ; uμ ¼ βμffiffiffiffiffiffiffiffiffiffiffiffi
−βνβν

p ; μ ¼ Λβ þ Aμβ
μffiffiffiffiffiffiffiffiffiffiffiffi

−βνβν
p ;

ð2:9Þ

or conversely,

βμ ¼ 1

T
uμ; Λβ ¼

1

T
μ − Aμβ

μ: ð2:10Þ

As a consequence of this choice, B ¼ fβμ;Λβg is just a
renaming of the hydrodynamic fields. Finally, we can find
the most general gauge-invariant expression of the currents
Tμν, Jμ in terms of gμν, Aμ, βμ, Λβ arranged in a derivative
expansion, along with an associated Nμ, Δ such that
Eq. (2.7) is satisfied. However, there is a caveat in this
way of thinking: these Tμν, Jμ are not merely the con-
stitutive relations of a fluid; they also contain information
about the external sources Pμ

ext, Qext. One way to circum-
vent this problem is to pick a set of terms which might
potentially appear in Tμν, Jμ and can be eliminated using
the conservation laws, and only consider the solutions Tμν,
Jμ of Eq. (2.7) (for some Nμ, Δ) which do not involve these
terms or their derivatives. Tμν, Jμ thus obtained are
guaranteed to be the constitutive relations of a fluid, as
they will be free from any Pμ

ext, Qext dependence.
Authors in [25,26] illustrated a consistent mechanism to

find the most generic constitutive relations of a fluid up to
arbitrarily high orders in derivative expansion, which
satisfy Eq. (2.7). They further classified these constitutive
relations in eight exhaustive classes, which wewill not have
scope to review here. Instead, in the following subsection,
we will review the off-shell analysis of relativistic super-
fluids which has been introduced in [27], and later adapt it
to Galilean superfluids.

B. Off-shell formalism for relativistic superfluids

Let us now review some essential aspects of the off-shell
formalism for a relativistic superfluid following the work of
[27], and use it to re-derive the respective constitutive
relations up to first order in derivative expansion [12–14].
For the sake of brevity, we have pushed the computational
details in Appendix A. As we have already mentioned in
the introduction, a superfluid is a phase of a fluid where the
global U(1) symmetry of the microscopic theory gets
spontaneously broken in the ground state due to conden-
sation of a charged scalar operator. The U(1) phase φ of the
scalar operator becomes a new field in the theory, along
with uμ, T, μ on which the respective constitutive relations
can depend. Under an infinitesimal gauge transformation
and diffeomorphism, φ transforms as δXφ ¼ χμ∂μφ − Λχ ,
with covariant derivative,

ξμ ¼ ∂μφþ Aμ; ð2:11Þ

commonly known as the “superfluid velocity”. Just like the
dynamics of uμ, T, μ is given by the conservation equations
Eq. (2.2), φ comes with its own equation of motion,4

K ¼ 0: ð2:12Þ
We will be particularly interested in the “off-shell” con-
figurations of the field φ, which we define as the superfluid
configurations for which K ≠ 0. As was suggested by [27],
conservation laws for these configurations modify to,

∇μTμν ¼ FνρJρ þ Tν⊥
H þ ξνK;

∇μJμ ¼ J⊥H − K; ð2:13Þ
which trivially turn back to their original form in Eq. (2.2)
when K ¼ 0. The claim is that “even the φ-offshell
configurations of a superfluid satisfy the second law of
thermodynamics”; i.e., there exists an entropy current JμS
whose divergence is positive semidefinite, i.e.,

∇μJ
μ
S ¼ Δ ≥ 0; ð2:14Þ

as long as the superfluid is thermodynamically isolated (i.e.
Eq. (2.13) are satisfied), irrespective of K being zero. Rest
of the analysis follows exactly like ordinary fluids; on
allowing the superfluid to interact with its surroundings, the
second law modifies to,

∇μJ
μ
S þ βνð∇μTμν − FνρJρ − Tμ⊥

H − ξνKÞ
þ ðΛβ þ Aσβ

σÞð∇μJμ − J⊥H þ KÞ ¼ Δ ≥ 0: ð2:15Þ
In terms of free-energy current, however, we get,

∇μNμ − N⊥
H ¼ 1

2
TμνδBgμν þ JμδBAμ þ KδBφþ Δ;

Δ ≥ 0; ð2:16Þ
where

δBφ ¼ βμ∂μφ − Λβ ¼
1

T
ðuμξμ − μÞ: ð2:17Þ

Similar to the ordinary fluid, we should now consider the
most generic expressions for Tμν, Jμ, K in terms of gμν, Aμ,
βμ, Λβ, φ arranged in a derivative expansion, along with an
associated Nμ, Δ such that Eq. (2.16) is satisfied. However,
these Tμν, Jμ, K will not be the constitutive relations of a
superfluid, as they will also have information about the
surroundings. The true constitutive relations will be gained

4K ¼ 0 should be thought of as a placeholder for the
Josephson junction condition uμξμ ¼ μþOð∂Þ, which provides
dynamics for the U(1) phase φ in the conventional treatment of
superfluids. At the moment, however, we will allow for an
arbitrary K treating it as yet another ‘current’ besides Tμν, Jμ in
the theory, and will later establish that the second law of
thermodynamics forces K to take the Josephson form.
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by considering those solutions to Eq. (2.16) which do not
involve a chosen set of terms that can be eliminated using the
conservation equations Eq. (2.13) and the φ equation of
motion Eq. (2.12).
Josephson equation: In the study of superfluids, the U(1)

phase φ is generally taken to be order −1 in the derivative
expansion, while its covariant derivative ξμ is taken to be
order 0. This is because the true dynamical degrees of
freedom are encoded in the fluctuations of φ along the U(1)
circle, and not in φ itself. As a consequence, the KδBφ term
in the free energy conservation Eq. (2.16) can be order 0
when K has an order 0 term. This gives us a solution to
Eq. (2.16) at zero derivative order, which was absent for
ordinary fluids,

Nμ; Tμν; Jμ ¼ Oð∂0Þ;
K ¼ −αδBφþOð∂Þ;
Δ ¼ αðδBφÞ2 þOð∂Þ; ð2:18Þ

for some “transport coefficient” α ≥ 0. Note that the φ
equation of motion at this order will read K ¼
−αδBφþOð∂Þ ¼ 0, implying,

δBφ¼ 1

T
ðuμξμ−μÞ ¼Oð∂Þ⇒ uμξμ ¼ μþOð∂Þ: ð2:19Þ

This is the well known Josephson equation. This condition
also ensures that Δ is at least Oð∂Þ, avoiding “ideal
superfluid dissipation”.

C. Relativistic (super)fluids up to first order

In [27], author provides a complete classification and
constructionof the superfluid constitutive relations satisfying
Eq. (2.16) up to arbitrarily high orders in derivative expan-
sion. In this work, however, we are only concerned with
superfluids up to first derivative order, which can be analyzed
directly by brute forcewithout involving the technicalities of
[27]. Since these results have already been well explored in
[12–14], in on-shell formalism, we only summarize the final
results in the following. A detailed derivation in off-shell
formalism can be found in Appendix A.
We find that the constitutive relations of a relativistic

superfluid up to first derivative order are given as

Tμν ¼ ðEþ PÞuμuν þ Pgμν þ Rsξ
μξν þ T μν þOð∂2Þ;

Jμ ¼ Quμ − Rsξ
μ þ J μ þOð∂2Þ;

JμS ¼ Suμ þ Sμ þOð∂2Þ; ð2:20Þ

where the energy density E, pressure P, superfluid density
Rs, charge densityQ and entropy density S are functions of
the zero derivative scalars T, μ and μs ¼ − 1

2
ξμξμ. These

functions are related to each other via the thermodynamic
relations,

dP ¼ SdT þQdμþ Rsdμs ðGibbs-DuhemÞ;
Eþ P ¼ ST þQμ ðEuler relationÞ: ð2:21Þ

On the other hand, T μν, J μ and Sμ are first derivative
corrections to the constitutive relations. They are charac-
terized by 30 transport coefficients5 which are functions of
T, ν ¼ μ=T, μ̂s ¼ − 1

2
ðgμν þ uμuνÞξμξν, and two constants

C1 and Cð4Þ. The constants C1 and Cð4Þ along with P and 4
transport coefficients,

parity even ð2Þ∶ f1; f2;

parity odd ð2Þ∶ g1; g2; ð2:22Þ

totally determine the hydrostatic transport (part of
the constitutive relations that survive at equilibrium).
Nonhydrostatic, nondissipative transport (part that does
not survive at equilibrium but doesn’t contribute to Δ ≥ 0
either) is given by 11 transport coefficients,

parity even ð7Þ∶ ½β½ij��4×4 ðantisymmetricÞ;
½κ½ij��2×2 ðantisymmetricÞ;

parity odd ð4Þ∶ ½~κðijÞ�2×2 ðsymmetricÞ; ~η: ð2:23Þ

Finally the entire dissipative transport is given by 15
transport coefficients (β44 ¼ α=T),

parity even ð14Þ∶ ½βðijÞ�4×4 ðsymmetricÞ;
½κðijÞ�2×2 ðsymmetricÞ; η;

parity odd ð1Þ∶ ½~κ½ij��2×2 ðantisymmetricÞ: ð2:24Þ

These dissipative transport coefficients follow a set of
inequalities,

½βðijÞ�4×4; ½κ0ðijÞ�2×2; η ≥ 0; ð2:25Þ

where

κ0ij ¼
�
κ011 κ012
κ021 κ022

�
¼

� κ11 κ12

κ21 κ22 þ 2μ̂s
~κ½12�
κ11

�
; ð2:26Þ

and a “non-negative matrix” implies all its eigenvalues are
non-negative.
Out of these for an ordinary relativistic fluid, shear

viscosity η, bulk viscosity ζ ¼ β11, conductivity κ ¼ κ22
and the constants C1, Cð4Þ are present. In addition g1 and g2
are forced to be constants, while all the remaining transport
coefficients zero.

5Our parity-odd counting is only valid in 3þ 1 dimensions.
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Defining the differentials of fi and gi as

dfi ¼
αE;i
T

dT þ TαQ;idνþ
�
αRs;i −

fi
2μ̂s

�
dμ̂s; αE;i þ fi ¼ αS;iT þ αQ;iμ;

dgi ¼
~αE;i
T

dT þ T ~αQ;idνþ
�
~αRs;i −

gi
2μ̂s

�
dμ̂s; ~αE;i þ gi ¼ ~αS;iT þ ~αQ;iμ; ð2:27Þ

the first derivative corrections to the constitutive relations are given as: the energy-momentum tensor,

T μν ¼ uμuν
�X2
i¼1

αE;iSe;i þ
X2
i¼1

~αE;i ~Se;i −
1

T
∇σðTf1ζσÞ þ ϵαρστuα∇ρðTg1uσζτÞ

�

þ 2uðμζνÞ
�X2
i¼1

fiS4þi − ðuρξρÞ
�X2

i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i

�
þ 1

2μ̂s
ϵαρστζα∇ρðTg1uσζτÞ

�

þ ζμζν
�X2
i¼1

αRs;iSe;i þ
X2
i¼1

�
~αRs;i −

gi
2μ̂s

�
~Se;i −

X4
i¼1

β2iSi

�

þ 2uðμ
�
ðξσuσÞ

X2
i¼1

fiV
νÞ
e;i −

X2
i¼1

gi ~V
νÞ
e;2þi − ~PνÞ

α ϵαρστ∇ρðTg1uσζτÞ þ 2C1T3ωνÞ þ Cð4Þμ2ð3MνÞ þ 2μωνÞÞ
�

− 2ζðμ
�X2
i¼1

fiV
νÞ
e;i þ

X2
i¼1

κ1iV
νÞ
i þ

X2
i¼1

~κ1i ~V
νÞ
i

�
þ ~Pμν

�X2
i¼1

fiSe;i −
X4
i¼1

β1iSi

�
− ησμν − ~η ~σμν; ð2:28Þ

the charge current,

J μ ¼ uμ
�X2
i¼1

αQ;iSe;i þ
X2
i¼1

~αQ;i
~Se;i −

1

T
∇νðTf2ζνÞ þ ϵανρσuα∇νðTg2uρζσÞ

�

− ζμ
�X2
i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i þ

X4
i¼1

β3iSi −
1

2μ̂s
ϵανρσζα∇νðTg2uρζσÞ

�

þ
X2
i¼1

fiV
μ
e;i þ

X2
i¼1

gi ~V
μ
e;i −

X2
i¼1

κ2iV
μ
i −

X2
i¼1

~κ2i ~V
μ
i − ~Pμ

αϵ
ανρσ∇νðTg2uρζσÞ þ 3μCð4Þð2Mμ þ μωμÞ; ð2:29Þ

and the entropy current,

Sμ ¼ g1
1

T
ϵμνρσuνζρ∂σT þ g2Tϵμνρσuνξρ∂σνþ 3C1T2ωμ

þ uμ
�X2
i¼1

αS;iSe;i þ
X2
i¼1

~αS;i ~Se;i −
1

T2
∇σðTf1ζσÞ þ

μ

T2
∇νðTf2ζνÞ þ

1

T
ϵανρσuα∇νðTg1uρζσÞ −

μ

T
ϵαρστuα∇νðTg2uρζσÞ

�

þ 1

T
ζμ
�X4
i¼1

μβ3iSi þ
1

2μ̂s
ϵαρστζα∇ρðTg1uσζτÞ −

μ

2μ̂s
ζαϵ

ανρσ∇νðTg2uρζσÞ
�

þ μ

T

X2
i¼1

κ2iV
μ
i þ

μ

T

X2
i¼1

~κ2i ~V
μ
i −

1

T
~Pμ
αϵ

ανρσ∇νðTg1uρζσÞ þ
μ

T
~Pμ
αϵ

ανρσ∇νðTg2uρζσÞ: ð2:30Þ

Here ζμ ¼ ðgμν þ uμuνÞζν, ~Pμν ¼ gμν þ uμuν − 1
ζσζσ

ζμζν, ωμ ¼ ϵμνρσuν∂ρuσ andMμ ¼ 1
2
ϵμνρσuνFρσ. Various first derivative

order data appearing here have been defined in Table II. Finally, corrections to the Josephson equation (K ¼ 0) coming from
the first-order superfluid transport are given as (here β44 ¼ α=T),

uμξμ¼μþ 1

β44
∇μðRsξ

μÞ−
X3
i¼1

β4i
β44

Siþ
1

β44
∇μ

�
ζμ
X2
i¼1

αRs;iSe;iþζμ
X2
i¼1

~αRs;i
~Se;i−

X2
i¼1

fiV
μ
e;i−

X2
i¼1

gi ~V
μ
e;i

�
þOð∂2Þ; ð2:31Þ

which can be seen as determining uμξμ in terms of the other superfluid variables. Note that though this equation contains
second-order terms, it is only correct up to the first order in derivatives, and will admit further corrections coming from
higher-order superfluid transport.
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It should be noted that these results are presented in a
particular hydrodynamic frame (gained by aligning uμ, T, μ
along βμ, Λβ) and in a “natural” choice of basis for the
independent data. They can be transformed to any other
preferred hydrodynamic frame or basis by a straight
forward substitution.
In deriving these constitutive relations, we have only

used the second law of thermodynamics. To compare these
results with the existing literature [12–14], one might need
to further filter these results with requirements like micro-
scopic reversibility (Onsager relations), time reversal
invariance and CPT invariance. For example, Onsager
relations are known to turn off 7 parity-even nondissipative
coefficients ½β½ij��4×4, ½κ½ij��2×2 and the only parity-odd
dissipative coefficient ½~κ½ij��2×2 [12]. To avoid confusion,
also note that there is a coefficient f3 appearing in

Eq. (A11) which we removed by using the φ equation
of motion (or equivalently, by redefining φ). This coef-
ficient has been included in the counting of independent
transport coefficients in [13].

III. NULL SUPERFLUIDS

In [17] we proposed “null fluids” as a new viewpoint of
Galilean fluids. In this section, we will further extend this
formalism to include Galilean superfluids. The main benefit
of working with “null (super)fluids” is that it is a “rela-
tivistic embedding” of Galilean (super)fluids into one
higher dimension and enables us to directly use the existing
relativistic machinery to read out the respective Galilean
results. In this sense, our in-depth review of relativistic
superfluids in the previous section will be vital for our
discussion of null/Galilean superfluids. Later in Sec. IV, we
will translate our null superfluid results to the better known
Newton-Cartan and conventional noncovariant notations.

A. Null backgrounds and null superfluids

Let us quickly recap null backgrounds [17,18], which are
a natural “embedding” of Galilean (Newton-Cartan) back-
grounds into a relativistic spacetime of one higher dimen-
sion. Consider a (dþ 1)-dimensional manifold Mðdþ1Þ
equipped with a metric gMN and a U(1) gauge field AM.
Infinitesimal diffeomorphisms and gauge transformation
with parameters X ¼ fχM;Λχg respectively, act on these
background fields as

δXgMN ¼ ∇MχN þ∇NχM;

δXAM ¼ ∂MðΛχ þ χNANÞ þ χNFNM: ð3:1Þ

The characteristic feature of a null background is the
existence of a compatible null isometry V ¼ fVM;ΛVg
which satisfies: VMVM ¼ 0, ∇MVN ¼ 0, VMAM þ ΛV ¼
−16 and,

δVgMN ¼ ∇MVN þ∇NVM ¼ 0;

δVAM ¼ ∂MðΛV þ VNANÞ þ VNFNM ¼ VNFNM ¼ 0:

ð3:2Þ

Since we will be interested in studying superfluids on this
background, we introduce a preferred U(1) phase φ which
transforms under diffeomorphisms and infinitesimal gauge
transformations as δXφ ¼ χM∂Mφ − Λχ . The covariant
derivative of φ is known as the superfluid velocity,

TABLE II. Independent first-order data for relativistic super-
fluids. We have not enlisted, neither would we need, all the
independent data surviving at equilibrium.

Vanishing at equilibrium—On-shell independent

S1 T
2
~PμνδBgμν ~Pμν∇μuν

S2 T
2
ζμζνδBgμν ζμζν∇μuν

S3 TζμδBAμ ζμðT∇μνþ uνFνμÞ
S4 TδBφ uμξμ − μ
Vμ
1 T ~PμνζρδBgνρ 2 ~Pμνζρ∇ðνuρÞ

Vμ
2 T ~PμνδBAμ

~PμνðT∇ννþ uσFσνÞ
σμν T

2
~Pρhμ ~PνiσδBgρσ ~Pμρ ~Pνσð∇ðρuσÞ − 1

d−2
~PρσS1Þ

~Vμ
1

ϵμνρσuνζρV1;σ

~Vμ
2

ϵμνρσuνζρV2;σ

~σμν ϵðμjρστuρζσσ
νÞ
τ

Vanishing at equilibrium—On-shell dependent
S5 T

2
uμuνδBgμν 1

T u
μ∇μT

S6 TuμδBAμ Tuμ∇μν
S7 TζμuνδBgμν ζνð1T∇νT þ uσ∇σuνÞ
Vμ
3 T ~PμνuρδBgνρ ~Pμνð1T ∇νT þ uσ∇σuνÞ

~Vμ
3

ϵμνρσuνζρV3;σ

Surviving at equilibrium
Se;1 1

T ζ
μ∂μT

Se;2 Tζμ∂μν
Se;3 ζμ∂μμ̂s
Se;4 ∇μζ

μ

Vμ
e;1

1
T
~Pμν∂νT

Vμ
e;2 T ~Pμν∂νν

~Se;1 Tϵμνρσζμuν∂ρuσ
~Se;2

1
2
TϵμνρσζμuνFρσ

~Vμ
e;1 T ~Pμ

τ ϵ
τνρσuν∂ρuσ

~Vμ
e;2

1
2
T ~Pμ

τ ϵ
τνρσuνFρσ

~Vμ
e;3 T ~Pμ

τ ϵ
τνρσξν∂ρuσ

~Vμ
e;4

1
2
T ~Pμ

τ ϵ
τνρσξνFρσ

..

. ..
.

6This condition can be thought of as fixing a component of the
(dþ 1)-dimensional gauge field AM, leaving it with only d
independent componentsmappingbijectively to thed-dimensional
Galilean gauge field. As opposed to the null backgrounds defined
in [17] where we set VMAM þ ΛV ¼ 0, for superfluids we realize
that it is more suitable to fix VMAM þ ΛV ¼ −1 instead.
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ξM ¼ ∂Mφþ AM: ð3:3Þ

We require φ to respect the null isometry V, i.e.
δVφ ¼ VM∂Mφ − ΛV ¼ VMξM þ 1 ¼ 0, which implies
VMξM ¼ −1. The remainder of the story is exactly same
as the relativistic case: any theory coupled to a null
background has an energy-momentum tensor TMN and a
charge current JM in its spectrum. The respective con-
servation laws are given as

∇MTMN ¼ FNRJR þ TN⊥
H þ ξMK;

∇MJM ¼ J⊥H − K; ð3:4Þ

where

K ¼ 0; ð3:5Þ

is the φ equation of motion. Since Eqs. (3.4) and (3.5)
are (dþ 3) equations in (dþ 1) dimensions, they can
provide dynamics for a superfluid described by an
arbitrary set of (dþ 2) variables in addition to the phase φ.
We choose these to be a normalized null fluid velocity uM

(with uMVM ¼ −1, uMuM ¼ 0), a temperature T, a mass
chemical potential μn, and a chemical potential μ,
known as the hydrodynamic fields. A null superfluid
hence is completely characterized by gauge-invariant
expressions of TMN , JM, K in terms of gMN , AM, uM,
T, μn, μ and ξM, known as the null superfluid constitutive
relations. The near equilibrium assumption allows us to
arrange these constitutive relations as a perturbative
expansion in derivatives (known as the derivative or
gradiant expansion).
Same as the relativistic case, null superfluid is also

required to satisfy a version of the second law of
thermodynamics. It states that there must exist an entropy
current JMS whose divergence is positive semidefinite
everywhere, i.e.,

∇MJMS ≥ 0; ð3:6Þ

as long as the superfluid is thermodynamically isolated
(i.e. conservation laws Eq. (3.4) are satisfied), irrespective
of K being zero. The job of null superfluid dynamics
now is to find the most general constitutive relations
TMN , JM, K and an associated JMS , Δ order by order in
derivative expansion, such that Eq. (3.6) is satisfied for
thermodynamically isolated fluids. Owing to our previous
experiences with the second law, however, we switch to
the off-shell formalism in the next subsection for
simplicity.

B. Off-shell formalism for null (super)fluids

We couple the fluid to an external momentum PM
ext and

charge Qext source, so that the conservation laws are no

longer satisfied. Having done that, the second law Eq. (3.6)
will be modified with an arbitrary combination of the
conservation laws to get,

∇MJMS þ βNð∇MTMN − FNRJR − TN⊥
H − ξMKÞ

þ ðΛβ þ AMβ
MÞð∇MJM − J⊥H þ KÞ ¼ Δ ≥ 0; ð3:7Þ

where B ¼ fβM;Λβg are some arbitrary fields. Recall that
the hydrodynamic fields uM, T, μn, μ were some arbitrary
(dþ 2) fields chosen to describe the fluid. Like in any
field theory, they are permitted to admit an arbitrary
redefinition among themselves without changing the
physics. This huge amount of freedom can be fixed by
explicitly choosing,

uM ¼ −
βM

VMβ
M þ βRβRVM

2ðVNβ
NÞ2 ; T ¼ −

1

VMβ
M ;

μn ¼
βMUM

2ðVNβ
NÞ2 ; μ ¼ −

Λβ þ AMβ
M

VNβ
N : ð3:8Þ

or conversely,

βM ¼ 1

T
ðuM − μnVMÞ; Λβ ¼

μ

T
− AMuM: ð3:9Þ

We define a free energy current,

−
GM

T
¼ NM ¼ JMS þ TMNβN þ ðΛβ þ βNANÞJM;

−
GM

H

T
¼ N⊥

H ¼ βMTM⊥
H þ ðΛβ þ βMAMÞJ⊥H ; ð3:10Þ

which turns the off-shell second law in Eq. (3.7) to a free
energy conservation equation,

∇MNM − N⊥
H ¼ 1

2
TMNδBgMN þ JMδBAM þ KδBφþ Δ;

Δ ≥ 0: ð3:11Þ

Now similar to our analysis of relativistic superfluids, we
will try to find the most generic TMN , JM, K in terms of
gMN , AM, βM, Λβ, φ which solves this equation for some
NM, Δ. Again, however, these expressions will be shy of
being the null superfluid constitutive relations because of
their dependence on the external sources PM

ext, Qext. To fix
this, we will only consider the expressions for TMN, JM,
K which are independent of certain data that can be
eliminated using the conservation laws.
Josephson equation: Following our discussion of rela-

tivistic superfluids, Eq. (3.11) has a zero derivative order
solution,
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NM; TMN; JM ¼ Oð∂0Þ;
K ¼ −αδBφþOð∂Þ; Δ ¼ αðδBφÞ2 þOð∂Þ; ð3:12Þ

for some “transport coefficient” α ≥ 0. The φ equation of
motion K ¼ 0 then implies the Josephson equation for null
superfluids,

δBφ ¼ 1

T
ðuMξM þ μn − μÞ ¼ Oð∂Þ

⇒ uMξM ¼ μ − μn þOð∂Þ: ð3:13Þ

This condition also ensures thatΔ is at leastOð∂Þ, avoiding
“ideal superfluid dissipation”. Note that this equation
determines δBφ in terms of first- and higher-order data;
therefore, it would be beneficial from here onward to think
of δBφ as order-one data in derivative expansion.

C. Ideal null superfluids

Let us now move on to the ideal null superfluids, i.e. null
superfluid constitutive relations that satisfy the free energy
conservation Eq. (3.11) at first derivative order. At ideal

order, the most generic tensorial form of various quantities
appearing in Eq. (3.11) can be written as

TMN ¼ RnuMuN þ 2EuðMVNÞ þ PPMN þ Rsξ
MξN

þ 2λ1ξ
ðMVNÞ þ 2λ2ξ

ðMuNÞ þ RvVMVM þOð∂Þ;
JM ¼ QuM þQsξ

M þQvVM þOð∂Þ;
K ¼ −αδBφþ Kideal þOð∂Þ;

NM ¼ NuM þ Nsξ
M þ NvVM þOð∂Þ;

Δ ¼ ðαδBφÞ2 þ Δideal þOð∂2Þ; ð3:14Þ

where Rn, E, P, Rs, λ1, λ2, Q, Qs, Kideal, N, Ns are
functions of T, μ, μn and μs ≡ − 1

2
ξMξM. We have omitted

the only other possible scalar δBφ in the functional
dependence, because using the φ equation of motion we
know that it is no longer an independent quantity. The
coefficients Rv, Qv, Nv do not contain any physical
information, because their contribution to the conservation
laws trivially vanish owing to V being an isometry.
Plugging Eq. (3.14) in Eq. (3.11) we can find,

ðQs þ RsÞξM
�
∇Mνþ

1

T
uNFNM

�
þ λ1
T2

ξM∇MT þ λ2ξ
Nð∇Nνn þ uM∇MUNÞ

∇M

��
P
T
− N

�
uN

�
þ 1

T
uμð∇μE − T∇MS − μn∇MRn − μ∇MQþ Rs∇NμsÞ þ∇MððδBφRs − NsÞξMÞ

þ ðKideal −∇MðRsξ
MÞÞδBφþ Δideal ¼ 0; ð3:15Þ

where we have defined S through the “Euler
equation”,

Eþ P ¼ ST þQμþ Rnμn: ð3:16Þ

Equation (3.15) will imply a set of relations among
various coefficients,

Qs ¼ −Rs; λ1 ¼ λ2 ¼ 0; N ¼ P
T
;

Ns ¼ δBφRs; Kideal ¼ ∇MðRsξ
MÞ; Δideal ¼ 0;

ð3:17Þ

and the “first law of thermodynamics,”

dE ¼ TdSþ μdQþ μndRn − Rsdμs; ð3:18Þ

giving physical meaning to the quantities we have
introduced in Eq. (3.14). Finally, we have the full set
of null superfluid constitutive relations up to ideal order
satisfying the second law,

TMN ¼ RnuMuN þ 2EuðMVNÞ þ PPMN þ Rsξ
MξN

þ RvVMVN þOð∂Þ;
JM ¼ QuM − Rsξ

M þQvVM þOð∂Þ;
K ¼ −αδBφþ∇MðRsξ

MÞ þOð∂Þ;
NM ¼ P

T
uM þ δBφRsξ

M þ NvVM þOð∂Þ;

JMS ¼ NM −
1

T
ðTMNuN − μnTMNVN þ μJMÞ

¼ SuM þ SvVM þOð∂Þ: ð3:19Þ
Here Sv ¼ Nv þ 1

T ðRv − μnE − μQvÞ, which again
doesn’t contain any physical information. These are
the ideal null superfluid constitutive relations. Note that
we have included first-order terms in K, NM which can
be ignored when talking about the ideal order, but are
required for internal consistency with Eq. (3.11). The φ
equation of motion K ¼ 0 will imply,

αδBφ ¼ ∇MðRsξ
MÞ þOð∂Þ

⇒ uMξM ¼ μ − μn þ
T
α
∇MðRsξ

MÞ þOð∂Þ; ð3:20Þ

BANERJEE, DUTTA, and JAIN PHYSICAL REVIEW D 96, 065004 (2017)

065004-10



which is a first-order correction to the Josephson
equation. Note, however, that this equation can admit
further one derivative corrections due to the first-order
constitutive relations discussed in the next subsection;
the correction mentioned here is only how the ideal null
superfluid transport affects the Josephson equation. The
conservation laws on the other hand are complete up to
the first order in derivatives,

1ffiffiffiffiffiffi−gp δBð
ffiffiffiffiffiffi
−g

p ðTðEþ PÞVM þ RTuMÞÞ þQTδBAM

¼ −ξMαδBφþOð∂2Þ;
1ffiffiffiffiffiffi−gp δBð

ffiffiffiffiffiffi
−g

p
QTÞ ¼ αδBφþOð∂2Þ: ð3:21Þ

These equations provide a set of relations between δBφ,
δBgMN and δBAM, which can be used to eliminate a
vector uMδBgMN and a scalar uMδBAM (see Table III)
from the first-order null constitutive relations. On the
other hand, we choose to eliminate the scalar data
∇MðRsξ

MÞ using the φ equation of motion.

D. First derivative corrections
to null superfluids

Moving on to the one derivative null superfluids,
let us schematically represent various quantities
appearing in Eq. (3.11) up to the first order in
derivatives as

TMN ¼ ½RnuMuN þ 2EuðMVNÞ þ PPMN þ Rsξ
MξN

þ RvVMVN � þ T MN þOð∂2Þ;
JM ¼ ½QuM − Rsξ

M þQvVM� þ JM þOð∂2Þ;
K ¼ ½−αδBφþ∇MðRsξ

MÞ� þKþOð∂2Þ;

NM ¼
�
P
T
uM þ δBφRsξ

M þ NvVM

�
þNM þOð∂2Þ;

Δ ¼ αðδBφÞ2 þD; ð3:22Þ

where the corrections T MN , JM, K, NM, D have
exactly one derivative in every term. Plugging these in
the Eq. (3.11), we can get an equation among the
corrections

∇MNM − N⊥
H ¼ 1

2
T MNδBgMN þ JMδBAM

þKδBφþDþOð∂3Þ: ð3:23Þ

We will now attempt to find all the solutions to this
equation, hence recovering the null superfluid constitutive
relations up to the first order in derivatives.

1. Parity-even

We can find the most general parity-even solution of
Eq. (3.23) in two steps (note that N⊥

H is parity odd):
(1) first, we write down the most general allowed
parity-even NM and find a set of constitutive relations
pertaining to that, and (2) we find the most general
parity-even constitutive relations which satisfy Eq. (3.23)
with NM ¼ 0.
(1) One can check that the most general form of

NM (whose divergence only contains product of

TABLE III. Independent first-order data for null superfluids.
We have not enlisted, neither would we need, all the independent
data surviving at equilibrium.

Vanishing at equilibrium—On-shell independent

S1 T
2
~PMNδBgMN

~PMN∇MuN
S2, Se;1

7 TVMζNδBgMN
1
T ζ

M∇MT
S3 T

2
ζMζNδBgMN ζMζN∇MuN

S4 TζMδBAM ζMðT∇Mνþ uNFNMÞ
S5 TδBφ uMξM þ μn − μ
VM
1 ; V

M
e;1 T ~PMRVNδBgRN

1
T
~PMN∇NT

VM
2 T ~PMRζNδBgRN 2 ~PMRζN∇ðRuNÞ

VM
3 T ~PMNδBAN

~PMNðT∇Nνþ uRFRNÞ
σMN T

2
~PRhM ~PNiSδBgRS ~PMR ~PNSð∇ðRuSÞ −

~PRS
d−1 S1Þ

~VM
1 ϵMNRSTVNuRζSV1;T

~VM
2 ϵMNRSTVNuRζSV2;T

~VM
3 ϵMNRSTVNuRζSV3;T

~σMN ϵðMjRSTPVRuSζTσPNÞ
Vanishing at equilibrium—On-shell dependent

S6 TuMVNδBgMN
1
T u

M∇MT
S7 TuMδBAM TuM∇Mν
S8 T

2
uMuNδBgMN TuM∇Mνn

S9 TuMζNδBgMN ζMðT∇Mνn þ uN∇NuMÞ
VM
4 T ~PMRuNδBgRN ~PMNðT∇Nνn þ uR∇RuNÞ

~VM
4 ϵMNRSTVNuRζSV4;T

Surviving at equilibrium
Se;2 TζM∂Mν
Se;3 TζM∂Mνn
VM
e;2 T ~PMN∂Nν

VM
e;3 T ~PMN∂Nνn

~Se;1 TϵMNRSTζMVNuR∂SuT
~Se;2

1
2
TϵMNRSTζMVNuRFST

~VM
e;1 T ~PM

K ϵ
KNRSTVNuR∂SuT

~VM
e;2

1
2
T ~PM

K ϵ
KNRSTVNuRFST

~VM
e;3 T ~PM

K ϵ
KNRSTξNuR∂SuT

~VM
e;4

1
2
T ~PM

K ϵ
KNRSTξNuRFST

..

. ..
.

7Null and Newton-Cartan geometries behave more naturally in
presence of a minimal temporal torsion HMN ¼ 2∂ ½MVN� (see
[35]). In presence of HMN , the data S2 ¼ ζMð1T ∂MT þ uNHNMÞ
vanishes at equilibrium while Se;1 ¼ 1

T ζ
M∂MT survives. How-

ever, when HMN ¼ 0, S2 ¼ Se;1.
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derivatives and has at least one δB per term) can be
written as (see Appendix B for more details),

NM ¼ 2f1u½MζN� 1
T2

∂NT þ 2f2u½MζN�∂Nν

þ 2f3u½MζN�∂Nνn þ 2f4u½MζN�∂NRs

þ∇Nðf5u½MζN�Þ; ð3:24Þ

where f’s are functions of T, ν ¼ μ=T, νn ¼ μn=T
and μ̂s ¼ − 1

2
ζMζM with ζM ¼ PMNξN ¼ ξM −

uM þ ðuNξNÞVM (PMN ¼ gMN þ 2uðMVNÞ is the
projection operator away from the null fluid
velocity). Note that

μ̂s ¼ −
1

2
ζMζM ¼ −

1

2
ξMξM þ ξMuM ¼ μs þ ξMuM

¼ μs − μn þ μþ TδBφ: ð3:25Þ
Out of the five terms in Eq. (3.24), the last one has
trivially zerodivergence andhence canbe ignored.The
forth term on the other hand can be removed by
elimination of ∇MðRsξ

MÞ using the φ equation of
motion. Computing the divergence of the remaining
terms inNM and comparing them toEq. (3.23),we can
directly read out the corresponding null superfluid
constitutive relations (the symbol ‘∋’ represents that
theyarenotyet thecomplete solutionsofEq. (3.23);we
still have to add the terms with NM ¼ 0),

TABLE IV. Independent null superfluid data at the first order in derivatives. Note that we have not, neither do we
need to, enlist all the independent data that survives in equilibrium; the ones listed here are the only ones we use in
the null superfluid constitutive relations.

Newton-Cartan data Noncovariant data

Vanishing at equilibrium—On-shell independent
S1 S1 ~pij∂iuj
S2, Se;1 1

T ζ
μ∂μT S2, Se;1 1

T ζ
i∂iT

S3 S3 ζiζj∂iuj

S4 ζμðT∂μνþ uνFνμÞ S4 ζiðT∂iν − ei þ ujβjiÞ
S5 − 1

2
ζμζμ − μs þ μn − μ S5 − 1

2
ζkζk − μs þ μn − μ

Vμ
1; V

μ
e;1

1
T ~pμν∂νT Vi

1; V
i
e;1

1
T ~pij∂jT

Vμ
2 Vi

2 ~pijζk∂ðjukÞ
Vμ
3 ~pμνðT∂ννþ uρFρνÞ Vi

3 ~pijðT∂jν − ej þ ukβkjÞ
σμν σij ~pik ~pjlð∂ðkulÞ þ ~pkl

d−1 S1Þ
~Vμ
1

−εμνρσnνζρV1;σ ~Vi
1 εijkζjV1;k

~Vμ
2

−εμνρσnνζρV2;σ ~Vi
2 εijkζjV2;k

~Vμ
3

−εμνρσnνζρV3;σ ~Vi
3 εijkζjV3;k

~σμν −εðμjρστnρζσσ
νÞ
τ ~σij εðijklζkσ

jÞ
l

Vanishing at equilibrium—On-shell dependent
S6 1

T u
μ∂μT S6 1

T ð∂tT þ ui∂iTÞ
S7 Tuμ∂μν S7 Tð∂tνþ ui∂iνÞ
S8 Tuμ∂μνn S8 Tð∂tνn þ ui∂iνnÞ
S9 S9 ζiðT∂iνn þ ∂tui þ uj∂juiÞ
Vμ
4 Vi

4 ~pijðT∂jνn þ ∂tuj þ uk∂kujÞ
~Vμ
4

−εμνρσnνζρV4;σ ~Vi
4 εijkζjV4;k

Surviving at equilibrium
Se;2 Tζμ∂μν Se;2 Tζi∂iν
Se;3 Tζμ∂μνn Se;3 Tζi∂iνn
Vμ
e;2 T ~pμν∂νν Vi

e;2 T ~pij∂jν
Vμ
e;3 T ~Pμν∂ννn Vi

e;3 T ~pij∂jνn
~Se;1 Tεμνρσnμζν∂ρBσ ~Se;1 Tεijkζi∂juk
~Se;2

T
2
εμνρσnμζνFρσ ~Se;2

T
2
εijkζiβjk

~Vμ
e;1

−T ~pμ
τ ετνρσnν∂ρBσ ~Vi

e;1 T ~pi
lε

ljk∂juk
~Vμ
e;2

− T
2
~pμ
τ ετνρσnνFρσ ~Vi

e;2
T
2
~pi
lε

ljkβjk
~Vμ
e;3 T ~pμ

τ ετνρσζν∂ρBσ þ ðμs þ 1
2
ζμζμÞ ~Vμ

e;1
~Vi
e;3 −Tðuiεjklζj∂kul − εijkζj∂tukÞ þ ðμs þ 1

2
ζkζkÞ ~Vi

e;1

~Vμ
e;4

T
2
~pμ
τ ετνρσζνFρσ þ ðμs þ 1

2
ζμζμÞ ~Vμ

e;2
~Vi
e;4 −Tðui 1

2
εjklζjβkl þ εijkζjekÞ þ ðμs þ 1

2
ζkζkÞ ~Vi

e;2

..

. ..
. ..

. ..
.
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T MN ∋ uMuN
�X3

i¼1

αRn;iSe;i−
1

T
∇RðTf3ζRÞ

�
þ2VðMuNÞ

�X3
i¼1

αE;iSe;i−
1

T
∇RðTf1ζRÞ

�

þðζMζNþ2ζðMuNÞ−2ζðMVNÞðuRξRÞÞ
X3
i¼1

αRs;iSe;i−2ξðM
X3
i¼1

fiV
NÞ
e;i þ ~PMN

X3
i¼1

fiSe;iþ2ζðMVNÞX3
i¼1

fiS5þi;

JM ∋ uM
�X3

i¼1

αQ;iSe;i−
1

T
∇RðTf2ζRÞ

�
−ζM

X3
i¼1

αRs;iSe;iþ
X3
i¼1

fiVM
e;i;

K∋∇M

�
ζM

X3
i¼1

αRs;iSe;i−
X3
i¼1

fiVM
e;i

�
; ð3:26Þ

where ~PMN ¼ gμν þ 2uðMVNÞ − 1
ζRζR

ζMζN , and we have defined,

dfi ¼
αE;i
T

dT þ TαRn;idνn þ TαQ;idνþ
�
αRs;i −

fi
2μ̂s

�
dμ̂s: ð3:27Þ

The actual computation is not neat andwe have presented the details in Appendix C for the aid of the readers interested in
reproducing our results. Note that these constitutive relations are presented in terms of “data” which are natural for this
sector; readers can modify these to their favorite basis and get results which might look considerably messier. Moreover,
these results arewritten in a particular “hydrodynamic frame” chosen by aligninguM,T, μ, μn along βM,Λβ, which again
can be modified according to reader’s preference.

(2) Let us now look at the parity-even solutions to Eq. (3.23) with NM ¼ 0,

0 ¼ 1

2
T MNδBgMN þ JMδBAM þKδBφþD: ð3:28Þ

Every term in T MN , JM,Kmust either cancel or contribute to Δwhich has to be a quadratic form. It follows that the
terms in T MN , JM,Kmust be proportional to δBgMN , δBAM, δBφ. Recall, however, that we have chosen to eliminate
uMδBgMN , uMδBAM using the equations of motion. For Δ to be a quadratic form, it therefore implies that T MN , JM

cannot have a term like #ðMuNÞ, #uM respectively for some vector #M and scalar #. With this input let us write down
the most generic allowed form of the currents in terms of 34 new transport coefficients ½βij�5×5 (with β55 ¼ α=T),
½κij�3×3 and η,

T MN ∋ −T½fβ11 ~PRS þ 2β12ζ
ðRVSÞ þ β13ζ

RζSg ~PMN þ fβ21 ~PRS þ 2β22ζ
ðRVSÞ þ β23ζ

RζSg2ζðMVNÞ

þ fβ31 ~PRS þ 2β32ζ
ðRVSÞ þ β33ζ

RζSgζMζN

þ 4fκ11VðR þ κ12ζ
ðRg ~PSÞðMVNÞ þ 4fκ21VðR þ κ22ζ

ðRg ~PSÞðMζNÞ þ η ~PMhRPSiN � 1
2
δBgRS

− T½β14ζR ~PMN þ 2β24ζ
RζðMVNÞ þ β34ζ

RζMζN þ 2κ13 ~P
RðMVNÞ þ 2κ23 ~P

RðMζNÞ�δBAR;

− T½β15 ~PMN þ 2β25ζ
ðMVNÞ þ β35ζ

MζN �δBφ

¼ − ~PMN
X5
i¼1

β1iSi − 2ζðMVNÞX5
i¼1

β2iSi − ζMζN
X5
i¼1

β3iSi − 2VðM X3
i¼1

κ1iV
NÞ
i

− 2ζðM
X3
i¼1

κ2iV
NÞ
i − ησMN; ð3:29Þ
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JM ∋ −T½fβ41 ~PRS þ 2β42ζ
ðRVSÞ þ β43ζ

RζSgζM þ 2fκ31VðR þ κ32ζ
ðRg ~PSÞM� 1

2
δBgRS

− T½β44ζMζN þ κ33PMN �δBAR − T½β45ζM�δBφ;

¼ −ζM
X5
i¼1

β4iSi −
X3
i¼1

κ3iVM
i ; ð3:30Þ

K ∋ −T½β51 ~PRS þ 2β52ζ
ðRVSÞ þ β53ζ

RζS�δBgRS − T½β54ζM�δBAM ¼ −
X4
i¼1

β5iSi: ð3:31Þ

Note that we did not include a term proportional to δBφ in K, because such a term is already present in
K ¼ −αδBφþ∇MðRsξ

MÞ þKþOð∂2Þ. Plugging these back into Eq. (3.28) and defining β55 ¼ α=T we can read
out the parity-even quadratic form Δjeven ¼ αðδBφÞ2 þDjeven,

TΔjeven ¼
X5
i;j¼1

SiβijSj þ
X3
i;j¼1

VM
i κijVj;M þ ησMNσMN;

¼
X5
i;j¼1

SiβðijÞSj þ
X3
i;j¼1

VM
i κðijÞVj;M þ ησMNσMN: ð3:32Þ

In the second step we have realized that only the
symmetric parts of the matrices βij and κij will
survive in this expression, and will contribute
towards dissipation. Thus only 22 out of 35
transport coefficients (including α) are dissipative;
the remaining 13 are nondissipative.

2. Parity-odd (five dimensions)

We can find the most general parity-odd solution of
Eq. (3.23) in three steps: (1) first we consider a particular
set of solutions which takes care of the anomaly N⊥

H and
proceed towards the nonanomalous constitutive relations,
(2) then we write down the most general allowed parity-odd
NM and find a set of constitutive relations pertaining to
that, and (2) finally find the most general parity-odd
constitutive relations with zero NM.
(1) In four dimensions at first order in the deriva-

tives TM⊥
H ¼ 0 and J⊥H ¼ − 3

4
Cð4ÞϵMNRSTuMFNRFSR

[17,22], which implies,

N⊥
H ¼ −

3

4
Cð4Þ μ

T
ϵMNRSTuMFNRFSR: ð3:33Þ

A particular solution pertaining to Eq. (3.23) with
this N⊥

H is given as (see [17]),

T MN ∋ 6Cð4Þμ2VðMMNÞ; JM ∋ 6Cð4ÞμMM;

K ∋ 0; NM ∋ 3Cð4Þ μ
2

T
MM: ð3:34Þ

Here we have defined the magnetic field and fluid
vorticity as

MM ¼ 1

2
ϵMNRSTVNuRFST;

ωM ¼ ϵMNRSσVNuR∂SuT: ð3:35Þ

(2) One can check that the most general form of
NM (whose divergence only contains the product
of derivatives and has at least one δB per term)
can be written as (see Appendix B for more
details),

NM ¼ g1ðβM ~Se;1 þ ~VM
4 Þ þ g2ðβM ~Se;2 þ ~VM

3 Þ
þ g3 ~V

M
1 þ C1TωM; ð3:36Þ

where g’s are functions of T, ν, μ̂s, and C1 is a
constant8 From here we can directly read out the
corresponding constitutive relations,

8It might be noted that since ∇Mω
M ¼ 0, C1 a priory

can be an arbitrary function rather than a constant. How-
ever, if we do the same computation in presence of torsion
and later turn it off, which allows for ∂ ½MVN� ≠ 0, we will
be forced to set C1 to be a constant (see Appendix (A) of
[17]). Another way to see that C1 should be a constant
is using the equilibrium partition function discussed in
Appendix B.
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T MN ∋ uMuN
X2
i¼1

~αRn;i
~Se;i þ 2VðMuNÞX2

i¼1

~αE;i ~Se;i

þ ðζMζN þ 2ζðMuNÞ − 2ζðMVNÞðuRξRÞÞ
X2
i¼1

~αRs;i
~Se;i − ζMζN

X2
i¼1

gi
2μ̂s

~Se;i

− 2VðM X2
i¼1

gi ~V
NÞ
e;iþ2 − 2uðM

X2
i¼1

gi ~V
NÞ
e;i þ 2C1T2VðMωNÞ

þ 2uðMPNÞ
P ϵPKRST∇KðTg1VRuSξTÞ þ 2VðMPNÞ

P ∇Kðg3TϵPKRSTVRuSζTÞ;

JM ∋ uM
X2
i¼1

~αQ;i
~Se;i − ζM

X2
i¼1

~αRs;i
~Se;i þ

X2
i¼1

gi ~V
M
e;i þ PM

K ϵ
KNRST∇NðTg2VRuSξTÞ;

K ∋ ∇M

�
ζM

X2
i¼1

~αRs;i
~Se;i −

X2
i¼1

gi ~V
M
e;i

�
; ð3:37Þ

where we have defined,

dgi ¼
1

T
~αE;idT þ T ~αQ;idνþ T ~αRn;idνn þ

�
~αRs;i −

gi
2μ̂s

�
dμ̂s: ð3:38Þ

The actual computation is not neat and we have presented the details in Appendix C for interested readers.
(3) We should finally consider the parity-odd constitutive relations that satisfy Eq. (3.23) with zero lhs. Following our

discussion in the parity-even sector, the allowed form of the constitutive relations can be written down in terms of 10
coefficients ½~κij�3×3 and ~η,

T MN ∋ −TVTuKζL½4VðMϵNÞTKLðRf~κ11VSÞ þ ~κ12ζ
SÞg þ 4ζðMϵNÞTKLðRf~κ21VSÞ þ ~κ22ζ

SÞg

þ ~η ~PPðMϵNÞTKLðR ~PSÞ
P �

1

2
δBgRS − TVTuKζL½2~κ13VðMϵNÞTKLR þ 2~κ23ζ

ðMϵNÞTKLR�δBAR;

¼ −2VðM X3
i¼1

~κ1i ~V
NÞ
i − 2ζðM

X3
i¼1

~κ2i ~V
NÞ
i − ~η ~σMN;

J μ ∋ −TVTuKζL½2ϵMTKLðRf~κ31VSÞ þ ~κ32ζ
SÞg� 1

2
δBgRS − TVTuKζL½~κ33ϵMTKLR�δBAR;

¼ −
X3
i¼1

~κ3i ~V
M
i ;

K ∋ 0: ð3:39Þ

One can check that these constitutive relations trivially satisfy Eq. (3.23) with zero lhs and the quadratic form
Δjodd ¼ Djodd is given as

TΔjodd ∋ −ϵMNRSTVRuSζT

�X3
i;j¼1

Vi;M ~κijVj;N þ ~ησMPσ
P
N

�
;

¼ −ϵMNRSTVRuSζT
X3
i;j¼1

Vi;M ~κðaÞij Vj;N: ð3:40Þ

It follows that out of the 10 transport coefficients, only 3 contribute to dissipation and the other 7 are
nondissipative.
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3. Positivity constraints

The dissipative transport coefficients are required to
satisfy a set of inequalities to agree with Δ ¼ αðδBφÞ2 þ
Djeven þDjodd ≥ 0,

TΔ ¼
X5
i;j¼1

SiβðijÞSj

þ
�X3

i;j¼1

VM
i κðijÞVj;M þ

X3
i;j¼1

VM
i ~κ½ij� ~Vj;M

�

þ ησMNσMN: ð3:41Þ

We want this expression to be a quadratic form, which it
nearly is except the parity-odd terms in the brackets.
However this term can be made into a quadratic form by
noting that the square of a parity-odd term is parity-even,
due to the identity,

ðϵMNRSTVRuSζTÞðϵMKLOPVLuOζPÞ
¼ ~PN

Kζ
MζM ¼ −2μ̂s ~PN

K: ð3:42Þ

We define

0
B@

V 0M
1

V 0M
2

V 0M
3

1
CA ¼

0
B@

VM
1

VM
2

VM
3

1
CAþ

0
B@

0 a12 a13
0 0 a23
0 0 0

1
CA
0
B@

~V 0M
1

~V 0M
2

~V 0M
3

1
CA;

κ0ij ¼ κij þ kij; k½ij� ¼ 0; ð3:43Þ

such that

X3
i;j¼1

V 0M
i κ

0
ðijÞV

0
j;M ¼

X3
i;j¼1

VM
i κðijÞVj;M þ

X3
i;j¼1

VM
i ~κ½ij� ~Vj;M:

ð3:44Þ

Using the identity Eq. (3.42), the above equation can be
easily solved to give

½aij� ¼

0
BBB@

0
~κ½12�
κ11

κ11ðκ22 ~κ½13�−κð12Þ ~κ½23�Þ−~κ½12�ðκð12Þκð13ÞþζMζM ~κ½12� ~κ½13�Þ
κ11ðκ11κ22−κ2ð12Þ−ζMζM ~κ2½12�Þ

0 0
κ11 ~κ½23�−κð12Þ ~κ½13�þκð13Þ ~κ½12�
κ11κ22−κ2ð12Þ−ζ

MζM ~κ2½12�

0 0 0

1
CCCA; ð3:45Þ

½kij� ¼

0
BBB@

0 0 0

0 −ζMζM
ð~κ½12�Þ2
κ11

−ζMζM
~κ½12� ~κ½13�
κ11

0 −ζMζM
~κ½12� ~κ½13�
κ11

−ζMζM
�ð~κ½13�Þ2

κ11
þ ðκ11 ~κ½23�−κð12Þ ~κ½13�þκð13Þ ~κ½12�Þ2

κ11ðκ11κ22−κ2ð12Þ−ζMζM ~κ2½12�Þ
�
1
CCCA: ð3:46Þ

Consequently Δ will take the form

TΔ ¼
X5
i;j¼1

SiβðijÞSj þ
X3
i;j¼1

V 0M
i κ

0
ðijÞV

0
j;M þ ησMNσMN:

ð3:47Þ

Given T ≥ 0, the condition Δ ≥ 0 implies that η ≥ 0
and the matrices ½βðijÞ�5×5, ½κ0ðijÞ�3×3 have all non-negative
eigenvalues. This gives 9 inequalities among 25 dissipative
transport coefficients, and 16 are completely arbitrary.

E. Summary

We have completed the analysis of a null superfluid up to
the first order in derivatives. Here we summarize the results.
We found that the entire null superfluid transport up to the
first order in derivatives is characterized by an ideal order

pressure P, 51 first-order transport coefficients which are
functions of T, μ=T, μn=T, μ̂s, and two constants C1, Cð4Þ.
P, C1 and Cð4Þ along with 6 transport coefficients,

parity even ð3Þ∶ f1; f2; f3;

parity odd ð3Þ∶ g1; g2; g3; ð3:48Þ

totally determine the hydrostatic transport (part of the
constitutive relations that survive at equilibrium).
Nonhydrostatic nondissipative transport (part that does
not survive at equilibrium but doesn’t contribute to Δ ≥
0 either) is given by 20 transport coefficients,

parity even ð13Þ∶ ½β½ij��5×5 ðantisymmetricÞ;
½κ½ij��3×3 ðantisymmetricÞ;

parity odd ð7Þ∶ ½~κðijÞ�3×3 ðsymmetricÞ; ~η: ð3:49Þ
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Finally the entire dissipative transport is given by 25 transport coefficients,

parity even ð22Þ∶ ½βðijÞ�5×5 ðsymmetricÞ; ½κðijÞ�3×3 ðsymmetricÞ; η;

parity odd ð3Þ∶ ½~κ½ij��3×3 ðantisymmetricÞ: ð3:50Þ

These dissipative transport coefficients follow a set of inequalities [κ0ij is defined in Eq. (3.43)],

½βðijÞ�5×5; ½κ0ðijÞ�3×3; η ≥ 0; ð3:51Þ

where a “non-negative matrix” implies all its eigenvalues are non-negative.
Out of these for an ordinary null fluid, shear viscosity η, bulk viscosity ζ ¼ β11, conductivities κ11, κ13, κ31, κ33 and the

constants C1, Cð4Þ are present. In addition g1, g2 and g3 are forced to be constants, while all the remaining transport
coefficients zero.
Using P, fi, gi we define some new functions,

dP ¼ SdT þQdμþ Rndμn þ Rsdμs; Eþ P ¼ ST þQμþ Rnμn;

dfi ¼
αE;i
T

dT þ TαRn;idνn þ TαQ;idνþ
�
αRs;i −

fi
2μ̂s

�
dμ̂s; αE;i þ fi ¼ αS;iT þ αQ;iμþ αRn;iμn;

dgi ¼
~αE;i
T

dT þ T ~αRn;idνn þ T ~αQ;idνþ
�
~αRs;i −

gi
2μ̂s

�
dμ̂s; ~αE;i þ gi ¼ ~αS;iT þ ~αQ;iμþ ~αRn;iμn: ð3:52Þ

In terms of these transport coefficients, corrections to the Josephson equation (K ¼ 0) coming from the first-order null
superfluid transport are given as (here β55 ¼ α=T),

uMξM þ μn − μ ¼ 1

β55
∇MðRsξ

MÞ −
X4
i¼1

β5i
β55

Si

þ 1

β55
∇M

�
ζM

X3
i¼1

αRs;iSe;i þ ζM
X2
i¼1

~αRs;i
~Se;i −

X3
i¼1

fiVM
e;i −

X2
i¼1

gi ~V
M
e;i

�
þOð∂2Þ; ð3:53Þ

which can be seen as determining uMξM in terms of the other null superfluid variables. Note that though this equation
contains second-order terms, it is only correct up to the first order in derivatives, and will admit further corrections coming
from higher-order null superfluid transport. The energy-momentum tensor, charge current and entropy current up to first
order in derivatives are, however, given as

TMN ¼ RnuMuN þ 2EuðMVNÞ þ PPMN þ Rsξ
MξN þ T MN þOð∂2Þ;

JM ¼ QuM − Rsξ
M þ JM þOð∂2Þ

JMS ¼ SuM þ SM þOð∂2Þ; ð3:54Þ

where the higher derivative corrections are,

T MN ¼ uMuN
�X3
i¼1

αRn;iSe;i þ
X2
i¼1

~αRn;i
~Se;i −

1

T
∇RðTf3ζRÞ

�

þ 2VðMuNÞ
�X3
i¼1

αE;iSe;i þ
X2
i¼1

~αE;i ~Se;i −
1

T
∇RðTf1ζRÞ

�

þ 2ζðMuNÞ
�X3
i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i

�
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þ 2ζðMVNÞ
�X3
i¼1

fiS5þi − ðuRξRÞ
�X3

i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i

�
−
X5
i¼1

β2iSi

�

þ ζMζN
�X3
i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i −

X2
i¼1

gi
2μ̂s

~Se;i −
X5
i¼1

β3iSi

�

þ 2uðM
�
−
X3
i¼1

fiV
NÞ
e;i −

X2
i¼1

gi ~V
NÞ
e;i þ PNÞ

P ϵPKRST∇KðTg1VRuSξTÞ
�

þ 2VðM
�
ðuRξRÞ

X3
i¼1

fiV
NÞ
e;i −

X2
i¼1

gi ~V
NÞ
e;iþ2 −

X3
i¼1

κ1iV
NÞ
i −

X3
i¼1

~κ1i ~V
NÞ
i þ 3Cð4Þμ2MNÞ

þ PNÞ
P ϵPKRST∇KðTg3VRuSζTÞ þ C1T2ωNÞ

�
þ ~PMN

�X3
i¼1

fiSe;i −
X5
i¼1

β1iSi

�

− 2ζðM
�X3
i¼1

fiV
NÞ
e;i þ

X3
i¼1

κ2iV
NÞ
i þ

X3
i¼1

~κ2i ~V
NÞ
i

�
− ησMN − ~η ~σMN; ð3:55Þ

JM ¼ uM
�X3
i¼1

αQ;iSe;i þ
X2
i¼1

~αQ;i
~Sq;i −

1

T
∇RðTf2ζRÞ

�
þ PM

K ϵ
KNRST∇NðTg2VRuSξTÞ

− ζM
�X3
i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i þ

X5
i¼1

β4iSi

�

þ
X3
i¼1

fiVM
e;i þ

X2
i¼1

gi ~V
M
e;i −

X3
i¼1

κ3iVM
i −

X3
i¼1

~κ3i ~V
M
i þ 6Cð4ÞμMM; ð3:56Þ

SM ¼ uM
�X3
i¼1

αS;iSe;i þ
X2
i¼1

~αS;i ~Se;i −
1

T2
∇RðTf1ζRÞ þ

μn
T2

∇RðTf3ζRÞ þ
μ

T2
∇RðTf2ζRÞ

�

þ ζM
X5
i¼1

μβ4i − β2i
T

Si þ
X3
i¼1

μκ3i − κ1i
T

VM
i þ

X3
i¼1

μ~κ3i − ~κ1i
T

~VM
i

þ Tg1ϵMNRSTVNuRζS∂Tνn þ Tg2ϵMNRSTVNuRζS∂Tνþ 2C1TωM

− PM
K ϵ

KNRST

�
μn
T
∇NðTg1VRuSξTÞ þ

μ

T
∇NðTg2VRuSξTÞ −

1

T
∇NðTg3VRuSξTÞ

�
: ð3:57Þ

The scalar S5 ¼ TδBφ ¼ uMξM þ μn − μ appearing here
can be eliminated in favor of ∇MðRsξ

MÞ using the
Josephson equation. We will like to reiterate that these
results are presented in a particular hydrodynamic
frame (gained by aligning uM, T, μn, μ along βμ, Λβ)
and in a “natural” choice of basis for the independent
data. They can be transformed to any other preferred
hydrodynamic frame or basis by a straight forward
substitution.

IV. NULL REDUCTION TO
GALILEAN SUPERFLUIDS

We now reduce our null superfluid results to Galilean
superfluids. The results are presented in the covariant
Newton-Cartan notation and the conventional noncovariant

notation (for superfluids coupled to flat spacetime). For
more details on the reduction, please refer to [17].

A. Newton-Cartan notation

We start with a quick review of null reduction of null
backgrounds to Newton-Cartan backgrounds; for details
see [17]. For an excellent review of Newton-Cartan
geometries, please refer to the Appendix of [36].
Background and hydrodynamic fields: On our null

background Mðdþ1Þ, we choose a basis fxMg ¼ fx−; xμg
such that the null isometry V ¼ fV ¼ ∂−;ΛV ¼ 0g. The
fact that V is an isometry implies that all the fields in the
theory are independent of the x− coordinate. To perform
the reduction, we require an arbitrary null field vM

normalized as vMvM ¼ 0, vMVM ¼ −1, which can be
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interpreted as providing a “Galilean frame of reference.” In
the case of a null (super)fluid, the null fluid velocity vM ¼
uM defines a special Galilean frame which we refer to as the
“fluid frame of reference.” In an arbitrary Galilean frame,
we decompose the fields VM, vM, gMN , AM in the chosen
basis as

VM ¼
�
1

0

�
; vM ¼

�
vμBðvÞ

μ

vμ

�
;

gMN ¼
� 0 −nν
−nμ hμν þ 2nðμB

ðvÞ
νÞ

�
; AM ¼

�−1
Aμ

�
;

ð4:1Þ

along with

VM ¼
�

0

−nμ

�
; vM ¼

� −1
BðvÞ
μ

�
;

gMN ¼
�
hνρBðvÞ

ν BðvÞ
ρ − 2vμBðvÞ

μ hνρBðvÞ
ρ − vν

hμνBðvÞ
ν − vμ hμν

�
; ð4:2Þ

such that

nμvμ ¼ 1; vμhμν ¼ 0;

nμhμν ¼ 0; hμρhρν þ nμvν ¼ δμ
ν: ð4:3Þ

The collection of fields fnμ; vμ; hμν; hμν; BðvÞ
μ g defines a

Newton-Cartan structure. The condition ∇MVN ¼ 0
implies that the “time-metric” n ¼ nμdxμ is a closed
one-form, i.e. dn ¼ 0; this is known to be true for
torsionless Newton-Cartan structures. Note that after
choosing the said basis, the residual diffeomorphisms
are xμ → xμ þ χμðxνÞ and x− → ξ− þ χ−ðxμÞ. The former
of these are just the Newton-Cartan diffeomorphisms,
while the latter are known as “mass gauge transforma-
tions.” Only fields that transform under these mass
gauge transformations are,

δχ−B
ðvÞ
μ ¼ −∂μχ

−; δχ−Aμ ¼ −∂μχ
−: ð4:4Þ

BðvÞ
μ is therefore known as the mass gauge field. On

the other hand mass gauge transformation of Aμ can
be absorbed into its U(1) gauge transformation. We
define the volume element on a Newton-Cartan back-
ground as

εμνρσ ¼ vMϵMμνρσ ¼ −ϵ−μνρσ: ð4:5Þ

Note that the volume element is independent of the
Galilean frame employed to define it. The Levi-Civita
connection ΓR

MN decomposes in this basis as

ð4:6Þ

and all the remaining components zero. Here we have identified Γλ
μν as the (torsionless) Newton-Cartan connection and

denoted the respective covariant derivative by . We have also defined the (dual) frame vorticity and electromagnetic field
strength as

ð4:7Þ

The covariant derivative acts on the Newton-Cartan structure appropriately,

ð4:8Þ

Note that vM was an arbitrary field chosen to perform the reduction, and one is allowed to arbitrarily redefine it without
changing the physics. This leads to the invariance of the system under “Milne transformations” of the Newton-Cartan
structure,

vμ → vμ þ ψμ; hμν → hμν − 2nðμψνÞ þ nμnνψρψρ; BðvÞ
μ → BðvÞ

μ þ ψμ −
1

2
nμψρψρ; ð4:9Þ

where ψμnμ ¼ 0, ψμ ¼ hμνψν. The fields nμ, hμν, Γ
ρ
μν and εμνρσ are Milne invariant. We can now decompose the fluid

velocity uM and the associated projector PMN as
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uM ¼
�
uμBμ

uμ

�
; uM ¼

�−1
Bμ

�
; PMN ¼

�
0 0

0 pμν

�
; PMN ¼

�
pνρBνBρ pμνBν

pμνBν pμν

�
: ð4:10Þ

The fields fnμ; uμ; pμν; pμν; Bμg define the Newton-Cartan structure in the fluid frame of reference, satisfying,

nμuμ ¼ 1; uμpμν ¼ 0; nμpμν ¼ 0; pμρpρν þ nμuν ¼ δνμ: ð4:11Þ

They can be reexpressed in terms of fnμ; vμ; hμν; hμν; BðvÞ
μ g using Eq. (4.9) with ψμ ¼ ūμ ¼ hμνuν ¼ uμ − vμ,

pμν ¼ hμν; pμν ¼ hμν − 2nðμūνÞ þ nμnνūρūρ; Bμ ¼ BðvÞ
μ þ ūμ −

1

2
nμūρūρ: ð4:12Þ

The (dual) fluid vorticity is defined similar to the (dual) frame vorticity as

ð4:13Þ

For later use, we define the magnetic field and fluid vorticity,

Mμ ¼ 1

2
ενρσμnνFρσ; ωμ ¼ 1

2
ενρσμnνΩρσ: ð4:14Þ

Finally the superfluid velocity can be decomposed as

ζM ¼
�
Bμζ

μ

ζμ

�
; ξM ¼

�
μs þ 1

2
pμνζ

μζν þ Bμξ
μ

ξμ ¼ ζμ þ uμ

�
; ð4:15Þ

where ξμnμ ¼ 1, ζμnμ ¼ 0. We have treated the superfluid potential μs as an independent component of ξM. The hatted
superfluid potential is, however, given as μ̂s ¼ − 1

2
ζμζμ. Decomposition of the projector ~PMN, on the other hand, is

~PMN ¼
�
0 0

0 ~pμν ¼ pμν −
ζμζν

pρσζρζσ

�
; ~PMN ¼

� ~pνρBνBρ ~pμνBν

~pμνBν ~pμν ¼ pμν − ζμζν

pρσζρζσ

�
: ð4:16Þ

Currents and conservation: The mass current ρμ, energy current ϵμ, stress tensor tμν, charge current jμ and entropy current
sμ on Newton-Cartan backgrounds can be respectively read out in terms of TMN , JM, JMS as [17],

ρμ ¼ −TμMVM; ϵμ ¼ −TμMuM; tμν ¼ Pμ
MP

ν
NT

MN; jμ ¼ Jμ; sμ ¼ JμS; ð4:17Þ

with tμν ¼ tνμ and tμνnν ¼ 0. They satisfy the conservation laws and the second law of thermodynamics,

ð4:18Þ

The energy current ϵμ and the stress tensor tμν in Eq. (4.17) are defined in the fluid frame of reference; we can define the
respective quantities in an arbitrary frame of reference,

ϵμðvÞ ¼ −TμMvM ¼ ϵμ þ uμūνpνρρ
ρ þ 1

2
ρμūρūρ þ tμνūν;

tμνðvÞ ¼ ðPðvÞÞμMðPðvÞÞνNTMN ¼ tμν þ 2ūðμhνÞσ ρσ − ūμūνρσnσ; ð4:19Þ
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where PMN
ðvÞ ¼ gMN þ 2vðMVNÞ. They satisfy the conservation laws,

ð4:20Þ

Galilean superfluid constitutive relations: Finally, by a direct computation we can find that the Galilean superfluid
constitutive relations in the fluid frame take a structural form.

ρμ ¼ ρuμ þ Rsξ
μ þ ςμρ;

ϵμ ¼ ϵuμ þ Rs

�
1

2
ζμζμ þ μs

�
ξμ þ ςμϵ ;

tμν ¼ Ppμν þ Rsζ
μζν þ ςμνt ;

jμ ¼ quμ − Rsξ
μ þ ςμq;

sμ ¼ suμ þ ςμs : ð4:21Þ

While in an arbitrary frame, energy current and stress tensor are given as

ϵμðvÞ ¼ uμ
�
ϵþ 1

2
ρū2 þ ςσρūσ

�
þ Rsξ

μ

�
1

2
ξ̄2 þ μs

�
þ Pūμ þ

�
ςμϵ þ 1

2
ςμρū2 þ ςμρs ūρ

�
;

tμνðvÞ ¼ ρūμūν þ Rsξ̄
μξ̄ν þ Phμν þ ðςμνs þ 2ςðμρ ūνÞÞ; ð4:22Þ

where ūμ ¼ hμνuν ¼ uμ − vμ and ξ̄μ ¼ hμνξν ¼ ξμ − vμ. Various quantities appearing in the constitutive relations can be
found via reduction (Table IV) as: fluid densities,

ð4:23Þ

and dissipative currents,

ςμρ ¼ ζμ
�X3
i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i

�
−
X3
i¼1

fiV
μ
e;i −

X2
i¼1

gi ~V
μ
e;i þ εμνρσ∂νðTg1nρζσÞ;

ςμϵ ¼ ζμ
�X3
i¼1

fiS5þi þ
�
μs þ

1

2
ζμζμ

��X3
i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i

�
−
X5
i¼1

β2iSi

�

þ
�
μs þ

1

2
ζμζμ

�X3
i¼1

fiV
μ
e;i −

X2
i¼1

gi ~V
μ
e;iþ2 −

X3
i¼1

κ1iV
μ
i −

X3
i¼1

~κ1i ~V
μ
i þ 3Cð4Þμ2Mμ

þ εμνρσ∂νðTg3nρζσÞ þ C1T2ωμ;

FIRST ORDER GALILEAN SUPERFLUID DYNAMICS PHYSICAL REVIEW D 96, 065004 (2017)

065004-21



ςμνt ¼ ζμζν
�X3
i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i −

X2
i¼1

gi
2μ̂s

~Se;i −
X5
i¼1

β3iSi

�
− ησμν − ~η ~σμν

− 2ζðμ
�X3
i¼1

fiV
νÞ
e;i þ

X3
i¼1

κ2iV
νÞ
i þ

X3
i¼1

~κ2i ~V
νÞ
i

�
þ ~pμν

�X3
i¼1

fiSe;i −
X5
i¼1

β1iSi

�
;

ςμq ¼ −ζμ
�X3
i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i þ

X5
i¼1

β4iSi

�
þ εμνρσ∂νðTg2nρζσÞ

þ
X3
i¼1

fiV
μ
e;i þ

X2
i¼1

gi ~V
μ
e;i −

X3
i¼1

κ3iV
μ
i −

X3
i¼1

~κ3i ~V
μ
i þ 6Cð4ÞμMμ;

ςμs ¼ ζμ
X5
i¼1

μβ4i − β2i
T

Si − εμνρσ
�
μn
T
∂νðTg1nρζσÞ þ

μ

T
∂νðTg2nρζσÞ −

1

T
∂νðTg3nρζσÞ

�

þ
X3
i¼1

μκ3i − κ1i
T

Vμ
i þ

X3
i¼1

μ~κ3i − ~κ1i
T

~Vμ
i − Tg1εμνρσnνζρ∂σνn − Tg2εμνρσnνζρ∂σν

þ 2C1Tωμ: ð4:24Þ

In addition, we also have the Josephson equation,

ð4:25Þ

which is the derivative correction of the ideal order version μs ¼ − 1
2
ζμζμ − μþ μn. This completes our discussion of the

first-order Galilean (Newton-Cartan) superfluids; counting of various transport coefficients appearing in the constitutive
relations is same as the null superfluid given in Sec. III E.

B. Noncovariant notation (for flat spacetime)

If the superfluid is coupled to a flat Galilean spacetime, it is fitting to reexpress the results in the conventional
noncovariant notation where we treat the time and space indices distinctly. It might help the reader to better relate the
Galilean superfluid constitutive relations to the existing Galilean literature, e.g. in [23].
Background and hydrodynamic fields: On the Newton-Cartan background, we choose a basis fxμg ¼ ft; xig such that

the Galilean frame velocity ðvμÞ ¼ ∂t. A flat Galilean background is defined by a particular choice of the Newton-Cartan
structure in this basis,

nμ ¼
�
1

0

�
; vμ ¼

�
1

0

�
; pμν ¼

�
0 0

0 δij

�
; pμν ¼

�
0 0

0 δij

�
; BðvÞ

μ ¼ 0; ð4:26Þ

where δij ¼ δij is the Kronecker delta. It can be checked that the respective Newton-Cartan connection Γλ
μν ¼ 0, justifying

the spacetime to be flat. The Newton-Cartan structure in the fluid frame can be worked out from here to be,

uμ ¼
�

1

ui

�
; Bμ ¼

�
− 1

2
ukuk
ui

�
; pμν ¼

�
0 0

0 δij

�
; pμν ¼

�
ukuk −uj
−ui δij

�
: ð4:27Þ

We define the spatial volume element,

εijk ¼ nμεμijk ¼ εtijk: ð4:28Þ
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The U(1) gauge field Aμ can be decomposed as
Aμdxμ ¼ Atdtþ Aidxi. The fluid vorticity and electromag-
netic field strength on the other hand can be decomposed as

Ωμν ¼
�

0 ð∂tþuk∂kÞuiþωikuk

−ð∂tþuk∂kÞui−ωikuk ωij ¼ ∂iuj−∂jui

�
;

ð4:29Þ

Fμν ¼
�

0 −ei ¼ ∂tAi − ∂iAt

ei ¼ −∂tAi þ ∂iAt βij ¼ ∂iAj − ∂jAi

�
;

ð4:30Þ
where ωij is the (dual) spatial vorticity, ei is the electric
field and βij is the dual magnetic field. For later use, we
define the magnetic field and fluid vorticity,

Mi ¼ 1

2
εijkβjk; ωi ¼ 1

2
εijkωjk: ð4:31Þ

Finally the superfluid velocity can be decomposed as

ζμ ¼
�

0

ζi

�
; ξμ ¼

�
1

ξi ¼ ui þ ζi

�
;

μs ¼ −ξt −
1

2
ξiξi; μ̂s ¼ −

1

2
ζiζi; ð4:32Þ

with the projection operators,

~pμν ¼
� ukuk −uj

−ui ~pij ¼ δij −
ζiζj
ζkζk

�
;

~pμν ¼
�
0 0

0 ~pij ¼ δij − ζiζj

ζkζk

�
: ð4:33Þ

Densities, currents and conservation laws: In flat space-
time, the conservation laws and the second law of thermo-
dynamics take the well-known form,

mass conservation∶ ∂tρ
t þ ∂iρ

i ¼ 0

energy conservation∶ ∂tϵ
t
ðvÞ þ ∂iϵ

i
ðvÞ ¼ jiei − TH⊥

t

momentum conservation∶ ∂tρ
j þ ∂it

ij
ðvÞ ¼ ðejjt þ βjkjkÞ þ TH

⊥j;

charge conservation∶ ∂tjt þ ∂iji ¼ J⊥H;
second law of thermodynamics∶ ∂tst þ ∂isi ≥ 0; ð4:34Þ

where we have identified various Galilean quantities: mass density ρt, mass current ρi, energy density ϵtðvÞ, energy current
ϵiðvÞ, stress tensor t

ij
ðvÞ, charge density jt, charge current ji, entropy density st and entropy current si.

Superfluid constitutive relations: Finally, we can read out the structural form of the Galilean superfluid constitutive
relations in noncovariant notation using reduction,

ρt ¼ ρþ Rs; ρi ¼ ρui þ Rsξ
i þ ςiρ;

ϵtðvÞ ¼ ϵþ Rsμs þ
1

2
ρu⃗2 þ 1

2
Rsξ⃗

2 þ ςiρui;

ϵiðvÞ ¼ ui
�
ϵþ Pþ 1

2
ρū2 þ ςjρuj

�
þ Rsξ

i

�
1

2
ξ̄2 þ μs

�
þ
�
ςiϵ þ

1

2
ςiρū2 þ ςijs uj

�
;

tijðvÞ ¼ ρuiuj þ Rsξ
iξj þ Pδij þ ðςijs þ 2ςðiρ ujÞÞ;

jt ¼ q − Rs; ji ¼ qui − Rsξ
i þ ςiq;

st ¼ s; si ¼ sui þ ςis: ð4:35Þ

Various quantities appearing here can also be worked out using reduction: fluid densities,

ρ ¼ Rn þ
X3
i¼1

αRn;iSe;i þ
X2
i¼1

~αRn;i
~Se;i −

1

T
∂iðTf3ζiÞ;

ϵ ¼ Eþ
X3
i¼1

αE;iSe;i þ
X2
i¼1

~αE;i ~Se;i −
1

T
∂iðTf1ζiÞ
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q ¼ Qþ
X3
i¼1

αQ;iSe;i þ
X2
i¼1

~αQ;i
~Sq;i −

1

T
∂iðTf2ζiÞ;

s ¼ Sþ
X3
i¼1

αS;iSe;i þ
X2
i¼1

~αS;i ~Se;i −
1

T2
∂iðTf1ζiÞ þ

μn
T2

∂iðTf3ζiÞ þ
μ

T2
∂iðTf2ζiÞ; ð4:36Þ

and dissipative currents,

ςiρ ¼ ζi
�X3
i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i

�
−
X3
i¼1

fiVi
e;i −

X2
i¼1

gi ~V
i
e;i þ εijk∂jðTg1ζkÞ;

ςiϵ ¼ ζi
�X3
i¼1

fiS5þi þ
�
μs þ

1

2
ζkζk

��X3
i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i

�
−
X5
i¼1

β2iSi

�

þ
�
μs þ

1

2
ζkζk

�X3
i¼1

fiVi
e;i −

X2
i¼1

gi ~V
i
e;iþ2 −

X3
i¼1

κ1iVi
i −

X3
i¼1

~κ1i ~V
i
i þ 3Cð4Þμ2Mi;

þ εijk∂jðTg3ζkÞ þ C1T2ωi

ςijt ¼ ζiζj
�X3
i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i −

X2
i¼1

gi
2μ̂s

~Se;i −
X5
i¼1

β3iSi

�
− ησij − ~η ~σij

− 2ζði
�X3
i¼1

fiV
jÞ
e;i þ

X3
i¼1

κ2iV
jÞ
i þ

X3
i¼1

~κ2i ~V
jÞ
i

�
þ ~pij

�X3
i¼1

fiSe;i −
X5
i¼1

β1iSi

�
;

ςiq ¼ −ζi
�X3
i¼1

αRs;iSe;i þ
X2
i¼1

~αRs;i
~Se;i þ

X5
i¼1

β4iSi

�
þ εijk∂jðTg2ζkÞ

þ
X3
i¼1

fiVi
e;i þ

X2
i¼1

gi ~V
i
e;i −

X3
i¼1

κ3iVi
i −

X3
i¼1

~κ3i ~V
i
i þ 6Cð4ÞμMi;

ςis ¼ ζi
X5
i¼1

μβ4i − β2i
T

Si − εijk
�
μn
T
∂jðTg1ζkÞ þ

μ

T
∂jðTg2ζkÞ −

1

T
∂jðTg3ζkÞ

�

þ
X3
i¼1

μκ3i − κ1i
T

Vi
i þ

X3
i¼1

μ~κ3i − ~κ1i
T

~Vi
i þ Tg1εijkζj∂kνn þ Tg2εijkζj∂kνþ 2C1Tωi: ð4:37Þ

In addition, we have the Josephson equation,

−
1

2
ζiζi − μs þ μn − μ ¼ 1

β55
ð∂tRs þ ∂iðRsξ

iÞÞ −
X4
i¼1

β5i
β55

Si

þ 1

β55
∂k

�
ζk

X3
i¼1

αRs;iSe;i þ ζk
X2
i¼1

~αRs;i
~Se;i −

X3
i¼1

fiVk
e;i −

X2
i¼1

gi ~V
k
e;i

�
; ð4:38Þ

which is the derivative correction of the ideal-order version μs ¼ − 1
2
ζiζi þ μn − μ. These equation can be compared with

[23] for which the U(1) chemical potential μ ¼ 0. This completes our discussion of Galilean superfluids coupled to flat
Galilean spacetime, expressed in noncovariant notation.

V. GALILEAN (SUPER)FLUIDS VIA LARGE C LIMIT

In the preceding sections, building upon our previous work in [17,18,22], we have formulated a theory of Galilean (super)
fluids, illustrated with an explicit computation up to first order in derivatives. The analysis has been purely based on
Galilean symmetries and the second law of thermodynamics. However, we know that the nature is fundamentally
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relativistic, and the physical systems behave Galilean only
in the limit jv⃗j ≪ c. It is natural to ask therefore, that to
what degree can we trust our construction of “Galilean”
(super)fluids to describe “nonrelativistic” physics we
encounter around us. The question is particularly important
as the number of transport coefficients in a Galilean (super)
fluid at a given derivative order, are much more than in a
relativistic (super)fluid (see Table I). To bridge this gap
between nonrelativistic and Galilean (super)fluids, we
would like to be able to show that the most generic
Galilean (super)fluid can be gained via an appropriate
c → ∞ limit of a relativistic system.
An important point to note here is that we do not

require this “relativistic system”, whose limit leads to the
Galilean fluid, to be a “relativistic fluid”. The reason is
that fluid dynamics itself is an effective theory of large
wavelength fluctuations, and there is no reason to expect
that the c → ∞ and large wavelength limits would
commute (see [37] for more discussion in this direction).
In other words, there might be some information in the
microscopic field theory which gets integrated over in the
long wavelength limit, but nevertheless survives a c → ∞
limit followed by a long wavelength limit. In fact, to be
able to take the c → ∞ limit consistently, the relativistic
fluid needs to be accompanied with an additional U(1)
current which keeps track of the flow of mass. This
requirement follows from the fact that the nonrelativistic
symmetry algebra has an additional mass generator
compared to the Poincaré algebra. For the cases where
the relativistic fluid comes with a predefined notion of
“particle(s),” this current can be provided by the particle
number currents, as illustrated by [38] for single com-
ponent fluids. Practically, this amounts to starting from a
relativistic “fluid” with two U(1) currents, one for
electromagnetic charge and the other for mass conserva-
tion. It is this extra information which leads to more
transport coefficients in a Galilean (super)fluid. To get
some intuition of this extra information, note that for a
single component Galilean (super)fluid, wherein the
charge and mass currents are proportional (see footnote 9),
the number of transport coefficients turn out to be the
same as a relativistic (super)fluid. This suggests that
the extra information in a Galilean (super)fluid can be
attributed to the presence of multiple components with
different charge is to mass ratios. In these fluids mass
flows independent of charge, which a relativistic descrip-
tion cannot probe, but is captured in a nonrelativistic
description.
To be more concrete, consider the constitutive relations

of a relativistic superfluid Tμν
rel, J

μ
rel, Krel and the entropy

current JμS;rel, written in terms of the fields uμrel, Trel, μrel and
φrel, and the background fields grelμν and Arel

μ . As discussed in
Sec. II, they are the most generic expressions allowed by
symmetries which satisfy the off-shell second law of
thermodynamics,

Trel∇rel
μ JμS;rel þ urelν ð∇rel

μ Tμν
rel − Fνρ

relJ
rel
ρ − T⊥ν

H − Krelξ
ν
relÞ

þ μrelð∇rel
μ Jμrel − J⊥H þ KrelÞ ≥ 0: ð5:1Þ

We depart from this fluid slightly by introducing another
U(1) conserved current Rμ

rel, along with an associated
chemical potential μreln and a background gauge field
Brel
μ . This extended system will be required to satisfy a

modified second law,

Trel∇rel
μ JμS;rel

þ urelν ð∇rel
μ Tμν

rel − Fνρ
relJ

rel
ρ −Ωνρ

relR
rel
ρ − T⊥ν

H − Krelξ
ν
relÞ

þ μrelð∇rel
μ Jμrel − J⊥H þ KrelÞ þ μreln ð∇rel

μ Rμ
rel − KrelÞ ≥ 0;

ð5:2Þ

with Ωrel
μν ¼ ∂μBrel

ν − ∂νBrel
μ . Here the superfluid phase φ

transforms under both the U(1)’s and the superfluid
velocity is given by ξrelμ ¼ ∂μφ

rel þ Arel
μ − Brel

μ . We claim
that under an appropriate c → ∞ limit this system gives rise
to the most generic Galilean superfluid. Unlike Tμν

rel and J
μ
rel

which are associated with fundamental symmetries, not
every relativistic system need to have a conserved Rμ

rel; it
corresponds to an emergent U(1) symmetry at nonrelativ-
istic scales, such as the particle number conservation,
which is required to be able to take a nonrelativistic
limit consistently.9

Let us now proceed to define a c → ∞ limit of this
system. For simplicity, we will work in a frame locally
comoving with the fluid; results in any other frame can be
obtained easily by performing a Galilean boost. We define
c-scaling of the background fields as

grelμν ¼ −c2nμnν þ pμν; gμνrel ¼ −
1

c2
uμuν þ pμν;

Arel
μ ¼ Aμ; Brel

μ ¼ c2nμ þ Bμ: ð5:4Þ

9One way to interpret such a relativistic system is to consider
a fluid with multiple “components” individually conserved.
The corresponding currents are then Tμν

rel, Nμ
a;rel, JμS;rel where

index “a” runs over the number of components. If each
component has rest-mass ma and charge qa (normalized
such that

P
aqaqa ¼ −

P
amaqa ¼ 1) we can define Jμrel ¼P

aqaN
μ
a;rel and Rμ

rel ¼
P

amaN
μ
a;rel. We turn on a background

gauge field Aa;rel
μ ¼ qaArel

μ þmaBrel
μ coupling to component cur-

rents with respective chemical potentials μrela ¼ qaμrelþmaμreln .
On the other hand, superfluid velocity is given via ξrelμ ¼
∂μφþP

aqaA
a
μ. Now the off-shell second law in Eq. (5.2)

follows from the off-shell second law of this multicomponent
fluid (q̄a ¼ ðm2qa þmaÞ=ð

P
amama − 1Þ),

Trel∇rel
μ JμS;rel þ urelν ð∇rel

μ Tμν
rel −

X
a

Fνρ
a;relJ

a;rel
ρ − T⊥ν

H − Krelξ
ν
relÞ

þ
X
a

μrela ð∇rel
μ Jμa;rel − q̄aJ⊥H þ qaKrelÞ ≥ 0: ð5:3Þ
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See Sec. IV for the definition of Newton-Cartan fields used
here. On the other hand, superfluid fields in a comoving
frame scale as

uμrel ¼ uμ; Trel ¼ T; μrel ¼ μ; μreln ¼ c2 þ μn;

ξμrel ¼ uμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2μs þ ζ2

c2

s
þ ζμ: ð5:5Þ

In terms of these, we can define various nonrelativistic
currents as

ρμ ¼ lim
c→∞

Rμ
rel; ϵμ ¼ lim

c→∞
c2ðTμν

relnν − Rμ
relÞ;

tμν ¼ lim
c→∞

pμ
ρpν

σT
ρσ
rel;

qμ ¼ lim
c→∞

Jμrel; sμ ¼ lim
c→∞

JμS;rel: ð5:6Þ

It can be checked that under a Poincaré transformation of
the relativistic currents, these nonrelativistic currents trans-
form appropriately under the Galilean symmetry group.
They also satisfy the c → ∞ version of the modified off-
shell second law (5.2),

ð5:7Þ

which is the correct Galilean off-shell second law. In this
way, we can verify that corresponding to every set of
Galilean superfluid constitutive relations that satisfy
Eq. (5.7), there exists a relativistic system (not necessarily
a fluid) satisfying Eq. (5.2) whose c → ∞ limit reduces to
the said Galilean superfluid. In other words, every Galilean
superfluid is nonrelativistic, i.e.; it follows from the c → ∞
limit of a relativistic system.

VI. DISCUSSION

We worked out the most generic constitutive relations
of an (anomalous) Galilean superfluid up to first order in
derivative expansion, both in parity-even and -odd sec-
tors. We extended the idea of null fluid introduced in
[17,18] to null superfluid, which is a relativistic embed-
ding of a Galilean superfluid in one higher dimension,
and used it to obtain the mentioned results. We found the
spectrum of transport coefficients to be extremely rich
with 38 coefficients in parity-even and 13 coefficients in
parity-odd sector at first order, in addition to two
undetermined constants in parity-odd sector including
the U(1) anomaly constant (see Table I). Out of these,
3 parity-odd and 3 parity-even coefficients survive in
equilibrium and determine the hydrostatic physics, while
13 parity-even and 7 parity-odd coefficients govern
nondissipative phenomenon away from equilibrium. On
the other hand, 22 parity-even and 3 parity-odd coef-
ficients are dissipative. Though we did not discuss it in
the main text, there are hints that 13 parity-even non-
dissipative nonhydrostatic coefficients and 3 parity-odd
dissipative coefficients vanish on imposing Onsager
relations (microscopic reversibility). To avoid confusion
with counting, we would like to note that we have

removed one parity-even hydrostatic coefficient by redefi-
nition of the U(1) phase φ.
Perhaps the most striking benefit of working in the off-

shell formalism is that it leads to a complete classification
of (super)fluid transport up to all orders in derivative
expansion [25–27] and provides a natural setting to attempt
writing down a Wilsonian effective action describing the
entire (super)fluid dynamics [26,39–44]. It will be inter-
esting to undertake these ambitious problems in context of
null/Galilean (super)fluids, and we plan to return to these in
future.
In this paper, we focused on breaking the internal U(1)

symmetry of Galilean fluids and obtain a null/Galilean
superfluid. The same procedure can also be used to break
spacetime symmetries, which lead to the formation of
boundaries/surfaces in (super)fluids [45]. In an upcoming
paper [46], authors discuss the surface transport for
relativistic and Galilean superfluids. Finally, first-order
computations of this paper can also be easily extended
to higher orders; in an ongoing project [47] we are looking
at some interesting second-order phenomenon in Galilean
(super)fluids.
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APPENDIX A: RELATIVISTIC SUPERFLUIDS UP
TO FIRST ORDER: DERIVATION

In this Appendix, we present a detailed derivation
of first-order constitutive relations of a relativistic super-
fluid in off-shell formalism. These results have already
been obtained in on-shell formalism in [12–14], while a
generic mechanism for arbitrarily high derivative order
(non-Abelian) superfluids was presented in [27].

1. Ideal superfluids

Let us start with ideal superfluids, i.e. superfluid con-
stitutive relations that satisfy the free energy conservation
Eq. (2.16) at first derivative order. At ideal order, the most
generic tensorial form of various quantities appearing in
Eq. (2.16) can be written as

Tμν ¼ ðEþ PÞuμuν þ Pgμν þ Rsξ
μξν þ λðuμξν þ uνξμÞ

þOð∂Þ;
Jμ ¼ Quμ þQsξ

μ þOð∂Þ;
K ¼ −αδBφþ Kideal þOð∂Þ;
Nμ ¼ Nuμ þ Nsξ

μ þOð∂Þ;
Δ ¼ ðαδBφÞ2 þ Δideal þOð∂2Þ; ðA1Þ

where E, P, Rs, λ,Q,Qs, Kideal, N, Ns are functions of T, μ
and μs ≡ − 1

2
ξμξμ. We have omitted the only other possible

scalar δBφ in the functional dependence, because using the
φ equation of motion we know that it is no longer an
independent quantity. Plugging Eq. (A1) in Eq. (2.16) we
can find,

ðQs þ RsÞξμ
�
∇μνþ

1

T
uνFνμ

�

þ λξμ
�
1

T2
∇μT þ uν∇ν

�
uμ
T

��
þ∇μ

��
P
T
− N

�
uμ
�

þ 1

T
uμð∇μE − T∇μS − μ∇μQþ Rs∇μμsÞ

þ∇μðδBφRsξ
μ − Nsξ

μÞ
þ ðKideal −∇μðRsξ

μÞÞδBφþ Δideal ¼ 0; ðA2Þ

where we have defined S through the “Euler equation,”

Eþ P ¼ ST þQμ: ðA3Þ

Equation (A2) will imply a set of relations among various
coefficients,

Qs ¼ −Rs; λ ¼ 0; N ¼ P
T
; Ns ¼ δBφRs;

Kideal ¼ ∇μðRsξ
μÞ; Δideal ¼ 0; ðA4Þ

and the “first law of thermodynamics,”

dE ¼ TdSþ μdQ − Rsdμs; ðA5Þ

giving physical meaning to the quantities we have
introduced in Eq. (A1). Finally, we have the full set of
superfluid constitutive relations up to ideal order satisfying
the second law,

Tμν ¼ ðEþ PÞuμuν þ Pgμν þ Rsξ
μξν þOð∂Þ;

Jμ ¼ Quμ − Rsξ
μ þOð∂Þ;

K ¼ −αδBφþ∇μðRsξ
μÞ þOð∂Þ;

Nμ ¼ P
T
uμ þ δBφRsξ

μ þOð∂Þ;

JμS ¼ Nμ −
1

T
ðTμνuν þ μJμÞ ¼ Suμ þOð∂Þ;

Δ ¼ Oð∂2Þ: ðA6Þ

These are the well known ideal superfluid constitutive
relations. Note that we have included first-order terms in K,
Nμ which can be ignored when talking about the ideal
order, but are required for internal consistency with
Eq. (2.16). The φ equation of motion K ¼ 0 will imply

αδBφ ¼ ∇μðRsξ
μÞ þOð∂Þ ⇒ uμξμ

¼ μþ T
α
∇μðRsξ

μÞ þOð∂Þ; ðA7Þ

which is a first-order correction to the Josephson equation.
Note, however, that this equation can admit further one
derivative corrections due to the first-order constitutive
relations discussed in the next subsection; the correction
mentioned here is only how the ideal superfluid transport
affects the Josephson equation. The conservation laws on
the other hand are complete up to the first order in
derivatives,

1ffiffiffiffiffiffi−gp δBð
ffiffiffiffiffiffi
−g

p ðEþ PÞT2βμÞ þQTδBAμ

¼ −ξναδBφþOð∂2Þ;
1ffiffiffiffiffiffi−gp δBð

ffiffiffiffiffiffi
−g

p
QTÞ ¼ αδBφþOð∂2Þ: ðA8Þ

These equations provide a set of relations between δBφ,
δBgμν and δBAμ, which can be used to eliminate a vector
uμδBgμν and a scalar uμδBAμ (see Table II) from the first-
order constitutive relations. On the other hand, we choose

FIRST ORDER GALILEAN SUPERFLUID DYNAMICS PHYSICAL REVIEW D 96, 065004 (2017)

065004-27



to eliminate the scalar data ∇μðRsξ
μÞ using the φ equation

of motion.

2. First-order corrections to
relativistic superfluids

Moving on to the one derivative superfluids, let us
schematically represent various quantities appearing in
Eq. (2.16) up to the first order in derivatives as

Tμν ¼ ½ðEþ PÞuμuν þ Pgμν þ Rsξ
μξν� þ T μν þOð∂2Þ;

Jμ ¼ ½Quμ − Rsξ
μ� þ J μ þOð∂2Þ;

K ¼ ½−αδBφþ∇μðRsξ
μÞ� þKþOð∂2Þ;

Nμ ¼
�
P
T
uμ þ δBφRsξ

μ

�
þN μ þOð∂2Þ;

Δ ¼ αðδBφÞ2 þD; ðA9Þ

where the corrections T μν, J μ, K, N μ, D have exactly one
derivative in every term. Plugging these in the Eq. (2.16) we
can get an equation among the corrections,

∇μN μ − N⊥
H ¼ 1

2
T μνδBgμν þ J μδBAμ þKδBφ

þDþOð∂3Þ: ðA10Þ

We will now attempt to find all the solutions to this
equation, hence recovering the superfluid constitutive
relations up to the first order in derivatives.

a. Parity-even

We can find the most general parity-even solution of
Eq. (A10) in two steps (note that N⊥

H is parity odd): (1) first,

we write down the most general allowed parity-even N μ

and find a set of constitutive relations pertaining to that, and
(2) we find the most general parity-even constitutive
relations which satisfy Eq. (A10) with N μ ¼ 0.
(1) One can check that the most general form of

N μ (whose divergence only contains product of
derivatives and has at least one δB per term) can be
written as

N μ ¼ 2f1u½μξν�
1

T2
∂νT þ 2f2u½μξν�∂ν

�
μ

T

�
þ 2f3u½μξν�∂νRs þ∇νðf4u½μξν�Þ; ðA11Þ

where f’s are functions of T, ν ¼ μ=T and μ̂s ¼
− 1

2
ζμζμ with ζμ ¼ Pμνξν (Pμν ¼ gμν þ uμuν is the

projection operator away from the fluid velocity).
Note that

μ̂s ¼ −
1

2
ζμζμ ¼ −

1

2
ξμξμ −

1

2
ðξμuμÞ2

¼ μs −
1

2
ðμþ TδBφÞ2: ðA12Þ

Out of the four terms in Eq. (A11), the last one has
trivially zero divergence and hence can be ignored.
The third term on the other hand can be removed by
elimination of ∇μðRsξ

μÞ using the φ equation of
motion. Computing the divergence of the remaining
terms in N μ and comparing them to Eq. (A10), we
can directly read out the corresponding superfluid
constitutive relations (the symbol ‘∋’ represents that
they are not yet the complete solutions of Eq. (A10);
we still have to add the terms with N μ ¼ 0),

T μν ∋ uμuν
�X2

i¼1

αE;iSe;i −
1

T
∇σðTf1ζσÞ

�
þ ðζμζν − 2ðuρξρÞuðμζνÞÞ

X2
i¼1

αRs;iSe;i

þ ~Pμν
X2
i¼1

fiSe;i − 2ξðμ
X2
i¼1

fiV
νÞ
e;1 þ 2uðμζνÞ

X2
i¼1

fiS4þi;

J μ ∋ uμ
�X2

i¼1

αQ;iSe;i −
1

T
∇νðTf2ζνÞ

�
− ζμ

X2
i¼1

αRs;iSe;i þ
X2
i¼1

fiV
μ
e;i;

K ∋ ∇μ

�
ζμ

X2
i¼1

αRs;iSe;i −
X2
i¼1

fiV
μ
e;i

�
; ðA13Þ

where ~Pμν ¼ gμν þ uμuν − 1
ζσζσ

ζμζν, and we have defined

dfi ¼
αE;i
T

dT þ TαQ;idνþ
�
αRs;i −

fi
2μ̂s

�
dμ̂s: ðA14Þ
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The actual computation is not neat and we have
presented the details in Appendix C for the aid of
the readers interested in reproducing our results.
Note that these constitutive relations are pre-
sented in terms of “data” that are natural for
this sector; readers can modify these to their
favorite basis and get results which might look
considerably messier. Moreover, these results are
written in a particular ‘hydrodynamic frame’
chosen by aligning uμ, T, μ along βμ, Λβ, which
again can be modified according to reader’s
preference.

(2) Let us now look at the parity-even solutions to
Eq. (A10) with N μ ¼ 0,

0 ¼ 1

2
T μνδBgμν þ J μδBAμ þKδBφþD: ðA15Þ

Every term in T μν, J μ, K must either cancel or
contribute to Δ which has to be a quadratic form. It
follows that the terms in T μν, J μ, K must be propor-
tional to δBgμν, δBAμ, δBφ. Recall, however, that we
have chosen to eliminate uμδBgμν, uμδBAμ using the
equations of motion. For Δ to be a quadratic form, it
therefore implies that T μν, J μ cannot have a term like
#ðμuνÞ,#uμ respectively for somevector#μ and scalar#.
With this input let us write down the most generic
allowedformof thecurrents in termsof20newtransport
coefficients ½βij�4×4 (with β44 ¼ α=T), ½κij�2×2 and η,

T μν ∋ −T½fβ11 ~Pρσ þ β12ζ
ρζσg ~Pμν þ fβ21 ~Pμν þ β22ζ

ρζσgζμζν þ 4κ11ζ
ðμ ~PνÞðρζσÞ

þ η ~Pμhρ ~Pσiν� 1
2
δBgρσ − T½β13ζρ ~Pμν þ β23ζ

ρζμζν þ 2κ12ζ
ðμ ~PνÞρ�δBAρ

− T½β14 ~Pμν þ β24ζ
μζν�δBφ;

¼ − ~Pμν
X4
i¼1

β1iSi − ζμζν
X4
i¼1

β2iSi − 2ζðμ
X2
i¼1

κ1iV
νÞ
i − ησμν: ðA16Þ

J μ ∋ −T½fβ31 ~Pρσ þ β32ζ
ρζσgζμ þ 2κ21 ~P

μðρζσÞ� 1
2
δBgρσ

− T½β33ζρζμ þ κ22 ~P
μρ�δBAρ − T½β34ζμ�δBφ;

¼ −ζμ
X4
i¼1

β3iSi −
X2
i¼1

κ2iV
μ
i ; ðA17Þ

K ∋ −T½β41 ~Pρσ þ β42ζ
ρζσ�δBgρσ − T½β43ζρ�δBAρ ¼ −

X3
i¼1

β4iSi: ðA18Þ

Note that we did not include a term proportional to
δBφ in K, because such a term is already present
in K ¼ −αδBφþ∇μðRsξ

μÞ þKþOð∂2Þ. Defining
β44 ¼ α=T, we can read out the parity-even quadratic
form Δjeven ¼ αðδBφÞ2 þDjeven,

TΔjeven ¼
X4
i;j¼1

SiβijSj þ
X2
i;j¼1

Vμ
i κijVi;μ þ ησμνσμν;

¼
X4
i;j¼1

SiβðijÞSj þ
X2
i;j¼1

Vμ
i κðijÞVi;μ þ ησμνσμν:

ðA19Þ
In the second step we have realized that only the
symmetric parts of the matrices βij and κij will
survive in this expression, and will contribute towards

dissipation.Thusonly14outof21 transport coefficients
(including α) are dissipative; the remaining 7 are
nondissipative.

b. Parity-odd (four dimensions)

We can find the most general parity-odd solution of
Eq. (A10) in three steps: (1) first, we consider a particular
set of solutions which takes care of the anomaly N⊥

H and
proceed towards the nonanomalous constitutive relations,
(2) then we write down the most general allowed parity-odd
N μ and find a set of constitutive relations pertaining to that,
and (3) we find the most general parity-odd constitutive
relations with zero N μ.
(1) In four dimensions at the first order in the deriva-

tives Tμ⊥
H ¼ 0 and J⊥H ¼ − 3

4
Cð4ÞϵμνρσFμνFρσ, which

implies,

FIRST ORDER GALILEAN SUPERFLUID DYNAMICS PHYSICAL REVIEW D 96, 065004 (2017)

065004-29



N⊥
H ¼ −

3

4
νCð4ÞϵμνρσFμνFρσ: ðA20Þ

A particular solution pertaining to Eq. (A10) with
this N⊥

H is given as (see e.g. [26]),

T μν ∋ 2μ2Cð4Þuðμð3MνÞ þ 2μωνÞÞ;
J μ ∋ μCð4Þð6Mμ þ 3μωμÞ;
K ∋ 0;

N μ ∋ μ2

T
Cð4Þð3Mμ þ μωμÞ: ðA21Þ

Here we have defined the magnetic field and fluid
vorticity as

Mμ ¼ 1

2
ϵμνρσuνFρσ; ωμ ¼ ϵμνρσuν∂ρuσ: ðA22Þ

(2) One can check that the most general form of
N μ (whose divergence only contains product of
derivatives and has at least one δB per term) can be
written as

N μ ¼ g1ðβμ ~Se;1 þ ~Vμ
3Þ þ g2ðβμ ~Se;2 þ ~Vμ

2Þ
þ C1T2ωμ; ðA23Þ

where g’s are functions of T, ν, μ̂s, and C1 is a
constant. From here we can directly read out the
corresponding constitutive relations,

T μν ∋ uμuν
X2
i¼1

~αE;i ~Se;i þ ðζμζν − 2ðuρξρÞuðμζνÞÞ
X2
i¼1

~αRs;i
~Se;i − ζμζν

X2
i¼1

1

2μ̂s
gi ~Se;i

− 2uðμ
X2
i¼1

gi ~V
νÞ
e;2þi − uðμð2PνÞ

α − uνÞuαÞϵαρστ∇σðTg1uτζρÞ þ 4C1T3ωðμuνÞ

J μ ∋ uμ
X2
i¼1

~αQ;i
~Se;i − ζμ

X2
i¼1

~αRs;i
~Se;i þ

X2
i¼1

gi ~V
μ
e;i þ ϵμνρσ∇νðTg2ζρuσÞ;

K ∋ ∇μ

�
ζμ

X2
i¼1

~αRs;i
~Se;i −

X2
i¼1

gi ~V
μ
e;i

�
; ðA24Þ

where we have defined,

dgi ¼
~αE;i
T

dT þ T ~αQ;idνþ
�
~αRs;i −

gi
2μ̂s

�
dμ̂s: ðA25Þ

The actual computation is not neat and we have presented the details in Appendix C for interested readers.
(3) We should finally consider the parity-odd constitutive relations that satisfy Eq. (A10) with zero lhs. Following our

discussion in the parity-even sector, the allowed form of the constitutive relations can be written down in terms of five
coefficients ½~κij�2×2 and ~η,

T μν ∋ −Tuτζκ½4~κ11ζðμϵνÞτκðρζσÞ þ ~η ~PλðμϵνÞτκðρ ~PσÞ
λ �

1

2
δBgρσ − Tuτζκ½2~κ12ζðμϵνÞτκρ�δBAρ;

¼ −2ζðμ
X2
i¼1

~κ1i ~V
νÞ
i − ~η ~σμν;

J μ ∋ −Tuτζκ½2~κ21ϵμτκðρζσÞ�
1

2
δBgρσ − Tuτζκ½~κ22ϵμτκρ�δBAρ;

∋ −
X2
i¼1

~κ2i ~V
μ
i ;

K ∋ 0: ðA26Þ

One can check that these constitutive relations trivially satisfy Eq. (A10) with zero lhs and the quadratic form
Δjodd ¼ Djodd is given as
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TΔjodd ¼ ϵμντκuτζκ

�X2
i¼1

Vi;μ ~κijVj;ν þ ~ησμρσ
ρ
ν

�

¼ ϵμντκuτζκ
X2
i¼1

Vi;μ ~κ½ij�Vj;ν

¼ 2ϵμντκuτζκV1;μ ~κ½12�V2;ν: ðA27Þ

It follows that out of the 5 transport coefficients,
only 1 contribute to dissipation and the other 4 are
nondissipative.

c. Positivity constraints

The dissipative transport coefficients are required to
satisfy a set of inequalities to satisfy Δ ¼ αðδBφÞ2 þ
Djeven þDjodd ≥ 0,

TΔ ¼
X4
i;j¼1

SiβðijÞSj þ
�X2

i;j¼1

Vμ
i κðijÞVi;μ þ

X2
i¼1

Vμ
i ~κ½ij� ~Vj;μ

�

þ ησμνσμν: ðA28Þ

We want this expression to be a quadratic form, which
it nearly is except the parity-odd term in the brackets.
However this term can be made into a quadratic form by
noticing that the square of a parity-odd term is parity-even,
due to the identity,

ðϵμνρσuρζσÞðϵτναβuαζβÞ ¼ ~Pμ
τ ζ

νζν ¼ −2μ̂s ~Pμ
τ : ðA29Þ

We define,

�
V 0μ

1

V 0μ
2

�
¼

�
Vμ
1

Vμ
2

�
þ
�
0 a12
0 0

�� ~Vμ
1

~Vμ
2

�
;

κ0ij ¼ κij þ kij; k½ij� ¼ 0; ðA30Þ

such that,

X2
i;j¼1

V 0μ
i κ

0
ðijÞV

0
i;μ ¼

X2
i;j¼1

Vμ
i κðijÞVi;μ þ

X2
i¼1

Vμ
i ~κ½ij� ~Vj;μ:

ðA31Þ

Using the identity Eq. (A29), the above equation can be
easily solved to give,

a12 ¼
~κðaÞ12

κ11
; k1i ¼ ki1 ¼ 0; k22 ¼ 2μ̂s

~κ½12�
κ11

: ðA32Þ

Consequently Δ will take the form,

TΔ ¼
X4
i;j¼1

SiβðijÞSj þ
X2
i;j¼1

V 0μ
i κ

0
ðijÞV

0
i;μ þ ησμνσμν: ðA33Þ

Given T ≥ 0, the condition Δ ≥ 0 implies that η ≥ 0 and
the matrices ½βðijÞ�4×4, ½κ0ðijÞ�2×2 have all non-negative

eigenvalues. This gives 7 inequalities among 15 dissipative
transport coefficients, and 8 are completely arbitrary.
This finishes the off-shell formalism derivation of the

constitutive relations of a relativistic superfluid up to first
order in derivatives. A concise summary of these results has
been presented in Sec. II C.

APPENDIX B: EQUILIBRIUM PARTITION
FUNCTION FOR NULL SUPERFLUIDS

It was realized by [29,30] that a huge part of the (super)
fluid constitutive relations can be fixed by requiring exist-
ence of an equilibrium partition function, which generates
the part of the constitutive relations that survive in equilib-
rium. In this Appendix, we will discuss the equilibrium
partition function for Galilean superfluids. In hydrodynam-
ics, equilibrium is defined by a set of fields K ¼ fKM;ΛKg
with KMKM < 0, which act on the background fields gMN ,
AM and the superfluid phase φ as an isometry,

δKgMN ¼ ∇MKN þ∇NKM ¼ 0;

δKAM ¼ ∂MðΛK þ KNANÞ þ KNFNM ¼ 0;

δKφ ¼ KM∂Mφ − ΛK ¼ KMξM − ðΛK þ KNANÞ ¼ 0:

ðB1Þ

For simplicity, we choose a basis fxMg ¼ fx−; t; xig such
that the null isometry V ¼ fV ¼ ∂−;ΛV ¼ 0g and the
equilibrium isometry K ¼ fK ¼ ∂t;ΛK ¼ 0g. The fact that
V,K are isometries implies that all the fields are independent
of x−, t coordinates. In this basis, we decompose the
background fields as

ds2 ¼ −2e−Φðdtþ aidxiÞðdx− − Btdt − BidxiÞ
þ gijdxidxj;

A ¼ −dx− þ Atdtþ Aidxi: ðB2Þ

We will denote the covariant derivative associated with the
spatial metric gij by ∇́i. After choosing the said basis, the
residual diffeomorphisms are the spatial diffeomorphisms
xi → xi þ χiðxjÞ, mass gauge transformations x− → x− þ
χ−ðxiÞ and Kaluza-Klein gauge transformations t → tþ
χtðxiÞ. Under mass gauge transformations, only fields that
transform are,

δχ−Bi ¼ −∂iχ
−; δχ−Ai ¼ −∂iχ

−; ðB3Þ

while under Kaluza-Klein gauge transformations,

δχþai ¼ ∂iχ
þ; δχþBi ¼ Bt∂iχ

þ; δχþAi ¼ At∂iχ
þ:

ðB4Þ
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We define the fields,

B́i ¼ Bi − aiBt; Ái ¼ Ai − aiAt − B́i: ðB5Þ

B́i is mass gauge field which is invariant under Kaluza-Klein
guage transformations. Ái on the other hand is invariant
under both mass and Kaluza-Klein gauge transformations,
and only transforms under the U(1). ai is Kaluza-Klein
gauge field. Components of the superfluid velocity ξM ¼
∂Mφþ AM can be found as

ξ− ¼ −1; ξt ¼ At; ξi ¼ ∂iφþ Ai: ðB6Þ

Out of these, ξi is not mass or Kaluza-Klein gauge invariant
due to presence of Ai. We can write an invariant version as

ξ́i ¼ ∂iφþ Ái: ðB7Þ

The superfluid potential can also be written in terms of
these as

μs ¼ −
1

2
ξMξM ¼ −

1

2
ξ́iξ́i − eΦAt þ eΦBt; ðB8Þ

and we define μ́s ¼ − 1
2
ξ́iξ́i. Finally, the fundamental var-

iables at equilibrium are,

Φ; At; Bt; ai; Ái; B́i; gij; φ: ðB9Þ

The argument is that at equilibrium, constitutive relations
should be derivable from an equilibrium partition function
written in terms of these fundamental fields. In covariant
terms, variation of an equilibrium partition function W can
be parametrized as

δW ¼
Z

fdxMg ffiffiffiffiffiffi
−g

p �
1

2
TMNδgMN þ JMδAM þ Kδφ

�
:

ðB10Þ

In our chosen basis it decomposes as

δW ¼
Z

fdxig ffiffiffiffiffi
g3

p �
ðTt− þ T−−BtÞδΦþ e−ΦðTi

t þ JiAtÞδai þ
1

2
e−ΦTijδgij

þ ðT−−δBt − e−ΦðTi
− − JiÞδB́iÞ − ðJ−δAt − e−ΦJiδÁiÞ þ e−ΦKδφ

�
; ðB11Þ

where g3 ¼ det gij. Now, given the most generic partition functionW½Φ; At; Bt; ai; Ái; B́i; gij;φ� as a gauge invariant scalar
functional of the fundamental fields, various components of the currents TMN , JM, K can be read out in terms of W as

T−− ¼ 1ffiffiffiffiffi
g3

p δW
δBt

; Tt− ¼ 1ffiffiffiffiffi
g3

p
�
δW
δΦ

− Bt
δW
δBt

�
;

Ti
− ¼ −

eΦffiffiffiffiffi
g3

p
�
δW

δB́i
−
δW

δÁi

�
; Ti

t ¼
eΦffiffiffiffiffi
g3

p
�
δW
δai

− At
δW

δÁi

�
; Tij ¼ 2eΦffiffiffiffiffi

g3
p δW

δgij
;

J− ¼ −
1ffiffiffiffiffi
g3

p δW
δAt

; Ji ¼ eΦffiffiffiffiffi
g3

p δW

δÁi

: ðB12Þ

Since these expressions are already in a “noncovariant notation”, we can easily perform null reduction to read out the
Galilean currents. We define a Galilean frame field to perform the reduction,

vMðKÞ ¼ −
KM

VMKM þ KRKRVM

2ðVNKNÞ2 ¼

0
B@

eΦBt

eΦ

0

1
CA: ðB13Þ

In vMðKÞ Galilean frame, the Galilean currents can be read out in terms of W as

ρ ¼ 1ffiffiffiffiffi
g3

p δW
δBt

; ρi ¼ eΦffiffiffiffiffi
g3

p
�
δW

δB́i
−
δW

δÁi

�
; tijðvKÞ ¼

2eΦffiffiffiffiffi
g3

p δW
δgij

;

ϵðvKÞ ¼
eΦffiffiffiffiffi
g3

p δW
δΦ

; ϵiðvKÞ ¼
e2Φffiffiffiffiffi
g3

p
�
−
δW
δai

þ ðAt − BtÞ
δW

δÁi

þ Bt
δW

δB́i

�
;

j ¼ 1ffiffiffiffiffi
g3

p δW
δAt

; ji ¼ eΦffiffiffiffiffi
g3

p δW

δÁi

: ðB14Þ

BANERJEE, DUTTA, and JAIN PHYSICAL REVIEW D 96, 065004 (2017)

065004-32



Finally, we can write down the most general equilibrium partition function W up to first order in derivatives as

W ¼
Z

fdxig ffiffiffiffiffi
g3

p �
e−ΦPþ e−Φf1ξ́

i∂iΦþ f2ξ́
i∂iAt þ f3ξ́

i∂iBt þ f4∇́i

�
ξ́i
∂P
∂μ́s

�
þ ∇́iðf5ξ́iÞ

þ ðg1 þ g2Þεijkξ́i∂jB́k þ g2εijkξ́i∂jÁk þ ðg1Bt þ g2At − e−Φg3Þεijkξ́i∂jak − C1ε
ijkai∂jB́k

�
; ðB15Þ

where the coefficients P, fi, gi are arbitrary functions of the
scalars Φ, At, Bt and μ́s. C1 on the other hand has to be a
constant, so that integral of the term coupling to it is gauge
invariant. The term coupling to f4 is multiplied with the
first-order equation of motion of φ and hence can be
neglected. On the other hand, term coupling to f5 is a total
derivative. Acute reader might note that we have not
included a term like to C0ε

ijkB́i∂jB́k. The reason is that
this term does not have a “covariant analogue” and hence is
switched off by the second law of thermodynamics [17].
Finally, this equilibrium partition function does not account
for anomalies; for a discussion on anomalous partition
function for null fluids see [17,22].
Varying the partition function W in Eq. (B15) and using

Eq. (B14), we can read out the equilibrium constitutive
relations. We will not perform the explicit variation here,
but one can check that the constitutive relations gained are
the same as the ones derived in the bulk of the paper, after
identifying the equilibrium values of the hydrodynamic
fields,

uMjeqb ¼ vMðKÞ; Tjeqb ¼ eΦ;

μnjeqb ¼ eΦBt; μjeqb ¼ eΦAt: ðB16Þ

These can also be summarized as Bjeqb ¼ fβM;Λβgeqb ¼
fKM;ΛKg ¼ K. Having established that, the equilibrium
value of the projected superfluid velocity is given as

ζMjeqb ¼ PMNξ
N jeqb ¼

0
B@

0

0

ξ́i

1
CA; ðB17Þ

and hence μ̂sjeqb ¼ μ́s. This finishes our discussion of
equilibrium partition function for null/Galilean superfluids.

APPENDIX C: CALCULATIONAL DETAILS

In this Appendix, we will give details of the computation
regarding divergence of the free energy current, glossed
over in the main text. We will find the following identities
useful in the following computation: let S be a scalar and βμ

be a vector, then,

∇μðβμSÞ ¼
1ffiffiffiffiffiffi−gp £βð

ffiffiffiffiffiffi
−g

p
SÞ ¼ 1

2
Sgμν£βgμν þ £βS: ðC1Þ

There is a corresponding null background version of this
identity,

∇MðβMSÞ ¼
1ffiffiffiffiffiffi−gp £βð

ffiffiffiffiffiffi
−g

p
SÞ ¼ 1

2
SgMN£βgMN þ £βS:

ðC2Þ

Given a tensor Xμν, we have,

∇μ∇νX½μν� ¼ 1

2
ð∇μ∇ν −∇ν∇μÞXμν

¼ 1

2
ðRμν

μ
ρX

ρν þ Rμν
ν
ρX

μρÞ

¼ 1

2
ðRνρXρν − RμρXμρÞ ¼ 0: ðC3Þ

Similarly,

∇M∇NX½MN� ¼ 0: ðC4Þ

Relativistic superfluid free energy current: Let us start
with relativistic superfluids. The δB variation of hydro-
dynamic and superfluid fields can be computed to be,

δBT ¼ T
2
uμuνδBgμν; δB

�
μ

T

�
¼ 1

T
uμδBAμ; δBμs ¼

1

2
ξμξνδBgμν − ξμδBAμ − ξμ∇μδBφ;

δBμ̂s ¼
1

2
ðζμζν − 2ðuρξρÞuðμζνÞÞδBgμν − ζμδBAμ − ζμ∇μδBφ;

δBuμ ¼
1

2
uμuρuνδBgρν; δBuμ ¼ ð2Pðρ

μ uνÞ − uμuρuνÞ
1

2
δBgρν;

δBζ
μ ¼ ðuμuðρζσÞ − PμðρξσÞÞδBgρσ þ PμνδBξν; δBζμ ¼ ðuνξνÞuðρPσÞ

μ δBgρσ þ Pν
μδBξν: ðC5Þ
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The first-order parity-even free energy current N μ in Eq. (A11) has a term 2f1u½μξν� 1
T2 ∂νT. We compute its divergence,

∇μ

�
2f1u½μζν�

1

T2
∂νT

�
¼ f1ζν

1

2T
∂νTgρσδBgρσ þ δB

�
f1ζν

1

T
∂νT

�
−∇μ

�
f1ζμ

1

T
δBT

�

¼ f1ζν
1

2T
∂νTPρσδBgρσ þ f1

1

T
∂νTδBζν þ ζν

1

T
∂νTδBf1

− f1ζν
1

2T
∂νTuρuσδBgρσ − f1ζν

1

T2
∂νTδBT þ f1ζν

1

T
∂νδBT −∇μ

�
f1ζμ

1

T
δBT

�

¼ f1ζν
1

2T
∂νTPρσδBgρσ þ f1

1

T
∂νT½ðuνuðρζσÞ − PνðρξσÞÞδBgρσ þ PνρδBξρ�

þ ζν
1

T
∂νT

�∂f1
∂T δBT þ ∂f1

∂ν δBνþ
∂f1
∂μ̂s δBμ̂s

�

− f1ζν
1

2T
∂νTuρuσδBgρσ −∇μðf1ζμÞ

1

T
δBT

¼
�
uρuσ

�
αE;1Se;1 −

1

T
∇μðTf1ζμÞ

�
þ ðζρζσ − 2ðuμξμÞuðρζσÞÞSe;1αRs;1

þ ~Pρσf1Se;1 þ 2uðρζσÞf1S5 − f12ξðρV
σÞ
e;1

�
1

2
δBgρσ

þ ½uραQ;1Se;1 þ f1V
ρ
e;1 − ζραRs;1Se;1�δBAρ þ ½f1Vρ

e;1 − ζραRs;1Se;1�∂ρδBφ: ðC6Þ

Performing a differentiation by parts,

∇μ

�
2f1u½μζν�

1

T2
∂νT þOð∂2Þ

�
¼

�
uρuσ

�
αE;1Se;1 −

1

T
∇μðTf1ζμÞ

�
þ ðζρζσ − 2ðuμξμÞuðρζσÞÞSe;1αRs;1

þ ~Pρσf1Se;1 þ 2uðρζσÞf1S5 − f12ξðρV
σÞ
e;1

�
1

2
δBgρσ

þ ½uραQ;1Se;1 þ f1V
ρ
e;1 − ζραRs;1Se;1�δBAρ −∇ρ½f1Vρ

e;1 − ζραRs;1Se;1�δBφ: ðC7Þ

From here we can read out the contributions to the constitutive relations Eq. (A13). Similarly divergence of the other term in
Eq. (A11) coupling to f2 can also be computed. Now, the first-order parity-odd free energy current N μ in Eq. (A23) has a
term g2βμ ~Se;2 þ g2 ~V

μ
2. We can compute its divergence as

∇μðg2βμ ~Se;2 þ g2 ~V
μ
2Þ ¼ ϵτνρσδB

�
g2T

1

2
ξτuνFρσ

�
−∇μðϵμτνσg2TξτuνδBAσÞ

¼ T
2
ϵτνρσξτuνFρσδBg2 þ

1

2
g2ϵτνρσξτuνFρσδBT þ ϵτνρσg2T

1

2
ξτFρσδBuν

þ T
2
g2ϵτνρσuνFρσδBξτ þ ϵτνρσg2Tξτuν∇ρδBAσ −∇ρðϵτνρσg2TξτuνδBAσÞ

¼ T
2
ϵτνρσξτuνFρσ

�∂g2
∂T δBT þ ∂g2

∂ν δBνþ
∂g2
∂μ̂s δBμ̂s

�
þ ϵτνρσg2T

1

2
ξτFρσ2P

ðρ
ν uσÞ

1

2
δBgρσ

þ
�
g2T

1

2
ϵμνρσuνFρσ −∇ρðϵρμτνg2TξτuνÞ

�
δBAμ þ g2T

1

2
ϵτνρσuνFρσ∇τδBφ

¼
�
uμuν ~αE;2 ~Se;2 þ 2g2uðμ ~V

νÞ
e;4 þ ðζμζν − 2ðuρξρÞuðμζνÞÞ ~αRs;i

~Se;2 − ζμζν
g2
2μ̂s

~Se;2

�
1

2
δBgμν

þ ½uμ ~αQ;2
~Se;2 þ g2V

μ
e;2 − ζμ ~αRs;2

~Se;2 −∇ρðϵρμτνg2TξτuνÞ�δBAμ

þ ½g2Vμ
e;2 − ζμ ~αRs;i

~Se;2�∇μδBφ: ðC8Þ

Performing a differentiation by parts,
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∇μðg2uμ ~Se;2 þ g2 ~V2 þOð∂2ÞÞ ¼
�
uμuν ~αE;2 ~Se;2 þ 2g2uðμ ~V

νÞ
e;4 þ ðζμζν − 2ðuρξρÞuðμζνÞÞ ~αRs;i

~Se;2 − ζμζν
g2
2μ̂s

~Se;2

�
1

2
δBgμν

þ ½uμ ~αQ;2
~Se;2 þ g2V

μ
e;2 − ζμ ~αRs;2

~Se;2 −∇ρðϵρμτνg2TξτuνÞ�δBAμ

−∇μ½g2Vμ
e;2 − ζμ ~αRs;i

~Se;2�δBφ: ðC9Þ

From here we can read out the contributions to the constitutive relations Eq. (A24). Similarly divergence of the other term in
Eq. (A23) coupling to g1 can also be computed. There is another term in the parity-odd free energy current C1T2ωμ; its
divergence is given as

∇μðC1T2ωμÞ ¼ −2C1Tϵμνρσuμ∂νT∂ρuσ þ C1T2ϵμνρσ∂μuν∂ρuσ

¼ 2C1T3ωðμuνÞδBgμν: ðC10Þ

This can be matched with the constitutive relations Eq. (A24).
Null superfluid free energy current: We now move on to superfluids. The δB variation of hydrodynamic and superfluid

fields can be computed to be,

δBT ¼ TVðMuNÞδBgMN; δBνn ¼
1

2T
uMuNδBgMN; δBν ¼

1

T
uMδBAM;

δBμs ¼
1

2
ξMξNδBgMN − ξMδBAM − ξM∇MδBφ;

δBμ̂s ¼
1

2
ðζMζN þ 2ζðMuNÞ − 2ζðMVNÞðuRξRÞÞδBgMN − ζMδBAM − ζM∇MδBφ;

δBuM ¼ ð2uMVðRuSÞ þ VMuRuSÞ 1
2
δBgRS; δBuM ¼ ð2PðR

MuSÞ − VMuRuSÞ
1

2
δBgRS;

δBζ
M ¼ ð−2ξðRPSÞM þ 2ζðRVSÞuM þ 2ζðRuSÞVMÞ 1

2
δBgRS þ PMNδBξN;

δBζM ¼ ð2ðuNξNÞPðR
MVSÞ − 2PðR

M uSÞÞ 1
2
δBgRS þ PN

MδBξN: ðC11Þ

The first-order, parity-even, free-energy currentNM in Eq. (3.24) has a term 2f1u½MζN� 1
T2 ∂NT. We compute its divergence,

∇M

�
2f1u½MζN� 1

T2
∂NT

�
¼ f1ζN

1

2T
∂NTgRSδBgRS þ δB

�
f1

1

T
ζN∂NT

�
−∇M

�
f1ζM

1

T
δBT

�

¼ f1ζN
1

2T
∂NTPRSδBgRS þ f1

1

T
∂NTδBζN þ 1

T
ζN∂NTδBf1

− f1ζN
1

T
∂NTVRuSδBgRS − f1

1

T2
ζN∂NTδBT þ f1

1

T
ζN∂NδBT −∇M

�
f1ζM

1

T
δBT

�

¼ f1ζN
1

2T
∂NTPRSδBgRS þ f1

1

T
∂MT

�
ð−2ξðRPSÞM þ 2ζðRVSÞuMÞ 1

2
δBgRS þ PMNδBξN

�

þ 1

T
ζN∂NT

�∂f1
∂T δBT þ ∂f1

∂ν δBνþ
∂f1
∂νn δBνn þ

∂f1
∂μ̂s δBμ̂s

�

− f1ζN
1

T
∂NTVRuSδBgRS −∇Mðf1ζMÞ

1

T
δBT

¼
�
2VðRuSÞ

�
αE;1Se;1 −

1

T
∇MðTf1ζMÞ

�
þ uRuSαRn;1Se;1 þ ~PRSf1Se;1 − 2f1ξðRV

SÞ
e;1

þ ðζRζS þ 2ζðRuSÞ − 2ζðRVSÞðuMξMÞÞαRs;1Se;1 þ 2ζðRVSÞf1S6�
1

2
δBgRS

þ ½uMαQ;1Se;1 − ζMαRs;1Se;1 þ f1VM
e;1�δBAM þ ½f1VM

e;1 − ζMαRs;1Se;1�∇MδBφ: ðC12Þ
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Performing a differentiation by parts,

∇M

�
2f1u½MζN� 1

T2
∂NT þOð∂2Þ

�
¼

�
2VðRuSÞ

�
αE;1Se;1 −

1

T
∇MðTf1ζMÞ

�
þ uRuSαRn;1Se;1 þ ~PRSf1Se;1 − 2f1ξðRV

SÞ
e;1

þ ðζRζS þ 2ζðRuSÞ − 2ζðRVSÞðuMξMÞÞαRs;1Se;1 þ 2ζðRVSÞf1S6

�
1

2
δBgRS

þ ½uMαQ;1Se;1 − ζMαRs;1Se;1 þ f1VM
e;1�δBAM þ∇M½ζMαRs;1Se;1 − f1VM

e;1�δBφ:
ðC13Þ

From here we can read out the contributions to the constitutive relations Eq. (3.26). Similarly divergence of the other terms
in Eq. (3.24) coupling to f2, f3 can also be computed. Now, the first-order, parity-odd, free-energy currentNM in Eq. (3.36)
has a term g2βM ~Se;2 þ g2 ~V

M
3 . We can compute its divergence as

∇Mðg2βM ~Se;2 þ g2 ~V
M
3 Þ ¼

1

2
ϵNRSTKδBðg2TξNVRuSFTKÞ −∇TðϵNRSTKg2TξNVRuSδBAKÞ

¼ 1

2
ϵNRSTKTξNVRuSFTKδBg2 þ

1

2
ϵNRSTKg2TξNVRFTKδBuS þ

1

2
ϵNRSTKg2ξNVRuSFTKδBT

þ 1

2
ϵNRSTKg2TξNuSFTKδBVR þ 1

2
ϵNRSTKg2TVRuSFTKδBξN

þ ϵNRSTKg2TξNVRuS∇TδBAK −∇TðϵNRSTKg2TξNVRuSδBAKÞ

¼ 1

2
ϵNRSTKTξNVRuSFTK

�∂g2
∂T δBT þ ∂g2

∂ν δBνþ
∂g2
∂νn δBνn þ

δg2
δμ̂s

δBμ̂s

�

− uAPB
Mg2T

1

2
ϵMNRTKVNuRFTKδBgAB þ 1

2
ϵNRSTKg2TξNuSFTKPB

RV
AδBgAB

−∇TðϵTMNRSg2TξNVRuSÞδBAM þ 1

2
ϵNRSTKg2TVRuSFTKδBξN

¼
�
2~αE;2VðMuNÞ ~Se;2 þ ~αRn;2u

MuN ~Se;2 − 2g2uðM ~VNÞ
e;2 − 2g2VðM ~VNÞ

e;4 − ζMζN
g2
2μ̂s

~Se;2

þ ðζMζN þ 2ζðMuNÞ − 2ζðMVNÞðuRξRÞÞ ~αRs;2
~Se;2

�
1

2
δBgMN

þ ½uM ~αQ;2
~Se;2 þ g2 ~Ve;2 − ζM ~αRs;2

~Se;2 − PM
K∇TðϵTKNRSg2TξNVRuSÞ�δBAM

þ ½g2 ~Ve;2 − ζM ~αRs;2
~Se;2�∇MδBφ: ðC14Þ

Performing a differentiation by parts,

∇Mðg2βM ~Se;2 þ g2 ~V
M
3 þOð∂2ÞÞ ¼

�
2VðMuNÞ ~αE;2 ~Se;2 þ uMuN ~αRn;2

~Se;2 − 2g2uðM ~VNÞ
e;2 − 2g2VðM ~VNÞ

e;4 − ζMζN
g2
2μ̂s

~Se;2

þ ðζMζN þ 2ζðMuNÞ − 2ζðMVNÞðuRξRÞÞ ~αRs;2
~Se;2

�
1

2
δBgMN

þ ½uM ~αQ;2
~Se;2 þ g2 ~Ve;2 − ζM ~αRs;2

~Se;2 − PM
K∇TðϵTKNRSg2TξNVRuSÞ�δBAM

þ∇M½ζM ~αRs;2
~Se;2 − g2 ~Ve;2�δBφ: ðC15Þ

From here, we can read out the contributions to the constitutive relations, Eq. (3.37). Similarly, divergence of the other term
in Eq. (3.36) coupling to g1 can also be computed. Divergence of the term coupling to g3 is particularly simple,
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∇Mðg3 ~VM
1 Þ ¼ ∇M

�
g3
T
ϵMNRSTVNuRζS∂TT

�
¼ −∇Mðg3TϵMNRSTVNuRζSÞ∂T

�
1

T

�

¼ VðMPNÞ
P ∇Kðg3TϵPKRSTVRuSζTÞδBgMN: ðC16Þ

Finally the last term in parity-odd free energy current C1TωM has divergence,

∇MðC1TωMÞ ¼ C1T2ωðMVNÞδBgMN: ðC17Þ

This can be matched with the constitutive relations in Eq. (3.37).
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