PHYSICAL REVIEW D 96, 065004 (2017)
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We study dynamics of an (anomalous) Galilean superfluid up to first order in derivative expansion, both
in parity-even and parity-odd sectors. We construct a relativistic system—null superfluid, which is a null
fluid (introduced in N. Banerjee, S. Dutta, and A. Jain Akash, [Phys. Rev. D 93, 105020 (2016).]) with a
spontaneously broken global U(1) symmetry. A null superfluid is in one-to-one correspondence with a
Galilean superfluid in one lower dimension; i.e., they have the same symmetries, thermodynamics,
constitutive relations and are related to each other by a mere choice of basis. The correspondence is based
on null reduction, which is known to reduce the Poincaré symmetry of a theory to Galilean symmetry in
one lower dimension. To perform this analysis, we use off-shell formalism of (super)fluid dynamics,
adopting it appropriately to null (super)fluids. We also verify these results via ¢ — oo limit of a parent

relativistic system.
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I. INTRODUCTION AND SUMMARY

Hydrodynamics is an effective description of low energy
fluctuations of a quantum system around thermodynamic
equilibrium. In this description, we assume the hydro-
dynamic system, known as a fluid, to be at a finite
temperature, and study its fluctuations at length scales
much larger than the mean free path of the system. In this
limit and far away from any second order phase transition
point, a fluid can be described by a small number of degrees
of freedom known as hydrodynamic modes: temperature,
chemical potential(s) and normalized fluid velocity.
Various conserved currents of the system can then be
written in terms of these hydrodynamic modes, arranged as
a perturbative expansion in derivatives, known as fluid
constitutive relations. At any particular order in derivative
expansion, constitutive relations contain all the possible
independent tensor structures allowed by symmetry at that
order, multiplied with unknown coefficients known as
transport coefficients. If the underlying quantum theory
has a continuous global symmetry which is spontaneously
broken in the ground state, then the low energy fluctuations
can contain massless Goldstone modes corresponding to
the broken symmetry. Therefore for fluids with a sponta-
neously broken symmetry, known as superfluids, hydro-
dynamic modes also contain these Goldstone modes. This
leads to a considerable modification of the constitutive
relations, adding new tensor structures containing the
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derivatives of the Goldstone modes and hence new trans-
port coefficients. In this paper, we work out the most
generic constitutive relations of a Galilean superfluid up to
first order in the derivative expansion.

Superfluidity was first observed in liquid helium by [1,2]
in 1938, while studying its flow through a thin capillary.
They observed that liquid helium flows through the
capillary without any dissipation, hence inspiring the name
“superfluid.” Other than this dissipationless flow, super-
fluids have many more striking features, such as upon
rotation they develop vortices (quasi-one-dimensional
strings whose number is proportional to the externally
imposed angular momentum). Furthermore, their specific
heat shows a sudden change in behavior at a certain critical
temperature. Above the critical temperature system behaves
like an ordinary fluid, though as the temperature drops
below the critical temperature, system undergoes a phase
transition from the ordinary fluid phase to the super-
fluid phase.

Study of superfluid dynamics has been a topic of interest
for a long time. First theory of superfluid dynamics was
written down by London [3] in 1938, followed by a two-
fluid model of superfluids proposed by Landau and Tisza
[4,5] in 1940s. They studied ideal superfluids in a non-
relativistic setting, which was later generalized to describe a
relativistic superfluid by [6—11]. The subject was recently
revisited by [12-14] (see also [15]), who rederived the
relativistic superfluid constitutive relations using the sec-
ond law of thermodynamics and equilibrium partition
function. Among other interesting results, they found that
up to first order in derivative expansion, a relativistic
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TABLE I. Counting of the independent first-order transport coefficients consistent with the second law of thermodynamics. The
numbers with a “tilde” represent the parity-odd count (in three spatial dimensions) while the “un-tilde”” numbers are the parity-even
count. The coefficients with an “asterisk” drop out on imposing Onsager relations (microscopic time-reversal invariance). Finally, in the
last row we have given the number of undetermined constants including the anomaly constant. In both relativistic and Galilean cases, we

have gotten rid of a hydrostatic coefficient by redefinition of the U(1) phase ¢.

Relativistic fluid

Relativistic superfluid

Galilean fluid Galilean superfluid

Hydrostatic 0+0
Nonhydrostatic nondissipative 0+0
Dissipative 340
Total 3+40=3
Total (with Onsager) 3+0=3
Hydrostatic constants 3+ Ianomaly

242 0+0 343

75 +4 1*+0 13 +7

14+T1° 5+0 22 4+ 3
2347 =30 6+0=6 38 + 13 =51
16 +6 =22 540=>5 25+ 10 =235
I+ ianoma]y 2""’ ianomaly I+ Ianomaly

superfluid is characterized by pressure (at ideal order), 23
parity-even and 7 parity-odd first-order transport coeffi-
cients and two undetermined constants including the
anomaly constant (after imposing Onsager relations and
CPT invariance these numbers drop down to 16 parity-even
and 6 parity-odd transport coefficients and one anomaly
constant). See Table I for a summary and Sec. II for more
details.

In this paper, we perform a similar exercise for Galilean
superfluids. We derive the constitutive relations for a
Galilean superfluid consistent with the second law of
thermodynamics, up to first order in derivative expansion,
both in parity even and odd sectors. Study of Galilean
superfluids is important because it provides a laboratory to
probe many-body physics in extreme quantum regime with
high-precision [16]. Relativistic effects are important in
high-energy superfluids, where mass of the constituents is
small compared to their kinetic energy, e.g. quark super-
fluidity in compact stars. In contrast, for low-energy
systems such as liquid helium and ultracold atomic gases,
a Galilean framework is more ideal.

Recently in [17,18], we established that one can derive
the most generic constitutive relations for an ordinary
Galilean fluid starting from a relativistic system, namely
a null fluid in one higher dimension, followed by a null
reduction.’ [20,21]. Loosely speaking, null fluid is a fluid
coupled to a background with fields: a metric gy,
a U(l) gauge field Ay, and a covariantly constant null
isometry V= {VM A,} with VMA, + A, = constant.
We call this background a null background.” Theories on
a null background, which we call null theories, are
demanded to be invariant under V preserving diffeomor-
phisms and gauge transformations. Upon performing null
reduction, i.e. choosing a basis {x¥} = {x~,,x'} such

'Null reduction of an ordinary relativistic fluid gives us a
constrained Galilean fluid as found in [19].

*Here, definition of null backgrounds has been adapted to a
torsionless spacetime. For backgrounds with torsion, look at [22].

that V = {V = 0_, Ay = 0}, these restricted transforma-
tions reduce to the well known Galilean transformations on
the background spanned by coordinates {z, x'}. It suggests
that null theories are entirely equivalent to Galilean
theories, and are related by merely this choice of basis.
It follows that a fluid on null background—null fluid—is
entirely equivalent to a Galilean fluid. Their constitutive
relations, conservation laws, thermodynamics etc. match
exactly to all orders in derivative expansion. Due to
presence of an additional vector field VM constitutive
relations of a null fluid are vastly different from those of a
relativistic fluid and contain many more transport coef-
ficients. This accounts for the additional transport coef-
ficients in a Galilean fluid as compared to a relativistic
fluid,> while at the same time establishing that the most
generic Galilean fluid cannot be gained by null reduction of
an ordinary relativistic fluid.

In this paper we take the construction of null fluids one
step further to include null superfluids, i.e. we construct a
null fluid with a spontaneously broken U(1) symmetry. The
corresponding Goldstone mode is a new field in the theory
and modifies the constitutive relations of an ordinary null
fluid. Once we have the constitutive relations for a null
superfluid, corresponding Galilean superfluid constitutive
relations follow trivially via null reduction. We find that up
to first order in derivatives, a Galilean superfluid is
described by pressure P (at ideal order), a total of 51
first-order transport coefficients and two unknown con-
stants including the anomaly constant. Out of these 51
coefficients, 38 lie in parity-even sector while 13 are in

3The reader might wonder how a Gailean (super)fluid can have
more transport coefficients than a relativsitic one. Though the
Galilean symmetry has more generators than Poincaré symmetry
(accounting for the additional mass conservation operator), a
Galilean system has an additonal U(1) mass current in its
spectrum. Therefore the most generic Galilean (super)fluid can
admit more transport coefficients than a relativistic (super)fluid.
More discussion can be found in Sec. V.
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parity-odd sector. Furthermore, only 22 parity-even and 3
parity-odd coefficients are dissipative. Out of the non-
dissipative coefficients, 3 parity-even and 3 parity-odd
coefficients describe equilibrium physics, while the remain-
ing 13 parity-even and 7 parity-odd coefficients describe
nondissipative effects away from equilibrium. Finally,
following the intuition from relativistic superfluids and
known Galilean results in [23], there are hints that the 7
parity-even nondissipative, nonhydrostatic coefficients and
3 parity-odd dissipative coefficients are switched off using
Onsager relations (imposing microscopic reversibility of
field theories). This would imply that the parity-odd sector
is purely nondissipative. However, a detailed microscopic
calculation is required to establish confidence in these
Galilean Onsager relations, which we do not perform in this
paper. In Table I, we have summarized the counting of
transport coefficients for the most generic Galilean super-
fluid, along with a comparison with relativistic superfluids
reviewed in Sec. II and known results for ordinary Galilean
and relativistic fluids.

Another recent development in hydrodynamics is off-
shell formalism introduced by [24-26], which streamlines
the analysis of constitutive relations in accordance with the
second law of thermodynamics, up to arbitrarily high
orders in derivative expansion. We have reviewed this
formalism in Sec. II. In a nutshell, for ordinary fluids the
formalism requires us to consider a version of the second
law of thermodynamics which is valid for thermodynami-
cally nonisolated fluids,

u
v, J§ + 7" (V, T — FrJ, — T;‘{l) + % (V,J* = T)

=A>0.

(1.1)

Since the fluid is not thermodynamically isolated, it is
allowed to interact with its surrounding and hence conser-
vation laws are no longer satisfied. Therefore the original
second law V,J% > 0 has been modified with combinations
of the conservation laws. We need to find the most generic
constitutive relations for 7+, J# allowed by symmetries
(modulo terms related to each other by conservation laws)
which satisfy Eq. (1.1) for some entropy current J% and
A > 0. When we move to superfluids, we have an additional
field ¢ (the Goldstone mode) which comes with its own
equation of motion K = 0, the Josephson equation. Going
offshell in ¢, conservation equations get modified by
combinations of K, and the second law of thermodynamics
for thermodynamically nonisolated superfluids takes the
form (see [27] for more details),

v, Js + "—T" (V, T — Fr ], — Ty — &K)
+%(V,,J”—Jﬁ+K):A20. (1.2)

Note that contrary to the philosophy of [24-26], though we
have gone offshell in ¢ we have not modified the second law
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with a multiple of K. Rather, we require the second law of
thermodynamics to be satisfied even for offshell configura-
tions of ¢. Next, we find the most generic “superfluid
constitutive relations” 7#,J¥#, K allowed by symmetries
(modulo terms related to each other by conservation laws or
the Josephson equation) which satisfy Eq. (1.2) for some
entropy current Ji; and A > 0. In Sec. III, we have extended
this formalism to null (super)fluids, and used it to work out
the constitutive relations of a null/Galilean superfluid up to
first order in derivative expansion.

The paper is organized as follows: we start Sec. I with a
review of offshell formalism for relativistic hydrodynamics.
Readers well familiar with this formalism can skip to
Sec. II B, where we have reviewed offshell formalism for
relativistic superfluids and later used it to work out
respective constitutive relations up to first order in deriva-
tive expansion. Next in Sec. III, we introduce offshell
formalism for null superfluids and find respective con-
stitutive relations up to first order in derivative expansion.
The null superfluid results have been reduced to Galilean
superfluids in Sec. IV. In Sec. V, we have argued how these
results can also be obtained by ¢ — oo limit of a parent
relativistic theory. These are the main results of this paper.
Finally, we conclude with some discussion in Sec. VI. The
paper contains three Appendices: in Appendix A we give a
detailed derivation of first-order constitutive relations of a
relativistic superfluid in offshell formalism, and in
Appendix B we present equilibrium partition function
for null superfluids. Finally, in Appendix C, we give details
of some computations glossed over in the main text.

II. REVISITING RELATIVISTIC SUPERFLUIDS

Before going to null superfluids, it is instructive to revisit
the relativistic superfluids first. It will help us appreciate the
similarities between the two systems, while at the same
time allowing for an isolation of the differences. Needless
to say, all the results in this section have already been
worked out in the literature [ 12—14]; however, our approach
will be slightly different. We will work in the “off-shell
formalism of hydrodynamics,” which was introduced for
ordinary (nonsuper) fluids in [24,26], and later extended to
superfluids in [27].

A. Off-shell formalism for relativistic ordinary fluids

Let us begin with ordinary relativistic fluids. Consider a
d-dimensional manifold M, equipped with the back-
ground fields: a metric g,, and a U(1) gauge field A,.
Physical theories coupled to M, are required to be
invariant under diffeomorphisms and U(1) gauge trans-
formations. These act on the said background fields as

5Xg/w = £)(g/w = vy)(u =+ vu)(;u

SxA, =£,A, +0,A, = 0,(\, +y*A) +x'F,,, (2.1)
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for some diffeomorphism and U(l) gauge parameters
X = {y",A,} respectively. In this work we will only be
interested in a particular class of these theories—fluids,
which are the universal near equilibrium limit of quantum
field theories. Near equilibrium, the spectrum of any
quantum field theory on M, must contain an energy
momentum tensor 7 and a charge current J¥. These
quantities satisfy a set of conservation laws (here V, is
the covariant derivative associated with g,,, F,, = 0,A, —

d,A, is the field strength associated with A, and T’ﬁl,lﬁ
are Hall currents carrying the anomalous contribution to
the conservation equations),

V,I% —F"],-T4 =0, V,JF-Ji=0, (22)
provided that the system is thermodynamically isolated. In
fact, Eq. (2.2) can be taken as a definition of thermody-
namic isolation for near equilibrium quantum systems. The
conservation laws Eq. (2.2) can also be thought of as a
“near equilibrium version” of the first law of thermody-
namics, which imposes the conservation of not just energy,
but also momentum and U(1) charge. Formally, we define
an (ordinary) fluid as a near equilibrium system charac-
terized by the currents 7+, J#, with dynamics given by the
conservation laws Eq. (2.2) imposed as the “equations of
motion.” Since Eq. (2.2) are (d + 1) equations in d
dimensions, they can provide dynamics for a fluid
described by an arbitrary set of (d + 1) variables. We
choose these to be a normalized fluid velocity u* (with
w'u, = —1), a temperature T and a chemical potential p,
collectively known as the hydrodynamic fields (modes).
A fluid hence is completely characterized by a gauge-
invariant expression of 7%, J* in terms of g, A, u*, T, u,
known as the hydrodynamic constitutive relations. The near
equilibrium assumption allows us to arrange these con-
stitutive relations as a perturbative expansion in derivatives
(known as derivative or gradient expansion), consistently
truncated at a finite order in derivatives.

Being a thermodynamic system, a fluid is also required
to satisfy a version of the second law of thermodynamics. It
states that there must exist an entropy current J whose
divergence is positive semidefinite everywhere, i.e.,

VJs=A2>0, (2.3)
as long as the fluid is thermodynamically isolated (i.e.
conservation laws Eq. (2.2) or equivalently the first law(s)
of thermodynamics are satisfied). The job of hydrodynam-
ics now is to find the most general constitutive relations
TH# JH and an associated J’;, A order by order in derivative
expansion, such that Eq. (2.3) is satisfied for thermody-
namically isolated fluids. This task has been extensively
undertaken in the literature [28-33].

The problem stated in this language, however, turns out
to be increasingly hard to solve as we go to second or
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higher orders in derivative expansion [34]. Fortunately, it
was realized in [24] that most of the complication in the
aforementioned computation comes from the fact that we
need to maintain the thermodynamic isolation (i.e. satisfy
the conservation equations) perturbatively at every order.
A much easier problem to solve is to allow for the fluid to
interact with its surroundings, i.e. break the conservation
laws Eq. (2.2) by introducing an arbitrary external momen-
tum P~ and a charge Q. source,

V,T" — F*J, — T4 = P

ext»
V, JH =T = Oexr- (2.4)
The lhs of the second law in Eq. (2.3) will also need to be
augmented with an arbitrary combination of Py, Q. for
the inequality to be satisfied,

V”JI‘; +ﬁyple/xt + (Aﬂ + Aﬂﬁﬂ)QCXt - A Z O?
= VI + B,(V, T = ], = T

+ (As+ APV I =T) =A >0, (2.5)
for some fields B = {*, Ag}. This version of the second
law is known as the off-shell second law of thermody-
namics, because the conservation laws, which are imposed
as equations of motion on the fluid, are not required to be
satisfied. Equation (2.5) can be recast into a yet another
useful form by defining a free-energy current G* as

G+
= N = TS BT (A A
Gé 1 wl v\ 1L
_7 = NH = ﬁﬂTH + (Aﬂ +Auﬁ )JH (26)

Having done that, Eq. (2.5) implies a free-energy con-
servation,

1
V,N* = Njj = ET/”’SBgM + JHSpA, + A, A>0,

(2.7)
where, similar to Eq. (2.1), we have defined

559}41/ = £ﬂg/4b = vyﬁv + vyﬂw

OpA, = £4A, + 0,Ng = 0,(Ay + pA,) + p'F,,. (2.8)
Recall that the hydrodynamic fields u*, T, u introduced
earlier were some arbitrary (d+ 1) fields chosen to
describe the fluid. Like in any field theory, they are
permitted to admit an arbitrary redefinition among them-
selves without changing the physics. This huge amount of
freedom can be fixed by explicitly choosing,
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1 S P N+ AP
V-FB VBB V-FB,
(2.9)
or conversely,
= Lo ! u

As a consequence of this choice, B = {f#, A} is just a
renaming of the hydrodynamic fields. Finally, we can find
the most general gauge-invariant expression of the currents
T, J* in terms of g,,, A,, p*, Ay arranged in a derivative
expansion, along with an associated N¥, A such that
Eq. (2.7) is satisfied. However, there is a caveat in this
way of thinking: these 7+, J* are not merely the con-
stitutive relations of a fluid; they also contain information
about the external sources Ph,,, Q.. One way to circum-
vent this problem is to pick a set of terms which might
potentially appear in 7%, J# and can be eliminated using
the conservation laws, and only consider the solutions 7#*,
J# of Eq. (2.7) (for some N*, A) which do not involve these
terms or their derivatives. TH¥, J# thus obtained are
guaranteed to be the constitutive relations of a fluid, as
they will be free from any P.L,, Q.. dependence.

Authors in [25,26] illustrated a consistent mechanism to
find the most generic constitutive relations of a fluid up to
arbitrarily high orders in derivative expansion, which
satisfy Eq. (2.7). They further classified these constitutive
relations in eight exhaustive classes, which we will not have
scope to review here. Instead, in the following subsection,
we will review the off-shell analysis of relativistic super-
fluids which has been introduced in [27], and later adapt it
to Galilean superfluids.

B. Off-shell formalism for relativistic superfluids

Let us now review some essential aspects of the off-shell
formalism for a relativistic superfluid following the work of
[27], and use it to re-derive the respective constitutive
relations up to first order in derivative expansion [12—14].
For the sake of brevity, we have pushed the computational
details in Appendix A. As we have already mentioned in
the introduction, a superfluid is a phase of a fluid where the
global U(1) symmetry of the microscopic theory gets
spontaneously broken in the ground state due to conden-
sation of a charged scalar operator. The U(1) phase ¢ of the
scalar operator becomes a new field in the theory, along
with u#, T, u on which the respective constitutive relations
can depend. Under an infinitesimal gauge transformation
and diffeomorphism, ¢ transforms as §y¢ = y*0,0 — A,,
with covariant derivative,

=0+ A, (2.11)
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commonly known as the “superfluid velocity”. Just like the
dynamics of u#, T, u is given by the conservation equations
Eq. (2.2), ¢ comes with its own equation of motion,”

K=0. (2.12)

We will be particularly interested in the “off-shell” con-
figurations of the field ¢, which we define as the superfluid
configurations for which K # 0. As was suggested by [27],
conservation laws for these configurations modify to,

V, T = FJ, + T4 + &K,

V,J* =T - K, (2.13)
which trivially turn back to their original form in Eq. (2.2)
when K = 0. The claim is that “even the ¢-offshell
configurations of a superfluid satisfy the second law of
thermodynamics™; i.e., there exists an entropy current J
whose divergence is positive semidefinite, i.e.,

VJs=A2>0, (2.14)
as long as the superfluid is thermodynamically isolated (i.e.
Eq. (2.13) are satisfied), irrespective of K being zero. Rest
of the analysis follows exactly like ordinary fluids; on
allowing the superfluid to interact with its surroundings, the
second law modifies to,

VI + B, (VT — FP], — T — &K)

+ (Mg +AP) VI =T +K)=A>0. (2.15)

In terms of free-energy current, however, we get,

1

V,N* = Njj = 5 TH85g,, + J*05A, + Kégp + A,

A >0, (2.16)
where
1

o :ﬂﬂay(p_Aﬁ :?(ny—ﬂ)- (2.17)

Similar to the ordinary fluid, we should now consider the
most generic expressions for 7%, J#, K in terms of g,,, A,
P, Ay, @ arranged in a derivative expansion, along with an
associated N*, A such that Eq. (2.16) is satisfied. However,
these T, J#, K will not be the constitutive relations of a
superfluid, as they will also have information about the
surroundings. The true constitutive relations will be gained

‘K =0 should be thought of as a placeholder for the
Josephson junction condition #*¢, = u + O(0), which provides
dynamics for the U(1) phase ¢ in the conventional treatment of
superfluids. At the moment, however, we will allow for an
arbitrary K treating it as yet another ‘current’ besides 7+, J* in
the theory, and will later establish that the second law of
thermodynamics forces K to take the Josephson form.
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by considering those solutions to Eq. (2.16) which do not
involve a chosen set of terms that can be eliminated using the
conservation equations Eq. (2.13) and the ¢ equation of
motion Eq. (2.12).

Josephson equation: In the study of superfluids, the U(1)
phase ¢ is generally taken to be order —1 in the derivative
expansion, while its covariant derivative ¢, is taken to be
order 0. This is because the true dynamical degrees of
freedom are encoded in the fluctuations of ¢ along the U(1)
circle, and not in ¢ itself. As a consequence, the Kdz¢ term
in the free energy conservation Eq. (2.16) can be order 0
when K has an order O term. This gives us a solution to
Eq. (2.16) at zero derivative order, which was absent for
ordinary fluids,

N TR, g0 = O(P),
K = —(153§0 + (9(5)),

A = a(d3p)* + O(9), (2.18)
for some “transport coefficient” a > 0. Note that the ¢
equation of motion at this order will read K =
—adpp + O(0) = 0, implying,

1
Spp =7 (W&, =) = 0(0) = w'g, =p+0(9).  (2.19)

This is the well known Josephson equation. This condition
also ensures that A is at least O(9), avoiding “ideal
superfluid dissipation”.

C. Relativistic (super)fluids up to first order

In [27], author provides a complete classification and
construction of the superfluid constitutive relations satisfying
Eq. (2.16) up to arbitrarily high orders in derivative expan-
sion. In this work, however, we are only concerned with
superfluids up to first derivative order, which can be analyzed
directly by brute force without involving the technicalities of
[27]. Since these results have already been well explored in
[12—14], in on-shell formalism, we only summarize the final
results in the following. A detailed derivation in off-shell
formalism can be found in Appendix A.

We find that the constitutive relations of a relativistic
superfluid up to first derivative order are given as

T" = (E + P)u'u’ + Pg" + R&'& + TH 4 O(9%),
JH = Qu' — R & + J* + O(9),

J§ = Sut + 8 + 0(9?), (2.20)
where the energy density E, pressure P, superfluid density
R, charge density Q and entropy density S are functions of
the zero derivative scalars T, u and u, = —%fﬂfﬂ. These
functions are related to each other via the thermodynamic
relations,
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dP = SdT + Qdu + R,du, (Gibbs-Duhem),

E+ P = ST+ Qu (Euler relation). (2.21)
On the other hand, 7#*, J# and S" are first derivative
corrections to the constitutive relations. They are charac-
terized by 30 transport coefficients® which are functions of
T,v=u/T, iy = —3(¢" + u*u*)E,&,, and two constants
C, and C¥. The constants C; and C*) along with P and 4
transport coefficients,

parity even (2): f, fa,

parity odd (2): g1, @, (2.22)
totally determine the hydrostatic transport (part of
the constitutive relations that survive at equilibrium).
Nonhydrostatic, nondissipative transport (part that does
not survive at equilibrium but doesn’t contribute to A > 0
either) is given by 11 transport coefficients,

parity even (7). [fBjlsxs (antisymmetric),
[K[ij]]2><2

parity odd (4): [’z(ij)]2><2

(antisymmetric),

(symmetric), 7. (2.23)

Finally the entire dissipative transport is given by 15
transport coefficients (f44 = a/T),

parity even (14): [(;j)]sxs (Symmetric),
[K‘( ; j>]2X2 (symmetric), 1,
parity odd (1): [Kjjjj]oxo (antisymmetric). (2.24)

These dissipative transport coefficients follow a set of
inequalities,
Blijaxas

n>0,  (2.25)

[K/<ij)]2><27

where

J /
, K1y Ko LS K12
K;: = = < . (2.26)
J / / _|_2A [12]

K1 Ky Koi o Koo T 2fts s

and a “non-negative matrix” implies all its eigenvalues are
non-negative.

Out of these for an ordinary relativistic fluid, shear
viscosity 7, bulk viscosity { = f;, conductivity k = Ky,
and the constants C;, C* are present. In addition g; and ¢,
are forced to be constants, while all the remaining transport
coefficients zero.

>Our parity-odd counting is only valid in 3 + 1 dimensions.

065004-6



FIRST ORDER GALILEAN SUPERFLUID DYNAMICS PHYSICAL REVIEW D 96, 065004 (2017)
Defining the differentials of f; and g; as

Ap.i i\ qn
dfi = E’l dT —+ T(XQ,idl/ + (aRS’i - %) dﬂs, aE.i + fi = aS’iT + aQ,iﬂ’
s

a i ~ [ A~ ~ ~ ~
dg; = =t dT + Tagp,dv + <aR,,.,i - %) diy, ag; + 9 = as; T + ag . (2.27)
A

the first derivative corrections to the constitutive relations are given as: the energy-momentum tensor,

2 2
L= 1
T = uw'u” {Z agiSe; + Z AgiSei — ?vﬂ(Tflga) + €almuavp(T91“nCT)}
i=1 i=1
2 1
+ 2u<’l€y> |:Z fiS4+i I/t 5/) <Z aR zSe i + Z aR JiYe, l> /’:4
gﬂgu[ZaR zSez_I'Z(aR l_—/\> e, ZﬂZz l:|
+ 2” |: Zf’ e, Zgl e2+i Z)eapﬂfvp(Tgl ”aCr) + 2C1T3(1)D) + C(4)/’l2(3MUJ + 2ﬂa)b)):|

2 4
— 20 [ZfiVZ?i + ZKliVI;) + chli‘??)] + P |:ZfiSe,i - Zﬁlisi] —not —net", (2.28)
p p i=1 i—1 i=1

the charge current,

(I/Jm'é‘a P ( Tgl uaCT):|

N

2 2
~ 1
" Sei+ > a0iSe; — =V, (TF20Y) + e™ou,V, (T
j u [;aQ.l e.l"’;aQ,z el T 1/( f2§)+€ Ug l/( 92up§0)1|
2 2 5 4
- {Z AR iSei T ZaR:.iSe.i + Zﬁ3i i
i=1 i=1 i=1

2
+Y fv +Zg, ‘i sz,v —sz, Vi = PheroV,(Tgru,l,) + 3uCH MY + po?),  (2.29)
i=1

1
2% eawgéavy<T92 upCa):|

and the entropy current,

1
St =g ?e””””ubg“,,aﬁT + g Te""u,,0,v + 3C, T?w*

2 2
5. Q ! c K v ! avpe K apor
+u |:Z aS,iSe,i + ZaS,iSe,i - Fva(TfIC ) +Fvv(Tf2C ) + Te r ”avv(Tgl”pga) - ?6 ’ uavv(TQZMpé’a)
i=1 i=1

1 4 U
+ [;juﬁsi i+ 3 €V (Tartl) = 5o Lae "V (T, C)
7 2 2
T2 Vit ; A, (Tgyu,C,) + P79, (T L), (230)

Here & = (¢* + utu*)¢,, pr — ¢+ utub — ﬁ(ﬂg”, ot = e""u,0,u, and M* = %e’“’ﬂ"uDF o Various first derivative
order data appearing here have been defined in Table II. Finally, corrections to the Josephson equation (K = 0) coming from
the first-order superfluid transport are given as (here fy = a/T),

g, = u+ﬂ V,.(R,&) Z?’“ v (c ZaR Sei " ZaR, e Zf, Zg, )+0 (@), (231)
44

which can be seen as determining u*£, in terms of the other superfluid variables. Note that though this equation contains
second-order terms, it is only correct up to the first order in derivatives, and will admit further corrections coming from
higher-order superfluid transport.
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TABLE II. Independent first-order data for relativistic super-
fluids. We have not enlisted, neither would we need, all the
independent data surviving at equilibrium.

Vanishing at equilibrium—On-shell independent

M gi”‘”ﬁggm p’wvﬂul’

A %C”C”(stguu Z—:ﬂcbvﬂ uy

S5 T¢'5pA, ¢(TV,v+ uF,,)

S, i Tépp ~””§/4 H

vy TP" (559, 2PN )

V’{ TP””5BA;4 P¥(TV,v+ u’F,,)

fﬂb %Pﬂ<ﬂpb>‘7589pa PﬂpPDG(V(ﬂu,;) - d_i2P/)O'Sl)
V/f Eﬂbp(;uué‘pvl.o’

‘7;24 €”Vp0uprV2,6

o

v
6(;{ |pot u, Cag‘f)

Vanishing at equilibrium—On-shell dependent

Ss Tu'u gy, %M”V”T
Se Tu'spA, Tu'V,v
S, TC't S5 GOV, +u,u,)
Vi Tf”‘”u/’éggw, F’””(% VT +u°V,u,)
i 7, C, Vs,
Surviving at equilibrium
Se1 +¢40,T
Sen T,
Ses qgeme
Sea s
Ve Lpwo,T
Vi, TP"9,v
S‘M Te"?f,u,0,u,
Sen LTem g, u,F,,
V’;l TP;e™ u,0,u,
v, ITPle™rou, F,
\7’213 Ti”,‘e“’””fpapuﬁ

M L7 pu
Viea > TPEe™ & F ),

It should be noted that these results are presented in a
particular hydrodynamic frame (gained by aligning u”, T, u
along p#, Ap) and in a “natural” choice of basis for the
independent data. They can be transformed to any other
preferred hydrodynamic frame or basis by a straight
forward substitution.

In deriving these constitutive relations, we have only
used the second law of thermodynamics. To compare these
results with the existing literature [12—14], one might need
to further filter these results with requirements like micro-
scopic reversibility (Onsager relations), time reversal
invariance and CPT invariance. For example, Onsager
relations are known to turn off 7 parity-even nondissipative
coefficients [f;jlsxas [K[ijjlaxo and the only parity-odd
dissipative coefficient [K[;],,, [12]. To avoid confusion,
also note that there is a coefficient f; appearing in
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Eq. (A11) which we removed by using the ¢ equation
of motion (or equivalently, by redefining ¢). This coef-
ficient has been included in the counting of independent
transport coefficients in [13].

III. NULL SUPERFLUIDS

In [17] we proposed “null fluids™ as a new viewpoint of
Galilean fluids. In this section, we will further extend this
formalism to include Galilean superfluids. The main benefit
of working with “null (super)fluids” is that it is a “rela-
tivistic embedding” of Galilean (super)fluids into one
higher dimension and enables us to directly use the existing
relativistic machinery to read out the respective Galilean
results. In this sense, our in-depth review of relativistic
superfluids in the previous section will be vital for our
discussion of null/Galilean superfluids. Later in Sec. IV, we
will translate our null superfluid results to the better known
Newton-Cartan and conventional noncovariant notations.

A. Null backgrounds and null superfluids

Let us quickly recap null backgrounds [17,18], which are
a natural “embedding” of Galilean (Newton-Cartan) back-
grounds into a relativistic spacetime of one higher dimen-
sion. Consider a (d + 1)-dimensional manifold M4,
equipped with a metric g)y and a U(1) gauge field A,,.
Infinitesimal diffeomorphisms and gauge transformation
with parameters X' = {y™ . A, } respectively, act on these
background fields as

Sxgun = Vaxn + Vxu.

SxAy = Ou(A, + xNAy) + ¥V Fyy. (3.1)
The characteristic feature of a null background is the
existence of a compatible null isometry V = {V¥ Ay}
which satisfies: VMV,, =0, V,,V¥N =0, VMA,, + Ay =
—1° and,

Svgun = VuVy +VyVy =0,
5VAM - 8M(AV + VNAN) + VNFNM == VNFNM - O
(3.2)

Since we will be interested in studying superfluids on this
background, we introduce a preferred U(1) phase ¢ which
transforms under diffeomorphisms and infinitesimal gauge
transformations as Sy = yM0,p — A,. The covariant
derivative of ¢ is known as the superfluid velocity,

%This condition can be thought of as fixing a component of the
(d 4 1)-dimensional gauge field A,,, leaving it with only d
independent components mapping bijectively to the d-dimensional
Galilean gauge field. As opposed to the null backgrounds defined
in [17] where we set VMA,, + A, = 0, for superfluids we realize
that it is more suitable to fix VMA,, + A, = —1 instead.
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Su = Oug +Apy. (3.3)
We require ¢ to respect the null isometry V), i.e.
Syp =VMoyp — Ay = VME, +1 =0, which implies
VMg, = —1. The remainder of the story is exactly same
as the relativistic case: any theory coupled to a null
background has an energy-momentum tensor 7" and a
charge current JY in its spectrum. The respective con-
servation laws are given as

VTN = FNRJp + TN 4 EYK,

V" =Ji - K, (3.4)

where

K =0, (3.5)
is the ¢ equation of motion. Since Egs. (3.4) and (3.5)
are (d + 3) equations in (d + 1) dimensions, they can
provide dynamics for a superfluid described by an
arbitrary set of (d 4 2) variables in addition to the phase ¢.
We choose these to be a normalized null fluid velocity "
(with uMV,; = =1, uMu,, = 0), a temperature T, a mass
chemical potential u,, and a chemical potential p,
known as the hydrodynamic fields. A null superfluid
hence is completely characterized by gauge-invariant
expressions of TMN, JM K in terms of gyy, Ay, uM,
T, p,, u and &, known as the null superfluid constitutive
relations. The near equilibrium assumption allows us to
arrange these constitutive relations as a perturbative
expansion in derivatives (known as the derivative or
gradiant expansion).

Same as the relativistic case, null superfluid is also
required to satisfy a version of the second law of
thermodynamics. It states that there must exist an entropy
current J4 whose divergence is positive semidefinite
everywhere, i.e.,

V¥ >0, (3.6)
as long as the superfluid is thermodynamically isolated
(i.e. conservation laws Eq. (3.4) are satisfied), irrespective
of K being zero. The job of null superfluid dynamics
now is to find the most general constitutive relations
TMN, JM K and an associated J%, A order by order in
derivative expansion, such that Eq. (3.6) is satisfied for
thermodynamically isolated fluids. Owing to our previous
experiences with the second law, however, we switch to
the off-shell formalism in the next subsection for
simplicity.

B. Off-shell formalism for null (super)fluids

We couple the fluid to an external momentum P, and
charge Q. source, so that the conservation laws are no

PHYSICAL REVIEW D 96, 065004 (2017)

longer satisfied. Having done that, the second law Eq. (3.6)
will be modified with an arbitrary combination of the
conservation laws to get,

Vud¥ + py(Vy TMN — FNR ], — TNL — M)

+ (Ag+Aup") (V" —Tg +K)=A >0,  (37)
where B = {#", A4} are some arbitrary fields. Recall that
the hydrodynamic fields u, T, u,, u were some arbitrary
(d + 2) fields chosen to describe the fluid. Like in any
field theory, they are permitted to admit an arbitrary
redefinition among themselves without changing the
physics. This huge amount of freedom can be fixed by
explicitly choosing,

R L\ 1
V" 2(Vyp)? ViupM
Uy = & = _M‘ (3.8)
"tV VB
or conversely,
w_Loom M H M
P =M = VY, A=A (3.9)
T T
We define a free energy current,
GM
- = N =T + TN By 4 (Mg + BV AN)IM,
Gif
- = Nii = BuTH- + (s + AT, (3.10)

which turns the off-shell second law in Eq. (3.7) to a free
energy conservation equation,

1

A>0. (3.11)

Now similar to our analysis of relativistic superfluids, we
will try to find the most generic 7YY, JM, K in terms of
Iuns Aus Y, Ay, @ which solves this equation for some
NM_ A. Again, however, these expressions will be shy of
being the null superfluid constitutive relations because of
their dependence on the external sources PY,, Q... To fix
this, we will only consider the expressions for TN, JM,
K which are independent of certain data that can be
eliminated using the conservation laws.

Josephson equation: Following our discussion of rela-
tivistic superfluids, Eq. (3.11) has a zero derivative order
solution,
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NM TYN M = O(8),

K = —adgp + O(0), A = a(5zp)* + 0(0), (3.12)
for some “transport coefficient” a > 0. The ¢ equation of
motion K = 0 then implies the Josephson equation for null
superfluids,

1
opp = ?(MMEZM + up —p) = O(0)

= uMéy = p—p, + 0(9). (3.13)
This condition also ensures that A is at least O(0), avoiding
“ideal superfluid dissipation”. Note that this equation
determines Jg@ in terms of first- and higher-order data;
therefore, it would be beneficial from here onward to think
of Sz as order-one data in derivative expansion.

C. Ideal null superfluids

Let us now move on to the ideal null superfluids, i.e. null
superfluid constitutive relations that satisfy the free energy
conservation Eq. (3.11) at first derivative order. At ideal
|

PHYSICAL REVIEW D 96, 065004 (2017)

order, the most generic tensorial form of various quantities
appearing in Eq. (3.11) can be written as

TMN = R, uMuN + 2EuMVN) + pPMN 4 R gMEN
+ 20, EMYN) L 20, EMyN) L R VMVM L 0(9),
I = QuM 1+ 0,eM + 0,VM + 0(9),
K = —adgp + Kigea + O(0),
NM = NuM + N &M + N, VM 4+ 0(9),

A = (adpp)” + Ajgea + O(0%), (3.14)
where R”, E, P, Rs’ ﬂlv ),2, Q, st Kidealv N, Ns are
functions of T, u, u, and u, = —%SM &y We have omitted
the only other possible scalar dz¢p in the functional
dependence, because using the ¢ equation of motion we
know that it is no longer an independent quantity. The
coefficients R,, Q,, N, do not contain any physical
information, because their contribution to the conservation
laws trivially vanish owing to ) being an isometry.
Plugging Eq. (3.14) in Eq. (3.11) we can find,

1 A
(Q; + Ry)EM <VMV + T uNFNM> + T—lszvMT + LEV (Vyv, + uMVy Uy)

P 1
vM((T - N) MN> + ?MM(VME - TVMS - /’lnvMRn - /"VMQ + Rstﬂs) + vM(<5B(pRs - Ns)£M>

+ (Kigeal — Vir(RsEM))55¢ + Aigea = 0,

where we have defined S “Euler

b 2
equation”,

through the

E+P=ST+ Qu+ Ruu,. (3.16)

Equation (3.15) will imply a set of relations among
various coefficients,

11212:0, N:

’

Nl o

Ns = 58(/)Rs’ Kideal = vM (ngM)’ Aids:al =0,

(3.17)
and the “first law of thermodynamics,”

dE = TdS + pdQ + u,dR, — Rdu,,  (3.18)

giving physical meaning to the quantities we have
introduced in Eq. (3.14). Finally, we have the full set
of null superfluid constitutive relations up to ideal order
satisfying the second law,

(3.15)
|
TMN = R uMuN + 2EuMyN) 4 ppMN 4 R EMEN
+R,VMVN + 0(9),
" = QuM — R M + 0,VM + 0(9),
K = —adgp + Vy(REY) + O(0),
P
NM - ?MM + éB(pRsfM + NUVM + O(a)’
1
JISl‘/I = NM - ? (TMNMN —ﬂnTMNVN +HJM)
= SuM + §,VM + 0(0). (3.19)
Here S,=N,++(R,—u,E—pQ,), which again

doesn’t contain any physical information. These are
the ideal null superfluid constitutive relations. Note that
we have included first-order terms in K, N which can
be ignored when talking about the ideal order, but are
required for internal consistency with Eq. (3.11). The ¢
equation of motion K =0 will imply,

adpgp = Vi (RE") + O(0)

= WEy = =+ Ty (REY) +00), (3.20)
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TABLE III. Independent first-order data for null superfluids.
We have not enlisted, neither would we need, all the independent
data surviving at equilibrium.

Vanishing at equilibrium—On-shell independent

Si gi’MNél;gMN PYNY yuy
S5, 8.1 TVMENSpgpy MV, T
S3 TEMEN Sy CMENY yuy
Sy T¢M Ay CM(TV v+ uNFyy)
Ss Tépyp uMEr + py —
V/lw, VIX,I TP"* VN5BQRN %i) MNVNT
vy TP"RNSsgpy 2i)MRCNV(R Un)
vy TPMNsgAy PY"N(TV v + uRFgy)
oM gpMMPN}S‘ngRS Z)MRPNS(VUQMS) _%Sl)
vit eMNESTY Ul oV p
‘7]2\/’ MNRST VyurlsVar
‘794 €MNRSTVNMRCSV3,T
GMN eMIRSTPY ) £ N)

Vanishing at equilibrium—On-shell dependent
Se TuMVNSggun +uMV T
S5 TuMsgAy, TuMV v
Sg TuMuNSggyn TuMV v,
So TuMENSggpy TV vy + uVViyuy)
vi TPMRUN §pgrn PN (TV yu, + uRV guy)
v eMNRSTY \uplsVar

Surviving at equilibrium

Se,2 T(M(?My
Se.3 TgMaMyn
VQ/,IZ TIBMNaNl/
VQ/.I3 TPMN aNI/I/L
Se,l TeMNRSTE Vi ugdgur
S.n STeMNRSTE Vv ugFsr
%4 TPYeKNRSTY e Dgur
vih LTPYMNRSTY yup F oy
‘7% TP%EKNRSTfN uROguy
‘7%1 % Ti)%EKNRSTév ugFgr

which is a first-order correction to the Josephson
equation. Note, however, that this equation can admit
further one derivative corrections due to the first-order
constitutive relations discussed in the next subsection;
the correction mentioned here is only how the ideal null
superfluid transport affects the Josephson equation. The
conservation laws on the other hand are complete up to
the first order in derivatives,

"Null and Newton-Cartan geometries behave more naturally in
presence of a minimal temporal torsion Hyy = 28[MVN] (see
[35]). In presence of Hyy, the data Sy = {™ (10T + u" Hyy)
vanishes at equilibrium while S, ; = %CM OyT survives. How-
ever, when Hyy =0, S, =S, .

PHYSICAL REVIEW D 96, 065004 (2017)

J%_gag(w—g(mz + P)Vy + RTuy,)) + OT65Ay

= —&yadpp + O(0%),

59/ 70T) = v + OP).
These equations provide a set of relations between Sz,
Opgun and OgAy, which can be used to eliminate a
vector uMdggyy and a scalar uMszA,, (see Table III)
from the first-order null constitutive relations. On the
other hand, we choose to eliminate the scalar data
Vi (REM) using the ¢ equation of motion.

(3.21)

D. First derivative corrections
to null superfluids

Moving on to the one derivative null superfluids,
let us schematically represent various quantities
appearing in Eq. (3.11) up to the first order in
derivatives as

TN = [R,uMuN + 2EuMVYN) 4 pPMN R gMEN
+ R, VMYN] 4 TMN L O(?),
JM = [QuM — REM + Q, VM + T + O(?),
K = [~adpp + Vi (REY)] + K + O(0?),

P
NM = TuM+5B(pRS§M+NuVM + NM 4+ 0(8%),

A = a(épp)* + D, (3.22)
where the corrections TMN, 7M. K, NM, D have
exactly one derivative in every term. Plugging these in
the Eq. (3.11), we can get an equation among the
corrections

1
VuNM —Ni; = ETMNéBgMN + TMopAy

+ Kdpp + D + O(5%). (3.23)
We will now attempt to find all the solutions to this
equation, hence recovering the null superfluid constitutive
relations up to the first order in derivatives.

1. Parity-even

We can find the most general parity-even solution of
Eq. (3.23) in two steps (note that N is parity odd):
(1) first, we write down the most general allowed
parity-even A’M and find a set of constitutive relations
pertaining to that, and (2) we find the most general
parity-even constitutive relations which satisfy Eq. (3.23)
with AM = 0.

(1) One can check that the most general form of

NM (whose divergence only contains product of
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TABLE IV.

PHYSICAL REVIEW D 96, 065004 (2017)

Independent null superfluid data at the first order in derivatives. Note that we have not, neither do we

need to, enlist all the independent data that survives in equilibrium; the ones listed here are the only ones we use in

the null superfluid constitutive relations.

Newton-Cartan data

Noncovariant data

Vanishing at equilibrium—On-shell independent

s, 7Y s,
SZs S&l lTé‘MaﬂT Sz, Sel
s S OAN S5
Sy CH(TOw + u'Fy,) Sy
Ss — 5y = s+ — Ss
Vi Ve FPo,T Vi Ve
1 QﬁMVCUpp(UVu) u? Vi
V4 p*(TOv + u’F, py)~ Vi
o pHrpve pT(pVU)uT - 5261 Sl) o'
i S,V Vi
‘:/g —ehPe ny, K:p V24,o‘ ‘:/l2
Vi =, L, Vs, Vi
GHV —glulpor npé’gal;) &l
Vanishing at equilibrium—On-shell dependent

Sé %ul‘aﬂT S6
S5 Tu"0,v S5
Sg Tu"0,v, Sg
So CM (Tauvn + u”ppuV,,up) Sy
% pHv (TOyvn + upp,VouP) Vi
VZ —ehre ny, gp V4,o' ‘72
Surviving at equilibrium

S.2 T, S.2
Se,3 Tcﬂayl/n Se,3
Vi, Tpm 0, Vi,
Vl;.3 Ti);wayl/n Viz,3
Se Te"7n,£,0,B, Se,l
36,2 ggwpanﬂé’”Fﬂﬁ 36.2
", ~T P, 0,8,
‘7/;2 - % i)/‘;&,ﬂ/pﬁan/]” 22
Vis TPre™6,0,B, + (s + 58"V Ves
Ve, Vi

TPHe™o L F pp + (ug + 1040,V

i)ijaiuj
e
{igou
{(TOw — e; + w'y;)
—%C"Ckl—/{s +Hy =
F PO,
POy
i)”(Tajl/ - Ej =+ Mkﬁkj)
ﬁikﬁjl(agkuz) + 248))
ek Vg
8’:’:ké‘jvz,k
ek Vs

E(i\klé«k(f{)

+(0,T +u'd,T)
T(Ov+u'dw)
T(Ow, + u'dw,)
CH(TOw, + Ou; + wdju;)
P(TOw, + Ou; + u*Ou;)
R Vg

TC 0w

T O,

Tpiow
Tp0,u,
Tsijkéiajuk
Te* e B
Tpie*0u;

T =i ljk
5D Bk

—T(u'eM;0u; — €7%¢;0,up) + (ug + 1 COVE,

=T (u' M8, By + €75 er) + (s + %Cké'k)vi,z

derivatives and has at least one dz per term) can be
written as (see Appendix B for more details),

1
NM =2 f ulMeN ﬁaNT + 2f,uMN oy

+ 2f3uM MO, + 2f,uM MO R,

+ Vi (fsulM), (3.24)

where f’s are functions of T, v = u/T, v, = u,/T
and fig = —5¢MCy  with (M= PMNE, = M —
uM 4+ (uNEN VM (PMN = gMN 4 2y (MYN) s the
projection operator away from the null fluid
velocity). Note that
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A 1 |
Hy = —ECMQVM = —§§M§M + EMup = pg + EMuy,
= ps — Yn + p + Tpp. (325)

Out of the five terms in Eq. (3.24), the last one has
trivially zero divergence and hence can be ignored. The
forth term on the other hand can be removed by
elimination of V,;(R,EM) using the ¢ equation of
motion. Computing the divergence of the remaining
terms in N and comparing them to Eq. (3.23), we can
directly read out the corresponding null superfluid
constitutive relations (the symbol ‘>’ represents that
they are not yet the complete solutions of Eq. (3.23); we
still have to add the terms with NM = 0),
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2

3
1
TMN > MMMN <Z ale-Se,i _—
i=1

3 1
TVR(TfSCR)) +2VMyN) (; agiSe.i _?VR(Tfl CR)>

3 3 3 3
+ (N 420N — 2V (uRERN) S g 1S, =26 FVEI A PMNN TS, 420V N T fSs
i=1 i=1 i=1 i=1
3 1 3 3
T" > uM <Z g iSe —va(szfR)> —cM ZaRx,iSe.i + Zfivyi,
i=1 i=1 i=1

3 3
K>Vy <CMZaR\.,iSe,i_Zfivlgi>v (3.26)
i=1 i=1

where PMN = g 4 2y(MyN) ﬁ (MEN and we have defined,

dfi — (x7E1’i daTr + TaRn‘ian + TaQ.,-dI/ + (aR‘_i - 2"f—,\l> dﬁs (327)
' ‘ Hs

The actual computation is not neat and we have presented the details in Appendix C for the aid of the readers interested in
reproducing our results. Note that these constitutive relations are presented in terms of “data” which are natural for this
sector; readers can modify these to their favorite basis and get results which might look considerably messier. Moreover,
these results are written in a particular “hydrodynamic frame” chosen by aligning u™, T, u, u,, along g™, Ay, which again
can be modified according to reader’s preference.

Let us now look at the parity-even solutions to Eq. (3.23) with A'M =0,

1

Every term in 7N, 7™ K must either cancel or contribute to A which has to be a quadratic form. It follows that the
terms in 7MN | 7M K must be proportional to Sgguyn» 55A . Op¢. Recall, however, that we have chosen to eliminate
uM gy, uM A, using the equations of motion. For A to be a quadratic form, it therefore implies that 7"V, 7™
cannot have a term like #™ "), #uM respectively for some vector #¥ and scalar #. With this input let us write down
the most generic allowed form of the currents in terms of 34 new transport coefficients [f;;]5,5 (With fss = a/T),

[Kij}3x3 and 7,

THN 5 —T[{B1, P* + 281, BVS) 4 B3RS} PN + (B PR + 280l RV + s RESy2rMyN)
+ {B31 PR + 283, RVS) + BaalRESYeMEN
+ 4{K11V(R + Klzé'(R}fDS)(MVN) + 4{’<21V<R + KzzC(R}IBS)(MCN) + '113M<RPS>N] %éBgRS
= T[B1alRPMN + 2B, CREMVN) 4 By LREMEN 4 23 PRMYN) 4 253 PRMEN) 1554
= TB1sP"™ + 2B,s¢MVN) + B35 (M N5

5 5 5 3
= =PV NT B8 = 20V N B8 = CMEN T S =2V S ke v
=1 i=1 i=1 i=1

3
— o Z ko VY — oMV (3.29)
i=1
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~ ~ 1
T" 2 =T[{Bur P + 25l V) + ial"E M + 2oy VI + xsnl CFPIY) S 8505

— TpsslMIN + k33 PMN|5 AR — T[B45E™ ]850,

5 3
=" BuSi= D kaiVH
i=1 i=1

4
K 3 =T[s1 P* + 25, RVS) + Bs3t® ¢S]0 5grs — TIBsal™)05An = = Y _ BsiSi.

(3.30)

(3.31)

i=1

Note that we did not include a term proportional to dze in K, because such a term is already present in
K = —adgp + Vy (REM) + K + O(6?). Plugging these back into Eq. (3.28) and defining 55 = a/T we can read
out the parity-even quadratic form A, = @(659)* + Dlevens

5 3
TAleven = Z SiffisS; + z Vﬁ”KijVj,M + ooy,

ij=1
5

ij=1

In the second step we have realized that only the
symmetric parts of the matrices f;; and «;; will
survive in this expression, and will contribute
towards dissipation. Thus only 22 out of 35
transport coefficients (including «) are dissipative;
the remaining 13 are nondissipative.

2. Parity-odd (five dimensions)

We can find the most general parity-odd solution of
Eq. (3.23) in three steps: (1) first we consider a particular
set of solutions which takes care of the anomaly Ni; and
proceed towards the nonanomalous constitutive relations,
(2) then we write down the most general allowed parity-odd
N™M and find a set of constitutive relations pertaining to
that, and (2) finally find the most general parity-odd
constitutive relations with zero N'M.

(1) In four dimensions at first order in the deriva-

tives TH+ = 0 and Jjj = —3 CWeMVRST Yy Py o For
[17,22], which implies,

Ni = 3 cH mNrsT

—Z T uMFNRFSR' (333)

A particular solution pertaining to Eq. (3.23) with
this Ny is given as (see [17]),

TMN 5 6CH) 2V M pN) | TM 5 6CH MM,

2

K50, NM> 3c<4>”7MM. (3.34)

3
= Z Slﬂ(,j)S/ + Z V{VIK'ODVJM + ﬂUMNUMN.
i,j=1

ij=1

(3.32)

Here we have defined the magnetic field and fluid
vorticity as

1
MM — EeMNRSTVNuRFST’

a)M = €MNRSUVNMR85MT. (335)

(2) One can check that the most general form of
NM (whose divergence only contains the product
of derivatives and has at least one dz per term)
can be written as (see Appendix B for more
details),

NM = g (BYS, ) + Vi) + g2 (S0 + V)

+ VM 4+ C T, (3.36)

where ¢’s are functions of 7, v, ji,, and C; is a
constant® From here we can directly read out the
corresponding constitutive relations,

*It might be noted that since VoM =0, C, a priory
can be an arbitrary function rather than a constant. How-
ever, if we do the same computation in presence of torsion
and later turn it off, which allows for 8[MVN] #0, we will
be forced to set C; to be a constant (see Appendix (A) of
[17]). Another way to see that C; should be a constant
is using the equilibrium partition function discussed in
Appendix B.
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2 2
TMN 5 yMyN Z g, iSe; +2VMyN) Z g S,

i=1 i=1

2
(2 2000 = 20V E) D i, S cMcN S

—2VM§:% mﬂ—zuMEZQV +2C, T2V M)
=+ ZM(MP PKRSTVK(TglvR”SfT) +2V MP VK<93T€PKRSTVRMSCT)

VAN Z g iSe; =M Z G, iSe. + Z giVel + PYEXNRSTN (T g,V guséy),
=1 i=1 i=1

2 2
K>Vy (CM aRS,ige,i - Zgzvlewz) (3.37)

i=1 i=1

where we have defined,

1. ~ ~ ~ i\ ga
dgi = ?aE,,»dT + TaQ,idl/ + TaRn,idl/n + (aR‘,i - —29,\ )dﬂy (338)
o2y

The actual computation is not neat and we have presented the details in Appendix C for interested readers.

(3) We should finally consider the parity-odd constitutive relations that satisfy Eq. (3.23) with zero lhs. Following our
discussion in the parity-even sector, the allowed form of the constitutive relations can be written down in terms of 10
coefficients [k;;]3,3 and 7,

TUN 5 —TV3ugl [AVMENTKLR (7, VS) 4 1,9} + 40 MeNTELR (g, VS) + ky0¢S)}

- g, 1 ~ ~
+ nPP(MeN)TKL(RPi)] 556%5 —TVyugl, [2K13V(M€N)TKLR + 2K23€(M€N)TKLR]5BAR,

3 3
— —2V(M Z 1}11‘75\/) - 2§<M Z I~<2i‘~/i - ﬁ&MN
i=1 i=1

- - 1 -
J* 2 =TVrugl, eV 0"y V) + k3p Y] 2 8sgrs = TV ruglp [Rase ™ H]8pAr,

3

K>0. (3.39)

One can check that these constitutive relations trivially satisfy Eq. (3.23) with zero lhs and the quadratic form
Aloaa = D)oaq is given as

3
MNRST ~ = P
TAlogq > =" TV qugly [Z ViukijVin +noypoy |,

ij=1

3
= —€MNRSTVRM5CT Z VZMI’Z‘I(JQ) VjN (340)
i,j=1

It follows that out of the 10 transport coefficients, only 3 contribute to dissipation and the other 7 are
nondissipative.
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3. Positivity constraints

The dissipative transport coefficients are required to
satisfy a set of inequalities to agree with A = a(dgg)? +
D'even + D‘odd 2 O’

5
TA =" Sifu)sS;
ij=1
3 3 B
+ (Z V¥ikipVim + Y V&g j.M>
= =1

+ MV Gy (3.41)
We want this expression to be a quadratic form, which it
nearly is except the parity-odd terms in the brackets.
However this term can be made into a quadratic form by
noting that the square of a parity-odd term is parity-even,
due to the identity,

(eMNESTY puslr) (emkropViuosr)
= PXCMEy = -2, PY. (3.42)

PHYSICAL REVIEW D 96, 065004 (2017)

We define
VUIVI ‘/11u 0 ap ap ‘7”1”
Vlg/[ = Vgll -+ O 0 ans V/12VI .
v i 0 0 0)\pm
K;] :Klj+klj, k[l]] :O, (343)
such that

3
Z V;M_ZV K(ij) ,M+Zv R Vim

(3.44)

Using the identity Eq. (3.42), the above equation can be
easily solved to give

Ko K11 (KooK 7131 =K (12)Kpa)) =R (k2K (13) HE SRRy

K11 K11(Kllez—K%IZ)—CMCM’?[ZIZ])

0 0
0 0
0 O
0 M
[kij] = e ’“”
0 Z"‘Mg ]i]]

Consequently A will take the form

5 3
TA = Z Slﬂ(l})S] + Z:] V/ K (i) V;M +i’[0'MN O VN -
i,j=

(3.47)

Given T >0, the condition A >0 implies that >0
and the matrices [f(;j)]s.s. [k(;; ]3x3 have all non-negative

eigenvalues. This gives 9 inequalities among 25 dissipative
transport coefficients, and 16 are completely arbitrary.

E. Summary

We have completed the analysis of a null superfluid up to
the first order in derivatives. Here we summarize the results.
We found that the entire null superfluid transport up to the
first order in derivatives is characterized by an ideal order

=g (B

K11/?[23]—K(12)§[13]+K(13)’~<[12] R (345)
K11’<22—K?|2>—CM§M7<:212]
0
0
M 12
—Mn T (3.46)

(Kl 1R 23] =K (12) K136 (13)K12))
Ky (K Kzz—K(le)—CMCM’?[zlz])

|
pressure P, 51 first-order transport coefficients which are
functions of T, u/T, u,/T, fis, and two constants C;, C*).
P, C; and cW along with 6 transport coefficients,

parity even (3): fi. f2. f3.

parity odd (3): g1, g2, g3 (3.48)
totally determine the hydrostatic transport (part of the
constitutive relations that survive at equilibrium).
Nonhydrostatic nondissipative transport (part that does
not survive at equilibrium but doesn’t contribute to A >
0 either) is given by 20 transport coefficients,

parity even (13): [B[;j]s«s (antisymmetric),
[kjijjl3xs  (antisymmetric),
parity odd (7): [K(;j))sx; (symmetric), 7. (3.49)
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Finally the entire dissipative transport is given by 25 transport coefficients,
parity even (22): [f(;j)]sxs (symmetric), [K(ij)l3x3  (symmetric), 1,

parity odd (3): [K[;j]3x3 (antisymmetric). (3.50)

These dissipative transport coefficients follow a set of inequalities [«}; is defined in Eq. (3.43)],

Biplsxss  [Kiplaxss 120, (3.51)
(i)

where a “non-negative matrix” implies all its eigenvalues are non-negative.

Out of these for an ordinary null fluid, shear viscosity #, bulk viscosity { = f;;, conductivities k1, K13, K31, k33 and the
constants C;, C* are present. In addition ¢;, g, and g5 are forced to be constants, while all the remaining transport
coefficients zero.

Using P, f;, g; we define some new functions,

dP = 8dT + Qdu + R,du, + deﬂsv E+P=ST+ Qu+ Ryu,,

ag; N\
dfi = E’ dT + Tag, dv, + Tag dv + (aRS,i - 2%) di, ag; + fi = as, T +agp+ag, it
S

a - i N ~ ~ ~ ~
dgi = EldT —+ TaR ldl/ —+ T(ZQ ldl/ =+ <aRS,,~ - %) d/ls, (IEA’,' + g;i = aS,iT + aQ,i/’t + aR,,,i,un' (352)
s

In terms of these transport coefficients, corrections to the Josephson equation (K = 0) coming from the first-order null
superfluid transport are given as (here fss = a/T),

ﬁSI
u" Sy +py —p = ﬁss m(REY) Zﬁss

| 2. 3 2
+ ﬂ—vM <CM Z ag, iSei+¢M Z R, iSei = ZfiV}Zi - Z givi’v,li> +0(2).  (3.53)
55 i=1 i=1 i=1

i=1

which can be seen as determining ™, in terms of the other null superfluid variables. Note that though this equation
contains second-order terms, it is only correct up to the first order in derivatives, and will admit further corrections coming
from higher-order null superfluid transport. The energy-momentum tensor, charge current and entropy current up to first
order in derivatives are, however, given as

TN = R, uMuN + 2EuMYN) 4 pPMN R EMEN 1 TMN o O(5P?),
M= out - R &M+ TV 1+ 0(0?)
JM = SuM + SM 4 0(5?), (3.54)

where the higher derivative corrections are,
3 2 B 1
TMN = yMyN [; aRn,iSe,i + ; aR,,,iSe,i - ?VR(Tf3§R)]
3 2 B 1
+2vIMN) [Z g iSei + Z ApiSei— T VR(Tflﬁ:R)]

i=1 i=1

3 2
+ 20 M) {z ag iSei T Z aR.‘,iSe.i]
i=1 i=1
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3 3 2 5
+2¢MyN) {Z fiSsi — (uReg) <z ag, iSei+ Z aRS,iS‘e,i> - ZﬂZiSi:|
- - p Py

+§MCN|:ZQR 1S61+ZaRl e, Z

2/43

5
e i Z/}3isi:|
i=1

+2u {Zfz e.i Zgzv +Py GPKRSTVK(TglvRMSé:T)]

+2vM |: Ré Zfl e,i Zgl e,i+2 ZKU

w

ZMN)

Z N 4 3c@

+ P ePKRSTY (T gV gusly) + C1T260N)} + PMY |:Zfise,i - Zﬁlisi:|

_2C< [Zflvez + ZKZI + ZKZI :| _WGMN _ﬁ(}MN’
|:ZanSL’l +Zan g0 7

i=1 i=1

5
—-M [Z ag,.iSei+ Z aRS,iSe,i + Z/}MS,}

3
+Y £
i=1
|:zaSzSel+ZaSz ez_

+Zgl e.i ZK_’)I i

3 ~ ~
Mﬁ4i—ﬁ2i HK3i — K1 om0 HK3; — Kyi oom
+¢M —S,-+ — VMY V]

+ TgleMNRSTVNuRCSQTI/” + ngeMNRSTVNuRZ:SaTI/ + 2Cl TCUM

Hn H 1
— P XNRST [T Vn(Tg,Vgusér) + TVN(ngvRuséT) - TVN(TQSVR”SfT):| .

The scalar S5 = Tézp = uM&,, + u, — u appearing here
can be eliminated in favor of V(RM) using the
Josephson equation. We will like to reiterate that these
results are presented in a particular hydrodynamic
frame (gained by aligning u™, T, pu,, u along p*, Ay)
and in a “natural” choice of basis for the independent
data. They can be transformed to any other preferred
hydrodynamic frame or basis by a straight forward
substitution.

IV. NULL REDUCTION TO
GALILEAN SUPERFLUIDS

We now reduce our null superfluid results to Galilean
superfluids. The results are presented in the covariant
Newton-Cartan notation and the conventional noncovariant

(3.55)
Vr(T [k )} + PYEENRSTN (T gy V usér)
ZK3,V +6CH MM, (3.56)
i=1
Vr(TFIER) + Z5 VR(TFER) + 5 V(T f iR )}
(3.57)

notation (for superfluids coupled to flat spacetime). For
more details on the reduction, please refer to [17].

A. Newton-Cartan notation

We start with a quick review of null reduction of null
backgrounds to Newton-Cartan backgrounds; for details
see [17]. For an excellent review of Newton-Cartan
geometries, please refer to the Appendix of [36].

Background and hydrodynamic fields: On our null
background M ), we choose a basis {x"} = {x~, x*}
such that the null isometry V = {V = 0_, Ay = 0}. The
fact that V is an isometry implies that all the fields in the
theory are independent of the x~ coordinate. To perform
the reduction, we require an arbitrary null field »¥
normalized as v™v,, =0, v"V,, = —1, which can be
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interpreted as providing a “Galilean frame of reference.” In . The collection of fields {0, B by, Bflv)} defines a
the case of a null (super)fluid, the null fluid velocity v = Newton-Cartan structure. The condition V,,VV =0
uM defines a special Galilean frame which we refer to as the implies that the “time-metric” n = n,dx* is a closed
“fluid frame of reference.” In an arbitrary Galilean frame, K

d he fields VM pM A in the ch one-form, i.e. dn = 0; this is known to be true for
Eve. ecompose the Tields » U7 guns Ay 10 the chosen torsionless Newton-Cartan structures. Note that after
asis as

choosing the said basis, the residual diffeomorphisms
| () are x* — x* + y#*(x¥) and x~ — & + y~(x*). The former
yM — < ) oM — (” By ) of these are just the Newton-Cartan diffeomorphisms,
H while the latter are known as “mass gauge transforma-

tions.” Only fields that transform under these mass

0 —ny -1 .
= ) A, — , gauge transformations are,
g (—nﬂ hﬂy+2n(ﬂB£))> M (A”>
(v) _ - _
(4.1) 5B ==0,". 5,4, =-0u . (44
along with

Bff) is therefore known as the mass gauge field. On
0 -1 the other hand mass gauge transformation of A, can
Vi = ’ m = B,(f) ’ be absorbed into its U(l) gauge transformation. We

-n
g define the volume element on a Newton-Cartan back-

SN = (h“”Blgv)By) — 21)”B,<f) h”f’Bgy) — v”) (42) ground as
By — ot o)
eMPe = 1), eMIPe — —gHPo (4.5)
such that
n,ot =1, vh, =0, Note that the volume element is independent of the
g ) /“:V } ) Galilean frame employed to define it. The Levi-Civita
n " =0, hyph” + 0" =6,". (4.3)  connection 'R\ decomposes in this basis as

1 9 oo
[ = 00ms) + 50 Db + Obps = Dphyus) = Qg(Lny)h Y o

D = I Vvt = V(MBS)J)’

and all the remaining components zero. Here we have identified I'*,, as the (torsionless) Newton-Cartan connection and
denoted the respective covariant derivative by V.. We have also defined the (dual) frame vorticity and electromagnetic field
strength as

Q}(J,vl/) = 2ho[uvu]vg = a,uBz(/v) - 81/3;(]))’ Fp,u = 8}1,141/ - al/A}J,' (4.7)

The covariant derivative ¥ acts on the Newton-Cartan structure appropriately,

YV, =0, Vb7 =0,  Vuhy = 200l 9,00 (4.8)

Note that v™ was an arbitrary field chosen to perform the reduction, and one is allowed to arbitrarily redefine it without
changing the physics. This leads to the invariance of the system under “Milne transformations” of the Newton-Cartan
structure,

v v 1
v = v 4yt Py = hyy =200, + n,nyly, Bf, ) B,(, ) 4+ Wy — znﬂl//”l//p, (4.9)
where y#n, =0, w, = h,p". The fields n,, K", [, and &7 are Milne invariant. We can now decompose the fluid

velocity uM and the associated projector PMV as
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u"B -1 0 0 “B,B, p"B,
MM:( ”>, MM:< > PMN:< ) PMN:<p p P ) (4.10)
ut B, 0 pu p“B,  p*

The fields {n,,u", p**, p,,.B,} define the Newton-Cartan structure in the fluid frame of reference, satisfying,

nut =1, w'p,, =0, n,pt =0, PupP” + nut =8, (4.11)
They can be reexpressed in terms of {n,,v*, h** h,,, B,(,”)} using Eq. (4.9) with y#* = @ = h* ,u¥ = u* — v*,
: 1
pH = ", Puv = hy = 20,0, + n,n, i, B, = Bff) + i, ——n,n’u,. (4.12)

H 2 H P
The (dual) fluid vorticity is defined similar to the (dual) frame vorticity as

Q= 2p0[,,Vﬂ]u” =0,B, - 0,B,. (4.13)

For later use, we define the magnetic field and fluid vorticity,

1 1
M+ = Ee”p””nUFpg, ' = Ee”/"’”nyﬁpa. (4.14)
Finally the superfluid velocity can be decomposed as
1
oM = <B"‘:ﬂ>7 M — (ﬂ T2Pwt + B"(’w)’ (4.15)
G E = H 4
where &n, = 1, {¥n, = 0. We have treated the superfluid potential y, as an independent component of EM_ The hatted
superfluid potential is, however, given as fi, = —%Zj"( - Decomposition of the projector PMN_on the other hand, is
. 0 0 8 pPB,B, p*B,
PMN_( = (:Z:y )9 PMN_< ~ ~ U Fv ). (4.16)
0 Pw = Pw — pﬂffﬂCﬂQy P*B, pr=p" - pgé;)é,a

Currents and conservation: The mass current p#, energy current e, stress tensor #¥, charge current j# and entropy current
s# on Newton-Cartan backgrounds can be respectively read out in terms of TN, JM g a5 [17],

pr= TV, et = —THMy, v — PAPKTMN e gu g — (4.17)

with # = ** and t#*n, = 0. They satisfy the conservation laws and the second law of thermodynamics,

Mass Conservation: V' =0,
Energy Conservation: Vet = —u"F,, 5 — (u'p” +t') pg, V u” — Tutu”,
Momentum Conservation: V,(u/p°,p" +t"") = p”F,,j* — p'V ,u” + Tutp, (4.18)
Charge Conservation: Vit = Ji,
Second Law of Thermo.: Vusﬂ > 0.

The energy current ¢# and the stress tensor #* in Eq. (4.17) are defined in the fluid frame of reference; we can define the
respective quantities in an arbitrary frame of reference,

1
0 = _TﬂMUM =e'+ ”ﬂﬁypvppp + Epﬂﬁpﬁp +a,,

£ = (P Vg (P )TN = 4 4 200 p — i pon,, (4.19)
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where Pi”N gV +20MyN) | They satisfy the conservation laws,

< -

,Ul/

Vﬂe’(v) = —v"F,,j" — (v“p + t( )> hoy Vv — T

(4.20)
V(0% 0" 4 1)) = h7V Fypj? — p' 07 + Tyt b7,

Galilean superfluid constitutive relations: Finally, by a direct computation we can find that the Galilean superfluid
constitutive relations in the fluid frame take a structural form.

p=pu' + R +¢p,
1
€”:€UF+R5 ECMZ:” + Uy §”+g’€l’

W= Pp" + RHY + 61,
J'=qu' =R + ¢q,
sh = sut + . (4.21)

While in an arbitrary frame, energy current and stress tensor are given as
o=yt 1 =2 = R.EH 1_2 Pit* gl’ lgﬂ—Z gﬂp—
() = e—l—ipu + ¢y | + R Ef + s | + Put + €+§ pi” + ¢, |,
= pi R + REE + P + (& + 2501, (4.22)
where ## = hiu* = u* — v* and & = W& = & — v*. Various quantities appearing in the constitutive relations can be
found via reduction (Table IV) as: fluid densities,

3 2
B ~ 1
p=R,+ g 1 R, iSei+ g 1 QR,, iSei — Tvp(Tf?,Cp),
1= 1=

3 2

~ 1
e=FE+ Z apiSe,i + Z apiSei — Tvp(Tfle)
P i1 (4.23)

q—Q+ZOCQ Sez+ZaQ qu_ (TfQCp)
s=5+ ZaSzSez + ZaSz ei — (Tflcp) (ngcp) (TfQCp)

and dissipative currents,

2 3 2
¢ = C”[Z“R\zse,i+25‘Rwi5e,i] Z fiVe, ZgiVﬁ,i+€”"””3D(T91np§g)7

3
i=1 i=1
3

3 5
g’é é”l |:Zf S5+z </’ls +%CMCM) (Z ag, zSez +ZaR i €l> _;ﬂﬁsi]

i=1

1 : - . -
+ (ﬂs + 2C”Cﬂ> Zfivg,i - Zgivlg,lurz - ZKHVI; - Zkliv/; +3CH2mr
i=1 i-1 i-1 -1

+ gﬂvﬂﬁay(’[‘g?)npé’o_) + Cl TZw/t’
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3 2 B 2

v v ~ _ _ vV _ meuu

C.vjtl - C”z: |:IZI aRS,iSe,i + Z aRx,iSe,i 2[[/!Y el Zﬂ3l l:| ’76” ’16”

3

3
—ZZ:(” |:Zf,Vel+ZK2,V +ZK2, }ﬂ-P’w[Zfz e Zﬁlz ti|v

i=1 i

3
cq =~ {Z R, iSei + Z&Rx,ise,i + Zﬁmsi] + 70, (Tgan,¢,)
i=1 i=1 i=1
3 2 3 3 3
+ Zfivlg,i + Zgivg,i - ZK%V’; - Z’?ﬁv? +6CHumr,
p i1 = i=1
5
y HPai — Pai o | Hn 1
gﬂ = é} Z%Sl — e |:T 0 (Tglana) + = a (TQZHpCa) T (nganG)
i1

3 3 ~ ~
UK3; — K UK — Ky ~ . .
+ Z% V’ll =+ Z% V’: - Tglglll//) nyz:/)ao’yn - T928”W) nzzz:/)aﬂy
i—1 i—1
420, To. (4.24)

In addition, we also have the Josephson equation,

1 1 4 ;
- ECMC}L — Ms T pp — = _V#(ngﬂ) - Z IB_5

Bss Bss
, (4.25)
L, (@Za&,, Suat z% ’ Zfz zgzz@,
i=1
which is the derivative correction of the ideal order version yu, = — % ¢"¢, — p + p,. This completes our discussion of the

first-order Galilean (Newton-Cartan) superfluids; counting of various transport coefficients appearing in the constitutive
relations is same as the null superfluid given in Sec. IITE.

B. Noncovariant notation (for flat spacetime)

If the superfluid is coupled to a flat Galilean spacetime, it is fitting to reexpress the results in the conventional
noncovariant notation where we treat the time and space indices distinctly. It might help the reader to better relate the
Galilean superfluid constitutive relations to the existing Galilean literature, e.g. in [23].

Background and hydrodynamic fields: On the Newton-Cartan background, we choose a basis {x*} = {t, x'} such that
the Galilean frame velocity (¢#) = 9,. A flat Galilean background is defined by a particular choice of the Newton-Cartan
structure in this basis,

1 I /00 0 0 "
n."l = 0 ’ 1]” = 0 ’ p” = O 5[] ’ p,ul/ = 0 5 ’ Bﬂ = O’ (4'26)
1

where 5 = §;; is the Kronecker delta. It can be checked that the respective Newton-Cartan connection ﬁ,, = 0, justifying
the spacetime to be flat. The Newton-Cartan structure in the fluid frame can be worked out from here to be,

1 —Luky 0 0 wku, —u;
= —( 2 = (). 427
¢ <Mi>’ g ( Uj >’ P <0 5ij>’ P ( —U; 5ij > ( )

We define the spatial volume element,

ek = p,etlik = gliik, (4.28)
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The U(l) gauge field A, can be decomposed as
A,dx* = A,dt + A;dx'. The fluid vorticity and electromag-
netic field strength on the other hand can be decomposed as

(3, + ukak)u,- +a),~kuk)
(I)lj:aluj—ajul '

0
Q =
" (‘(az + uk Oy u; — wyu*
(4.29)

F 0 _ei = atAi - (9,~A,
p e = —a[Ai + aiAt ﬁij = aiAj - ain ’
(4.30)

where ;; is the (dual) spatial vorticity, e; is the electric
field and p;; is the dual magnetic field. For later use, we
define the magnetic field and fluid vorticity,

i1 ik
o' =<e"w;.

A
i ijk
M _Egjﬁjk’ 2 i

(4.31)

mass conservation:
energy conservation:
momentum conservation:

charge conservation:

second law of thermodynamics:
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Finally the superfluid velocity can be decomposed as

oo (D) e, L)
Cl fl:ul_’_él

1. R 1.
us = =& — =8¢, by =—-¢'¢;, (432)
2 2
with the projection operators,
3 <u"uk —u; )
p == ~ N k]
" —u; pij=06;— %
0 0 (433)
fa’”:( <ii l.j_£>. 4.33
0 pY=0 &

Densities, currents and conservation laws: In flat space-
time, the conservation laws and the second law of thermo-
dynamics take the well-known form,

p' +0ip' =0
t i
8le(v) + aie(ﬁ)

— i, _
=Jé TH,l

Dup? + 0it ) = (elj' + B ji) + Tu,
atjt + aiji = JL?
0,s' + 0;s' >0,

(4.34)

v

where we have identified various Galilean quantities: mass density p’, mass current p’, energy density 62 j» energy current

62@)’ stress tensor té{;), charge density j’, charge current j', entropy density s’ and entropy current s'.

Superfluid constitutive relations: Finally, we can read out the structural form of the Galilean superfluid constitutive

relations in noncovariant notation using reduction,

pl=p+R,

| .
€(,) = €+ Ry + 5 pi® +§Rs§ + ¢hu;,

2

pl=pu' +RZE +g).

2

el =u <6+P+§ﬂﬁ2 +€/]7“j> +R¢& (552 +m) + (g’e +o Gl +€s’uj)7

() = puid + REE + P&+ (¢V +2
ji = qui - Rséi + gip

jt = q_Rs’

st =, s'=su' + ¢

<"uj))7

(4.35)

Various quantities appearing here can also be worked out using reduction: fluid densities,

3 2
T 1 -
p=R,+ Z ag, iSei + Z ag, iSei = ?ai(TfSG)’
i=1 i=1

3 2
R N B 1 )

e=FE+ E agiSe; + E AgiSei _?ai(Tflc)
i=1 i=1
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3 2 B 1 '
g=0+ Z agiSe;+ Z agiSqi— fai(szél),
Hn
S_S+Za5tset+ZaSz el_ (TfIC)+ 6(Tf3§)+ a(Tf2z:) (436)

and dissipative currents,

=

3

2 3 2
Zak,‘.,ise,i + Z &Ry.is‘e.i:| Zf - Zgif/é,i +e7%0,(T9:18y).
1 i=1 1 i—1
3 5
Zfi55+i + <ﬂs +%Ck5k> <Z ag iSei T ZO!R i el) - ZﬂZiSi:|
) i—1

i=1

@

=

1 3. - . - .
+ <ﬂs + 55ka> Zfivle,i - ZgiVle,iH - ZKlivf - ZKUV; +3CWPM,
i=1 i=1 i=1 i=1

+ €7%0,(Tg3¢y) + C T
e i Zﬁ.’:l 1:| - ’75ij - ﬁ&ij

3 2
s/ =00 [Z ag iSei + Z ag, iSei— 2,u
i=1 i=1 S i=

3
_2§(l|:z.f +ZK21V +ZK21 :|+plj|:2fl e, Zﬂlz l:|’

8]

3
sp=—¢ [Z ag iSei + Z ag, iSei+ Zﬂ4iSi:| +e7%0,(Tgx¢4)
i=1 s i=1
3 . 2 ~ 3 . 3 ~ .
+ Zfivle,i + Zgivle,i - ZKsivi‘ - Z k3, Vi 4+ 6CHuM’,
i=1 i=1 i=1 i=1
5
. . :— P y 1
=0 ZM& — el ['L%aj(Tgle) +70,(T928k) = = 0;(Tg3Ci)
+ Z” 3~ Rliyi g Z” 3 = Ky Vit T, 0w, + Tgre7*¢ 04w + 2C, Ta'. (4.37)
In addition, we have the Josephson equation,
1 ﬂSl
B L (OR, +0,(RE)) Z
55

3 2
+ ﬁiak <Ck Z g, iSei +C* Z a,.iSei— Zfivlg,i - Z 95‘712,[> ; (4.38)
55 pmy pa P i-1

which is the derivative correction of the ideal-order version p, = —%C i¢; + u, — u. These equation can be compared with
[23] for which the U(1) chemical potential u = 0. This completes our discussion of Galilean superfluids coupled to flat
Galilean spacetime, expressed in noncovariant notation.

V. GALILEAN (SUPER)FLUIDS VIA LARGE C LIMIT

In the preceding sections, building upon our previous work in [17,18,22], we have formulated a theory of Galilean (super)
fluids, illustrated with an explicit computation up to first order in derivatives. The analysis has been purely based on
Galilean symmetries and the second law of thermodynamics. However, we know that the nature is fundamentally
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relativistic, and the physical systems behave Galilean only
in the limit |¥| < c. It is natural to ask therefore, that to
what degree can we trust our construction of “Galilean”
(supen)fluids to describe “nonrelativistic” physics we
encounter around us. The question is particularly important
as the number of transport coefficients in a Galilean (super)
fluid at a given derivative order, are much more than in a
relativistic (super)fluid (see Table I). To bridge this gap
between nonrelativistic and Galilean (super)fluids, we
would like to be able to show that the most generic
Galilean (super)fluid can be gained via an appropriate
¢ — oo limit of a relativistic system.

An important point to note here is that we do not
require this “relativistic system”, whose limit leads to the
Galilean fluid, to be a “relativistic fluid”. The reason is
that fluid dynamics itself is an effective theory of large
wavelength fluctuations, and there is no reason to expect
that the ¢ — oo and large wavelength limits would
commute (see [37] for more discussion in this direction).
In other words, there might be some information in the
microscopic field theory which gets integrated over in the
long wavelength limit, but nevertheless survives a ¢ — oo
limit followed by a long wavelength limit. In fact, to be
able to take the ¢ — oo limit consistently, the relativistic
fluid needs to be accompanied with an additional U(1)
current which keeps track of the flow of mass. This
requirement follows from the fact that the nonrelativistic
symmetry algebra has an additional mass generator
compared to the Poincaré algebra. For the cases where
the relativistic fluid comes with a predefined notion of
“particle(s),” this current can be provided by the particle
number currents, as illustrated by [38] for single com-
ponent fluids. Practically, this amounts to starting from a
relativistic “fluid” with two U(1) currents, one for
electromagnetic charge and the other for mass conserva-
tion. It is this extra information which leads to more
transport coefficients in a Galilean (super)fluid. To get
some intuition of this extra information, note that for a
single component Galilean (super)fluid, wherein the
charge and mass currents are proportional (see footnote 9),
the number of transport coefficients turn out to be the
same as a relativistic (super)fluid. This suggests that
the extra information in a Galilean (super)fluid can be
attributed to the presence of multiple components with
different charge is to mass ratios. In these fluids mass
flows independent of charge, which a relativistic descrip-
tion cannot probe, but is captured in a nonrelativistic
description.

To be more concrete, consider the constitutive relations
of a relativistic superfluid 7%, J%,, K, and the entropy
current J% s.re1> Written in terms of the fields uhy, Trel, Pre and
¢re1, and the background fields gig! and Al¥'. As discussed in
Sec. II, they are the most genemc expressions allowed by
symmetries which satisfy the off-shell second law of
thermodynamics,
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Trelvrel J S rel + ’/trel(VrelTlrlevl _ Flr'g Jrel Tﬁ” _ Krel fgel)
+ Hrel (vrd‘lrel (5 1)

JH + Krel) > 0.
We depart from this fluid slightly by introducing another
U(1) conserved current R, along with an associated
chemical potential y®' and a background gauge field
B,rfl. This extended system will be required to satisfy a
modified second law,

T VTS
+u (Vi Thg — FraJ3! — QURE' = T = Kraély)
+ et (Vi = Jii + Kiat) + 157 (VR = Kret) 2 0,
(5.2)

with Q¢! = 9,Bi! — 9,Bi". Here the superfluid phase ¢
transforms under both the U(l)’s and the superfluid
velocity is given by &l = 9,¢™ + AL — B!, We claim
that under an appropriate ¢ — oo limit this system gives rise
to the most generic Galilean superfluid. Unlike 7% and J%,
which are associated with fundamental symmetries, not
every relativistic system need to have a conserved Rk, ; it
corresponds to an emergent U(1) symmetry at nonrelativ-
istic scales, such as the particle number conservation,
which is required to be able to take a nonrelativistic
limit consistently.9

Let us now proceed to define a ¢ — oo limit of this
system. For simplicity, we will work in a frame locally
comoving with the fluid; results in any other frame can be
obtained easily by performing a Galilean boost. We define
c-scaling of the background fields as

1
rel __ 2 v __ v v
G = —Ccnyn, + Puvs g}rlel - —?M”u + p,

Al = A BY = c’n, + B, (5.4)

I’y

°One way to interpret such a relativistic system is to consider
a fluid with multiple “components” individually conserved.
The corresponding currents are then T, Nt el J% . Where
index “a” runs over the number of components. If each
component has rest-mass m, and charge ¢, (normalized
such that > abala = —Zamuqa =1) we can define Ji, =
YoVl and Riy = > m N’ . We turn on a background
gauge field AS™ = q“Ale! + m*B! coupling to component cur-
rents with respective chemrcal potenuals 1 = g 4 mpe
On the other hand, superfluid velocity is given via .f,rfl =
0,9 + > 4q,A%. Now the off-shell second law in Eq. (5.2)

follows from the off-shell second law of this multicomponent
fluid (g, = (m*q, +my)/(Camamq = 1)),
relvr 1‘,S rel + urel VrelTlrl:l ZFZprel‘]a e Krela'/el)

+ Zﬂrel(vrel‘,a rel QQJH + anrel) Z 0 (53)
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See Sec. IV for the definition of Newton-Cartan fields used
here. On the other hand, superfluid fields in a comoving
frame scale as

Uy = 1V, Ty =T, Hrel = H, W =2 4,
2u, + &2
o = u" 1+”‘Y072§+C". (5.5)

In terms of these, we can define various nonrelativistic
currents as

1
TV,s" — [Vue“ + (u’p? + ") po, Vyu” + ut Fq” + u“TﬁM - K (Ms + 5&)}
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H— T1; 2(THY o pH
rel” e = }LI{.IOC (Trelnv chl)’

p* = lim R"
CcC—>00

(7 H H v TPo
" = lim p, pe T,
Cc—00

U
m.J
s rel”

H = 1i s# = limJ% . 5.6
q P o0 S.rel ( )
It can be checked that under a Poincaré transformation of
the relativistic currents, these nonrelativistic currents trans-
form appropriately under the Galilean symmetry group.
They also satisfy the ¢ — oo version of the modified oft-

shell second law (5.2),

(5.7)

10 (Vg = Jig + K) + pn (T — K) + O(1/¢%) 20,

which is the correct Galilean off-shell second law. In this
way, we can verify that corresponding to every set of
Galilean superfluid constitutive relations that satisfy
Eq. (5.7), there exists a relativistic system (not necessarily
a fluid) satisfying Eq. (5.2) whose ¢ — oo limit reduces to
the said Galilean superfluid. In other words, every Galilean
superfluid is nonrelativistic, i.e.; it follows from the ¢ — o
limit of a relativistic system.

VI. DISCUSSION

We worked out the most generic constitutive relations
of an (anomalous) Galilean superfluid up to first order in
derivative expansion, both in parity-even and -odd sec-
tors. We extended the idea of null fluid introduced in
[17,18] to null superfluid, which is a relativistic embed-
ding of a Galilean superfluid in one higher dimension,
and used it to obtain the mentioned results. We found the
spectrum of transport coefficients to be extremely rich
with 38 coefficients in parity-even and 13 coefficients in
parity-odd sector at first order, in addition to two
undetermined constants in parity-odd sector including
the U(1) anomaly constant (see Table I). Out of these,
3 parity-odd and 3 parity-even coefficients survive in
equilibrium and determine the hydrostatic physics, while
13 parity-even and 7 parity-odd coefficients govern
nondissipative phenomenon away from equilibrium. On
the other hand, 22 parity-even and 3 parity-odd coef-
ficients are dissipative. Though we did not discuss it in
the main text, there are hints that 13 parity-even non-
dissipative nonhydrostatic coefficients and 3 parity-odd
dissipative coefficients vanish on imposing Onsager
relations (microscopic reversibility). To avoid confusion
with counting, we would like to note that we have

|
removed one parity-even hydrostatic coefficient by redefi-
nition of the U(1) phase ¢.

Perhaps the most striking benefit of working in the off-
shell formalism is that it leads to a complete classification
of (super)fluid transport up to all orders in derivative
expansion [25-27] and provides a natural setting to attempt
writing down a Wilsonian effective action describing the
entire (super)fluid dynamics [26,39-44]. It will be inter-
esting to undertake these ambitious problems in context of
null/Galilean (super)fluids, and we plan to return to these in
future.

In this paper, we focused on breaking the internal U(1)
symmetry of Galilean fluids and obtain a null/Galilean
superfluid. The same procedure can also be used to break
spacetime symmetries, which lead to the formation of
boundaries/surfaces in (super)fluids [45]. In an upcoming
paper [46], authors discuss the surface transport for
relativistic and Galilean superfluids. Finally, first-order
computations of this paper can also be easily extended
to higher orders; in an ongoing project [47] we are looking
at some interesting second-order phenomenon in Galilean
(super)fluids.
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APPENDIX A: RELATIVISTIC SUPERFLUIDS UP
TO FIRST ORDER: DERIVATION

In this Appendix, we present a detailed derivation
of first-order constitutive relations of a relativistic super-
fluid in off-shell formalism. These results have already
been obtained in on-shell formalism in [12—-14], while a
generic mechanism for arbitrarily high derivative order
(non-Abelian) superfluids was presented in [27].

1. Ideal superfluids

Let us start with ideal superfluids, i.e. superfluid con-
stitutive relations that satisfy the free energy conservation
Eq. (2.16) at first derivative order. At ideal order, the most
generic tensorial form of various quantities appearing in
Eq. (2.16) can be written as

" = (E+ P)u'u’ + Pg" + R&"& + A(w'&" + u'é)
+ 0(9),
JH= Qu' + Q& + O(9).
K = —adpp + Kigea + O(9),
Nt = Nu* + N & + O(0),

A = (abpp)* + Agea + O(5%). (A1)

where E, P, R, A, Q, Oy, Kigear» N, N, are functions of T', u
and p, = — % &4é,. We have omitted the only other possible
scalar 6z in the functional dependence, because using the
@ equation of motion we know that it is no longer an
independent quantity. Plugging Eq. (A1) in Eq. (2.16) we
can find,

(0, + R (Vo gt )

e <%V”T v, (”—T">> n vﬂ<<§ - N> u”)

1
+ T u'(V,E—-TV,S —uV,0 + RV, u,)

+ vﬂ (5B¢R5§” - Nsé:ﬂ)

+ (Kideal - vﬂ (Rsé?”))él?(p + Ajgeas = 0, (AZ)

where we have defined S through the “Euler equation,”
E+ P = ST+ Qu. (A3)

Equation (A2) will imply a set of relations among various
coefficients,
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0, = —-R,, A=0, N = ; N, = 0p@R;,
Kigear = V,(R&E"), Ajgea = 0, (Ad)
and the “first law of thermodynamics,”

dE =TdS + pdQ — R,du, (A5)

giving physical meaning to the quantities we have
introduced in Eq. (Al). Finally, we have the full set of
superfluid constitutive relations up to ideal order satisfying
the second law,

T" = (E + P)utu’ + Pg" + R,&"E" + O(0),
JH = Qu' — R & + 0(0),
K = —adpp + V,(R,&) 4+ 0(0),

P
NH = ?u” + 8ppR & + O(0),

1
J§ = N = (T"u, + pl*) = Su' + O(9).

A = O(0?). (A6)
These are the well known ideal superfluid constitutive
relations. Note that we have included first-order terms in K,
N# which can be ignored when talking about the ideal
order, but are required for internal consistency with
Eq. (2.16). The ¢ equation of motion K = 0 will imply

adpp = vu(Rs§ﬂ> + O(a) = Mﬂéy

—p L VRE)HO0), (A7)

which is a first-order correction to the Josephson equation.
Note, however, that this equation can admit further one
derivative corrections due to the first-order constitutive
relations discussed in the next subsection; the correction
mentioned here is only how the ideal superfluid transport
affects the Josephson equation. The conservation laws on
the other hand are complete up to the first order in
derivatives,

1
——385(v/=9(E + P)T*B,) + OT55A
\/_—g H H
= ¢, abpp + O(9),
1
——63(y/—90T) = adpp + O(5?).
V')
These equations provide a set of relations between Sz,
0pY,w and SpA,, which can be used to eliminate a vector
u'dpg,, and a scalar u”SzA, (see Table II) from the first-
order constitutive relations. On the other hand, we choose

(A8)
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to eliminate the scalar data V, (R ") using the ¢ equation
of motion.

2. First-order corrections to
relativistic superfluids

Moving on to the one derivative superfluids, let us
schematically represent various quantities appearing in
Eq. (2.16) up to the first order in derivatives as

T = [(E+ P)u'u* + Pg" + R & & + TH + O(9?),
JH=[Qut — R& + J" + O(8%),
K = [—adpp + V,(R&")] + K + O(0?).

NH = E ut + 5B¢Rs§”} +N# 4 0(0%),

A = a(5pp)? + D, (A9)

where the corrections 7+, J#, KC, N*¥, D have exactly one
derivative in every term. Plugging these in the Eq. (2.16) we
can get an equation among the corrections,

1
V”Nﬂ - Nﬁ = ET’“’éggﬂy + jﬂéBA/t + ’CéB(p

+ D+ O(8%). (A10)

We will now attempt to find all the solutions to this
equation, hence recovering the superfluid constitutive
relations up to the first order in derivatives.

a. Parity-even

We can find the most general parity-even solution of
Eq. (A10) in two steps (note that Nﬁ is parity odd): (1) first,

2
TH 3 yty? (Z aE.iSeﬁi - =
i=1
2
+ PN S, — 28
i=1
2
NN (Z g iSei =7
i=1

where P* = g +

aEl

df; =

dT + Tag dv + <aR“,- _Ji >dﬁs.
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we write down the most general allowed parity-even A/
and find a set of constitutive relations pertaining to that, and
(2) we find the most general parity-even constitutive
relations which satisfy Eq. (A10) with N# = 0.

(1) One can check that the most general form of
N*# (whose divergence only contains product of
derivatives and has at least one dz per term) can be
written as

= 2f e aT+2f ukgld <’;>

+ 2f3uL“f:”16DRs + V, (faul&d), (A11)

where f’s are functions of T, v =pu/T and ji; =
—%C"C” with ¥ = P*¢E, (P = ¢" + u'u” is the
projection operator away from the fluid velocity).
Note that

1 1 1
/A‘s = _EC#C/,{ = —zfﬂfﬂ - z (5””/4)2

1
~ 3 -+ Tosp)? (A12)

= Hs

Out of the four terms in Eq. (A11), the last one has
trivially zero divergence and hence can be ignored.
The third term on the other hand can be removed by
elimination of V,(R ") using the ¢ equation of
motion. Computing the divergence of the remaining
terms in AV/# and comparing them to Eq. (A10), we
can directly read out the corresponding superfluid
constitutive relations (the symbol ‘>’ represents that
they are not yet the complete solutions of Eq. (A10);
we still have to add the terms with N* = 0),

v,,<Tflc">> + (81 = 2(wrg, ) ulg) ZaR iSe.
fjfiVZ?l + 2ulkgY ijl-&m,
V,(Tf>¢ ) C”ZaR ,S“+Zf,
K>V, (gﬂ ia,{”iseﬁ,- - Z fivg.,.),
= =

(A13)

wh b — ﬁé’/‘é’”, and we have defined

Al4

N
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(@)

The actual computation is not neat and we have
presented the details in Appendix C for the aid of
the readers interested in reproducing our results.
Note that these constitutive relations are pre-
sented in terms of “data” that are natural for
this sector; readers can modify these to their
favorite basis and get results which might look
considerably messier. Moreover, these results are
written in a particular ‘hydrodynamic frame’
chosen by aligning u*, T, u along p*, Az, which
again can be modified according to reader’s
preference.

Let us now look at the parity-even solutions to
Eq. (A10) with N'* =0,

PHYSICAL REVIEW D 96, 065004 (2017)

1
0= 2 T"8pg,, + T*65A, + Kogp +D. (A1S)

Every term in 7+, J#, K must either cancel or
contribute to A which has to be a quadratic form. It
follows that the terms in 7#*, J*, KC must be propor-
tional to 63gm,, 63A,,, op@- Recall, however, that we
have chosen to eliminate u*6gg,,, udgA, using the
equations of motion. For A to be a quadratic form, it
therefore implies that 7#¥, J# cannot have a term like
#yY) #uk respectively for some vector #* and scalar #.
With this input let us write down the most generic
allowed form of the currents in terms of 20 new transport
coefficients [f;;]4,4 (With fay = @/T), [K;;]5x, and 7,

T 5 =T[{B11 P + fralP LTYP + { By P + PralP GO} + diey (WP L)

-1 - .
PP S8 = TIPE P + prlPCHC + 2kl P55,

= T[B14P"™ + PrultC*150,

4 4 2
= PN BuS =S S = 2k V) = o, (A16)
i=1 i=1 i=1

1

T* > =T[{B31 P’ + B3nlPLo}0H + 260 PHV L) 2539,;5

= T[pxrPCt + Kzzﬁ”p]‘SBAp = T[pL" )60,

4 2
== Zﬂm&' - Zkzivl;’ (A17)
i=1 i=1
5 3
K 3 =T[BuP” + Bl C105Gp0 — TPusl’10pA, = = Y _ PuiSi. (A18)

Note that we did not include a term proportional to
bge in K, because such a term is already present
in K = —adgp + V,(R&) + K + O(8?). Defining
Pas = a/ T, we can read out the parity-even quadratic
form A|even = a(53¢)2 + D‘even’

4 2
T Aleven = Z SibiS; + Z Vlilkijvi,ﬂ +not oy,

i,j=1 i,j=1
4 2
= Z Siﬂ(ij)sj + Z V?K(l-j)V,-,ﬂ + 7’]0””0/”.
i,j=1 i,j=1

(A19)

In the second step we have realized that only the
symmetric parts of the matrices f;; and «;; will
survive in this expression, and will contribute towards

i=1

dissipation. Thus only 14 outof 21 transport coefficients
(including «) are dissipative; the remaining 7 are
nondissipative.

b. Parity-odd (four dimensions)

We can find the most general parity-odd solution of
Eq. (A10) in three steps: (1) first, we consider a particular
set of solutions which takes care of the anomaly Nj; and
proceed towards the nonanomalous constitutive relations,
(2) then we write down the most general allowed parity-odd
N* and find a set of constitutive relations pertaining to that,
and (3) we find the most general parity-odd constitutive
relations with zero AV/¥.

(1) In four dimensions at the first order in the deriva-

tives Ty = 0 and Jj; = =3 CWem?F, F ,,, which
implies,
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3
L — _Z @) euvpo 1
NH 4DC € FﬂDF/)a (AZO) MM - EeﬂUﬂGuDFpo_’ a)ﬂ - €”yp6uyapuo'- (A22)
A particular solution pertaining to Eq. (A10) with

this N ﬁ is given as (sce e.g. [26]), (2) One can check that the most general form of

N*# (whose divergence only contains product of

3

THY 5 2/42C(4) (/4(3 MY + 2/40)”)) derivatives and has at least one dz per term) can be
’ written as
T" 3 uCH(6M* + 3uat),
K30, N = g1 ((Ses +V5) + G2(B'Sen + V5)
2 + C T*", (A23)
Nes B @D (3MF + pa*). (A21)
where ¢’s are functions of 7, v, fi,, and C; is a
Here we have defined the magnetic field and fluid constant. From here we can directly read out the
vorticity as corresponding constitutive relations,
2 B 2 . 201 -
THY 5yl Y ; &E,iSe,i + (CMCI/ upg/ ﬂé‘l/ z:: i —oner ; 2—/2&91‘5},1'
—2ul# Z gV, 2+l #(2Py Y ) Uy )7V (T g u.g,) + 4C, T3 y?)

2
Jr > u! Z&Q.ise.i - Z&Rs,ise,i + ZgiV’;,i + 7V, (Tgal pu,5),
i-1 p i-1

2 2
K> Vﬂ (é’” Z aRS,iSe,i - Z 9:“71;,1) ) (A24)
i=1 i—1

where we have defined,

dg; = “E LAT + Tég,dv + (aRw,. - 2i> di,. (A25)
L 2p,

The actual computation is not neat and we have presented the details in Appendix C for interested readers.

We should finally consider the parity-odd constitutive relations that satisfy Eq. (A10) with zero lhs. Following our
discussion in the parity-even sector, the allowed form of the constitutive relations can be written down in terms of five
coefficients [«;;],,, and 7,

1
TH 5 —Tu,l [Aky (We)™bge) 4 j PHHe(op >] 539,,0 Tu,,[28 1, ¥e)™]55A

P’

2

= =200y "y VY =i,

i=1

JH > TUTCK[2K21€”TWC”] 5nga Tu{[Kyne"™]65A,,

2 ~
DI
i=1
K>0. (A26)

One can check that these constitutive relations trivially satisfy Eq. (A10) with zero lhs and the quadratic form
Aloga = Dloaq is given as
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2
TA|odd = eﬂyﬂ(ufgx |:Z Vi,ﬂkijvjlf + ﬁJW,G,/j
i=1

2
_ UTK § ~
= MTCK VL/tK[ij] Vj,v
i=1

=2""u L V1Ko Vo (A27)
It follows that out of the 5 transport coefficients,
only 1 contribute to dissipation and the other 4 are
nondissipative.

c. Positivity constraints

The dissipative transport coefficients are required to
satisfy a set of inequalities to satisfy A = a(dzp)? +
D'even + D'odd 2 O’

2

4 2
TA =Y SifupS; + (Z ViKinViu + Y Viky Vm)
= p

i,j=1

+noto,,. (A28)
We want this expression to be a quadratic form, which
it nearly is except the parity-odd term in the brackets.
However this term can be made into a quadratic form by
noticing that the square of a parity-odd term is parity-even,
due to the identity,

<€”DPGMP€U)(€TVaﬂua€ﬁ) = i"ﬁé’”é’v = _Zﬂsﬁl‘: <A29)
We define,
<v/’f> - (V’,‘) N (0 a12> (\7’{)
465 %3 0 0 )
K;'j = Kij + kij» ki =0, (A30)
such that,
2 2 2 )
> Vi Via =D VikapViu+ D Viky Vi
i,j=1 i.j=1 i—1
(A31)

Using the identity Eq. (A29), the above equation can be
easily solved to give,

K1)

ap=—%, k;=ki=0, kp=2p-——. (A32)
K11 K11
Consequently A will take the form,
4 2
TA = Z:l SiBujS; + Z:l VAR Vi + 100, (A33)
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Given T > 0, the condition A > 0 implies that # > 0 and
the matrices [f;)]sx4» [K‘/(ij)]ZXZ have all non-negative
eigenvalues. This gives 7 inequalities among 15 dissipative
transport coefficients, and 8 are completely arbitrary.

This finishes the off-shell formalism derivation of the
constitutive relations of a relativistic superfluid up to first
order in derivatives. A concise summary of these results has
been presented in Sec. II C.

APPENDIX B: EQUILIBRIUM PARTITION
FUNCTION FOR NULL SUPERFLUIDS

It was realized by [29,30] that a huge part of the (super)
fluid constitutive relations can be fixed by requiring exist-
ence of an equilibrium partition function, which generates
the part of the constitutive relations that survive in equilib-
rium. In this Appendix, we will discuss the equilibrium
partition function for Galilean superfluids. In hydrodynam-
ics, equilibrium is defined by a set of fields K = {KM, Ag}
with KMK,, < 0, which act on the background fields gy,
Ay, and the superfluid phase ¢ as an isometry,

Sxgun = VuKy + VyKy =0,
SxAy = Oy (Ag + KNAy) + KNFyy =0,
S = KMy — Mg = KMEy — (Ag + KNAy) = 0.
(B1)

For simplicity, we choose a basis {x"} = {x7,#,x'} such
that the null isometry V ={V =0_,Ay =0} and the
equilibrium isometry K = {K = 9,, Ay = 0}. The fact that
V, K are isometries implies that all the fields are independent
of x7, t coordinates. In this basis, we decompose the
background fields as

ds? = —2¢=®(dt + a,dx')(dx~ — B,dr — B;dx')
+ g;jdx'dx’,

A =—dx + Adr+ Adx'. (B2)

We will denote the covariant derivative associated with the

spatial metric g;; by Vl After choosing the said basis, the
residual diffeomorphisms are the spatial diffeomorphisms
x' = x' 4+ y/(x/), mass gauge transformations x~ — x~ +
2~ (x') and Kaluza-Klein gauge transformations ¢ — 7+
2'(x). Under mass gauge transformations, only fields that
transform are,

6){*Bi = —5‘,-)(_, 5)(7141' = —81'){_, (B3)

while under Kaluza-Klein gauge transformations,
5){+ai = 8i)(+, 5)(+Bi == Btal')(+v 5;(+Ai = Atai)(+‘
(B4)
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We define the fields, 1 1.
Us = —§§M§M = —55151‘ —-e®A, +¢%B,, (B8)
Bi :Bl‘—aiBt, Ai :Ai—aiAt—Bi. (BS) o
and we define ji; = —%é’fi. Finally, the fundamental var-
B, is mass gauge field which is invariant under Kaluza-Klein  iables at equilibrium are,

guage transformations. A; on the other hand is invariant

under both mass and Kaluza-Klein gauge transformations, ®, A, B, a;, A, B, gij» . (B9)
and only transforms under the U(1). a; is Kaluza-Klein

gauge field. Components of the superfluid velocity £, =  The argument is that at equilibrium, constitutive relations

Oy + Ay can be found as should be derivable from an equilibrium partition function

written in terms of these fundamental fields. In covariant

& =-1 & =4, §i=0ip+A;. (B6)  terms, variation of an equilibrium partition function W can

) . . be parametrized as
Out of these, &; is not mass or Kaluza-Klein gauge invariant

due to presence of A;. We can write an invariant version as 1

& =00 +A;. (B7)
(B10)
The superfluid potential can also be written in terms of
these as In our chosen basis it decomposes as
. . . 1 iy
SW = /{dx’}\/g_3 {(T,_ + T__B,)d® + e~ ®(T, + J'A,)da; + Ee‘q’T’/(Sg,-j
+ (T__6B, — e ®(T'_ — J))6B,) — (J_86A, — e~ ®Ji5A;) + e_(DK(Sqo} , (B11)

where g; = det g;;. Now, given the most generic partition function W[®, A, B,, a;, Ai, B,-, gij» @] as a gauge invariant scalar
functional of the fundamental fields, various components of the currents 7N, JM K can be read out in terms of W as

1w _ L (W W

~ \/9306B,’ T o \6® '6B)’

. ® SW o SW e 5W W o 2e® sW

T’_:—e—<—,——,>, T;:e—< —A,—,), i = =20
V93 \B; 54, V93 \0a; 0A, V93 89ij
1 W e 5w

=2 =227 (B12)
V93 6A; V93 8A;

Since these expressions are already in a “noncovariant notation”, we can easily perform null reduction to read out the
Galilean currents. We define a Galilean frame field to perform the reduction,

e®B,

KM KRK M
Re—s=1| e |. (B13)

M
Y = <o

VKM

In vf(‘fo Galilean frame, the Galilean currents can be read out in terms of W as

P 1 oW o= e?® <5W 5W) i 2e® W
V93 6B, V33 \6B; G5A;)° (vx) NGXI
€ . €

® 5w , 20 6W+(A B)5W+35W
€log) = FT—em > €L,y =—"—F—1\|— - - — |
(vx) \/ggaq? (vk) \/g; Sa; t t SA, téBi

1 6w L e oW

j=—F7—= J == (B14)
V93 04, V93 8A;
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Finally, we can write down the most general equilibrium partition function W up to first order in derivatives as

W= / {dx'}\/g5 [e-‘l’P +e Pf 1 E0® + £L,EQA, + [3E9,B, + £,V (é"

+ (g1 + gZ)Sijkéiajék + g2€ijk£iajAk + (91B, + 9A, — e_q)QS)gijkéiajak - Clgijkaiajék:| ,

where the coefficients P, f;, g; are arbitrary functions of the
scalars @, A,, B, and fi,. C; on the other hand has to be a
constant, so that integral of the term coupling to it is gauge
invariant. The term coupling to f, is multiplied with the
first-order equation of motion of ¢ and hence can be
neglected. On the other hand, term coupling to f5 is a total
derivative. Acute reader might note that we have not
included a term like to Cye"*B;0;B,. The reason is that
this term does not have a “covariant analogue” and hence is
switched off by the second law of thermodynamics [17].
Finally, this equilibrium partition function does not account
for anomalies; for a discussion on anomalous partition
function for null fluids see [17,22].

Varying the partition function W in Eq. (B15) and using
Eq. (B14), we can read out the equilibrium constitutive
relations. We will not perform the explicit variation here,
but one can check that the constitutive relations gained are
the same as the ones derived in the bulk of the paper, after
identifying the equilibrium values of the hydrodynamic
fields,

M _ M
u |eqb - U(K)’

ﬂnleqb = eq)Bn (B16)

These can also be summarized as Bloy, = {A", Ag}eqp =

{KM, Ak} = K. Having established that, the equilibrium
value of the projected superfluid velocity is given as

0

CM‘eqb = PMN§N|cqb = 01].

q

(B17)

and hence ﬁs|eqb = ji;. This finishes our discussion of

equilibrium partition function for null/Galilean superfluids.
|

T u 1
5BT = Eu"u“é[ggﬂy, 53 <?> = ?uﬂégA”,
Opfly =

opu! = —u'u’u’opg,,,

N = N =

8¢t = (W'u ) — PHOE))55g,, + PHERE,,

(C”CD - 2(up§p)u(ﬂgv))58.g;w - gﬂaBAy -

opP
I

) + vi(fséi)

(B15)

[
APPENDIX C: CALCULATIONAL DETAILS

In this Appendix, we will give details of the computation
regarding divergence of the free energy current, glossed
over in the main text. We will find the following identities
useful in the following computation: let S be a scalar and p*
be a vector, then,

1 1

There is a corresponding null background version of this
identity,

1 1
Vu(pMS) = \/__—g£ﬂ(\/ —9S) = ESQMNZEﬁgMN + £48.
(C2)
Given a tensor X*¥, we have,
1
V;,V,JX[/”’] = > (V”Vy — VDV”)X””
_1 R H Xrv R v XK
- E( H p + wop )
1
=5 (Ry/,X/’” — RW,XW’) =0. (C3)
Similarly,

Relativistic superfluid free energy current: Let us start
with relativistic superfluids. The Jz variation of hydro-
dynamic and superfluid fields can be computed to be,

1
OpHs = 55"5”55‘9”1/ — §'opA, — &'V 050,

z:” vﬂéB(ﬂ,

1
S, = (ZP;(,pu") — u,u’u") 553ng,

858, = (u"&,)ul P 55g,, + PidsE,. (C5)
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The first-order parity-even free energy current V¥ in Eq. (A11) has a term 2f, ul*&! #@T. We compute its divergence,

1
v, <2flu[”C”]T2 ) f]C” 3 ,T9°659ps + 05 (f]é' =0 T> <f1§” 5BT>
= flz:bﬁavTPpgénga + f1 ?anyszsC” =+ Cy—anySBfl
1 1
—flfyﬁayT“p“”(Snga f1§ ('9 ,TopT + f18" 5 08T —V <fl€”T65T)

1
= flgyﬁayTPpaénga + fl _avTKuyu(ng) - Pu(pgo))éngo + Pypéng]

vl afl % fl ~
+C Ta,/T<8T 5BT+ 8 53 +8A 53/%

1
—fléyﬁauT””M"(Sngn V,(f1¢") = 5BT
1
= [”pug <aE.1Se,1 - ?vﬂ(TfIC”)> + (¢ree - 2(””5;4)14(/’5"))5&1(1&,1

- 5 1
+ PPf1S,1 +2u?) f1Ss —flzf(pve,q = 0890

2
+ [Wag Ses + f1Vie) = Pag 1Se11084, + [[1Ve — (Par 1Se1]0,050- (Co)
Performing a differentiation by parts,

1

1
Vﬂ (2fluw§”] FauT + 0(82)> = [ul)” <aE 15e1 — (Tf1§”)> + (£P¢7 - 2(””5;4)M(/)§”))Se,1alex,l

~ 211
+ PPf1S, 1 + 2uPL) £S5 —f12§(pve?1} 5589/)(7
+ [Wagy S, +f1V[e),1 —Pag 18011684, =V, [f1VD | = Pag 1S.116s0.  (CT)

From here we can read out the contributions to the constitutive relations Eq. (A13). Similarly divergence of the other term in
Eq. (A11) couphng to f, can also be computed. Now, the first-order parity-odd free energy current N# in Eq. (A23) has a
term gzﬂ”S 21+ % V2 We can compute its divergence as

- ~ 1
v/l (QZﬂMSe,Z + gZVg) = ewpgéB <92T§§rutsza> - vu(eﬂ‘[yggZTéfuvéBAo')
r Tpe 1 TUpe wpe
= 56 gruu /)05892 + 2926 51“ /JaéBT +e€ g2T ér 58”1/

T
+ EQZGTnguquaéBgr + ewfngTé‘ruuvp5BA0 - vp(ewlngTéruuéBAa)

r TVpo agz 892 a o 1 (p 1
= 56 v grubF/m(aT 5BT +a—581/ + 8,\ 5Bﬂs + e’ g2T§§rF/)62P )5589,00

1 1
+ <92T§€MW)O—”DFpG - Vp(ef’”wngfqu)> SBA/A + gZTEe”’””uUFpGV,&B(p

vy Q 7Y v )\ 5 < v 92 1
= |:uﬂu aE,2Se,2 + 292”!(”‘/6?4 + (Cﬂé‘ - 2(1,{”5[))1,{(”4' >)aRl‘,iSe.2 - C”C 2/,22 Se,2 5539;411
+ [“”aQ,ZS'e,z + 9V, — é’”a’Rs,Zse.Z =V, (e"™" g, T u,)|65A,
+ (92 VE, = $tag, iSe 2]V 050 (C8)

Performing a differentiation by parts,
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_ . o _ 1

Vi (920Sen + 92Va + O(0%)) = |utu"ag,S, » + 292”“"/24 + (¢ = 2(uPE, )Y )O‘R C”Cu §5Bgﬂu
+ [uMaQ,ZSe,Z +pVi, - é'”&R:,zge,z =V, ("™ g,TEu,)]654,
- V.5V, - C”aRX,iS‘e,sz(P- (C9)

From here we can read out the contributions to the constitutive relations Eq. (A24). Similarly divergence of the other term in
Eq. (A23) coupling to g; can also be computed. There is another term in the parity-odd free energy current C,T?w*; its
divergence is given as

V,(C\T?w") = =2C,Te"*°u,0,T0,u, + C,T*¢""0,u,0,u,
=2C, T u’ 85, (C10)

This can be matched with the constitutive relations Eq. (A24).

Null superfluid free energy current: We now move on to superfluids. The d5z variation of hydrodynamic and superfluid
fields can be computed to be,

1 1
65T = TVWMuNSggyy.  Spv, = SN osguy, sy = uMopAy,
1
Opls = —§M5N5139MN — EMSgAy — EMV S50,

Spfty = (CMCN + 20MyN) — 25 My N) (URERN S gpy — M AN — (M V b,

2
1 1
Spu = (2uMVEyS) 4 VMR )55&%5, Sy = 2Pyu®) — Vyufu’) 5 989ks:
1
GpCM = (=28 PIM 4 20V 4 2L RUSIVM) 2 Ssgps + PN o,

1
0lm = (2(u NfN) JVS) — 2P§5”S))§539R5 + Pl6pén. (C11)

The first-order, parity-even, free-energy current A in Eq. (3.24) has a term 2 ul™ ¢V % OnT. We compute its divergence,

1 1 1 1
Vu <2f1u[MCN] ﬁaNT> = flCNﬁaNTgRséBgRS + 56( 1 —CNaNT> -V <f1¢M?5BT>

T
v 1 RS 1 v 1oy
= fi¢ ﬁaNTP Opgrs + J1 ?8NT58€ + ?C OnTopf
1 1 1 1
- fieN ?@VTVRMS%QRS -1 ECNGNT(sBT + /i ?CN3N5BT -Vu (flCMffsBT)
1 1 1
= fiV ﬁaNTPRS‘SBgRS + /1 _8MT [(—2§(RPS)M + 20 RYS) M) §5BQRS + PMN5B§N]

1oy of of of L Oh
+?é’ 8NT(8T53T+863 +a n53 n aA 55

1
- flCN?aNTVR”S‘SBgRS - Vi (fi&™) ?5671
1 -
= [2V(RMS) <aE,1Se,1 - ?VM(TfIZ:M)) + ufuSag (S, + Pf1S,, - 2f1§(RVf)1

1
+ (6885 + 200w = 2OV uMEy))ag, 1Se.s + 280V f1S6) 5 s
+ [uMag1Sey = Mag 1 Seq + F1VI168AN + [F1VY] = (Mag 1511 Vibpe. (C12)
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Performing a differentiation by parts,

1

1 -
Vi <2f1u[MCN] FaNT + 0<82)> = {ZV(R”S) (aE.ISe.l —va(TflfM)> + ufu’ ag,.18e1 + PRSf1Se,1 - 2f1§(RVj)1

+ (CRES + 20 RyS) — 20 RyS) (u MfM))aR 1Se1 +2¢ RYS) £, S 569Rs

+ [uMag1S,1 = Mag 18,1 + f1V16AM + V[T ag 1S.1 = fF1VY]650.
(C13)

From here we can read out the contributions to the constitutive relations Eq. (3.26). Similarly divergence of the other terms
in Eq. (3.24) couplmg to fz, f3 can also be computed. Now, the first-order, parity-odd, free-energy current N in Eq. (3.36)
has a term ¢,pMS,, + ¢, VM. We can compute its divergence as

- 8 1
VM(gzﬁMSe.z + 92V]3W) = EGNRSTK5B(92T§NVR”SFTK) - VT(€NRSTK92T5NVR”S5BAK)
1 1 1
= S eVBSTRTENV pugFrgbpgs + 5 eNRSTK g, TENV R FrySpits + 5 eNRSTR 6o EnV pus Frgc ST
1 1
+ B eNRSTK g, TénugFrdVg + 3 NESTK g TV qug FriSpéy

- NRSTK 0 TEWV 0tV 85A x — Vi (eVRSTK g TENV qusbpA)

99, 99> 09 00> o .
ar BT T, B, B 5“3”

1
= §€NRSTKT§NVRMSFTK <
1 1
—u’Pyg,T 5 MVRIKY \ug Frxdpgap + 5 eVRSTK g TenugFrg PRVA 85945
1
— Vi (e™NRS g, TENV puug)8A N + 3 eNSTR g TV pugFrbpéy

~ = ~ = - - P =
20!E,2V(M”N)Se.2 + aR,,,zuMuNSe,z - 292M(MVZ)2 - 292V<MV’Z§ - §M§N 23 Se,2

N

.~ 1
+ (EMEN 4 20Mu) = 2LV (ulEg))a, 2Se2 | 5 089un
+ [uMag, 25, 2t 9:Ver — Mag, 2§e.2 — PYV (" NRS g, TENV puug)|6pA N

+[g2Ven — Mg, 28021 Vb0 (C14)

Performing a differentiation by parts,

92 R
2 e 2
21

vM(QZﬂMSe,Z + V¥ +0(0%) = [2vIMuNay, ZSe s+ uMuNag 2Se 2= 292M<MV % - 292V(MV — Mg

.= 1
+ (EMEN + 200N = 2LV (uREp) )itk 2Se2 | 5 O89mn

+ [uMag2S, s + 92Ver — EMag 28,0 — PYV(€TKNRS g TEVV qu)|5A N
+ Vy[tMag, 2.5 = 9V 2]059. (C15)

From here, we can read out the contributions to the constitutive relations, Eq. (3.37). Similarly, divergence of the other term
in Eq. (3.36) coupling to g; can also be computed. Divergence of the term coupling to g5 is particularly simple,
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V(g V1) =V (g_; €MNRSTVN”RCSGTT> = =V (g Te" STV yupls)0r <—>
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1
T

=V Pli\’])vK<g3T€PKRSTVR”S§T)5BgMN- (C16)

Finally the last term in parity-odd free energy current C,Tw™ has divergence,

Vyu(CiToM) = C,T2o™M VN §gg,n.

(C17)

This can be matched with the constitutive relations in Eq. (3.37).
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