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Abstract Results are presented from spectro-imaging polarimetry of radiation from the lo-
cal solar corona during the 2013 total solar eclipse in Gabon. This polarimetric observation
was performed from 516.3 nm to 532.6 nm using a prototype Fiber Arrayed Solar Optical
Telescope (FASOT). A polarimetric noise level on the order of 1073 results from a reduced
polarimetric optical switching demodulation (RPOSD) procedure for data reduction. It is
revealed that the modality of fractional linear polarization profiles of the green coronal line
shows a diversity, which may indicate complex mechanisms. The polarization degree can
approach 3.2 % above the continuum polarization level on a scale of 1500 km, and the
nonuniform spatial distribution in amplitude and polarization direction is found even within
a small field of view of 7500 km. All of this implies that the coronal polarization is highly
structured and complex even on a small scale.

Keywords Polarization - Sun, corona

1. Introduction

The solar corona is the site that hosts most large-scale solar activity, such as solar flares,
filament eruptions, and coronal mass ejections (CMEs). Discovering the physical mecha-
nisms that drive these phenomena is at the forefront of solar physics research. However,
efforts to reveal such mechanisms are hindered by insufficient understanding of the physical
conditions of the solar corona. For example, coronal heating is still an open issue because
of our insufficient understanding of the underlying physical processes. Although diagnostic
tools such as ultraviolet (UV) and extreme-ultraviolet (EUV) imaging instruments available
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from space-borne telescopes play an increasingly important role, it is clear that polarimetric
measurement has become more and more promising for coronal physics research (Dai et al.,
2015; de Wijn, Tomczyk, and Burkepile, 2014). On the other hand, observation of the corona
is fundamentally more difficult than observations of the other solar atmospheric layers be-
cause coronal radiation at the visible (VIS) and infrared (IR) wavelengths is at least six or-
ders of magnitude weaker than that observed from the photosphere. The telluric atmosphere
scattering of massively dominant photospheric background makes VIS-IR observation of the
corona suffer further from the light pollution for the ground-based coronagraphs. This be-
comes more serious when polarimetric observation are the aim. Historically, many detailed
observations have been conducted during total solar eclipses. Thanks to the heroic efforts of
these explorer-scientists, it has been well demonstrated that the much-reduced scattered light
from the telluric atmosphere during the obscuration of the solar disk results in a sufficiently
reduced background that direct coronal observation becomes briefly possible.

Basically, eclipse coronal polarimetric measurements can be divided into three categories
according to their observational functions:

1. Imaging-polarimetry during solar eclipses has a history of more than one hun-
dred years. Most researchers detected highly polarized radiations from the corona and
presented highly structured polarization maps (for instance, Ney et al., 1961; Eddy and
McKim Malville, 1967; Blackwell and Petford, 1966; Hyder, Mauter, and Shutt, 1968;
McDougal, 1971; Koutchmy and Schatten, 1971; Molodensky, 1973; Badalyan and Sykora,
1997; Kulijjanishvili and Kapanadze, 2005; Skomorovsky et al., 2012; Qu et al., 2013). More
efficient, improved diagnostic methods (House, 1977; House, Querfeld, and Rees, 1982;
Raouafi, Lemaire, and Sahal-Bréchot, 1999; Raouafi, Sahal-Bréchot, and Lemaire, 2002;
Raouafi and Solanki, 2003; Raouafi, 2005) have been devised to reveal distributions of elec-
tron density, electron temperature, and especially the magnetic field, which is highly rele-
vant here and cannot be accurately diagnosed by non-polarimetric measurements. As is well
known, the magnetic field configurations and morphologies play a crucial role in forming
coronal features and causing eruptions. It is common knowledge that the linear polarization
distribution in the corona is extremely non-uniform. However, various polarimetry measure-
ments differ greatly, as pointed out by Hyder, Mauter, and Shutt (1968). In fact, all these
imaging-polarimetries suffer from two fundamental shortcomings. They can neither distin-
guish the contributions of the continuum from that of the spectral lines within one bandpass,
nor can they resolve the situation where linear polarization profiles take on a specific feature
of two or more lobes with opposite signs. Because of a lack of spectral detail, it is very
difficult to reveal the mechanisms by imaging-polarimetry results.

2. To the best of our knowledge, spectropolarimetry during a solar eclipse was first con-
ducted by a Zurich group, but they failed to extract the polarization profiles (Feller et al.,
2007). Subsequently, we performed dual-beam spectropolarimetry during the 2008 total so-
lar eclipse in China (Qu et al., 2009). The fractional linear polarization of emission lines
from 502.5 nm to 528.5 nm was detected up to 35.0 % at the Mg I b4 516.8 nm line
with an rms polarimetric noise level of 1.6 %. In addition, profiles with close amplitudes
of the once-ionized iron lines (Fe 11 516.9 nm) and other lines in the upper chromosphere
and lower transition region were also recorded. Furthermore, we demonstrated the synoptic
consistency between results from spectropolarimetry and imaging-polarimetry, and linear
polarization degrees up to 40 % were observed for the magnesium triplet (Mg 1 b4 516.8
nm, b2 517.3 nm and b1 518.3 nm) and Fe 11 516.9 nm with a polarimetric noise level of
4.37 % during the 2010 annular eclipse in China (Qu et al., 2013).

3. The last category, spectro-imaging polarimetry, is presented here for the first time. This
was performed during the 2013 total solar eclipse in Gabon with the prototype Fiber Ar-
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Figure 1 Optical path of the prototype FASOT for solar eclipse polarimetric observation.

rayed Solar Optical Telescope (FASOT, Qu, 2011; Qu et al., 2014). Here the term ‘spectro-
imaging polarimetry’ means real-time 2D spectropolarimetry that enables the production of
correspondingly reconstructed 2D polarization maps at all the wavelength points within the
adopted band of interest.

Finally, it should be noted that the mechanisms producing the polarization have been ex-
plored for a long time. For instance, Raouafi (2011) summarized the origin of polarization in
K-corona and polarimetric application for diagnosing the coronal magnetic field. The appli-
cation has also been explored by many authors, reviewed by Raouafi (2005), Trujillo Bueno
(2010), and in articles of a special issue entitled ‘Coronal Magnetometry’ in the journal
Frontiers in Astronomy and Space Sciences published in 2016.

2. Instrumentation and Observation

The prototype FASOT (Qu et al., 2014) achieves real-time 2D spectro-imaging polarime-
try of multiple lines by using a pair of integral field units (IFU, cf. Allington-Smith et al.,
2002) constructed at Durham University CfAI and significantly reduces polarimetric noise
levels by applying the polarimetric optical switching (POS) technique (Donati et al., 1990;
Bianda, Solanki, and Stenflo, 1998). The optical path of the eclipse observation version is
depicted in Figure 1. A Meade LX200-ACF Cassegrain telescope with an aperture of 30 cm
was employed as the guiding optics. This was also the optical platform shared by our 2008
and 2010 eclipse observations. A field stop is located at the focal plane that splits the field
of view (FOV) into two parts. One smaller part (about 20 arcseconds) passes it directly
for the polarimetric measurement, and the remnant FOV is reflected vertically and used for
monitoring. A compound collimator and a set of imaging lenses form a telecentric optical
system in which the polarimeter sits. Afterward, a polarimeter consists of a filter to block
the ultraviolet and shorter wavelength irradiation, a liquid crystal variable retarder (LCVR)
used for changing alternatively the polarization states of the two beams that emerge from
a Savart plate to execute the POS operation by altering the applied voltage, and the Savart
plate serves as the linear polarization analyzer that produces ordinary extraordinary (oe for
short) and extraordinary ordinary (eo for short) beams with equal optical paths, but opposite
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polarization states. The first 25 spectra (counted from the top to the bottom) in each panel
of Figures 2 and 9 (the raw polarimetric data) are produced by the ‘oe’ beam in the upper
part and the other 25 spectra by the ‘eo’ beam located in the lower part, and their intensities
are defined as Stokes 1/2(/ — Q) and 1/2(I + Q), respectively, in the subsequent analyses.
The two beams are separated further by two 45° mirrors and are conducted into two optical
arms. On the focal planes of these imaging lenses, a pair of IFUs formed by 2 x (5 x 5)
lenslets and optically coupled fibers are illuminated. At the other end of the IFU pair, the
50 fibers are aligned together in a straight line as a pseudo-slit, and then the emerging light
beams are dispersed by a spectrograph PI SP2750. Finally, a CCD camera PI PIXUS400
with pixel format of 1340 x 400 is placed at the exit focal plane of the spectrograph. It is
noteworthy that oe and eo beams from the Savart plate are tightly related since they have
the same solar origin. The two spectra produced by each polarimetric fiber pair, illuminated
by the same solar spatial point, but with opposite polarization states, are aligned such that
in each panel of Figure 2, which contains fifty spectra, the nth spectrum is coupled sym-
metrically with the (51 — n)th spectrum counted from top to bottom or vice versa. Each
fibre illuminates five pixels along the spatial direction (vertical in each panel of Figures 2
and 9), and each pixel covers 0.0122 nm in the dispersion direction (horizontal in Figure 2),
and thus the spectral resolution power available from the grating is 21 000, while five pixels
along the spatial direction span two arcseconds. Finally, the observational band is adopted
from 516.3 nm to 532.6 nm, which contains many photospheric and chromospheric lines
including the magnesium triplet, neutral and once-ionized iron lines, as well as the green
coronal line.

Because of its mobility and capability of the real-time 2D spectro-imaging polarimetry
and thanks to the much reduced polarimetric noise level available compared to our former
polarimetries, the prototype FASOT eclipse version is conducted to carry out the coronal
polarimetric observation during solar eclipses.

A total solar eclipse took place on November 2, 2013 in Gabon, and a little village named
Bifoun (E0° 17'17” S10° 29'24”) was chosen as the observation site within the band of to-
tality. The totality began at 13:56 UT and lasted only one minute. Since the monitoring
image was not well resolved, we placed the IFU FOV around the solar crescent formed by
lunar occultation. During the entire process, an observation mode was established whereby
every acquisition set consisted of six successive images, and they are labeled by 71 to 16
hereafter. We have acquired enough data sets for different usages. The data assembly con-
tained not only the polarimetric data around and during the totality, but also dark-current and
flat-fielding images, as well as polarimetric calibration data sets before and after the total-
ity. The dark current was measured by closing the shutter of the spectrograph with different
exposure times. The flat-fielding data were obtained with an exposure time of 50.0 seconds
by illumination from an artificial white-light source placed in front of the telescope after
the totality (see panel (b) of Figure 2). The top panel of Figure 2 shows the spectra of the
quiet-Sun region close to solar disk center acquired before the eclipse, which is used for
wavelength calibration and spectral line identification (the representative lines are labeled
by their elements and ionization stages at the top). The two bottom panels of Figure 2 show
the first and second frames of the data set ‘Cali0_end.spe’ when the transmission direction
of the HN45 polaroid was placed just before the window glass in the north—south direction
defining positive Stokes Q, consistent with the polarization plane direction of ‘eo’ beam
and in negative Stokes Q direction, respectively. They are used as the reference data for the
proposed demodulation procedure introduced below. Four similarly obtained polarimetric
calibration data sets were acquired after the eclipse, but they are not shown here.

The coronal polarimetric measurement with only the green line present in the observing
band was recorded in the latter four frames of the data set and was named ‘se205.spe’, and all
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Figure 2 Sample raw images for wavelength, flat-fielding and polarimetric demodulation reference data.
The observational band spans from 516.3 nm to 532.6 nm. The important spectral lines are labeled by their
corresponding elements and ionization stages at the top. Note that in each panel intensities of the upper 25
spectra are 1/2(I — Q) produced by oe pairs and those of the lower 25 spectra are 1/2(1 + Q) by eo pairs.
The alignment of fiber pairs in the slit (spatial direction) is labeled on the right of the top panel and the
same for the others. The top panel was acquired before the eclipse near the disk center using a tiny fractional
aperture. The second (counted from the top to the bottom, and hereafter) was acquired by illumination of
artificial white light as flat-field image. The third and fourth panels were acquired with polarization states
exchanged, which are used as the two successive reference frames for data reduction of reduced polarimetric
optical switching demodulation (RPOSD, hereafter).
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the frames of sets ‘se206.spe’ and ‘se207.spe’ during the totality. These form the samples of
the polarimetric measurement in the outer corona. The green coronal line was also recorded
along with other lines in many frames of data sets, however, such as ‘se204.spe’ and the
first two frames of ‘se205.spe’. All these data form the assembly to be demodulated for our
following analysis.

3. Data Reduction

Polarimetric observation, especially spectropolarimetry, during a total solar eclipse is a great
challenge. It requires not only mobility of the suitable instrument, good weather condition
and sufficient logistics, but also a suitable strategy of compromise between the temporal
resolution and the signal-to-noise ratio, since only a very short observation time is available.
Otherwise, suitable calibration data acquisitions should be carried out before and after the
totality.

Following the usual procedure, the dark currents for the polarimetric data and the flat-
fielding were subtracted, which was followed by the normal flat-fielding operation. Because
each lenslet-coupled fiber of IFU represents a spatial resolution element and illuminates five
pixels along the spatial direction (vertical in each panel of Figures 2 and 9), we combined
these five pixels into one at each wavelength, i.e., a 5 x 1 binning was executed after the
dark-current and flat-fielding calibration.

The real challenge in data reduction is in the demodulation procedure since the photon
budget is not enough, therefore the polarimetric noise level should be sufficiently depressed
in a special way. In our case, this is a complicated situation since the traditional polarimetric
optical switching demodulation (POSD) cannot directly result in lower polarimetric noise
level (see Figure 4) by numerical test. We had to figure out a new demodulation method to
sufficiently lower the level. In the following, we describe this newly developed procedure.

The intensities of the dual beams received by ‘oe’ and ‘eo’ pixels labeled (x1, y1) and
(x2, y2), respectively, can be expressed by at time ¢,

Iobs,oe(t) = 1/2[Isun(t) - qun(t)]g(xl.yl)s(t)s
Iobs,eo(t) = l/z[lsun(t) + qun(t)]g()(Z,yZ)s(t), (1)

where I, represents the radiative intensity from the Sun, and Stokes Qg is the linear
polarization intensity. Term g, ) is a quantity reflecting the instrumental efficiency of
collecting the photons from the Sun along a specific optical path onto the relevant chip
pixel. It varies from one light path to another and reflects the non-solar spatial variation
of the instrument, such as transparency differences between the dual beams and the gain
variations of the detector chip pixels; term s(#) encompasses temporal variations, such as
seeing fluctuation. The fractional linear polarization Q/I from the direct demodulation of
the dual-beam polarimetry (DBP) is simple and straightforward:

qun/lsun(t) = [g(xl,yl)/g(XZ,yZ)Iobs.eo(t) - Iobs,oe(t)]

/[g(xl,yl)/g(XZ.yZ) Iobs,eo(t) + Iobs.oe(t)]- (2)

Evidently, this quantity is strongly influenced by the spatial nonuniformity, i.e., gi1,y1)/
8(x2,y2) # 1 while the influence from the temporal variation is minimized. Therefore instru-
mental spatial non-uniformity becomes the main error source and unfortunately causes a
high polarimetric noise level for the direct DBP demodulation.
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In polarimetric literature, in order to depress the noise level, the POS operation and corre-
sponding demodulation was proposed by Donati et al. (1990), and then developed by other
authors (e.g., Bianda, Solanki, and Stenflo, 1998). The operation aims at simultaneously
minimizing the influence from both non-solar temporal and spatial variations that are due to
the weather and the instrument imperfectness during the modulation process. Traditionally,
the POS is performed by exchanging the opposite polarization states of the dual beams. For
instance, after the acquisition at ¢, another measurement at time ¢’ is required, which results
in the intensities Iops e and Iops o Of the two beams,

Iobs,oe([/) = I/Z[Isun(t,) + qun(t/)]g(xl,yl)s(t/)»
Lobs.eo (t/) = ]/z[lsun (t,) = Qs (t/)]g(XZ,yZ)S(t/)~ 3)

Following Donati et al. (1990) to construct a function f of wavelength from the two mea-
surements at time ¢ and ¢’

I = [Lobs.oe () Labs.co (1) ]/ [ Lobs.co (1) Lovs.oc (') ] 4)
it is easily demonstrated after several algebraic steps that
VF=D/VF+1D = Qun/Tan(® + Quun/ Lo (1), )
if
abs (Qsun/Isun() = Qsun/Lsun (1')) < 1.0. ()
Alternatively, according to Bianda, Solanki, and Stenflo (1998),
(f = D/(f +1) = Quun/Tan(®) + Qun/ Lun ('), @)

when the condition (6) stands again.

In these two ways, we obtain Qgun/Isun(#,t") = 1/2(Qsun/Tsun(®) + Qsun/Isun(t')) as the
average over the time interval (z, ¢'). It is noteworthy that in order to obtain the average, this
kind of POS demodulation (POSD, and hereafter) procedure requires twofold measurements
at the expense of the temporal resolution for the same Stokes parameter combination. If this
procedure continues to be executed in the following polarimetry, the measurement time will
be twice longer than the polarimetry without POS operation.

In our case, the dual beams are produced by the Savart plate and the polarization state
exchange task is assigned to the LCVR. When the above POSD is directly applied to these
data sets, it is found that the noise depression is not satisfied, as shown in Figure 4. On the
other hand, according to the following numerical experiment, when a modified POSD is
created, we find that these data sets obtained by POS operation at the end of eclipse can be
treated as the reference data to obtain more satisfactory results.

Now we describe this in detail. The intensities of the dual beams of polarimetry at #; can
be written as

Iobs,oe(ti) = 1/2[Isun(ti) - qun([i)]g(xl,yl)s(ti)s
Iobs,eo(ti) = 1/2[Isun(ti) + qun(ti)]g()d,yl)s(ti)~ (8)

The POS polarimetries at ¢ and ¢’ whose intensities are expressed by Equation (1) and Equa-
tion (3) are treated as the reference data. Following the same steps as Bianda, Solanki, and
Stenflo (1998), if condition (6) is satisfied and also stands for Qg (#;)/ Lsun (), then we have
from Equation (1) and Equation (8)

(fl - 1)/(f1 + 1) = qun/Isun(ti) - qun/Isun(t)a (9)
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and from Equation (3) and Equation (8)

(fa=D/(fa+ 1) = Qun/Lsun(t) + Qsun/Lsun(1') (10)
where
St = [Lovs.co (1) Lobs,0e (1) ]/ [Lobs.oe (1) Lobs,co (1) ]
fo = [Lobs.co(ti) Lobs.oc (1) ]/ [ Lobs.oe (1:) Tobs.co (1) |- (11)
The sum of Equation (9) and Equation (10) results in
Qaun/Lan () = 0.5[(fi = 1)/(fi+ D+ (o= D/, + D], (12)
if the time difference between ¢ and ¢’ is so short that
Osun/ Lsun (1) = Qqun/ Lsun (1'). 13)

Again, by following Donati et al. (1990), we theoretically have an alternative expression
if condition (13) is strictly satisfied

qun/Isun(ti):(\/ f]fZ_ l)/(\/ f1f2+1) (14)

Evidently, from either Equation (12) or Equation (14), like Equation (5) and Equation (7),
the influence from g(x;, y;) and s(¢) is theoretically minimized. Because this kind of demod-
ulation is based on the POS performance, we call it reduced polarimetric optical switching
demodulation (RPOSD, hereafter).

Generally, condition (13) can be satisfied for fast successive acquisition when the POS
is applied for the same region if the LCVR retardation exchange was exactly from 0° to
180°. However, in a general case, the second measurement of the POS performance was
not so perfect because the retardation of 180° by the LCVR cannot be perfectly achromatic
in the band of interest. Therefore, a small but non-negligible error makes condition (13)
read approximately Qqun/Isun(t") = Qsun/ Lsun (t) + ¢, with ¢ a small quantity that varies with
wavelength. This causes Equation (12) and Equation (14) to have an additional polarization
with the same order of c.

For RPOSD, the selection of the reference data obtained by POS operation is very im-
portant to serve the purpose of depressing the noise level. After numerical experiments and
comparisons, the additional polarimetric calibration data are found to be most suitable. How-
ever, in order to use these data, we have to do some modifications since the polarization
degrees induced by the polaroid are close to 100.0 %. Because these reference frames were
obtained with transmission direction of the HN45 polaroid parallel to the direction defining
the positive Stokes Q, the linear polarization degree of the polaroid Q/1 is expressed as

Q/1=1=0Qo/l. (15)

The upper panel in Figure 3 shows the measurement for O/l to be around 3.5 %. It is
shown that the Q/ Iy is demodulated to be neither uniformly distributed along the dispersion
direction nor in the spatial direction by the POSD. It is evident that the condition

qun/lsun(ti) X QO/IO < 10, qun/lsun([i)v or QO/IO (16)

is easily satisfied since Q¢/1y, Q/I(t;) < 1.0 in general.
Now, it becomes possible to define measurable quantities
Iobs,oe(t) X Iobs,eo([i) Iobs,oe(t/) X Iobs,eo(ti)

. fu= . (17)
IobSA,eo(t) X Iobs,oe(li) ¢ Iobs,eo(l/) X Iobs,oe(ti)

f3=
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Substituting Equation (1), Equation (8), and Equation (15) into the above equation, we have

f= Qo/lo + Qsun/Lsn(t1))

(2 - QO/IO)(1 - qun/lsun(ti))
Expanding the denominators and numerators and dropping the product Qgun/Isun(t) X
Qo/ 1y according to Equation (16), the above equation is reduced to

Qo/ 1o
= 19
3= = O/ Tan()) = Oo/To (19

(18)

or

2(1 - sun Isun i
L1/ = 2 %O/[O @) (20)

Similarly, substituting Equation (3), Equation (8), and Equation (15) into Equation (17) and
considering Equation (16) after several steps leads to

2(1 + qun/lsun(ti))

1+ fi= ol . 1)
Then we have from the above equations
Qqun/Laun(t) = (g = 1)/(g + 1) + O(Qsun/Lsun (1) x Qo/Io), (22)
regardless of Qo/Iy, and
g=U/f+D/(fa+ D). (23)

In Equation (22), the term O (Qgun/Iaun (%) X Qo/lo) represents the remnant error by drop-
ping those terms containing Qgun/Isun (t;) X Qo/ 1.

In order to test the polarimetric noise levels reduced by the POSD and RPOSD in our
case and to view the polarimetric behaviors of the different fiber pairs, we demodulated the
data acquired in the quiet-Sun region after the eclipse (shown in the top panel of Figure 2).
The Stokes 7 and Q/I spectral images demodulated by RPOSD and POSD are plotted in
the upper panel of Figure 4. It is immediately seen that the noise level reduced by RPOSD
in Q/I image is much lower than that by POSD, as is more clearly seen in the lower panel
where sample profiles are plotted. Because of these numerical experiment tests, we employ
RPOSD expressed by Equation (22) below.

Finally, the modification of the incoming Stokes (Q /1 )z, caused by the instrument sys-
tematically is described by Mueller formalism (for coronal polarimetry, Stokes V /I can be
ignored)

(Q/I)obs = [MZI + MZZ(Q/I)sun + M23(U/I)sun] T, (24)
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Figure 4 Demodulated Stokes / and Q/1 spectral images (upper panel) and corresponding sample profiles
demodulated from the 19th pair via respectively the RPOSD and POSD (the lower panel) in a quiet-Sun
region. RPOSD can clearly decrease the noise better than the normal polarimetric optical switching (POSD).

where T indicates transparency, and M;; T reflects the crosstalk from Stokes 7 to O, which
is generally a very small quantity (measured from 2.47 x 1073 to 8.74 x 10~ within the
green coronal line for these 25 polarimetric pairs). My, T reflects the polarimetric efficiency
for Stokes Q/1. It is calculated to range from 9.36x 107! t0 9.72x 10! for these polarimet-
ric pairs, while M»;T indicates the crosstalk from Stokes U/I to Q/I, which is found to
be from —9.07 x 1072 to — 1.10 x 10~'. The polarimetric calibration is executed pair by
pair at each wavelength according to Equation (24). Because we did not undertake a Stokes
U measurement, the polarimetric calibration of the crosstalk from U/I to Q/I cannot be
completed. This should not critically influence the resulting profiles in most cases, however,
since the coefficients are so small.

In order to determine the polarimetric behavior of the 25 pairs in the quiet-Sun case, we
depict Q/I profiles from Figure 5 to Figure 8, along with that produced by the 19th pair
shown in Figure 4. The polarimetric noise level measured over the whole band as the root
mean square (rms) ranges from 2.18 x 1073 at the 12th pair to 6.66 x 10> at the 25th
pair for all the pairs, with an average noise level of 3.16 x 1073 over all the 25 pairs. It is
noteworthy that for the data acquired around totality, the noise level was reduced since the
scattering by Earth’s atmosphere was significantly reduced.
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Figure 5 Polarimetric noise level samples demodulated via the RPOSD from the 1st to 6th pairs.

4. Results from Polarimetric Observations of the Local Solar Corona

In this section, we first present the polarimetric results of the inner corona and then those
of the outer corona demodulated from the RPOSD described by Equation (22). The two re-
gions are distinguished here by their spectral spatial distribution feature. In the inner corona,
not only the coronal line, but also the chromospheric lines are observable, while in the outer
corona, only the green coronal line can be observed in the band, and even the continuum
is merged in the noise. Panels (a) and (b) of Figure 9 present the raw polarimetric data of
the first case. They are selected from the first and second frames of the data set ‘se205.spe’
acquired only several seconds earlier than the second contact with an exposure time of six
seconds. Hereafter we call these two frames inner coronal sample 1 (ICS1) and inner coronal
sample 2 (ICS2). The amazing observational fact is the coexistence of the coronal, chromo-
spheric, and even photospheric lines in the same FOV, and their intensities are comparable
in some spatial points. Especially the Fe 1, Fe 11, and Fe X1V lines are present simultaneously
in the form of emission lines. This may signify that there exists a cool component yielding
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Figure 6 Polarimetric noise level samples demodulated via the RPOSD from the 7th to 12th pairs.

these neutral and singly ionized lines in the inner corona, and we leave this topic to another
article. We note that in case (b), the green line produced in some points is nearly as in-
tense as the chromospheric lines (e.g. the magnesium triplet or the singly ionized iron lines).
Panels(c) and (d) display the typical polarimetric data in the outer corona where only the
green coronal line is observable, and even the continuum intensity is beyond the detection
limit. They are chosen from the third frame of the data set ‘se205.spe’ and the first frame
of ‘se206.spe’ acquired during the totality when the exposure time was adjusted to be eight
seconds. They are hereafter named OCS1 and OCS2 for short, respectively.

Since we focus on coronal polarimetry, only the green coronal line and its surrounding
spectral lines ranging from 527.8 nm to 532.6 nm are concerned in the discussions below.

4.1. Results from Polarimetric Observations of the Local Inner Corona
The polarimetric results of ICS1 and ICS2 are shown in the upper and lower panels of

Figure 10, respectively. A strong contrast is visible in the two demodulated Q// images:
no significant polarization signal could be detected in ICS1, even the spectral intensities
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Figure 7 Polarimetric noise level samples demodulated via the RPOSD from the 13th to 18th pairs.

are much stronger than ICS2, while an outstanding polarization signal is detected in ICS2.
Another contrast we found is that the additional polarizations due to scattering that appeared
in the last five pairs become much weaker in ICS2 than in ICS1, since ICS2 was acquired
closer to the totality.

The Stokes I and Q/I profiles of the 7th, 11th, and 13th pairs drawn from the lower
panel of Figure 10 (i.e. ICS2 case) are plotted in Figure 11, and those of the 14th, 16th
and 23rd pairs are depicted in Figure 12. The most markable feature in these profiles is
the morphological abundance. We can see a single-valley-dominated profile yielded by pair
13, profiles with two peaks (valleys) with one significant valley (peak) between produced
by pairs 11, 14, 16, and 23, and even complex profiles with multiple lobes are found from
pair 7. We found amplitudes larger than 1.0 % above the continuum polarization level. For
instance, the maximum Q /I amplitude approaches 1.9 % above the continuum in the 23rd
pair (the bottom panel in Figure 12). Another feature is revealed: in some spatial points, the
amplitudes can hardly be seen above the noise level at the lines. For instance, for pairs 9 and
10, no signal above the noise level is detected. This reflects the non-uniform feature of the
polarization distribution, even in this small FOV of 10 arcseconds. We note that the average

@ Springer



w
2

Page 14 of 23 7.Q.Qu et al.

0.005
0.000

—0.005

-0.010
-0.015

Stokes Q/I (P20)

0.000
—0.005

-0.010
-0.015

-0.020
—0.025

S}
B HH‘HH‘HH‘HH
5
N
[
u
N
©
wu
%
(=)}
S}
o
o
%
)
HH‘HH‘HH‘HH‘HH Ld HH‘HH‘HH‘HH
[

Stokes Q/I (P21)

B HH‘HH‘HH‘HH‘HH

(&
o
N
@
o
N
©
o
[
o
(o
[
o
[
N
o
[
[

Q0.010
0.005

0.000
-0.005

-0.010
-0.015

Stokes Q/I (P22)

E \H\‘HH‘HH‘HH‘HH
((ﬂ \H\‘HH‘HH‘HH‘HH

o

Q.010
0.005

0.000
—0.005

—0.010
—0.015

Stokes Q/1 (P23)

8 \H\‘HH‘HH‘HH‘HH

[

B \H\‘HH‘HH‘HH‘HH

(&

0.010
0.005

0.000
—0.005

-0.010
-0.015

Stokes Q/I (P24)

E HH‘HH‘HH‘HH‘HH
Ld HH‘HH‘HH‘HH‘HH

S}

3

0.01
0.00

-0.01

-0.02

—-0.03

—0.04

527 528 529 530 531 532 533
Wavelength(nm)

Stokes Q/1 (P25)

Figure 8 Polarimetric noise level samples demodulated via the RPOSD from the 21st to 25th pairs.

polarimetric noise level over the 25 pairs reads 1.59 x 1073 in this measurement. Finally,
the continuum polarization level in all the cases is located at about — 0.74 %.

The corresponding Stokes / and Q/I maps of the green coronal line and Fe 11 531.7 nm
for ICS2 are depicted in Figure 13. They are reconstructed according to the arrangement
of these 25 pairs forming the IFU when the demodulation was performed after wavelength
integration (binning) over the selected spectral lines. These maps provide an intuitive im-
pression about the intensity and fractional linear polarization distribution. It is noteworthy
that in these filter-like Q/I maps, the bright and dark square patches indicate the relatively
strong positive and negative signals of polarizations, respectively, and the light gray patches
mean zero or smaller amplitudes. Both 7 and Q/I maps of these two lines consistently pro-
vide information on the polarization distributions in the FOV: they are not spatially uniform,
but highly structured, and the polarization planes experience irregular variations. On the
other hand, although their intensity maps are very similar, the Q /I maps for these two lines
are evidently different. This provides a clue to answer the question of which mechanisms
produce the polarization.
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Figure 9 (a) and (b): Sample raw spectropolarimetric images acquired in the inner corona. (c) and (d):
sample raw spectropolarimetric images of the outer coronal region. Note that in each panel the intensities
of the upper 25 spectra are 1/2(I — Q) produced by oe pairs and the intensities of the lower 25 spectra are
1/2(1 4 Q) produced by eo pairs. The broad line in the right part that is present in all the frames is the famous
green coronal line Fe X1v 530.3 nm. The alignments of the fiber pairs are labeled on the right.

4.2. Results from Polarimetric Observations of the Local Outer Corona

When the above calibrations and demodulations are applied to the outer coronal polarimetric
measurement, the situation becomes more complicated. The most outstanding difference is
that the continuum is beyond detection and the signal-to-noise ratio becomes much lower.
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— the 25th pair
— the 1st pair
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Wavelength

Figure 10 Stokes / spectral image and Q/I spectral images demodulated from the first (top panel, indicated
by ‘ICS1’) and second (bottom panel, indicated by ‘ICS2’) inner coronal samples from the RPOSD. The
alignment of the fiber pairs is indicated on the right.

By trial experiments, we found that it is crucial to exclude artificially high polarization
degrees. For instance, a case leads to a fractional linear polarization of about 80.0 % when
the ‘oe’ beam produces a readout of 18, and the ‘eo’ beam yields a readout of 2 after the
dark-current and flat-fielding calibration. These false results are evidently induced by the
noise fluctuations. In order to avoid any such an artificially high polarization due to the
fluctuation of random photon noise, a threshold was set for both the ‘oe’ and ‘eo’ beam
readouts below which the demodulation was abandoned and the polarization amplitude was
set to be zero. In order to find a suitable threshold, we first measured the fluctuation in the
upper and lower dark areas far away outside the regions covered by the spectrum in the raw
polarimetric frames (cf. Figures 2 and 9) in terms of

rms =/ Z,(1(n) = 1)’ /n, (25)

where I (n) and I are the intensity readout for each pixel and the average value over these
dark areas, respectively. The calculation leads to a fluctuation amplitude of about 6.5 in
units of readout without pixel binning, sampled from OCS2 (lowest panels of Figure 9). For
the 5 x 1 spatial binning adopted, the fluctuation becomes 19.3. Furthermore, a Gaussian
distribution is assumed that leads to a threshold

Tipreshold = € X rms, e =12.71828. (26)

Therefore, a cut-off threshold of 52.40 is adopted when the demodulation was processed.

The upper panel of Figure 14 displays the Stokes / and Q/I images demodulated from
OCS|1, and the lower part presents the demodulated results from OCS2 along with its follow-
ing five frames within the same data set. Compared with the lower panel of Figure 10, a more
complex distribution is shown. In Figure 15 a new pattern of profiles appears in which two
opposite lobes are prominent, such as Q /I profiles produced from pairs 5 and 7. Again, the
profile demodulated from pair 20 was found to belong to the most frequent pattern, and the
complex configuration of profiles like the profile from pair 15 is the rarest.

On the other hand, we can see similarities among the six polarization images in the lower
part of Figure 14 since they were acquired in nearly the same region within 48 seconds. In
the following, we take the OCS2 as example that we discuss. At first glance, we show again
that in the small FOV, both positive and negative polarizations are present alternatively, and
this can also be seen from the Q /1 maps in the lower row of Figure 17.
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Figure 11 Stokes / and Q/I profiles yielded from the 7th, 11th and 13th pairs drawn from the lower panel
of Figure 10.

In Figure 16 we plot three patterns of Q/I profiles, while all of Stokes I profiles appear
to be single-peaked, like the pattern displayed in the top panel of Figure 15. As expected,
the polarimetric noise level is greatly reduced compared with these noise levels shown in
Figures 4, 5, 6, 7, 8 since the Moon by eclipsing the Sun decreased the scattered light in the
sky. The greatest Q /I amplitude is detected to be about 3.2 % with respect to the continuum
polarization level at the 24th pair (see the bottom curve of Figure 16). Combined with all
the profiles displayed in Figures 11, 12, and 15, we find four types of profile configurations.
They clearly show the diversity of the profile patterns. We now summarize these four cate-
gories in the demodulated assembly of Q/I profiles of the green coronal line, according to
the following features of appearances:

1. Single-lobe dominated. A profile of this category has only one significant peak or
valley. Examples are shown in the bottom panel of Figure 11 and in the second panel of
Figure 15.
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Figure 12 Stokes / and Q/1 profiles yielded from the 14th, 16th and 23rd pairs drawn from the lower panel
of Figure 10.

2. Dominated by two opposite lobes. Examples are shown in Figure 15, where pairs 5
and 7 yield this category of profiles, and the profile produced from pair 13 in Figure 16 is
also typical of this type of profile.

3. Double significant lobes of the same sign with one valley or peak between them. This
is the most frequent category in this polarimetric observation. Examples can be easily found
in Figures 11, 12, 15, and 16.

4. Multiple lobes. This has the most complex appearance. Examples are the profile pro-
duced from pair 7 in Figure 11 and the profile from pair 15 in Figure 15.

The Stokes I and Q/I filter-like maps demodulated from these six frames containing
OCS2 obtained by RPOSD after integration over the whole green coronal line are displayed
in Figure 17. From Stokes I maps, an evident change can only be seen at the fifth frame,
but the Q/I maps do not change significantly. This seems to indicate that no significant
polarization variation with time occurred in this region during these acquisitions. This is
not the case, however. In fact, the evolution was evident for each pair even from viewing
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Figure 13 Stokes / and Q/I FeXV 5303 Fell 5317
maps of the green coronal line
(left column) and once ionized
iron line Fe 11 531.7 nm (right Stokes |
column), reconstructed from
spatial binning and from | am
demodulating the second inner
coronal sample (ICS2).

il
Stokes Q/I H n
HE

Figure 14 Stokes / and Q/I
spectral images demodulated via
RPOSD from the first outer
coronal sample (OCS1, upper
panel) and from the six frames of
outer coronal sample data set
containing the second outer
coronal sample (OCS2, lower
panel).
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these spatially integrated Q/I profiles that are obtained by 25 x 5 binning over the 25 pairs
of the whole FOV. Figure 18 displays these smoothed Q/I profiles obtained from the six
frames. Five of the six profiles belong to the third category described above, but significant
variations can be found in their amplitudes, while the last (sixth) profile is typical of the
fourth category. This demonstrates that the filter-like Q/I maps cannot be used for very
quantitative analysis. One important conclusion can be drawn that the spatial binning smears
the details from the comparison of Figures 15 and 16 with Figure 18 and thus prevents us
from understanding the mechanisms producing the polarization. Another fact is that the
amplitude decreases greatly with the spatial integration. The greatest amplitude 0.31 % is
found to be in the Stokes Q/I profile at ¢3, while 3.2 % results without the 25 spatial point
binning. This is ascribed again to the dilution due to polarization plane variation and non-
uniform amplitude distribution. Therefore, a high enough spatial resolution is necessary for
coronal polarimetry.
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Figure 15 Sample Stokes / produced by pair 1 (uppermost panel) and Q/I profiles yielded respectively
from pairs 1, 5, 7, 15 and 20 of OCS1.

5. Conclusions
We presented results from the spectro-imaging polarimetry (SIP) of the local solar corona

during the 2013 total solar eclipse in Gabon. Compared with the former two flash spec-
tropolarimetry measurements (Qu et al., 2009, 2013), the present polarimetric observation
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Figure 16 Sample Stokes Q/1 profiles yielded from pairs 4, 13, 17, 19, 21, and 24 of OCS2.

has been improved considerably in the following two aspects. First, it is capable of spectro-
imaging polarimetry for the first time, which was enabled by adopting the IFU pair tech-
nique. The imaging-polarimetry with rough spectral resolution, for instance, the bandpass
comparable to the spectral line width, may not only blur the spectral details, but also leads
to a greatly reduced polarization degree if the profile contains lobes with opposite signs,
like the second and fourth categories of Stokes O/ profile described in the section above.
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Figure 17 Stokes [ and Q/I
maps of the green coronal line
reconstructed from the six frames R

(labeled by 1] to #g) containing Stokes | II I
OCS2.
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Figure 18 Spatially integrated Stokes Q/I profile evolution demodulated from the second outer coronal
sample data set after spatial binning of all the 25 fiber pairs.

Second, the polarimetric noise level has been decreased by one order by applying the Re-
duced Polarimetric Optical Switching (RPOSD). The observation mode based on this de-
modulation procedure can increase the temporal resolution twice compared to those based
on the classical POS performance and save document storage space if the acquisitions are
massive.

To conclude, we showed that spectro-imaging polarimetry of the green coronal line has
revealed new interesting features of the solar corona. In particular, three observations should
be highlighted:

1. Although the fractional linear polarization of coronal radiation can only reach 3.2 %
on a scale of 1500 km, we found that the polarization distribution is very localized in the
inner corona but more universal in the outer corona.

2. Even within one small FOV, the polarization distribution is non-uniform on a small
scale. For instance, the amplitude of 3.2 % on a scale of 1500 km decreased to 0.31 % on a
scale of 7500 km. This is partially due to spatial dilution in the inner corona, but also to the
polarization plane variation within the FOV. This tells us that coronal polarimetry needs high
spatial resolution if the mechanisms are to be revealed. However, in contrast, the continuum
polarization seems unchanged with height with a value of —0.74 % in the inner corona.

3. The demodulated Q/I profiles exhibit abundant patterns on a scale of two arcseconds.
We have classified these patterns into four categories. This may indicate that the polarization
profiles are formed by not only anisotropic scattering and other physical mechanisms, but
also by complex motion patterns of the plasma along the line of sight.
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As a closing remark, because total solar eclipses on the ground are rare, a satellite-borne
coronagraph focusing on high spectral and spatial resolution spectro-imaging polarimetry of
the solar corona is strongly recommended to routinely execute the polarimetric observation
with considerable spatial resolution. We wish that this may open a window for advanced
solar coronal polarimetry.
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