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Abstract

A key aspect of palaeoclimate time series analysis is the identification of fre-
quency behaviour. Commonly this is achieved by calculating a power spectrum and
comparing this spectrum with that of a simplified model. Traditional hypothesis
testing method can then be used to find statistically significant peaks which corre-
spond to different frequencies. Complications occur when the data are multivariate,
or suffer from time uncertainty. In particular, the presence of joint uncertainties
surrounding observations and their timing makes traditional hypothesis testing im-
practical.

In this paper we re-express the frequency identification problem in the time do-
main as a variable selection model where each variable corresponds to a different
frequency. We place this problem in a Bayesian framework that allows us to place
shrinkage prior distributions on the weighting of each frequency, as well as include
informative prior information through which we can take account of time uncer-
tainty.

We validate our approach with simulated data and illustrate it with analysis of
mid- to late- Holocene water table records from two sites in Northern Ireland -
Dead Island and Slieveanorra. Both case studies also show the extent of the chal-
lenges that may face researchers. We therefore present one case that shows a good
model fit with a clear frequency pattern and the other case where the identifica-
tion of frequency behaviour is impossible. We contrast our results with that of the
extant methodology, known as REDFIT.

Keywords: frequency analysis, time uncertainty, parameter selection, REDFIT
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1 Introduction

Frequency analysis of cyclic and quasi-cyclic dynamics in palaeoclimate time series plays

a vital role in identifying the causes of palaeoclimatic variations, and thus in disentangling

the mechanisms underlying processes of these variations. Identifying frequencies charac-

teristic of solar activity, variations in the Earth’s and lunar orbits, in palaeoclimate time

series has led to the recognition of the importance of at least orbital variability and solar

variability as drivers of global climatic changes. The primary example is the demon-

stration of the orbital frequencies in Quaternary palaeoclimatic time series that span

multiple glacial-interglacial cycles (Hays, Imbrie, & Shackleton, 1976). Another example

is the identification of solar activity periodicities in the record of last glacial climatic

variability (Bond et al., 1997). Warner and Domack (2002) identify frequencies in their

palaeoclimate time series from Antarctica that correspond to solar variability and lunar

orbital periodicities.

In this paper we introduce a new method to identify frequency behaviour whilst dealing

with time irregularity and uncertainty. The most commonly used methods in the as-

sessment of frequency patterns are based on Fourier methods which rely on a discretely-

observed, evenly-spaced time variable. In the case where data are continuous in time

and unevenly spaced, Lomb-Scargle methods are often used (Lomb, 1976; Scargle, 1982,

1989). However, in palaeoclimate time series, data are not only irregularly spaced but

also often observed with known time uncertainty.

A commonly-used package for dealing with frequency analysis of irregular data is that of

REDFIT (Mudelsee, 2009; Schulz & Mudelsee, 2002). This method involves calculating

an empirical Lomb-Scargle periodogram for the time series in question, and then compar-

ing this empirical periodogram with quantiles of the theoretical periodogram of an AR(1)
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process (Schulz & Mudelsee, 2002). At frequency levels where the empirical periodogram

is larger than that of the theoretical quantiles, the frequency is adjudged to have attained

’statistical significance’. A number of issues with this model persist:

• To take account of time uncertainty, a number of bootstrap simulations are required

to re-sample the time series. This is computationally expensive;

• Since the empirical periodogram is only compared against that of an AR(1), other

models that may be preferable are ignored;

• Care needs to be taken when choosing the number of frequencies to test, since this

will increase the probability of a type 1 error in the hypothesis test;

• The statistical significance framework provides that all null hypotheses will be re-

jected if the data set is large enough. This will lead to the over-estimation of the

number of important frequencies.

In our approach, we re-express the frequency analysis problem as that of a Bayesian

variable selection in the time domain, where we explore a large class of model behaviour

exhibiting both frequency and non-frequency patterns, and allow the data to choose be-

tween them through the model fitting process. Our method allows for time uncertainty to

be naturally incorporated as part of the Bayesian prior distribution, and we have explicit

probabilities of frequencies being included in the model.

Temporal uncertainty arises because it is impossible to obtain the exact age of each

layer in a fossil core. Ages of certain layers can be obtained through, e.g. radiocarbon

dating, but these are uncertain due to both laboratory measurement error and the un-

certainty associated with calibrating the laboratory measurement into calendar years.

This uncertainty is further compounded because other layers also need dating, and so an

interpolation strategy is required. We use Bchron (Haslett & Parnell, 2008; Parnell &

Gehrels, 2015) which provides ages and standard errors for the timing of each data point.

Our paper is structured as follows. In Section 2 we discuss how frequency analysis has
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traditionally been performed with palaeoclimate time series. In Section 3 we outline our

new approach and introduce all notation. In Section 4 we provide a simple simulated

example and show this outperforms REDFIT at identifying frequencies. In Section 5 we

apply our new models to water table time series from two sites in Northern Ireland -

Dead Island and Slieveanorra. We conclude and suggest avenues for further research in

Section 6.

2 Traditional Approach to Frequency Identification

A discretely sampled time series can be decomposed into a constant, non-cyclical trend

function and a sum of cyclical components via the following form:

y(ti) = g(ti) +
k∑
j=1

βj cos (2πfjti) +
k∑
j=1

γj sin (2πfjti) + ξi (1)

Here:

• y(ti) is a univariate observation (e.g. water table records, transformed pollen counts

etc.) sampled at time ti;

• ti represents the continuous time of the ith observation;

• g(ti) is a non-cyclical trend function of known form usually also containing a con-

stant term;

• k is the number of frequency components;

• fj is the frequency for component j;

• βj and γj represent the Fourier coefficients of cosine and sine functions at the jth

frequency;

• ξi is the residual error term, commonly assumed normally distributed ξi ∼ N(0, σ2).
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The power spectral density P (f) is obtained based on the estimated coefficients of the

cyclical components β and γ in Equation 1 as follows:

P (fj) =
β2
j + γ2j

2
(2)

In general obtaining power spectral densities can be achieved either directly from the

data without applying any intermediate steps (e.g. Fast Fourier Transform) or indirectly,

which requires estimating Fourier coefficients β and γ from a version of Equation 1 in the

first step, and obtaining power spectra afterwards - Equation 2.

Below we present a few of the most relevant methods of frequency analysis and discuss

their applicability in the analysis of irregular and uncertain time series. We discuss the

main features of the traditional methods to estimate frequency behaviour in the context

of the general decomposition function presented in Equation 1. We use the notation of

Equation 1 for the majority of the paper.

2.1 Spectra of the frequency domain method applicable to un-

evenly spaced time series

The Lomb-Scargle method (Lomb, 1976; Scargle, 1982, 1989) is a transformation of Equa-

tion 1 with exclusion of the same elements as in the case of the Discrete Fourier Transform.

It is a direct method of frequency analysis that evaluates spectra at angular frequencies

ωk = 2πfk > 0. It also incorporates an adjustment term κ to account for possible irregular

timing of observations. The Lomb-Scargle power spectrum is defined as:

P (ωk) =
1

2σ2y


[∑N

i=1 (yi − ȳ) cosωk(ti − κ)
]2

∑N
i=1 cos2 ωk(ti − κ)

+

[∑N
i=1 (yi − ȳ) sinωk(ti − κ)

]2
∑N

i=1 sin2 ωk(ti − κ)

 , (3)
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where σ2y is variance of y (not ξ), and the 1
2σ2

y
plays the role of a constant normalising the power

spectrum. The κ is defined as:

κ =
1

2ωk
tan−1

[∑N
i=1 sin 2ωkti∑N
i=1 cos 2ωkti

]
. (4)

The bandwidth of the Lomb-Scargle method is not as restricted as in the case of the Discrete

Fourier Transform due to irregular sampling. Mudelsee (2009) highlights the difficulty of select-

ing the highest frequency, and suggests extending the frequency range to 110% of the Nyquist

critical frequency.

2.2 Spectra of the time domain method

The Harmonic Regression (Vanicek, 1969) method estimates Fourier coefficients in Equation 1

through minimising the sum of squared error terms
∑
ξ2i . It can incorporate any functional

form of a trend, is not bounded by minimum or maximum frequency, nor frequency resolution

(Vanicek, 1969). However the parameter k determining the number of cyclical components in

the model needs to be kept low, as the model has a tendency to overfit in high dimensional

problems. The power spectrum is estimated as usual using Equation 2.

2.3 Frequency identification methods

Scargle (1982) proved that the normalised Lomb-Scargle spectrum follows an exponential dis-

tribution with mean 1, and can be tested with its quantile function as follows:

F−1(α∗) = − log(1− (1− α∗)1/k)) (5)

indicating a level above which peaks in the spectrum are significant at the α∗ level.

The REDFIT methodology is based on the Lomb-Scargle algorithm (Equation 3; Schulz &

Mudelsee, 2002), it applies a different approach to frequency identification. REDFIT assumes

that the null hypothesis for a stochastic process exhibits a continuous decrease of spectral

amplitude with increasing frequency, and models that behaviour with the continuous time AR(1)
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process (Muldelsee, 2002):

y(ti) = exp

(
− ti − ti−1

τ

)
y(ti−1) + ξi (6)

where:

• τ is the time persistence scaling factor;

• ξi is the heteroscedastic random component distributed as ξi ∼ N
(

0, 1− exp
(
−2 ti−ti−1

τ

))
.

Under this assumption the confidence intervals of the AR(1) model, obtained via Monte Carlo

simulation and being equivalent of the χ2 multiple frequency test, serve as an indicator of

significant frequencies in the data spectrum. The REDFIT methodology (Schulz & Mudelsee,

2002) after Thompson (1990) suggests applying a false-alarm level G via:

G =

(
1− 1

n∗

)
× 100% (7)

where n∗ is the number of data points in each (possibly overlapping) segment of the data

(Mudelsee, 2009). Other approaches to setting the false-alarm also exist e.g. Siegel’s test

(Siegel, 1980). The currently available version of the REDFIT package (ver 38e) does not

support custom false-alarm levels, and instead provides results for 80%, 90%, 95%, and 99%

significance levels.

Applying the AR(1) model for the purpose of identifying ‘significant’ frequencies has a number

of issues:

• It limits applicability of the REDFIT methodology to the cases where AR(1) noise is

the only valid competitor to full frequency behaviour, thus disregarding the possibility of

intermediate complexity models;

• The time persistence parameter τ of the AR(1) model, upon which the shape of the

spectrum strongly depends, is treated as fixed. In fact it is estimated from the data as τ̂

and is thus a random variable. Consequently there may be considerable uncertainty over

the level of the spectrum due to the epistemic uncertainty in τ .

The REDFIT package also allows applying one of 5 different window functions, namely: Rect-

angular, Welch, Hanning, Triangular and Blackman-Harris (Schulz & Mudelsee, 2010) to reduce
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impact of spectral leakage. Although reduction of spectral leakage is a very desired effect, the

choice of a window function influences shape of spectral densities and amplitudes of spectral

peaks (Trauth, 2015)1. Using time-uncertain water table records from Dear Island and Slie-

veanorra we demonstrate in our case study and in Appendix A that the choice of different

window functions influences the results of hypothesis testing in the REDFIT model.

2.4 Time uncertainty

Estimating the timing of observations from palaeoclimatic data is typically completed via dat-

ing methods (e.g. radiocarbon; Bowman, 1990). However incorporating the time uncertainty

that arises from such methods is very challenging and so often ignored (e.g. Essefi, Mefteh,

Medhioub, & Yaich, 2014; Swindles, Patterson, Roe, & Galloway, 2014). Traditional methods

of frequency analysis do not account for the uncertainty in time as the problem is not embedded

within the Lomb-Scargle and harmonic regression models. In Section 4 we demonstrate that

ignoring time uncertainty can have grave implications for frequency identification.

One method to incorporate time uncertainty (as used by Mudelsee et al., 2009) is to model

timescale errors parametrically to determine upper levels of the AR(1) spectrum and estimate

uncertainty of spectral peaks. Another method is to jitter time estimates multiple times out-

side of a frequency model, evaluate spectral densities for each realization and merge the results

(Rhines & Huybers, 2011).

Our alternative approach is to include time uncertainty directly through the prior distribu-

tion, corresponding to a standard Errors-In-Variables structure (e.g. Dey, Ghosh, & Mallick,

2000). We present this in the next section.

3 Bayesian Frequency Selection

In this section we outline our main contribution; a model-based, Bayesian approach to frequency

identification. We term the model we use as Bayesian Frequency Selection (BFS); it can be

1the reference describes application of window functions in evenly sampled time series, we did not
find any publications discussing influence of window functions on frequency identification in the domain
of time-uncertain time series
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considered part of the class of shrinkage and selection methods which aim to choose a subset of

predictors (here frequencies) as being important for explaining the variability in the response.

Many other shrinkage and selection methods have been proposed (e.g, Lasso, Ridge regression

etc., for a more complete list see Hastie, Tibshirani, & Friedman, 2009), though application

to the problem of frequency selection is limited. A critical assumption of such models, which

we follow here, is that a large number of frequencies included in, e.g. the harmonic regression

model, are negligible so that their regression coefficients βj and γj are all 0. In a Bayesian

context, many of the aforementioned shrinkage models do not shrink parameter values fully to

zero (Hastie et al., 2009). In our BFS model, we use a version of Bayesian shrinkage which does

set parameters at 0, following the method of George and McCulloch (1993, 1997).

Our proposal is to apply the BFS to frequency identification by introducing indicator variables Ij

into Equation 1. The indicator variables take the value 0 or 1 with a predefined prior Bernoulli

distribution so that Ij ∼ Bernoulli(q) where q indicates the probability that frequency j is

important in explaining the variability in the response (Kuo & Mallick, 1988). In particular,

we force the indicator variables Ij to assume the same values for both sine and cosine terms at

each particular frequency jointly. We thus adapt Equation 1 slightly to give:

y(ti) = g(ti) +
k∑
j=1

Ijβj cos (2πfjti) +
k∑
j=1

Ijγj sin (2πfjti) + ξi (8)

A key aspect is that we can include external information about the parameters (e.g. from other

data sources) by specifying their prior probability distributions. In the context of frequency

analysis, we aim to obtain the posterior distribution of the parameters which govern the cyclical

components, namely βj and γj . The central contribution of our approach is the specification of

a model through which the important frequencies are chosen automatically.

Through our BFS approach we can still specify the total number of frequencies k to be large,

and let the inference procedure (constrained by a prior distribution) choose the number of

important frequencies. The lack of such a restriction in k allows us to analyse a very wide

spectra in search of important components. The harmonic regression model in many such cases

would fail to recognise the true pattern, and typically would identify too many frequencies.
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Another benefit of our proposal is that within this framework we can incorporate any functional

form of trend g(ti), as appropriate to the problem at hand. In contrast the frequency domain

methods are not designed to cope with trends. Spectra of time series containing such components

are distorted and thus traditionally it has been necessary to remove them (Mudelsee, 2009).

This can cause problems when low frequency components compete with the trend to explain

variability.

In our application we model the trend component g(ti) as a linear combination of polynomial

basis functions. We set the maximum degree to be 3. This is of course an arbitrary choice but

values higher than this would induce their own cyclical behaviour and so compete directly with

the frequency component. The third degree polynomial term will have at most one complete

cycle across the time support of the data and so the value of 3 seems appropriate. Furthermore,

for computational purposes we find it convenient to express Equation 8 in matrix form:

Y = Xα+ Z1Iβ + Z2Iγ + ξ (9)

where:

• Y is the n× 1 column vector of observed y(ti), i = 1, . . . , n values;

• X is the n × (l + 1) standardized design matrix of the constant and trend components,

where l is number of trend components in a polynomial basis. Thus the i, jth element

of X is t∗,j−1
i =

(
ti−t
st

)j−1
, where t is mean of means of timings of observations and st

is mean of standard deviations of timings of observations - both are given as data. The

standardization enables easier implementation of non informative priors;

• α is the (l + 1)× 1 column vector of the constant and trend parameters;

• Z1 and Z2 are the n× k matrices of cosine (Z1) and sine (Z2) terms. The i, jth element

of Z1 is cos(2πfjti), and for Z2 is sin(2πfjti);

• I is a k × k diagonal matrix of indicator variables with elements Ij = 1 or Ij = 0 on

the diagonal and zeros on all off-diagonals (note we use J rather than I for the identity

matrix);
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• β and γ are k × 1 vectors of parameters of the cosine (β) and sine (γ) terms;

• ξ is n × 1 is vector of the residual error terms with ξ ∼ N(0, σ2J). This is white noise

Gaussian covariance matrix.

Taken together we have parameters θ = {α, β, γ, σ2, I, q} and data D containing the design

matrices D = {Y,X,Z1, Z2}. Note that the frequencies are included in the model via the

matrices Z1 and Z2. Henceforth in describing the model we always use this form of the notation,

discarding the earlier form from Equation 1 since it is more relevant to the explanation of the

BFS model.

3.1 Prior distributions

We now turn our attention to the choice of prior distributions for unknown parameters. Where

possible, informative priors should be used to guide the values of these, as in most normal

scientific experiments. Where not possible, we can use vague or weakly informative priors

to enable valid model fits whilst avoiding undue influence on the identification of frequencies.

The parameter that is most sensitive to prior choice is that of Ij and its Bernoulli associated

probability q. We propose several choices:

• In cases where there is no knowledge whatsoever about q we might assume a vague prior,

for example that q is equally likely to take any value from 0 − 100%, so that the prior

distribution is q ∼ U(0, 1);

• In cases where the distribution of the parameter q requires more weight towards a point

between 0− 100% one could assume the Beta prior distribution so that q ∼ Be(α∗, β∗);

• In cases where there is known to be a small number of important frequencies we might re-

define q = m
k where m is the number of important frequencies and k is the total number

of frequencies (as in Equation 8) set to k = n×ofac
2 , where the ofac parameter is the

oversampling factor, by default ofac = 1. The value of m can then be fixed or given a

prior. For example, if there are estimated to be a maximum of γ important frequencies

then e.g. m ∼ DU(0, γ) where DU is the discrete uniform distribution. By default we

set the parameter γ = 10.
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For the remainder of the paper we propose to use the latter formulation as it most closely

matches the real world behaviour we hope to model.

For the parameters associated with the trend and frequency components we use vague priors:

α ∼ N(0, σ2αJ), β ∼ N(0, σ2βJ), γ ∼ N(0, σ2γJ) (10)

where the prior variances are all fixed at large values. For the residual variance we use the

standard reference prior:

σ2ξ ∼ IG(e∗, f∗) (11)

where e∗ and f∗ are set to small values.

To include time uncertainty, we simply add an extra layer to the model so that θ now includes

ti for i = 1, . . . , n and D similarly includes µti , σ
2
ti . We write t as the full set of all unknown

true times and µt, σ
2
t as the set of means and variances respectively. The prior distribution is:

ti|µti , σ2ti ∼ TN
tj+1

tj−1
(µti , σ

2
ti) (12)

Where:

• ti is the true and unknown age of observation i bounded at the extreme ends - t0 and

tn+1 set to very small and very large values respectively;

• µti is the mean age of observation i estimated from a chronology model;

• σ2ti is the variance of the age of observation i, estimated at the same time as µti .

The extra computational issue is that now the matrices Z1 and Z2 need to be changed for each

new realisation of tj . However, this overhead is the necessary price to be paid for including time

uncertainty.

A more complete model would use a posterior samples from Bchron, where each set of samples

are not normally distributed but remain monotonically consistent. We found such an approach

impossible to implement without computational challenges and leave this for future research.
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In practice these estimated ages are not normally distributed but Parnell and Gehrels (2015)

have shown that, in reasonable size data sets, this difference is unimportant in the final model

predictions. In our practical application we use the chronology model Bchron (Haslett & Par-

nell, 2008) to obtain the posterior distribution of timing from each layer. In the next step we

approximate those distributions by Gaussian distributions by calculating the pairs µti , σ
2
ti . In

the model we impose truncation on the approximated realizations as per Equation 12.

3.2 Model fitting

Our full posterior distribution is thus:

p(α, β, γ, σ2, I, q, t,m|Y,X,Z1, Z2, µt, σ
2
t ) (13)

which is separated into likelihood and prior respectively as:

p(Y |X,Z1, Z2, t, σ
2, α, β, γ)× p(α) p(β) p(γ) p(σ2) p(I|q) p(q|m) p(m) p(t|µt, σ2t ) (14)

An alternative way to display the model fit is in the form of a Directed Acyclic Graph (DAG;

Figure 1) which shows the relations between parameters and data, and also shows the conditional

independencies.

3.2.1 Sampling from the posterior distribution

We use the JAGS package (Plummer, 2017) for the purpose of obtaining posterior distributions

of the parameters. It is now a standard method in the Bayesian modelling toolbox which works

well even in high dimensional settings such as ours. To provide insight into implementation of

the BFS model we enclose our JAGS code in Appendix B.

The package uses number of algorithms to generate samples from posterior distributions -

Gibbs sampling, Slice sampling, Adaptive Rejection sampling and Metropolis-Hastings (Plum-

mer, 2017). The sampling algorithm starts with the definition of the full posterior (Equation

13) and, from some initial values of the parameters used to start the iterative process, proceeds
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Figure 1: Directed Acyclic Graph of our Bayesian Frequency Selection model. Circles
correspond to parameters to be estimated, whilst squares indicate data. Arrows indicate
the direction of information flow.

by updating the parameters either individually or in block fashion. After a suitable period

(known as the burn-in period) a set number of the parameter values are stored and thinned

out to remove autocorrelation. For our algorithm we keep 2500 samples of the parameters from

the posterior, and remove 1500 burn-in samples. We check convergence using the standard

Brooks-Gelman-Rubin diagnostic (Brooks & Gelman, 1998; Gelman & Rubin, 1992) to ensure

the parameter estimates are stable.

3.2.2 Posterior post-hoc calculations

Upon obtaining samples from the posterior distribution, we make inferences about the parame-

ters of interest. In our case the parameters of interest are that of the sine and cosine coefficients
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βj and γj respectively, and their relevant indicator variables Ij . From these values we create

two important quantities. The first is our weighted Power Spectrum created as a part of the

BFS methodology:

PBFS(fj) =
Ijβ

2
j + Ijγ

2
j

2
(15)

which we can now estimate with uncertainty for all frequencies as we have full access to the

posterior distribution of the parameters. The second is the probability of a frequency at fj

which we can calculate from the posterior mean of Ij . A high value (i.e. close to 1) indicates a

likely important frequency. We recommend researchers tailor their interpretation to the specific

problem at hand, and use the tools of prior distributions to create a bespoke version of their

analysis. In situations where we observe small posterior means of Ij and wide posterior intervals

for βj and γj , we would still argue that such frequencies are unimportant. Aside from our two

main outputs, we also have access to all the posterior samples of the other parameters. We can

thus determine the degree to which the trend components are important through α, assess the

model fit via σ2 (where small σ2 indicates good model fit), or look at the posterior estimates of

timing from t.

3.2.3 Model Cross-Validation

We asses predictive performance of the model by applying K-fold Cross-Validation. This allows

us to determine the predictive fit of the model on data which has not been used as part of the

fitting process, and thus provides a much harsher test of model performance. We use standard 5-

fold cross validation even though our data are time series. Such an approach has been validated

by Bergmeir and Benitez (2012).

In the presence of time uncertainty, the observations are of course not observed at known

time points, so out-of-sample performance may be adversely affected, even when the model

is identified correctly. In order to combat this problem and obtain a more accurate picture

of Cross-Validation performance we adjust the timing Equation 12) of the data points by the

output from our Bayesian model, namely the estimates of the ti parameters. By doing so we

attempt to predict the true timing of actual observations instead of predicting timing that a

certain dating methodology provides. In our simulated data sets this approach yields fairer

out-of-sample performance giving a clearer picture of the model validation performance under
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time uncertainty.

4 Accuracy of REDFIT and Bayesian Frequency Se-

lection methods

In this section we conduct a simulation experiment where we create 110 simulated data sets (100

with frequency behaviour and 10 without) of varying complexities and fit both our BFS and

the REDFIT model. Our aim is to see which of the models identifies the correct frequencies.

Since both methods provide confidence levels about the frequencies (BFS via the posteriors of

Ij ; REDFIT via the significance level) we use Receiver Operator Characteristic Curves (ROC;

Swets, 1996) to contrast their performance.

4.1 Simulation and testing methodology

We test both methods using 110 simulated time-uncertain data sets with randomly generated:

• Number of observations N ∼ DU(100, 150);

• 100 data sets with number of frequencies in the signal k ∼ DU(1, 6) randomly assigned

to either sine or cosine coefficients with amplitudes βj = γl = 10, and 10 data sets where

k = 0;

• Residual error term ξi ∼ N(0, σ2), where σ ∼ U(2, 30);

• Uniformly distributed true timing of observations ttrue,1:N ∼ U(0, 100), sorted in ascend-

ing order to model non-overlapping attribute of palaeoclimate time series;

• Normally distributed timing of observations tobservedi ∼ N(ttruei , σ
2
observed), where σobserved ∼

(0.2, 2.5) (note µ(dtobserved) ≈ 0.8); realizations are sorted in ascending order.

The objective of this specification is to mimic basic attributes of palaeoclimate time series,

which demonstrate substantial variety in frequency and noise behaviour.

In conducting our tests of both frequency identification methods we apply the same randomly

generated 110 simulated time-uncertain time series to both methods. We use default settings in
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REDFIT and run 5,000 simulations using the BFS method with a burn-in of 20%. We identify

peaks above specified significance levels in the results obtained with REDFIT and probability

levels in the BFS method as frequencies selected by those methods. Next, we compare those

against the true frequencies in all data sets.

In identifying true positives (or false negatives) we accept the results if the selected frequencies

are in (or are outside) of a narrow range of ±1 frequency fj in frequency vectors generated with

the highest resolution obtained without oversampling in the Nyqist range. We define this range

to avoid misclassifications caused by frequency discretization and frequency leakage.

For the purpose of this test we apply the default oversampling setting (ofac) of the RED-

FIT method ofacREDFIT = 4, as it is commonly used by researchers. We apply no oversam-

pling in the BFS method ofacBFS = 1 since none is required and to do so would slow the

model down considerably. To make a fair comparison between the two methods, and compare

the results using the same range of frequency buckets, we define them as follow: let fj be a

frequency in discrete frequency vectors generated by either of the methods that is the clos-

est to the true frequency fk, then the range of frequency buckets containing true frequency

is rj ⊂ [fj−ofac, fj+ofac]. This should enable fair comparison despite the differences in over-

sampling between the methods.

In the next step we plot ROC curve (Figure 2) for the BFS method and add empirical true

positive and false positive rates for the only four significance levels available in REDFIT (99%,

95%, 90%, 80%). For REDFIT this involves some degree of linear interpolation.

4.2 Results from the simulation experiment

The area under ROC curve generated by the BFS method is 86%, and given the extreme

characteristics of the generated time-uncertain time series we asses this result as very good.

We cannot generate the entire area under ROC curve using REDFIT, the available four points

plotted in Figure 2 give a reference for comparison of the performances with the area under the

ROC curve of 59%. It seems unlikely that, even if other significance levels were available to
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Figure 2: ROC curves for BFS and REDFIT methods based on 110 simulated data sets.

complete the full curve, that the area under the ROC curve for REDFIT would approach that

of the BFS method. In our view the BFS method outperforms REDFIT in terms of frequency

identification. It also allows for applying a number of diagnostics supporting validation (cross-

validation, convergence diagnostics etc.).

5 Frequency identification of water table records from

mid- to late- Holocene

In this section we contrast results obtained via REDFIT with those of the BFS method us-

ing as an example analysis of Holocene water table records extracted from two closely located

ombrotrophic peatlands in Northern Ireland - Dead Island and Slieveanorra, representing re-

spectively lowland and upland perspectives (Swindles et al., 2014). A plot of the data is shown

in Figure 3.
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Figure 3: Water Table records observed in Dead Island and Slieveanorra in Northern
Ireland.

Prior to conducting frequency analysis we use Bchron (Haslett & Parnell, 2008) to construct a

chronology for the sites in question, utilising the radiocarbon dates and their associated depths

to produce estimated ages at all depths at which the proxy is measured. The resulting chronolo-

gies for the two cores are shown in Figure 4. Note that in the original paper (Swindles et al.,

2014) a different chronology construction was used.

19



Figure 4: Uncertainty surrounding the time estimates using Bchron. Gray bars represent
one sigma (σti) errors surrounding the expected timing of observations µti .

5.1 REDFIT

We de-trend the records from Slieveanorra using a 3rd degree polynomial regression, and keep

records from Dead Island unchanged as their appears to be no clear trend. We apply the de-

fault setting of the REDFIT version 38e utilizing the rectangular window and set the parameter

ofac = 4 (typical values range from 2 to 4 as per Schulz & Mudelsee, 2010). A plot of the

periodogram is shown in Figure 5, with significant levels 90%, 95%, and 99%.

At Dead Island, the REDFIT spectrum suggests 12 significant frequencies at the 99% level

existing above the frequency f = 0.0068. At 95% and 90% it identifies 21 and 25 frequencies

respectively. The significance level suggested by Thompson (1990) corresponds to 98.7%. At

Slieveanorra the REDFIT spectrum at the 99% level does not detect any significant frequencies.

At the 95% and 90% significance levels it identifies 4 and 5 significant frequencies respectively.

The significance level suggested by Thompson (1990) corresponds to 98.2%. We compare the

frequencies chosen by the different methods in more detail in Section 5.3.

We note that detection of spectral peaks within the REDFIT framework may depend upon

the chosen window function. We summarize the results of applying other window functions
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available in the REDFIT package to the records presented in our case studies in Appendix A.

Figure 5: REDFIT: spectra of water table records observed in Dead Island and Slie-
veanorra in Northern Ireland.

5.2 Bayesian Frequency Selection

We conduct the BFS analysis on the two cores. We use a cubic trend for both sites, though no

de-trending is required as this is incorporated as part of the model fitting process. We use the

exact same prior distributions as for the simulated example of the previous section. However, we

set the maximum number of frequencies to give kDeadIsland = 75 and kSlieveanorra = 56 over the

Nyqist range. We use JAGS to obtain posterior samples and check convergence as previously

described.

The periodogram for the BFS method applied to Dead Island is shown in Figure 6. The model

selects three clear frequencies with large power estimates at f1 = 0.00045, f2 = 0.00067, and

f3 = 0.0016 with the probability of indicators approaching 100% each. The equivalents in years

are 2241, 1494, 640 year cycles. It also selects two less important frequencies f4 = 0.00759 and

f5 = 0.00138 with median power equal to zero, wide confidence intervals and the probability

of indicators equal to 24% and 10% respectively. The equivalents in years are 132 and 72 year

cycles. Figure 7 shows 5-fold cross-validation performance for the Dead Island model. The out

of sample performance seems to indicate a good fit of the model to the data.
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Figure 6: BFS: Dead Island periodogram with confidence intervals at 99% in the upper
part, and probability indicator plot on the lower part. The BFS method identifies three
significant frequencies approaching 100% and two less important frequencies with 24%
and 10% of inclusion.

The periodogram of the Slieveanorra water table record is shown in Figure 8. The method

selected two relatively unimportant frequencies f1 = 0.0024 and f2 = 0.0026 being the equivalent

of a 416 and 381 year cycles respectively, with the median power estimates of Pf1 = Pf2 = 0 and

wide confidence intervals. The probabilities of those frequencies are estimated at 38% and 8%

so there is substantial doubt as to the importance of those signals. The 5-fold cross validation

is shown in Figure 9 is noticeably worse than that of Dead Island and perhaps indicates a lack

of detectable frequency behaviour for this site.
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Figure 7: BFS: Dead Island 5-fold cross validation shows good fit of the model given the
two sources of uncertainties, and good predictive one step out-of-sample performance.
The estimated value of the pseudo R2=0.60 confirms a good fit of the model and also
reflects the substantial amount of noise in the data.
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Figure 8: BFS: Slieveanorra periodogram with confidence intervals at 99% in the upper
part, and probability indicator plot in the lower part. Frequencies selected by the method
are unimportant.
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Figure 9: BFS: Slieveanorra 5-fold cross validation. This shows a relatively poor fit of
the model to the in sample and out of sample predictions.

5.3 Comparison of selected frequencies

The frequencies selected by the REDFIT and the BFS methods are largely inconsistent for

the water table records in Dead Island and Slieveanorra. The inconsistency might be expected

for Slieveanorra since neither method indicates strong frequency behaviour (Table 2), at Dead

Island the BFS method picks up more lower frequency behaviour whilst REDFIT identifies

many more higher frequency terms (Table 1). In particular, the REDFIT version we use does

not take into account time uncertainty, which may be root cause of the difference in selected

frequencies. We note that Swindles et al. (2014) found the same issues when comparing REDFIT

with Lomb-Scargle.
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Dead Island REDFIT BFS
Cycle 90% 95% 99% Probability

2,241 - - - 100%
1,630 X X - -
1,494 - - - 100%
640 - - - 100%
212 X - - -
190 X X - -
177 X - - -
147 X X X -
132 X X X 24%
129 X - - -
120 X X X -
116 X X - -
115 X X - -
110 X X X -
101 X X X -
97 X X X -
90 X X - -
86 X X X -
83 X X - -
81 X X - -
77 X X X -
75 X X X -
72 X X X 10%
70 X - - -
68 X X X -
65 X X - -
64 X X X -
63 X X - -

Table 1: Significant frequencies chosen by REDFIT vs high probability frequencies chosen
by BFS for the Dead Island site.

SI REDFIT BFS
Cycle 90% 95% 99% Probability
1,681 X - - -
474 X - - -
416 X X - 34%
381 X X - 7%
369 X X - -
325 X X - -
150 X X - -
119 X - - -

Table 2: Significant frequencies chosen by REDFIT vs high probability frequencies chosen
by BFS for the Slieveanorra site.
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6 Conclusions

Our Bayesian Frequency Selection method introduces a novel approach to the problem of fre-

quency identification in time-uncertain series as well as series with known timing of observations.

In contrast with the traditional methods of frequency analysis the BFS model allows us to in-

corporate output from a chronology model, facilitating more realistic and accurate modelling of

the uncertainties in the data. As we have shown, this can have a strong impact on the conclu-

sions drawn from analysis in the frequency domain. In our simulated examples we demonstrated

that treating uncertain timing of observations as exact, and therefore neglecting the uncertainty

attribute, may result in misidentification of true frequency patterns.

Aside from dealing with time uncertainty, the Bayesian framework allows us to answer direct

questions of interest, such as ‘what is the probability that this frequency exists given the current

data?’. It allows us to move away from null hypothesis significance testing where, given a large

enough data set, all frequencies will be selected as significant. Furthermore, given full access to

a posterior distribution, we can create posterior uncertainty intervals for e.g. a periodogram,

or any other desired quantity.

For simulated data with uncertain timings, the BFS method seems to perform better than tra-

ditional methods. It seems to be able to identify the correct frequencies more often, and seems

less prone to over-fitting. Most interestingly, though, is the comparison of real data sets where,

at least for Dead Island, the results from BFS conflict strongly with that of REDFIT. It seems

appropriate that, at the very least, all such methods should provide out of sample performance

metrics for each site, such as that we provide in e.g. Figure 9.

The BFS model, being a standard Bayesian model, allows for many possibilities for extension. It

would be reasonably simple to apply the model in a generalised linear modelling framework for

e.g. pollen counts that might be Poisson distributed. Other avenues for further research include

the possibility of incorporating the chronology model within the BFS model, so as jointly to

estimate sedimentation rates and frequency behaviour. A broader challenge would be to extend

to dynamic frequencies under time uncertainty, though identifying and validating models here

will be exceedingly tricky.
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A Influence of applying different window functions

on frequency selection in the REDFIT framework

As noted in Section 2.3 the choice of a window function within the REDFIT framework may

influence the results of hypothesis’ testing. We extend the REDFIT analysis presented in our

case study of the water table records from Dead Island and Slieveanorra in Northern Ireland

(Section 5) and apply the remaining window functions available in this package. We summarize

the results by contrasting counts of significant peaks above 90%, 95%, and 99% credible inter-

vals in Table 3.
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Figure 10: REDFIT: spectra of water table records observed in Dead Island in Northern
Ireland generated using four different window functions.

The obtained results are inconsistent. It is hard to choose a cut-off point or window method

which works well. We were also unable to find any wider research determining the choice of

a window function in the domain of time uncertainty. We noticed that the Welch window is

generally preferred (Gupta, Mehra, & Batan, 2013) in the domain of evenly spaced data.
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Figure 11: REDFIT: spectra of water table records observed in Slieveanorra in Northern
Ireland generated using four different window functions.

Dead Island Slieveanorra
Window 90% 95% 99% 90% 95% 99%

Welch 13 12 6 5 3 -
Hanning 11 9 3 5 4 -
Triangular 12 10 3 4 3 -
Blackman-Harris 9 7 2 3 3 -
Rectangular 25 21 12 7 4 -

Table 3: Summary of significant frequencies selected by the REDFIT method using dif-
ferent window functions. Results show lack of consistency in case of the records from
Dead Island, and consistency in case of the records from Slieveanorra.
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B Bayesian Frequency Selection - the JAGS code

We present the JAGS code of our implementation of the BFS model used in this research.

model {

f o r ( i in 1 : n ) {

y [ i ] ˜ dnorm(mu[ i ] , p r e c i s i o n )

mu[ i ] <− const + alpha1 ∗ t i . sim . s t [ i ] + alpha2 ∗ t i . sim . s t [ i ] ˆ2 +

alpha3 ∗ t i . sim . s t [ i ] ˆ3 + inprod (X[ i , ] , IBeta )

}

f o r ( j in 1 : (2 ∗ n . f r e q u e n c i e s ) ) {

beta [ j ] ˜ dnorm (0 , 0 . 01 )

}

f o r ( j in 1 : n . f r e q u e n c i e s ) {

M[ j ] ˜ dun i f (0 , m)

Ind [ j ] ˜ dbern (M[ j ] / n . f r e q u e n c i e s )

IBeta [ j ] <− Ind [ j ] ∗ beta [ j ]

Ind [ j + n . f r e q u e n c i e s ] <− Ind [ j ]

IBeta [ j + n . f r e q u e n c i e s ] <− Ind [ j + n . f r e q u e n c i e s ] ∗

beta [ j + n . f r e q u e n c i e s ]

}

f o r ( i in 1 : n ) {

f o r ( j in 1 : n . f r e q u e n c i e s ) {

X[ i , j ] <− s i n (2 ∗ pi ∗ t i . sim [ i ] ∗ f r e q u e n c i e s [ j ] )

}

f o r ( j in (n . f r e q u e n c i e s + 1) : (2 ∗ n . f r e q u e n c i e s ) ) {

X[ i , j ] <− cos (2 ∗ pi ∗ t i . sim [ i ] ∗

f r e q u e n c i e s [ j − n . f r e q u e n c i e s ] )

}

}

f o r ( i in 1 : n ) {

t i . sim . tmp [ i ] ˜ dnorm( t i .mu[ i ] , 1 / t i . sd [ i ] ˆ 2 )
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}

t i . sim <− s o r t ( t i . sim . tmp)

t i . sim . s t <− ( t i . sim−t i .mu.mu)/ t i .mu. sd

const ˜ dnorm( const . mean , const . prec )

p r e c i s i o n ˜ dgamma( 0 . 0 1 , 0 . 01 )

alpha1 ˜ dnorm (0 , 0 . 0 1 )

alpha2 ˜ dnorm (0 , 0 . 0 1 )

alpha3 ˜ dnorm (0 , 0 . 01 )}

Where:

• const is the constant value;

• alpha1, alpha2 and alpha3 are the coefficients of polynomial regression;

• beta is the vector of Fourier coefficients of cosine and sine terms;

• Ind is the vector of indicator variables;

• IBeta is the vector of products of Fourier coefficients and indicator variables;

• X is the matrix of sine and cosine terms;

• ti.mu is the vector of estimated timing of observations;

• ti.mu.mu is the mean of ti.mu;

• ti.mu.sd is the standard deviation of ti.mu;

• ti.sim.tmp is the vector of simulated estimates of timing of observations;

• ti.sim is truncated ti.sim.tmp;

• ti.sim.st is standardized ti.sim.tmp;

• m is the expected maximum number of frequencies in the data;

• frequencies is the vector of frequencies;

• n.frequencies is the number of frequencies.
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