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Abstract  

 Much ecological and evolutionary theory predicts that interspecific interactions often 

drive phenotypic diversification and that species phenotypes in turn influence species 

interactions. Several phylogenetic comparative methods have been developed to assess the 

importance of such processes in nature; however, the statistical properties of these methods have 

gone largely untested. Focusing mainly on scenarios of competition between closely-related 

species, we assess the performance of available comparative approaches for analyzing the 

interplay between interspecific interactions and species phenotypes. We find that many currently 

used statistical methods often fail to detect the impact of interspecific interactions on trait 

evolution, that sister-taxa analyses are particularly unreliable in general, and that recently 

developed process-based models have more satisfactory statistical properties. Methods for 

detecting predictors of species interactions are generally more reliable than methods for detecting 

character displacement. In weighing the strengths and weaknesses of different approaches, we 

hope to provide a clear guide for empiricists testing hypotheses about the reciprocal effect of 

interspecific interactions and species phenotypes and to inspire further development of process-

based models. 
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 Interactions between species are a fundamental aspect of life on earth, and understanding 

the evolutionary and ecological consequences of such interactions are a central goal of many 

classical theoretical frameworks in ecology and evolutionary biology. Identifying both the 

predictors of interspecific interactions and the consequences of such interactions for 

diversification and coexistence is thus an important contemporary research area (Weber et al. 

2017), with strong implications for conservation biology. 

Several phylogenetic comparative methods have been deployed with the goal of 

elucidating how interspecific interactions drive (or are driven by) character evolution, but the 

reliability and efficacy of these methods remain largely untested. Here we focus on methods used 

to study interactions between closely related species (e.g., members of the same family) that 

arise from similarity in morphology, signaling traits or habitat (Brown and Wilson 1956; 

Schluter 2000; Pfennig and Pfennig 2009), rather than on community-wide interactions and 

interaction networks (Webb et al. 2002; Rezende et al. 2007; Cavender-Bares et al. 2009; 

Cadotte et al. 2013).  

Classical character displacement theory (Brown and Wilson 1956; Grether et al. 2009; 

Pfennig and Pfennig 2009) predicts that, where heterospecifics compete, selection should favor 

divergence in the traits responsible for competition, until lineages in sympatry no longer compete 

intensely. In a seminal example, selection resulting from exploitative competition between 

medium and large ground finches (Geospiza fortis & G. magnirostris) has driven bill size 

divergence on Daphne Major in the Galápagos (Grant and Grant 2006). Investigators who 

conduct comparative studies of divergent character displacement often test the prediction that 

coexisting species will be more phenotypically divergent than non-coexisting ones by looking for 

a relationship between biogeographic overlap and trait dissimilarity.  Recent studies on Bicyclus 
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butterflies and Euglossa bees, for example, show that male chemical cues are more distinct 

between sympatric species than allopatric species, suggesting that reproductive character 

displacement has driven signal divergence in these taxa (Bacquet et al. 2015; Weber et al. 2016).  

Interspecific interactions can also lead to convergent, rather than divergent, character 

displacement (Cody 1969, 1973; Grant 1972; Grether et al. 2013). Agonistic character 

displacement theory (Grether et al. 2013) predicts convergence in traits mediating interspecific 

aggression when species compete strongly for the same resources. In other words, between-

species similarity in resource use may make interspecific territoriality adaptive, resulting in 

subsequent convergence in signaling traits involved in mediating territorial interactions (e.g., 

song in ovenbirds, Tobias et al. 2014). Therefore, tests of convergent character displacement 

typically test the prediction that sympatric lineages are more phenotypically similar than 

allopatric ones.  Because sympatric similarity can also result from convergence to local 

conditions (e.g., habitat, climate), it is important for empiricists to account for abiotic factors in 

tests of character convergence. 

 In some instances, rather than identifying the effect of species interactions on trait 

evolution, empiricists aim to identify traits that mediate particular pairwise interactions, such as 

hybridization or interspecific aggression. In this case, investigators test for a relationship 

between the measured interactions and trait similarity. Recent studies on New World warblers 

(Parulidae), for example, show that hybridization occurs more often between species with similar 

songs and that interspecific territoriality occurs more often between species that share similar 

plumage and territorial song phenotypes (Willis et al. 2014; Losin et al. 2016). 

 Although the examples presented here largely represent scenarios where interactions 

between species are competitive, empiricists apply methods discussed here to other non-
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competitive interactions as well (e.g., predicting links in plant/pollinator networks, identifying 

Müllerian mimicry rings: Elias et al. 2008; Eklöf and Stouffer 2016). Regardless of the 

biological question, a particularity of comparative tests aimed at understanding the interplay 

between interspecific interactions and species phenotypes is that they largely involve testing 

correlations between pairwise data (e.g. range overlap, phenotypic similarity, frequency of 

hybridization). In contrast, most phylogenetic comparative methods have been developed and 

tested on tip data (e.g. range size, morphological trait values), and the statistical properties of 

methods adapted to handle pairwise data (Box 1) have gone untested (but see Harmon & Glor 

2010). Furthermore, species interactions are inherently affected by the biogeographic history of 

dispersal and speciation in an evolving clade and the resulting patterns of range overlap. Patterns 

of trait dissimilarity between sympatric lineages—the classic test of character displacement—

may actually be the null expectation if allopatric speciation is the norm, because then sympatric 

species pairs will tend to be more distantly related than allopatric species pairs (Weir and Price 

2011; Tobias et al. 2014). 

 Here, we apply the main phylogenetic comparative methods that investigators use to test 

hypotheses about interactions between closely related lineages and phenotypes (Box 1, Fig. 1) to 

datasets simulated under different evolutionary histories of speciation, dispersal, species 

interactions, and trait evolution. We then compare the efficacy of these methods, discuss the 

relative merits of each, and outline directions for future research.  

 
METHODS 

 

We compared the performance of different phylogenetic comparative methods by 

measuring their statistical power (e.g., probability of detecting divergence when divergence is 
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simulated) and Type I error rate (e.g., probability of detecting an effect of species interactions 

when such an effect is not simulated) across three scenarios.  

 

Phylogeny and Range Simulations 

 

We jointly simulated trees {# spp. = 20, 50, 100, 150, 200, 250} and biogeographies 

under the dispersal-extinction-cladogenesis model of biogeographical evolution (i.e., DEC+J, 

with the inclusion of founder event speciation) in BioGeoBEARS (Ree and Smith 2008; Matzke 

2014). Briefly, the DEC+J model is a model of range evolution in which species ranges change 

along the branches of a phylogeny as a function of dispersal and local extinction and are 

inherited by daughter taxa at speciation according to several possible cladogenetic scenarios (see 

more details in Supplementary Methods in the Supplementary Material available on Dryad at 

http://dx.doi.org/10.5061/dryad.ch0vn). For each tree, we started with a single ancestral species 

occupying one of ten equidistant regions, and simulated trees with constant rates of speciation 

and local extinction. We considered different biogeographic scenarios by varying the rate of 

dispersal events between ranges (“high” and “low” dispersal; see details in Supplementary 

Methods) and the probability that speciation events occur in sympatry versus allopatry (“high” 

and “low” sympatric speciation; Supplementary Methods). Each of these simulations resulted in 

a phylogeny (the tree of extant species) and its associated biogeography (the set of regions in 

which each lineage occurred throughout the history of the clade). Lineages were identified as 

sympatric if they co-occurred in at least one of the ten geographic regions, and allopatric if they 

did not co-occur in any.  
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We simulated four biogeographic scenarios (combinations of low or high dispersal and 

low or high sympatric speciation) for each tree size. The resulting biogeographies span scenarios 

where sympatric speciation is common and dispersal is low (e.g., lizards on islands) to scenarios 

where allopatric speciation is the main mode of speciation and dispersal between regions is high 

(e.g., birds on continents). These parameter combinations produced a range of realistic 

proportions of sister taxa that are sympatric (Fig. S1A) and a range of realistic differences in age 

between sympatric and allopatric sister taxa (Pigot and Tobias 2014; Fig. S1B), at least for 

animal taxa (but see Anacker & Strauss 2014 for different patterns in plants). In defining 

sympatry as any overlap, the mean magnitude of range overlap fell between 33-42% across all 

tree sizes and simulation parameters (Fig. S1C,D), which falls well within the range of overlap of 

sympatric taxa defined under commonly used minimum threshold values applied to continuous 

indices of range overlap (e.g. Pigot and Tobias 2014; Tobias et al. 2014).  

For each combination of tree sizes and DEC parameter combinations (n = 24), we 

performed 100 simulations, resulting in a bank of 2,400 trees with associated biogeographies. 

 

Character Displacement 

 The model.—To simulate both divergent and convergent character displacement, we 

simulated a continuous trait z under a model in which trait values of sympatric species in an 

evolving clade are repelled from (or drawn toward) one another. In divergent character 

displacement, trait divergence is driven by pairwise similarity in that same trait z; in convergent 

character displacement however, convergence in trait z (e.g. a signaling trait) is driven by 

pairwise similarity in another trait y (e.g. a resource use trait). To create a generic model of 

character displacement, we thus modified the matching competition model (Nuismer & Harmon 
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2015; Drury et al. 2016) by describing the mean value for trait z in lineage i after an 

infinitesimally small time step dt by: 

 

���� + ��� = ����� + 	
� − �����
�� + � ����,� 	× 	���� ������ − ��	���� ×		����� 	�!���"�!��#$
�	%�

& �� + ' 

(Eq. 1) 

 

where y = z in the case of divergent character displacement and ( ≠ � in the case of convergent 

character displacement, 	
� − �����
	describes attraction to a single stationary peak (i.e., the 

Ornstein-Uhlenbeck [OU] process, Felsenstein 1988; Garland et al. 1993; Hansen and Martins 

1996), n	is the number of species, δ is a random variable with mean 0 and variance = σ2
dt

 (the 

Brownian motion [BM] rate parameter, describing the stochastic component of trait evolution), 

and A is a piecewise-constant matrix representing biogeographical overlap such that Ai,j equals 1 

if species i and j are sympatric at time t, and 0 otherwise. The “sign” portion determines the 

relative position of each species in trait space (i.e. it equals +1 if zi is larger than zj, and -1 

otherwise). The α value (α > 0) determines the effect of pairwise similarity in trait y on 

competition: if α is close to zero, all lineages sympatric with lineage i have the same competitive 

effect on i, regardless of their similarity in trait y; conversely, if α is large, sympatric lineages 

similar to i in terms of the y trait will have a much stronger competitive effect on i than 

sympatric lineages dissimilar to i in terms of the y trait. The parameter m represents the 

magnitude of the effect of competition when two lineages have identical y values (i.e., it provides 

an upper bound for the deterministic effect of competition). When m = 0, this equation reduces to 

an OU model, whereas positive m values result in pairwise divergence and negative values result 
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in pairwise convergence. When both m and ψ = 0, this model reduces to Brownian motion. For 

additional simulation details, see Supplementary Methods. 

 We use a lineage-based “phenomenological” model for our simulations rather than an 

individual-based model to have the computational ability to produce datasets of a size 

comparable to the maximum sometimes reached in empirical comparative phylogenetic studies 

(i.e. often reaching several hundreds of species). Models derived from microevolutionary first 

principles (e.g., Grether et al. 2009; Nuismer and Harmon 2015) generate similar patterns of 

sympatric shifts resulting from character displacement, and using such a model here would be 

much more computationally intensive, therefore restricting the range of parameter values that 

can be studied. For simplicity, this model also omits the effect of a species’ geographic structure 

and the effect of gene flow between distinct populations on the evolution of the mean species 

phenotype. This simplification is reasonable in the context of our study because there is no 

reason to expect that it will systematically bias the patterns generated in such a way as to yield 

different conclusions regarding the performance of the various analytical approaches that we use 

here. Finally, in all of our simulations, we considered sympatry to be a binomial variable, so Ai,j 

equaled either 1 (if species i and j are sympatric) or 0 (if species i and j are allopatric). This index 

of sympatry is similar to commonly used indices (Pigot and Tobias 2014; Tobias et al. 2014), but 

other formulations of sympatry, such as continuous measurements of range overlap (Bothwell et 

al. 2015; Martin et al. 2015) are also possible. We did not explore continuous measurements of 

range overlap here, but have uploaded our simulation scripts to RPANDA (Morlon et al. 2016; 

https://github.com/hmorlon/PANDA), which could easily be modified to do so. 
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 Divergent character displacement.—We simulated datasets with divergent character 

displacement by setting y = z in Eq. 1 such that trait divergence is driven by pairwise similarity 

in that trait. Biologically, this could represent a feeding trait that co-varies with resource use 

(e.g., bill shape in Galápagos finches, Grant & Grant 2011) and which would directly affect 

interspecific competition. To assess whether each method could detect divergent character 

displacement when it occurred and did not erroneously detect character displacement when it 

was absent, we simulated datasets both with repulsion {m = 2} and without repulsion {m  = 0} 

(see Supplementary Methods). We also simulated datasets with {ψ = 2} and without {ψ = 0} the 

OU process. In all simulations, we held σ2 constant at 0.5, α constant at 1, and both the state at 

the root (z0) and the OU optimum (θ) constant at 0.  

In additional simulations run only on 100-species trees, we analyzed the effect of both the 

maximum strength of repulsion {m = 0, 1, 2, 10} and, to understand how the opposing forces of 

repulsion and attraction to an optimum influence analyses, the ratio of attraction to the maximum 

effect of competition {ψ:m	= 0, 0.2, 0.5, 1}. To achieve these ratios of ψ:m, we varied ψ while 

holding m constant (e.g., for the case where m = 2, we simulated datasets where ψ = 0, 0.4, 1, 

and 2, respectively). As above, these values were arbitrarily chosen based on visual inspection of 

realized simulations. 

For each parameter combination, we simulated 10 datasets for each tree, resulting in 

1,000 simulations for each tree size / biogeographic scenario combination.  

 

 Convergent character displacement.—We simulated datasets with convergent character 

displacement under Eq. 1, where the term y represents a trait determining resource use or niche 

occupation evolving via BM or OU. A species’ trait z in this model—a trait used as a territorial 
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signal—is thus attracted most strongly to the signal trait values of sympatric lineages with the 

most similar resource-use traits. Biologically, this represents a scenario where selection favors 

interspecific territoriality—mediated by similarity in territorial signals—because the benefits of 

excluding heterospecifics are similar to the benefits of excluding conspecifics (Grether et al. 

2009). As a species’ resource-use trait becomes less similar to that of sympatric species, the 

strength of attraction decreases to zero.  

We simulated resource-use traits under both BM (σ2
resource = 0.5, ψresource = 0) and OU 

(σ2
resource = 0.5, ψresource = 2, θresource = 0) models. For the signal trait, we simulated datasets both 

with convergence {m = -0.25} and without convergence {m = 0}. We did not include attraction 

toward a stable peak for the signal trait (i.e. ψ was held constant at 0). As above, we held σ2 = 0.5 

and �* = 0, though we held α constant at 10, since smaller values result in rapid, cladewise 

convergence in traits. To analyze the effect of the maximum strength of convergence, we ran 

another set of simulations on 100-species trees varying m {m = 0, -0.1, -0.25, -0.5} (see 

Supplementary Methods). The resource trait (y) and signal trait (z) were modeled as unlinked and 

genetically uncorrelated. 

As above, we simulated 10 datasets for each tree, resulting in 1,000 simulations for each 

tree size / biogeographic scenario combination.  

 

Predictors of Interspecific Interactions 

In some cases, investigators wish to identify which factors explain the occurrence of 

particular interspecific interactions. For example, investigators may want to understand which 

traits cause species to hybridize (e.g., Willis et al. 2014). In this scenario, species interactions 

vary according to phenotypic similarity between sympatric species pairs (i.e., species pairs that 
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could potentially interact). Additionally, and unlike character displacement analyses, predicting 

the occurrence of interspecific interactions requires treating trait similarity as a predictor variable 

rather than a response variable. Thus, we generated datasets where the presence of interactions 

between sympatric taxa depends on pairwise similarity in traits.  

First, we simulated the independent evolution of two traits along the phylogeny. One of 

these traits (Trait 1) represents the measured, focal trait: the investigator wants to know if this 

trait (e.g. plumage color) affects interactions (e.g. hybridization). The other trait (Trait 2) 

represents an uncorrelated trait (e.g. song) that potentially also affects interactions but is not the 

focal trait, and is not necessarily measured. We simulated this second trait in order to check 

whether the effect of a non-focal trait on interactions could be misinterpreted as the effect of the 

focal trait (a sort of Type I error), and also to determine how the effect of an unmeasured trait on 

interactions affects the ability to identify an effect due to the measured trait. We evolved Trait 1 

under a BM (σ2 = 0.5, ψ = 0) or OU (σ2 = 0.5, ψ = 2, θ = 0) model, and Trait 2 under a BM model 

(σ2
unmeasured = 1, ψunmeasured = 0).  

Next, we generated datasets where the probability P for two species to interact depends 

on similarity in trait space at the present: 

 

+ = ��,-./	,#.#�1 + ��,-.-/	,#.#� 
(Eq. 2) 

 

(e.g., Hilbe 2009) where Dn is the trait distance between species (i.e., distance between tip 

values) in simulated trait n (simulated using fastBM in phytools, Revell 2012), and bn is the 

coefficient determining the magnitude of the relationship between the species interaction and 
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similarity in trait n. As the effect of bn on species interaction depends on Dn, which in turn 

depends on the total height of the tree, we scaled the trees to a height of one prior to simulating 

datasets to facilitate comparison of results across trees and parameter space. 

To determine the power to identify an effect of trait similarity on interactions, we 

generated species interactions based on similarity in the focal trait (b1 = -4, b2 = 0). To assess the 

Type I error rate, we simulated species interactions based on similarity in the non-focal trait (b1 = 

0, b2 = -4). It is also possible that both the focal trait and an unmeasured trait influence species 

interactions. To determine how the effect of an unmeasured trait on interactions affects the 

ability to identify an effect due to the measured trait, we ran another set of simulations on 100-

species trees varying b1 {b1 = 0, -2, -4, -6, -8} and holding b2 = -4. As above, we ran 1,000 

simulations for each tree size / biogeographic scenario combination.  

 

Phylogenetic Tests 

Among our tests of character displacement (both divergent and convergent), the 

“correlation” tests involved assessing the significance of the relationship between phenotypic 

similarity and coexistence, using either the “full” dataset (all species pairs) or the “sister taxa” 

subset obtained by culling sister taxa from trees with ≥150 tips (Box 1, Diagram S1). To the full 

datasets, we applied standard non-phylogenetic regression analyses that ignore phylogenetic non-

independence (Box 1.1), the raw and phylogenetically permuted partial Mantel tests (Box 1.2, 

1.3), phylogenetic linear mixed models (PLMMs, Box 1.4), and the simulation approach (Box 

1.5, Supplementary Methods). To the sister-taxa datasets, we applied non-phylogenetic 

regression analyses (Box 1.1), PLMMs (Box 1.4), the simulation approach (Box 1.5), sister-taxa 

GLMs (Box 1.7), and fit process based models in EvoRAG (Box 1.8, Supplementary Methods). 
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We did not perform Mantel tests on the sister-taxa data because such tests require complete 

matrices and distance matrices with data for only sister taxa would mostly contain empty cells 

(i.e. all those cells that correspond to non-sister taxa species pairs). We compared the fit of 

process-based phenotypic models with and without species interactions (Brownian motion, 

Ornstein-Uhlenbeck, diversity dependent, and matching competition models; see Box 1.6 and 

Supplementary Methods) to the full datasets from divergence scenarios using the R packages 

geiger (Pennell et al. 2014) and RPANDA (Morlon et al. 2016). We acknowledge that diversity-

dependent models were not designed to analyze character displacement per se, but because they 

incorporate interspecific interactions, we hypothesized that (and wanted to test if) they could be 

useful in doing so. We did not apply process-based models to convergence scenarios because the 

necessary model fitting tools have yet to be developed (see Discussion).  

Our tests of predictors of species interactions involved assessing the significance of the 

relationship between phenotypic similarity and species interactions (i.e., whether the species 

interact where they occur in sympatry). Since the response variable is binary, we fit non-

phylogenetic logistic regressions, logistic PLMMs, and employed the simulation approach (see 

Supplementary Methods). We did not perform Mantel tests or sister-taxa analyses because the 

species pair matrix was incomplete (species that do not coexist cannot interact) and typically too 

few sister taxa occurred in sympatry for regression analysis.   

  

RESULTS 

 

Divergent Character Displacement 
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 When all possible pairwise comparisons are included in analyses, the ability of most 

methods to detect divergent character displacement in simulated datasets depends on the 

presence of the OU process. As expected, non-phylogenetic regression analyses have high Type I 

error rates (Figs. 2Ai,iv, S2Ai,iv [NB: throughout, results for low sympatric speciation 

biogeographies are plotted in the main text and high sympatric speciation biogeographies in the 

supplement]). When the OU process is present (ψ = 2), all phylogenetic methods generally have 

low Type I error rates and high power (Figs. 2Aiv-vi, S2iv-vi, Supplementary Tables). However, 

when there is no pull toward a peak (ψ = 0), the Type I error rate is higher for Mantel tests (Figs. 

2Ai-ii, S2i-ii), and the power is much lower for all methods, though the pppMantel and raw 

Mantel perform better than the simulation and PLMM methods (Figs. 2Aiii, Fig. S2iii). 

Repulsion is easier to detect against an OU background of traits converging toward a common 

optimum than against a background of traits diverging under BM, likely because the repulsion 

process is more active when species occupy similar trait space (Figs. S3, S4). High rates of 

sympatric speciation and dispersal tend to slightly decrease the power of all methods (Fig. 

S2iii,vi, Supplementary Tables). 

 The ability to detect divergence was relatively similar for m = 1 and m = 2, but declined 

for m = 10 (Fig. S5). This is due to a positive relationship between the ability to detect character 

displacement and the ratio of ψ:m (Fig. S6), resulting from a higher absolute magnitude of 

repulsion when both processes are present (Figs. S4, S6), indicating that this ratio impacts the 

ability to detect divergence more than the raw value of m. 

For several analyses using only sister-taxa comparisons, there is a high probability of 

falsely concluding that character displacement occurred in datasets simulated under BM and, to a 

lesser extent, OU, when data are analyzed with simple linear regressions or PLMMs (Figs. 2Bi,iv, 
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S2Bi,iv). As with the whole-tree approach, the power tends to increase and Type I error rate 

tends to decrease in datasets with attraction toward a single-stationary peak (Figs. 2Biv-vi, 

S2Biv-vi). However, the overall power to infer the presence of divergence was low (< 0.8) with 

analyses conducted on sister taxa (Figs. 2Biii,vi, S2Biii,vi, Table 2), regardless of the analytical 

approach used. Inferences were generally better when dispersal was high, which may reflect the 

elevated observed divergence in high-dispersal scenarios (Fig. S3). Allopatric speciation 

increased the probability of Type I error (e.g., Fig. 2Bi-ii).  

For the phylogenetic trait model-fitting analyses, BM and OU were generally correctly 

chosen when they were the generating models (i.e., when m = 0 and when ψ = 0 or 2, 

respectively, Figs. 3, S8). When ψ = 0 and m > 0, the matching competition (MC) model with 

biogeography is consistently the best-fit model (Figs. 3A, S8A). When m > 0 and ψ =2, the 

diversity dependent exponential (DDexp) model with biogeography was favored over other 

models in most scenarios (Figs. 3B, S8B), with positive rate parameters estimated in the 

maximum likelihood solution (Fig. S9). The biogeographic scenario did not greatly affect the 

outcome of model fitting, though correct models were slightly more supported when dispersal 

was high (Fig. S10), in agreement with the observed magnitude of repulsion (Fig. S3). Although 

the models are less identifiable when m = 10 and ψ = 2 (Figs. 3, S8), this results from variation in 

the ψ:m ratio— there is a ratio of ψ:m around which these models cannot be distinguished (Fig. 

S11). 

Process-based models fit to sister-taxa datasets in EvoRAG did not mistakenly identify an 

effect of species interactions when they were absent (Fig. S4A, C, Table 2), but they were unable 

to identify the effect of competition when ψ = 0 (Fig. S4B, Table 2). However, as with process-

based models fit to the whole phylogeny, when data were simulated with both repulsion and a 

http://mc.manuscriptcentral.com/systbiol
Downloaded from https://academic.oup.com/sysbio/article-abstract/doi/10.1093/sysbio/syx079/4344840/An-assessment-of-phylogenetic-tools-for-analyzing
by UCLA Biomedical Library Serials user
on 17 October 2017



 17

pull toward a stable peak, a model where evolutionary rates vary linearly with the number of 

sympatric taxa is often the best-fit model, though generally with only a marginally lower AICc 

value (i.e., ∆AICc < 2) than BM (Fig. S4, Table 2).  

 
Convergent Character Displacement 

 

As with divergent character displacement, with all pairwise species combinations, the 

ability of most methods to detect convergent character displacement depends on the presence of 

the OU process on the resource-use trait: datasets simulated with convergent character 

displacement and an OU pull on resource-use traits were more likely to be statistically significant 

(Figs. 4A.vi, S12A.vi) across all methods than those simulated with convergent character 

displacement and no OU pull on resource-use traits (Figs. 4A.iii, S12A.iii). Again, this is likely 

because the presence of the OU process in the resource-use trait amplifies the magnitude of 

convergence (Fig. S13, S14). Overall, however, only the simulation approach had substantial 

power (> 0.80) to detect convergent character displacement (Table 1), and only in trees with 100 

or more tips and datasets with the OU process in the simulated resource-use trait. Indeed, the 

non-phylogenetic regressions often (spuriously) detected divergence rather than the simulated 

convergence, especially in smaller trees (Figs. 4A.i vs. 4A.ii, Figs. S12A.i v. ii, Supplementary 

Tables). Both types of Mantel tests were unable to detect convergence, in fact having a higher 

Type I error rate (detecting divergence in BM simulated datasets, Supplementary Tables) than 

power. As with divergent character displacement, there was a tendency for higher power in lower 

dispersal scenarios. 

The power to detect convergence generally increased with increasingly negative values of 

m, the maximum strength of attraction in the signal trait when species are identical in the 
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resource-use trait (Fig. S15), though as m gets large, the probability that all species converge on 

the same trait value increases, especially when ψresource = 2 (see Supplementary Methods). 

Regardless of whether resource-use traits are simulated under OU or BM, when there is 

no convergence, non-phylogenetic regressions and PLMMs used for analyses of sister taxa 

datasets tend to have high Type I error rates, though these analyses return an erroneous inference 

of divergence, rather than convergence, between sister taxa (Figs. 4B.i,ii,iv,v, S12B.i,ii,iv,v, 

Table 2, Supplementary Tables). Sister-taxa analyses had overall very low power (< 0.6) to 

detect convergence when it did exist, and non-phylogenetic regressions often detected 

divergence, rather than convergence (Table 2, Supplementary Tables). As with divergent 

character displacement simulations, the allopatric speciation biogeographic scenarios were more 

likely to lead to higher Type I error rates (Figs. 4B.i,iv). Process-based models fit to sister-taxa 

datasets in EvoRAG did not erroneously detect divergence or convergence (i.e., BM was the 

best-fit model when m = 0, Fig. S14 A, C, Table 2), but they could not detect an effect of species 

interactions when convergence was present, at least for the number of sister taxa in this study, as 

OU was the best-fit model when m = -0.25 (Fig. S14 B, C, Table 2). 

 

Predicting Interspecific Interactions 

 Although all three methods used to identify traits that are causally related to interspecific 

interactions had high power (>>0.8, Table 1, Supplementary Tables) to do so in the parameter 

space explored here (Figs. 5ii,iv, S16ii,iv), only the simulation approach had both high power 

and a low Type I error rate (Table 1), whereas non-phylogenetic regressions and PLMMs had 

fairly high Type I error rates (Table 1) when interactions were simulated based on similarity in a 

trait other than the measured one (Fig. 5i,iii, S16i,iii). The power to detect an effect of trait 
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similarity on species interactions was not greatly affected by the presence of an additional, 

unmeasured trait that also affected the interaction (Fig. S17). Biogeography did not have a large 

impact on analyses, though there were slightly higher Type I error in low-dispersal scenarios 

(Fig. 5i,iii). 

 

DISCUSSION 

 

As open-access databases with species range, trait, and phylogenetic data rapidly expand, 

investigators are able to test hypotheses about the relationships between interspecific interactions 

and phenotypic evolution at an unprecedented scale. Understanding the relative strengths and 

weaknesses of phylogenetic comparative methods available for testing such hypotheses is thus 

paramount. We found that many currently used methods for detecting causal relationships 

between interspecific interactions and species phenotypes suffer from severe limitations (Tables 

1,2).  

Overall, standard methods are better at detecting divergent character displacement when 

divergence does not drive unbounded trait evolution (i.e., when selection acts against extreme 

phenotypes, as can be modeled by the OU process). Consistent with previous reports (Harmon 

and Glor 2010; Guillot and Rousset 2013), Mantel tests had high Type I error rates and both 

standard and pppMantel tests have low power (Table 1, Figs. 2Ai, S2Ai). We found that several 

analytical tools used on sister-taxa datasets have high Type I error rates (Table 2, Figs. 2Bi,iv, 

S2Bi,iv, 4Bi,iv, S12Bi,iv, Supplementary Tables), which would lead investigators to conclude 

that divergent character displacement had occurred when, in fact, it had not, and no statistical 

approaches for sister-taxa analyses have a reasonable combination of Type I error and power. 

Given the lack of a method that has reasonable Type I error rate and power, we discourage 

empiricists from using sister-taxa approaches to study character displacement. If no other data 
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are available for testing for character displacement on the whole tree, then we recommend 

phylogenetic simulations or sister-taxa GLMS, as they are the only methods with generally low 

type I error rates, even though they suffer from low power (Tables 1, 2). Moreover, for analyses 

conducted with phylogenetic simulations or sister-taxa GLMs, though at risk of falsely rejecting 

the hypothesis of character displacement owing to low power, empiricists can be fairly confident 

that positive signals of character displacement are trustworthy. 

Fitting process-based phylogenetic trait models to datasets simulated with divergent 

character displacement yielded more consistent patterns (Fig. 3). Without attraction toward a 

single stationary peak to bound trait evolution, the matching competition (MC) model with 

biogeography was predominantly the best-fit model. For datasets simulated with the OU process, 

the diversity-dependent exponential (DDexp, see Box 1) model with biogeography was the best-fit 

model, and similarly a model with a linear relationship between evolutionary rates and the 

number of sympatric taxa often fit sister-taxa datasets, though with much lower power overall  
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Table 1. Summary of the statistical properties of the analytical approaches tested under scenarios using data from all tips (i.e., with 

sister-taxa analyses excluded). Values refer to the range of average type I error rates and power levels for each tree size ≥50 across 

biogeographic scenarios and scenarios where ψ or ψresource  = 0 or 2. Power refers to only those statistically significant tests in the 

appropriate tail (i.e., in the lower tail for divergent character displacement and upper tail for convergent character displacement). For 

each analytical scenario, the cell with the method with the best trade-off between Type I error and power is shaded. 

 

Analysis non-phylogenetic 

regression 

Mantel test pppMantel test PLMM simulation test process-based models 

type I power type I power type I power type I power type I power type I* power† 

divergent char. displacement 0.37-0.61 0.51-1 0.05-0.10 0.28-1 0.04-0.06 0.20-1 0.05-0.06 0.12-1 0.05-0.07 0.07-1 0.01-0.04 0.92-0.93 

convergent char. displacement 0.40-0.60 0.31-0.99 0.08-0.09 0-0.02 0.05-0.06 0-0.01 0.05-0.07 0.07-0.26 0.04-0.05 0.12-0.91 -- -- 

predicting spp. interactions 0.08-0.3 1 -- -- -- -- 0.07-0.18 1 0.03-0.04 1 -- -- 

*Type I error rate calculated as the proportion of datasets simulated without divergent character displacement for which a model that includes species interactions— DDexp, DDlin, 

or MC—was chosen by model selection (i.e., for which ∆AICc = 0 and ∆AICc for all other models > 2). 

† Power calculated as the proportion of datasets simulated with divergent character displacement for which either DDexp, DDlin, or MC was chosen by model selection. 
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Table 2. Summary of the statistical properties of the analytical approaches tested under scenarios using sister-taxa analyses. Values 

refer to the range of type I error rates and power levels, averaged across biogeographic scenarios and scenarios where ψ or ψresource  = 0 

or 2. Power refers to only those statistically significant tests in the appropriate tail (i.e., in the upper tail for divergent character 

displacement and lower tail for convergent character displacement). Since no method has both low Type-I error rates and high power, 

we caution against using sister-taxa approaches to test for character displacement. 

 

Analysis non-phylogenetic 

regression 

sister-taxa GLM PLMM simulation test process-based models in 

EvoRAG 

type I power type I power type I power type I power type I* power† 

divergent char. displacement 0.07-0.42 0.69-0.75 0.05-0.07 0.07  0.19-0.32 0.08-0.50 0.69-0.78 0.01-0.03 0.18-0.30 0.04-0.07 0.03-0.37 

convergent char. displacement 0.33-0.43 0.01-0.2 0.07 0.04-0.06 0.41-0.5 0.02-0.21 0.03 0.01-0.2 0.04 0.09-0.55 

*Type I error rate calculated as the proportion of datasets simulated without divergent character displacement for which a model that includes a linear dependency on the number 

of sympatric lineages— BMlinear or OUlinear_beta—was chosen by model selection (i.e., for which ∆AICc = 0 and ∆AICc for all other models > 2). 

† Power calculated as the proportion of datasets simulated with divergent character displacement for which either BMlinear or OUlinear_beta was chosen by model selection. 
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 (Fig S4, Table 2). In the DDexp model, rates of trait evolution vary exponentially with the 

number of sympatric lineages through time, thereby incorporating the effect of interspecific 

interactions on the rate of trait of evolution but not explicitly modeling the process of character 

displacement acting on the mean trait values. It may nonetheless provide a useful proxy for 

detecting patterns that are similar to those left by character displacement, in the absence of a 

process-based model that incorporates both attraction toward an optimum trait value and 

divergent character displacement. We emphasize, however, that statistical support for 

phylogenetic process-based trait models incorporating interspecific interactions does not in itself 

constitute decisive evidence that character displacement has occurred, as other processes may 

generate similar patterns (e.g., increasing evolutionary rates with increasing lineage diversity). 

Given that the DDexp model is the best-fit model in parameter space where other methods also 

perform well, combined evidence from model-fitting and other, non-process based methods 

would constitute a strong case for the presence of character displacement. In the absence of tip 

data (e.g., due to incomplete sampling or traits that are inherently measured as pairwise 

properties), process-based models are unsuitable and we recommend using data from as many 

species pairs as possible—not just sister taxa—and using simulation approaches or PLMMs. In 

other words, to detect divergent character displacement, we recommend that empiricists fit the 

MC model to their dataset when possible. High support for the MC model would constitute 

evidence that character displacement has acted on a trait. If the MC model does not provide a 

good fit for the data, this could be because character displacement proceeds in the presence of 

bounded trait evolution, in which case a signature of the DDexp model with a positive rate 

parameter and/or a signature of sympatric divergence in phylogenetic simulations or PLMMs 

would constitute evidence consistent with divergent character displacement. 
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Interestingly, even though most previous investigators have used the DDexp model to 

represent a decline in ecological opportunity with increasing species richness (Mahler et al. 

2010; Weir and Mursleen 2013), the maximum likelihood estimates of the rate parameters for 

this model were positive, rather than negative, when both divergence and the OU process were 

present (Fig. S9). This is consistent with our finding of increasing evolutionary rates with 

increasing species richness (Figs. S3, S4, S7) in this scenario. An increase in the rate of 

evolutionary changes in trait values toward the present likely results from selection not only 

restricting species to certain trait space but also partitioning that space. The resulting adaptive 

landscape is therefore changing rapidly, causing accelerating evolutionary rates as lineages fill 

this increasingly constrained space.  

The MC model (Box 1) is similar to the model used to simulate data (Eq. 1), with the 

assumption that 1 is very small (<< 1) and consequently, competitive interactions are affected by 

the mean trait values of all sympatric species, rather than by pairwise similarity (Nuismer and 

Harmon 2015; Drury et al. 2016). Biologists, however, generally assume that competition is 

stronger between phenotypically similar species (Brown and Wilson 1956). Our results show that 

the assumption of a small 1 does not render the MC model useless for studying character 

displacement, as the MC model is the best-fit model for many datasets simulated under the 

character displacement model used here. Nevertheless, the finding that the DDexp model is the 

best-fit model in datasets simulated under character displacement including OU indicates that the 

MC model is not a perfect model of character displacement. Recently, approximate Bayesian 

computational (ABC) tools have been published to fit a model of character displacement in 

which, like in our simulation model, the strength of competition depends on similarity in trait 

space (Clarke et al. 2017). This model provides an alternative tool for detecting character 
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displacement in comparative datasets, and we hope that further development of methods such as 

this ABC method will help ameliorate the statistical issues shown here. 

For datasets simulated including the OU process, the ratio of the pull-parameter in the 

OU portion of the model to the maximum amount of repulsion (ψ:m) had a consistent impact 

across all methods, which results from the overall larger magnitude of evolutionary changes in 

traits in scenarios with a high ψ:m ratio (Figs. S3, S4, S7). As ψ:m approached 1, all methods 

were better at detecting character displacement. Currently, there are no analytical approaches that 

can disentangle the simultaneous impact of attraction toward a peak and divergence due to 

competition, though we hope our results will inspire development of such tools. We also note 

that the ratio of the BM rate parameter σ2 and m will also likely impact the ability to detect 

character displacement, though we have not explored this here. 

 Unlike for divergent character displacement, available statistical methods for detecting 

convergence in comparative datasets generally do a poor job of detecting convergence, with the 

simulation method outperforming others (Table 1). With whole-dataset approaches, Type I error 

rates are acceptable for phylogenetic analyses (~5%), however, so although detecting 

convergence is difficult, the risk of mistakenly detecting convergence is low. In sister-taxa 

analyses, although Type I error rates are high for PLMMs (Table 2), these largely return 

erroneous divergence results, rather than erroneous convergence (Figs. 4Bii,v, S12Bii,v). In short, 

if an empiricist detects convergence in their dataset, they can be fairly confident in the result. Yet 

if empiricists do not detect convergence, this could simply be a result of lower power of the 

available analytical tools. Currently, there are no tools to fit phylogenetic trait models of 

convergence between species (e.g., Nuismer & Harmon 2015); such tools might more 
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successfully identify convergent character displacement in comparative datasets than the 

available statistical methods. 

 For both divergent and convergent character displacement scenarios, we found that sister-

taxa GLMs and the simulation approach applied to sister-taxa datasets had a mean Type I error 

rate near 5% (Table 2). However, in some scenarios, the Type I error for sister-taxa GLMs was 

slightly higher than for the simulation approach (Figs. 2Bi, 4Bi, Supplementary Tables), which 

suggests that including a model-based estimate of the rate of trait evolution more properly 

accounts for the effect of divergence than simply including the branch lengths separating sister 

taxa as a covariate in analyses to control for variation in the amount of time sister taxa have had 

to diverge from one another (but see Box 1.7 for other extensions of sister-taxa GLMs). The high 

overall Type I error rate for analyses conducted on sister-taxa datasets may also result from the 

unrealistic assumption, common to all sister-taxa analyses, that transitions between allopatry and 

sympatry are uncommon along branches connecting sister taxa (Weir and Price 2011; Tobias et 

al. 2014). Supporting this explanation, we found that biogeographic scenarios with high levels of 

sympatric speciation and low dispersal tended to have overall lower Type I error rates (cf. Figs. 

2,S2; Figs. 4,S12). 

 The statistical properties of analyses used for identifying which traits drive species 

interactions are less variable than for character displacement scenarios. The statistical methods 

available to test for causal relationships between phenotypic similarity and interactions between 

species have very high power. The simulation approach has a low Type I error rate when causal 

relationships are simulated based on an unmeasured trait, although non-phylogenetic regressions 

and PLMMs suffer from relatively high Type I error rates (Table 1). Thus, we recommend that 

empiricists interested in predicting pairwise species interactions based on trait data use 
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phylogenetic simulations. While we did not simulate interactions between clades, our results are 

likely applicable to other empirical questions, such as identifying traits that predict links in 

ecological networks (Rafferty and Ives 2013; Hadfield et al. 2014; Eklöf and Stouffer 2016).  

 By simulating datasets with various types of interactions between species across different 

modes of speciation and dispersal rates, we have shown that many of the methods that 

investigators use to analyze empirical datasets have low power to detect such patterns (Table 1). 

In particular, widely-used sister taxa analyses, including standard regressions and, in some 

scenarios, sister-taxa GLMs, often detected character displacement in datasets that were 

simulated under a simple BM model (Figs. 2Bi-ii, 4Bi-ii). We therefore urge investigators to use 

caution when interpreting the results of such analyses, even in cases where sympatry is 

delineated using other criteria than the one considered here. When process-based models could 

be fit to these datasets, they tended to correctly identify patterns of divergence (i.e., either the 

matching competition model or a diversity-dependent model is the best fit model >92% of the 

time). Thus, when possible, empiricists should employ such methods. Statistical tools to fit 

process-based models of phenotypic evolution including species interactions are in their infancy 

(Drury et al. 2016; Manceau et al. 2017) and many possible models are not yet available (e.g., 

convergent character displacement, character divergence in the presence of an adaptive pull 

towards a peak). We hope that our results encourage the continued development of such tools.  

 In closing, we note that divergent character displacement is erroneously detected with 

many statistical approaches, indicating that there may be an overrepresentation of empirical 

studies that imply that divergence has occurred. In particular, studies that have used sister-taxa 

methods to document character displacement using standard regressions or PLMMs may have 

falsely interpreted a null expectation—larger trait differences between sympatric lineages owing 
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to allopatric speciation—as evidence for divergent character displacement. Conversely, 

convergent character displacement is often hard to detect with existing methods, suggesting that 

convergence in signal traits (e.g., Cody 1969, 1973; Tobias et al. 2014; Losin et al. 2016) might 

be more prevalent than previously thought. 
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FIGURE LEGENDS 

 

Figure 1.  Schematic examples of the processes examined in our simulation study. A. Phylogeny 

along which the trait evolves. B. A trait evolving via divergent character displacement, C. A trait 

evolving via convergent character displacement, and D. A species interaction that exists at 

present due to pairwise trait similarity. For simulation details, see the main text and 

Supplementary Methods. 

 

Figure 2.  Proportion of statistically significant analyses in datasets simulated under divergent 

character displacement in biogeographic scenarios with low sympatric speciation rates. A. 

Results from approaches using data from all pairwise comparisons in a clade, plotted as a 

function of the phylogeny size and dispersal rate when i-ii. m = 0 and ψ = 0 (i. all analyses and ii. 

only analyses returning divergence in sympatry), iii. m = 2 and ψ = 0, iv-v. m = 0 and ψ = 2 (iv. 

all analyses and v. only analyses returning divergence in sympatry), and vi. m = 2 and ψ = 2. B. 

Results from analyses of sister taxa culled from complete phylogenies binned by the number of 

resulting species pairs, plotted as a function of the number of sister taxa comparisons and 

dispersal rate when i-ii. m = 0 and ψ = 0 (i. all analyses and ii. only analyses returning 

divergence in sympatry), iii. m = 2 and ψ = 0, iv-v. m = 0 and ψ = 2 (iv. all analyses and v. only 

analyses returning divergence in sympatry), and vi. m = 2 and ψ = 2. For scenarios where m = 2, 

only the proportion of significant results showing divergence are plotted. Dashed horizontal lines 

represent a Type I error rate of 5%. 

 

Figure 3. Boxplots of Akaike weights for each trait model fit to simulated datasets in 

biogeographic scenarios with low sympatric speciation rates as a function of m in trees with 100 
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species. A. When OU is absent, BM is the best-fit model when m = 0, and the matching 

competition model with biogeography is the best model when competitive divergence is present. 

B. When OU is present, OU is the best-fit model when m = 0, and the diversity-dependent 

exponential model with biogeography is the best model when competitive divergence is present 

and ψ:m is relatively high. 

 

Figure 4. Proportion of statistically significant analyses in datasets simulated under convergent 

character displacement in biogeographic scenarios with low sympatric speciation rates. A. 

Results from approaches using data from all pairwise comparisons in a clade, plotted as a 

function of the phylogeny size and dispersal rate when i-ii. m = 0 and ψresource = 0 (i. all analyses 

and ii. only analyses returning convergence in sympatry), iii. m = -0.25 and ψresource  = 0, iv-v. m 

= 0 and ψresource  = 2 (iv. all analyses and v. only analyses returning convergence in sympatry), 

and vi. m = -0.25 and ψresource = 2. B. Results from analyses of sister-taxa culled from complete 

phylogenies binned by the number of resulting species pairs, plotted as a function of the number 

of sister taxa comparisons and dispersal rate when i-ii. m = 0 and ψresource = 0 (i. all analyses and 

ii. only analyses returning convergence in sympatry), iii. m = -0.25 and ψresource = 0, iv-v. m = 0 

and ψresource = 2 (iv. all analyses and v. only analyses returning convergence in sympatry), and vi. 

m = -0.25 and ψresource = 2. For scenarios where m = -0.25, only the proportion of significant 

results showing convergence are plotted. Dashed horizontal lines represent a Type I error rate of 

5%. 

 

Figure 5. Proportion of statistically significant analyses in datasets with interactions simulated 

under a simple phenotype matching process in biogeographic scenarios with low sympatric 
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speciation rates. Results from analyses where the measured trait was simulated under BM (i, ii) 

or OU (iii, iv), plotted as a function of the phylogeny size and dispersal rate when i. b1 (the 

simulation coefficient determining the relationship between the interaction and the measured 

trait) = 0, b2 (the simulation coefficient for an unmeasured trait) = -4, and ψ = 2, ii. b1 = -4, b2 = 0, 

and ψ = 2, iii. b1 = 0, b2 = -4, and ψ = 0, and iv. b1 = -4, b2 = 0, and ψ = 0. 
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Box 1. Methods for assessing the interplay between interspecific interactions and species 

phenotypes 

 

 Comparative analyses of the interplay between interspecific interactions and species 

phenotypes can either be conducted on entire clades, or, commonly, on sister taxa—species pairs 

that share a most recent common ancestor—that are culled from larger phylogenies. Such 

analyses generally consist of testing the statistical significance of correlations between either 

phenotypic similarity and geographic overlap (to test for divergent or convergent character 

displacement) or species interactions and phenotypic similarity (to find predictors of species 

interactions). As we are looking for correlations between pairwise comparisons (e.g., trait 

similarity, biogeographical overlap, hybridization, magnitude of pre-zygotic isolation), rather 

than “tip values” belonging to a single species, phylogenetically independent contrasts and 

extensions of PGLS analyses (Felsenstein 1985; Rezende and Diniz-Filho 2012) cannot be used, 

and alternative tests have been developed. For a guide to which analytical tools can be applied to 

each empirical question, see Supplementary Diagram 1. 

 

1. Non-phylogenetic regressions 

 “Non-phylogenetic regressions” refers to Generalized Linear Models (GLMs) that ignore 

phylogenetic structure. Though less commonly applied to whole-clade analyses, investigators 

sometimes use non-phylogenetic regressions for sister-taxa analyses, on the basis that branches 

connecting sister taxa represent independent evolutionary histories (Felsenstein 1985). Non-

phylogenetic regressions can be used in tests for character displacement or in analyses of 

predictors of interspecific interactions. 
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2. Mantel tests 

 Several previous investigators have implemented Mantel tests (Mantel 1967) to test for 

character displacement between  species pairs (e.g., Roncal et al. 2012). These tests are designed 

to assess correlations between matrices, which here comprise interspecific trait distances or 

differences. Existing accounts of Mantel tests describe procedures only for complete matrices, so 

they cannot be used in many cases, including sister-taxa analyses (for which most off-diagonal 

elements of distances matrices are by definition excluded) and in identifying predictors of 

species interactions (e.g., hybridization), as only sympatric lineages can interact and setting 

values for allopatric comparisons to zero would not make biological sense. 

 

3. Phylogenetically permuted partial Mantel tests  

 Phylogenetically permuted partial Mantel (pppMantel) tests account for phylogenetic 

non-independence (e.g., see Lapointe and Garland 2001)  by permuting null datasets that are 

structured phylogenetically, and are popular among investigators testing for character 

displacement (e.g., Allen et al. 2014; Willis et al. 2014; Medina-García et al. 2015). Like Mantel 

tests, pppMantel tests also require complete interaction matrices. 

 

4. Phylogenetic linear mixed models 

In recent years, researchers have adapted animal models from quantitative genetics to 

incorporate phylogenies as random effects in mixed-effect regressions on comparative datasets 

(Hadfield & Nakagawa 2010). Such phylogenetic linear mixed models (PLMMs) have been 

modified to accommodate pairwise species data (Tobias et al. 2014), wherein the identity of the 
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species being compared and the node connecting them in the phylogeny are included as random 

effects. PLMMs are promising new tools, as they are not limited to sister-taxa data and model 

predictions can be generated and plotted.  

 

5. Phylogenetic simulations 

 Simulation approaches are widely used to control for phylogenetic non-independence in 

tip data (Martins & Garland Jr 1991; Garland et al. 1993), and have been applied to pairwise 

species comparisons (Elias et al. 2008; Drury et al. 2015; Losin et al. 2016). In these approaches, 

trait evolution is simulated along phylogenies, often scaled such that the simulated tip data 

resemble real data. Pairwise comparisons are then calculated on many simulated datasets and 

used to generate a phylogenetically informed null distribution of test statistics against which to 

compare test statistics calculated from non-phylogenetic regressions on the real data.  

 

6. Process-based models of phenotypic evolution 

 In the statistical approaches outlined thus far, the data analyzed are measurements of 

pairwise differences between species, and the statistical tests for the effect of species interactions 

on trait evolution consist of testing for significant correlations between either phenotypic 

similarity and geographic overlap or species interactions and trait similarity. However, it is also 

possible to detect a signature of interspecific competition in the distributions of continuous trait 

values across the tips of a phylogeny by fitting process-based models of phenotypic evolution to 

the data. These models allow testing hypotheses about which processes are most likely to have 

generated the observed distribution of traits in a clade (Hansen & Martins 1996).  
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 Interspecific interactions have recently been incorporated into such models in two ways. 

First, in diversity-dependent (DD) models, evolutionary rates change as a function (either linear 

[DDlin] or exponential [DDexp]) of the number of extant lineages through time (e.g., Weir & 

Mursleen 2013). Secondly, in the ‘matching competition’ (MC) model, trait evolution in an 

evolving lineage varies as a function of the values of traits in other evolving lineages (Nuismer & 

Harmon 2015, Drury et al. 2016). Comparing the fit of these models to other models that exclude 

interspecific interactions (e.g., Brownian motion and Ornstein-Uhlenbeck models) tests whether 

there is evidence that interspecific interactions have influenced the trajectory of trait evolution in 

a clade.  

 

7. Sister-taxa GLMs 

 If allopatric speciation is common, then sympatry occurs after a period of initial isolation, 

resulting in a pattern where sympatric sister taxa are older than allopatric sister taxa. Thus, even 

random genetic drift can generate a pattern in which sympatric lineages have more divergent 

traits compared to allopatric lineages, simply because divergence has had more time to evolve 

(Weir and Price 2011; Tobias et al. 2014). To control for variation in the evolutionary distance 

between sister taxa in tests for character displacement, “sister-taxa GLMs” include patristic 

distance as a predictor in non-phylogenetic regressions (e.g., Davies et al. 2007; Martin et al. 

2010). Extensions to sister-taxa GLMs include (1) non-linear transformations of patristic 

distances (Weber et al. 2016) and (2) comparisons of the divergence of sister taxa relative to a 

third taxon, with one sister allopatric to and the other sympatric with that third taxon (Noor 

1997). 
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8. Sister-taxa model fitting 

 Recently, tools have been described for fitting process-based models to sister taxa 

datasets using maximum likelihood (Weir and Wheatcroft 2011; Weir and Lawson 2015). With 

these tools, it is possible to test whether models that allow evolutionary rates to vary as a linear 

function of a gradient (e.g., whether male plumage coloration varies as a function of the strength 

of sexual selection, Seddon et al. 2013) better fit sister-taxa datasets than constant rates models. 

When the gradient is the number of sympatric lineages, these models are conceptually similar to 

the linear diversity dependent models described above. 
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