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ABSTRACT
The cosmic web is one of the most striking features of the distribution of galaxies and
dark matter on the largest scales in the Universe. It is composed of dense regions packed
full of galaxies, long filamentary bridges, flattened sheets and vast low-density voids. The
study of the cosmic web has focused primarily on the identification of such features, and on
understanding the environmental effects on galaxy formation and halo assembly. As such,
a variety of different methods have been devised to classify the cosmic web – depending
on the data at hand, be it numerical simulations, large sky surveys or other. In this paper,
we bring 12 of these methods together and apply them to the same data set in order to
understand how they compare. In general, these cosmic-web classifiers have been designed
with different cosmological goals in mind, and to study different questions. Therefore, one
would not a priori expect agreement between different techniques; however, many of these
methods do converge on the identification of specific features. In this paper, we study the
agreements and disparities of the different methods. For example, each method finds that knots
inhabit higher density regions than filaments, etc. and that voids have the lowest densities.
For a given web environment, we find a substantial overlap in the density range assigned
by each web classification scheme. We also compare classifications on a halo-by-halo basis;
for example, we find that 9 of 12 methods classify around a third of group-mass haloes
(i.e. Mhalo ∼ 1013.5 h−1 M�) as being in filaments. Lastly, so that any future cosmic-web
classification scheme can be compared to the 12 methods used here, we have made all the data
used in this paper public.

Key words: methods: data analysis – dark matter – large-scale structure of the Universe –
cosmology: theory.

1 IN T RO D U C T I O N

On megaparsec scales the matter and galaxy distribution is not
uniform, but defines an intricate multiscale interconnected network
that is known as the cosmic web (Bond, Kofman & Pogosyan 1996).
It represents the fundamental spatial organization of matter on scales
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of a few up to a hundred megaparsec. Galaxies, intergalactic gas and

dark matter arrange themselves in a salient wispy pattern of dense
compact clusters, long elongated filaments and sheet-like tenuous
walls surrounding near-empty void regions. Ubiquitous throughout
the entire observable Universe, such patterns exist at nearly all
epochs, albeit at smaller scales. It defines a complex spatial pattern
of intricately connected structures, displaying a rich geometry with
multiple morphologies and shapes. This complexity is considerably
enhanced by its intrinsic multiscale nature, including objects over
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a considerable range of spatial scales and densities. For, a recent
up-to-date report on a wide range of relevant aspects of the cosmic
web, we refer to the volume by van de Weygaert et al. (2016).

The presence of the web-like pattern can be easily seen in the
spatial distribution of galaxies. Its existence was suggested by early
attempts to map the nearby cosmos in galaxy redshift surveys
(Gregory, Thompson & Tifft 1978; Jõeveer, Einasto & Tago 1978; de
Lapparent, Geller & Huchra 1986; Geller & Huchra 1989; Shect-
man et al. 1996). Particularly, iconic was the publication of the
slice of the Universe by de Lapparent et al. (1986). Since then,
the impression of a web-like arrangement of galaxies has been con-
firmed many times by large galaxy redshift surveys such as 2dFGRS
(Colless et al. 2003; van de Weygaert & Schaap 2009), the Sloan
Digital Sky Survey (SDSS; Tegmark et al. 2004) and the 2MASS
redshift survey (Huchra et al. 2012), as well as by recently pro-
duced maps of the galaxy distribution at larger cosmic depths such
as VIPERS (Guzzo et al. 2014). From cosmological N-body simu-
lations (e.g. Springel et al. 2005; Vogelsberger et al. 2014; Schaye
et al. 2015) and recent Bayesian reconstructions of the underly-
ing dark matter distribution in the local Universe (Heß, Kitaura &
Gottlöber 2013; Kitaura 2013; Nuza et al. 2014; Leclercq, Jasche
& Wandelt 2015b; Sorce et al. 2016), we have come to realize that
the web-like pattern is even more pronounced and intricate in the
distribution of dark matter.

1.1 The components of the cosmic web

The most prominent and defining features of the cosmic web are
the filaments. The most outstanding specimen in the local Uni-
verse is the Pisces–Perseus chain (Giovanelli & Haynes 1985). A
recent systematic inventory of filaments in the SDSS galaxy red-
shift distribution has been catalogued by (Tempel et al. 2014, also
see Jones, van de Weygaert & Aragón-Calvo 2010; Sousbie, Pi-
chon & Kawahara 2011). Filaments appear to be the highways of
the Universe, the transport channels along which mass and galaxies
get channelled into the higher density cluster regions (van Haar-
lem & van de Weygaert 1993; Knebe et al. 2004) and which define
the connecting structures between higher density complexes (Bond
et al. 1996; Colberg, Krughoff & Connolly 2005; van de Weygaert &
Bond 2008; Aragón-Calvo, van de Weygaert & Jones 2010b). On
the largest scales, filaments on scales of 10 up to 100 Mpc are found
to connect complexes of superclusters – such as the great attractor
(Lynden-Bell et al. 1988), the Shapley concentration (Shapley 1930;
Proust et al. 2006) or more recently the Vela supercluster (Kraan-
Korteweg et al. 2017) – as was, for example, indicated by the work
of Bharadwaj, Bhavsar & Sheth (2004), Romano-Dı́az & van de
Weygaert (2007) and Libeskind et al. (2015a).

By contrast, the tenuous sheet-like membranes are considerably
more difficult to find in the spatial mass distribution traced by galax-
ies. Their low surface density renders them far less conspicuous than
the surrounding filaments, while they are populated by galaxies with
a considerably lower luminosity (see e.g. Cautun et al. 2014). When
looking at the spatial structure outlined by clusters, we do recog-
nize more prominent flattened supercluster configurations, often
identified as Great Walls, which is a reflection of their dynamical
youth. Particularly outstanding specimens are the CfA Great Wall
(Geller & Huchra 1989), the Sloan Great Wall (Gott et al. 2005) and
most recently the BOSS Great Wall (Lietzen et al. 2016) and the
well-established supergalactic plane (de Vaucouleurs 1953; Lahav
et al. 2000).

Along with filaments, the large void regions represent the most
prominent aspect of the megaparsec scale Universe. These are

enormous regions with sizes in the range of 20–50 h−1 Mpc which
are practically devoid of any galaxy, usually roundish in shape and
occupying the major share of space in the Universe (see van de Wey-
gaert 2016, for a recent review). Forming an essential and prominent
aspect of the cosmic web (Bond et al. 1996), voids are instrumental
in the spatial organization of the cosmic web (Icke 1984; Sahni,
Sathyaprakah & Shandarin 1994; Sheth & van de Weygaert 2004;
Einasto et al. 2011; Aragon-Calvo & Szalay 2013). The first indica-
tion for their existence was found in early galaxy redshift samples
(Chincarini & Rood 1975; Gregory, Thompson & Tifft 1978; Zel-
dovich, Einasto & Shandarin 1982), while the discovery of the
50 Mpc size Boötes void by Kirshner et al. (1981), Kirshner et al.
(1987) and the CfA study by de Lapparent et al. (1986) estab-
lished them as key aspects of the large-scale galaxy distribution.
Recent studies have been mapping and cataloguing the void pop-
ulation in the local Universe (Fairall 1998; Pan et al. 2012; Sutter
et al. 2012), and even that in the implied dark matter distribution
(Leclercq et al. 2015a). In the immediate vicinity of our Milky Way,
one of the most interesting features is in fact the Local Void whose
diameter is around 30 Mpc (Tully & Fisher 1987). Its effectively
repulsive dynamical influence has been demonstrated in studies of
cosmic flows in the local volume (Tully et al. 2008), while a recent
study even indicated the dominant impact of a major depression
at a distance of more than 100 Mpc (the so-called dipole repeller;
Hoffman et al. 2017).

1.2 Physics and dynamics of the cosmic web

The cosmic web is a direct result of two physical drivers that are at
the heart of the current paradigm of structure formation. The first
is that the initial density field is a Gaussian random field, described
by a power spectrum of density fluctuations (Adler 1981; Bardeen
et al. 1986). The second is that these perturbations evolve entirely
due to gravity (Peebles 1980). Gravitational instability is respon-
sible for increasing the contrast in the universe, as rich overdense
regions grow in mass and density while shrinking in physical size,
and as empty voids expand and come to dominate the volume of
the universe. Once the gravitational clustering process begins to go
beyond the linear growth phase, we see the emergence of complex
patterns and structures in the density field.

Within the gravitationally driven emergence and evolution of
cosmic structure, the web-like patterns in the overall cosmic matter
distribution do represent a universal but possibly transient phase.
As borne out by a large array of N-body computer experiments of
cosmic structure formation (e.g. Springel et al. 2005; Vogelsberger
et al. 2014; Dubois et al. 2014; Schaye et al. 2015), web-like patterns
defined by prominent anisotropic filamentary and planar features –
and with characteristic large underdense void regions – are the
natural outcome of the gravitational cosmic structure formation
process. They are the manifestation of the anisotropic nature of
gravitational collapse, and mark the transition from the primordial
(Gaussian) random field to highly non-linear structures that have
fully collapsed into haloes and galaxies. Within this context, the
formation and evolution of anisotropic structures are the product
of anisotropic deformations accurately described by the Zel’dovich
formalism in the mildly non-linear stage, driven by gravitational
tidal forces induced by the inhomogeneous mass distribution. In
other words, it is the anisotropy of the force field and the resulting
deformation of the matter distribution which are at the heart of the
emergence of the web-like structure of the mildly non-linear mass
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distribution (also see Bond et al. 1996; Hahn et al. 2007a; van de
Weygaert & Bond 2008; Forero-Romero et al. 2009).

This idea was first pointed out by Zel’dovich (1970, also see
Icke 1973) who described, in the now seminal ‘Zel’dovich approxi-
mation’ framework, how gravitational collapse amplifies any initial
anisotropies and gives rise to highly anisotropic structures. Accord-
ingly, the final morphology of a structure depends on the eigenvalues
of the deformation tensor. Sheets, filaments and clusters correspond
to domains with one, two and three positive eigenvalues, while
voids correspond to regions with all negative eigenvalues. Based on
this realization, Doroshkevich (1970) derived a range of analytical
predictions for structure emerging from an initial field of Gaussian
perturbations. In the emerging picture of structure formation, also
known as Zel’dovich’s pancake picture, anisotropic collapse has a
well-defined sequence, with regions first contracting along one axis
to form sheets, then along the second axis to produce filaments and
only at the end to fully collapse along each direction (Shandarin &
Zel’dovich 1989; Shandarin & Sunyaev 2009).

Following up on this, the early evolution of the cosmic web can
be understood in detail in terms of the singularities and caustics
that are arising in the matter distribution as a result of the structure
of the corresponding flow field (see Shandarin & Zel’dovich 1989;
Hidding, Shandarin & van de Weygaert 2014). Indeed, one of the
most interesting recent developments in our understanding of the
dynamical evolution of the cosmic web has been the uncovering of
the intimate link between the emerging anisotropic structures and
the multistream migration flows involved in the buildup of cosmic
structure (Shandarin 2011; Abel, Hahn & Kaehler 2012; Falck,
Neyrinck & Szalay 2012; Neyrinck 2012; Shandarin, Habib &
Heitmann 2012).

Also recent observational advances have enabled new profound
insights into the dynamical processes that are shaping the cosmic
web in our local Universe. In particular, the Cosmicflows-2 and
Cosmicflows-3 surveys of galaxy peculiar velocities in our local
Universe have produced tantalizing results (Courtois et al. 2013;
Tully et al. 2014), opening up a window on the flows of mass
along and towards structures in the local cosmic web. Amongst
others, these studies show the sizeable impact of low-density void
regions on the dynamics in the vicinity of the Milky Way and have
allowed the velocity shear based V-web identification of web-like
components in the local Universe (Libeskind et al. 2015a; Pomarède
et al. 2015; Hoffman et al. 2017).

The extension of the Zel’dovich approximation, the adhe-
sion approximation, allows further insights into the hierarchical
buildup of the cosmic web (Gurbatov, Saichev & Shandarin 1989;
Kofman, Pogosian & Shandarin 1990; Kofman et al. 1992; Hid-
ding et al. 2012). By introducing an artificial viscosity term, the
adhesion approximation mitigates some of the late-time limitations
of the Zel’dovich approximation. It also leads to a profound un-
derstanding of the link between the evolving phase-space structure
of the cosmic matter distribution and the tendency to continuously
morph the emerging spatial structure into one marked by ever larger
structures (see also Sahni & Coles 1995, for a review of analytical
extensions to the Zel’dovich approximation).

Interestingly, for a considerable amount of time the emphasis
on anisotropic collapse as agent for forming and shaping structure
in the Zel’dovich pancake picture was seen as the rival view to
the purely hierarchical clustering picture. In fact, the successful
synthesis of both elements culminated in the cosmic -web theory
(Bond et al. 1996), which stresses the dominance of filamentary
shaped features and appears to provide a successful description
of large-scale structure formation in the �CDM cosmology. This

theoretical framework pointed out the dynamical relationship be-
tween the filamentary patterns and the compact dense clusters that
stand out as the nodes within the cosmic matter distribution: fil-
aments as cluster–cluster bridges (also see Bond et al. 1996; van
de Weygaert & Bertschinger 1996; Colberg et al. 2005; van de
Weygaert & Bond 2008). In the overall cosmic mass distribution,
clusters – and the density peaks in the primordial density field that
are their precursors – stand out as the dominant features for de-
termining and outlining the anisotropic force field that generates
the cosmic web. The cosmic-web theory embeds the anisotropic
evolution of structures in the cosmic web within the context of the
hierarchically evolving mass distribution (Bond & Myers 1996).
Meanwhile, complementary analytical descriptions of a hierarchi-
cally evolving cosmic web within the context of excursion set theory
form the basis for a statistical evaluation of its properties (Sheth &
van de Weygaert 2004; Shen et al. 2006).

1.3 Significance and impact of the cosmic web

Understanding the nature of the cosmic web is important for a
variety of reasons. Quantitative measures of the cosmic web may
provide information about the dynamics of gravitational structure
formation, the background cosmological model, the nature of dark
matter and ultimately the formation and evolution of galaxies. Since
the cosmic web defines the fundamental spatial organization of mat-
ter and galaxies on scales of one to tens of megaparsecs, its structure
probes a wide variety of scales, form the linear to the non-linear
regime. This suggests that quantification of the cosmic web at these
scales should provide a significant amount of information regarding
the structure formation process. As yet, we are only at the begin-
ning of systematically exploring the various structural aspects of
the cosmic web and its components towards gaining deeper insights
into the emergence of spatial complexity in the Universe (see e.g.
Cautun et al. 2014).

The cosmic web is also a rich source of information regard-
ing the underlying cosmological model. The evolution, structure
and dynamics of the cosmic web are to a large extent dependent
on the nature of dark matter and dark energy. As the evolution
of the cosmic web is directly dependent on the rules of grav-
ity, each of the relevant cosmological variables will leave its im-
print on the structure, geometry and topology of the cosmic web
and the relative importance of the structural elements of the web,
i.e. of filaments, walls, cluster nodes and voids. A telling illustration
of this is the fact that void regions of the cosmic web offer one of
the cleanest probes and measures of dark energy as well as tests
of gravity and general relativity. Their structure and shape, as well
as mutual alignment, are direct reflections of dark energy (Park &
Lee 2007; Platen, van de Weygaert & Jones 2008; Lee & Park 2009;
Lavaux & Wandelt 2010, 2012; Bos et al. 2012; Pisani et al. 2015;
Sutter et al. 2015). Given that the measurement of cosmological
parameters depends on the observer’s web environment (e.g. Wo-
jtak et al. 2014), one of our main objectives is to develop means
of exploiting our measures of filament structure and dynamics, and
the connectivity characteristics of the web-like network, towards
extracting such cosmological information.

Perhaps the most prominent interest in developing more objective
and quantitative measures of large-scale cosmic-web environments
concerns the environmental influence on the formation and evolu-
tion of galaxies, and the dark matter haloes in which they form (see
e.g. Hahn et al. 2007b; Hahn 2009; Cautun et al. 2014). The canon-
ical example of such an influence is that of the origin of the rotation
of galaxies: the same tidal forces responsible for the torquing of
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collapsing protogalactic haloes (Hoyle 1951; Peebles 1969;
Doroshkevich 1970) are also directing the anisotropic contraction of
matter in the surroundings. We may therefore expect to find an align-
ment between galaxy orientations and large-scale filamentary struc-
ture, which indeed currently is an active subject of investigation (e.g.
Aragón-Calvo et al. 2007b; Lee & Pen 2000; Jones, van de Weygaert
& Aragón-Calvo 2010; Codis et al. 2012; Libeskind et al. 2013a;
Tempel & Libeskind 2013; Tempel, Stoica & Saar 2013; Trow-
land 2013; Trowland, Lewis & Bland-Hawthorn 2013; Aragón-
Calvo & Yang 2014; Pahwa et al. 2016; González et al. 2017; Hirv
et al. 2017). Some studies even claim that this implies an instrumen-
tal role of filamentary and other web-like environments in determin-
ing the morphology of galaxies (see e.g. Pichon et al. 2016, for a
short review). Indeed, the direct impact of the structure and connec-
tivity of filamentary web on the star formation activity of forming
galaxies has been convincingly demonstrated by Dekel et al. (2009a,
see also Dekel, Sari & Ceverino 2009b; Danovich et al. 2015; Go-
erdt et al. 2015; Aragón-Calvo, Neyrinck & Silk 2016). Such studies
point out the instrumental importance of the filaments as transport
conduits of cold gas on to the forming galaxies, and hence the
implications of the topology of the network in determining the evo-
lution and final nature. Such claims are supported by a range of
observational findings, of which the morphology–density relation
(Dressler 1980) is best known as relating intrinsic galaxy properties
with the cosmic environment in which the galaxies are embedded
(see e.g. Kuutma, Tamm & Tempel 2017). A final example of a pos-
sible influence of the cosmic web on the nature of galaxies concerns
a more recent finding that has led to a vigorous activity in seeking to
understand it. The satellite galaxy systems around the Galaxy and
M31 have been found to be flattened. It might be that their orienta-
tion points at a direct influence of the surrounding large-scale struc-
tures (see Ibata et al. 2013; Cautun et al. 2015; Forero-Romero &
González 2015; Gillet et al. 2015; Libeskind et al. 2015a; González
& Padilla 2016), for example a reflection of local filament or local
sheet.

1.4 Detection and classification of cosmic-web structure

To enable further advances in the astronomical issues addressed
above, we need to establish a more objective description and quan-
tification of the structure seen in the cosmic web. However, ex-
tracting such topological and morphological information from a
discrete set of points, provided by either an N-body simulation or
a galaxy survey, is very difficult. As such, many different methods
have been developed to tackle this problem (reviewed in depth in
Section 4). Some of the problems faced by observational surveys
include sampling errors, projection effects, observational errors, in-
complete sky coverage, magnitude limits, as well as various biases
(e.g. Malmquist bias, selection bias). On the other hand, N-body
simulations return the full 6D phase space and density field of the
simulated universe at any desired epoch. A method that takes full
advantage of this often unobservable information cannot be directly
applied to observations, but can be applied to simulations con-
strained to match observations (e.g. Leclercq et al. 2017). For this
reason, methods that are developed specifically for the analysis of
numerical simulations, may be completely inapplicable to current
observational data sets and vice versa. Yet the numerous articles
in the literature which attempt to study the cosmic web often re-
fer to the same structural hierarchy: knots, filaments, sheets and
voids. Here, we use a numerical simulation to compare classifiers
that, regardless of their position on the theoretical to observational

spectrum, speak the same language of knots, filaments, sheets and
voids.

In the spirit of previous structure finder comparison projects (Col-
berg et al. 2008; Knebe et al. 2011, etc.), we present a comparison
of cosmic-web identification codes and philosophies. However, our
comparison differs significantly from e.g. the seminal Santa Bar-
bara comparison project (Frenk et al. 1999) or other tests of codes
which purport to model the same physical process (e.g. Scannapieco
et al. 2012; Knebe et al. 2013). Instead, the methods compared here
were developed for very different purposes, to be applied to different
kinds of data and with different goals in mind. Some of the meth-
ods are based on treating galaxies (haloes) as points; while others
were developed to be applied to density or velocity fields. Further-
more, unlike halo finders seeking collapsed or bound objects, there
is no robust analytical theory (such as the spherical top hat collapse
model of Sheth & Tormen 1999) which we may use as a guide for
how we expect different cosmic-web finders to behave. Therefore,
we enter into this comparison fully expecting large disagreements
between the methods examined.

1.5 Outline

This paper is laid out as follows: in Section 2, we group the different
methods into ‘families’ that follow broadly similar approaches. In
Section 3, we present the test data set that has been used as the basis
for our comparison. In Section 4, we review each method that has
taken part in the comparison. In Section 5, we describe the results
of the comparison. In Section 6, we summarize our results and draw
conclusions.

2 W E B I D E N T I F I C AT I O N M E T H O D S :
CLASSI FI CATI ON

It is a major challenge to characterize the structure, geometry and
connectivity of the cosmic web. The complex spatial pattern –
marked by a rich geometry with multiple morphologies and shapes,
an intricate connectivity, a lack of symmetries, an intrinsic multi-
scale nature and a wide range of densities – eludes a sufficiently
relevant and descriptive analysis by conventional statistics to quan-
tify the arrangement of mass and galaxies.

Many attempts to analyse the clustering of mass and galaxies at
megaparsec scales have been rather limited in their ability to de-
scribe and quantify, let alone identify, the features and components
of the cosmic web. Measures like the two-point correlation func-
tion, which has been the mainstay of many cosmological studies
over the past nearly 40 yr (Peebles 1980), are not sensitive to the
spatial complexity of patterns in the mass and galaxy distribution.
This paper seeks to compare the diverse range of more sophisticated
techniques that have been developed over the past few years to ad-
dress the spatially complex megaparsec scale patterns delineated by
mass and galaxies in the Universe.

In the present study, we compare the results and web evaluations
and identifications of 12 different formalisms. They are diverse,
involving different definitions for the physical identity of the struc-
tural features, as well as employing different means of turning these
definitions into practical identification tools. The various different
methods that have been developed can largely be grouped into five
main classes:

(1) Graph and percolation techniques. The connectedness of
elongated supercluster structures in the cosmic matter distribution
was first probed by means of percolation analysis, introduced and
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emphasized by Zel’dovich and co-workers (Zeldovich et al. 1982;
Shandarin & Zel’dovich 1989; Shandarin, Sheth & Sahni 2004).
A related graph-theoretical construct, the minimum spanning tree
(MST) of the galaxy distribution, was extensively analysed by
Bhavsar and collaborators (Barrow, Bhavsar & Sonoda 1985;
Graham & Clowes 1995; Colberg 2007) in an attempt to develop an
objective measure of filamentarity. Colberg (2007) set out to iden-
tify filaments and their adjoining clusters, using an elaborate set of
criteria for the identification of features based on the branching of
MSTs. In our study, we involve the MST-based algorithm developed
by Alpaslan et al. (2014b) for identification of filaments and void
regions in the GAMA survey (Alpaslan et al. 2014a).

(2) Stochastic methods. This class of methods involves the sta-
tistical evaluation of stochastic geometric concepts. Examples are
filament detection algorithms based on the Bayesian sampling of
well-defined and parametrized stochastic spatial (marked) point
processes that model particular geometric configurations. Stoica,
Gregori & Mateu (2005), Stoica, Martı́nez & Saar (2007), Stoica,
Martı́nez & Saar (2010) and Tempel et al. (2016) use the Bisous
model as an object point process of connected and aligned cylin-
ders to locate and catalogue filaments in galaxy surveys. One of the
advantages of this approach is that it can be applied directly on the
original galaxy point field, given by the positions of the galaxies
centres, without requiring the computation of a continuous density
field. These methods are computationally very demanding. A thor-
ough mathematical non-parametric formalism involving the medial
axis of a point cloud, as yet for 2D point distributions, was proposed
by Genovese et al. (2010). It is based on a geometric representa-
tion of filaments as the medial axis of the data distribution. Also
solidly rooted within a geometric and mathematical context is the
more generic geometric inference formalism developed by Chazal,
Cohen-Steiner & Mérigot (2009). It allows the recovery of geomet-
ric and topological features of the supposedly underlying density
field from a sampled point cloud on the basis of distance functions.
In addition, we also see the proliferation of tessellation-based al-
gorithms. Following specific physical criteria, González & Padilla
(2010) put forward a promising combination of a tessellation-based
density estimator and a dynamical binding energy criterion (also
see van de Weygaert & Schaap 2009). We may also include another
recent development in this broad class of methods. Leclercq et al.
(2015b), Leclercq, Jasche & Wandelt (2015c) describe a highly in-
teresting framework for the classification of geometric segments
using information theory. Leclercq et al. (2016) have previously
compared a few cosmic-web classifiers to each other, judging them
on the basis of their information content.

(3a) Geometric, Hessian-based methods. A large class of ap-
proaches exploits the morphological and (local) geometric infor-
mation included in the Hessian of the density, tidal or velocity
shear fields (e.g. Aragón-Calvo et al. 2007a; Hahn et al. 2007a;
Forero-Romero et al. 2009; Bond, Strauss & Cen 2010a; Libeskind
et al. 2012; Cautun, van de Weygaert & Jones 2013). Based on the
realization that the formation and dynamical evolution of the cos-
mic web is tied to the tidal force field (see Bond et al. 1996), Hahn
et al. (2007a) developed an elaborate classification scheme based
on the signature of the tidal tensor (also see Hahn et al. 2007b). A
further extension and elaboration of this tidal field based scheme
was developed by Forero-Romero et al. (2009), while also the multi-
scale Nexus formalism incorporates versions that classify web-like
features on the tidal tensor signature (Cautun et al. 2013, see below)
Following a similar rationale and focusing on the link between
emerging web-like structures and the nature of the velocity flow in
and around these features, in a sense following up on the classic

realization of such a connection by Zel’dovich (1970), Libeskind,
Hoffman and collaborators forwarded the V-web technique (Hoff-
man et al. 2012; Libeskind et al. 2012, 2013a,b, 2014b,2015a,b;
Libeskind, Hoffman & Gottlöber 2014a; Metuki et al. 2015; Carlesi
et al. 2016; Metuki, Libeskind & Hoffman 2016; Pahwa et al. 2016).
Its classification is explicitly based on the signature of the velocity
shear field.

Instead of using the tidal or velocity sheer field configuration,
one may also try to link directly to the morphology of the density
field itself (Aragón-Calvo et al. 2007a; Bond et al. 2010a; Cau-
tun et al. 2013). Though this allows a more detailed view of the
multiscale matter distribution, it is usually more sensitive to noise
and less directly coupled to the underlying dynamics of structure
formation than the tidal field morphology. A single scale dissection
of the density field into its various morphological components has
been defined by Bond et al. (2010a), and applied to N-body sim-
ulations and galaxy redshift samples (also see Bond et al. 2010a;
Bond, Strauss & Cen 2010b; Choi et al. 2010).

(3b) Scale-space multiscale Hessian-based methods. While most
of the Hessian-based formalisms are defined on one particular
(smoothing) scale for the field involved, explicit multiscale ver-
sions have also been developed. The Multiscale Morphology Filter
(MMF)/Nexus MMF formalism of Aragón-Calvo et al. (2007a) and
Cautun et al. (2013) look at structure from a scale-space point of
view, where the (usually Gaussian) smoothing scale of the field
defines an extra dimension. This formalism takes into account the
multiscale character of the cosmic mass distribution by assessing
at each spatial location the prominence of structural signatures, set
by the signature of the Hessian of the field involved (Aragón-Calvo
et al. 2007a; Cautun et al. 2013). A somewhat similar multiscale
approach was followed by the Metric Space Technique described
by Wu, Batuski & Khalil (2009), who applied it to a morpho-
logical analysis of SDSS-DR5. While the original MMF method
(Aragón-Calvo et al. 2007a) involved only the density field, the
Nexus formalism extended this to a versatile algorithm that classi-
fies the cosmic web on the basis of a multiscale filter bank applied to
either the density, tidal, velocity divergence or velocity shear fields.
Applying the technique to the logarithm of the density increases its
sensitivity and dynamical range and allows the approach to attain its
optimal form, the so-called NEXUS+ method, revealing both ma-
jor filamentary arteries as well as tiny branching tendrils (Cautun
et al. 2013).

(4) Topological methods. While the Hessian-based methods con-
centrate on criteria of the local geometric structure of density,
velocity or tidal field, another family of techniques seeks to as-
sess the cosmic web by studying the connectivity and topological
properties of the field involved. A typical example involves the
delineation of underdense void basins in the large-scale mass dis-
tribution by means of the watershed transform, in the form of the
watershed void finder (Platen, van de Weygaert & Jones 2007) and
ZOBOV (Neyrinck 2008). The Spineweb procedure (Aragón-Calvo
et al. 2010b) extends this to an elaborate scheme for tracing the
various web-like features – filaments, sheets and voids – on purely
topological grounds. Spineweb achieves this by identifying the cen-
tral axis of filaments and the core plane of walls with the boundaries
between the watershed basins of the density field. While the basic
Spineweb procedure involves one single scale, the full multiscale
Spineweb procedure allows a multiscale topological characteriza-
tion of the cosmic web (Aragón-Calvo et al. 2010a; Aragon-Calvo &
Szalay 2013).

In essence, the Spineweb procedure is a practical implemen-
tation of the mathematics of Morse theory (Morse 1934). Morse
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theory describes the spatial connectivity of the density field on the
basis of its singularity structure, i.e. on the location and identity
of the singularities – maxima, minima and saddle points – and
their spatial connectivity by means of the characteristic lines de-
fined by the gradient field. Colombi, Pogosyan & Souradeep (2000)
first described the role of Morse theory in a cosmological context,
which subsequently formed the basis of the skeleton analysis by
(Novikov, Colombi & Doré 2006, 2D) and (Sousbie et al. 2008a,
3D). This defined an elegant and mathematically rigorous tool for
filament identification. In a considerably more versatile elaboration
of this, invoking the power of topological persistence to identify
topologically significant features, Sousbie (2011) has formulated
the sophisticated DISPERSE formalism that facilitates the detection of
the full array of structural features in the cosmic mass distribution
(also see Sousbie et al. 2011). None the less, most of its applications
are directed towards outlining the filaments. A further development
along these lines, invoking the information provided by persistence
measures, is that advocated by Shivashankar et al. (2016).

(5) Phase-space methods. Most closely connected to the dynam-
ics of the cosmic-web formation process are several recently pro-
posed formalisms that look at the phase-space structure of the evolv-
ing mass distribution (Abel et al. 2012; Falck et al. 2012; Shandarin
et al. 2012). They are based on the realization that – in cosmologies
in which the intrinsic velocity dispersion of particles in the primor-
dial universe is small – the evolving spatial mass distribution has
the appearance of a 3D sheet folding itself in 6D phase space, a
phase space sheet. By assessing its structure in full phase space,
these formalisms trace the mass streams in the flow field reflecting
the emergence of non-linear structures. Noting that the emergence
of non-linear structures occurs at locations where different streams
of the corresponding flow field cross each other, these phase-space
methods provide a dynamically based morphological identification
of the emerging structures.

This class of methods contains the ORIGAMI formalism (Falck
et al. 2012; Falck & Neyrinck 2015), the phase-space sheet methods
of (Shandarin 2011, also see Ramachandra & Shandarin 2015)
and Abel et al. (2012), and the Claxon formalism (Hidding 2017).
The Claxon approach incorporates the modelling of the non-linear
evolution of the cosmic mass distribution by means of the adhesion
formalism (Gurbatov et al. 1989; Hidding et al. 2012), in order to
identify and classify the singularities – shocks – emerging in the
evolving structure. Claxon states that these singularities trace the
skeleton of the cosmic web.

3 TEST DATA: SIMULATION AND DATA SET

Each of the participants applied their web identification methods to
the same GADGET-2 (Springel 2005) dark matter only N-body sim-
ulation, with a box size of 200 h−1 Mpc and 5123 particles. The
�CDM cosmological parameters are taken from Planck (Planck
Collaboration XVI 2014): h = 0.68, �M = 0.31, �� = 0.69,
ns = 0.96 and σ 8 = 0.82. Haloes in the simulation are identified
using a standard FOF algorithm (Davis et al. 1985), with a linking
length of b = 0.2 and a minimum of 20 particles per halo. Fig. 1
shows a thin slice through the density field and the halo population
of this simulation.

The main output of the methods is the classification of the dark
matter density field into one of four web components: knot, filament,
wall and void. This classification is performed for either volume
elements (e.g. the Hessian methods), dark matter mass elements
(e.g. the phase-space methods), or for the haloes (e.g. the point
process methods). The exact choice was left to the discretion of the

authors to better reflect the procedure used in the studies employing
those methods.

Though the output format of the web identification methods may
vary, each participant was asked to provide two data sets: the web
identification tag defined on a regular grid with a 2 h−1 Mpc cell
size (1003 cells) and the web classification of each FOF halo. Most
methods returned both data sets except for some of the point-process
methods (MST, FINE), for which assigning an environment tag to
each grid cell would not make sense. These return information
regarding the filamentary environment of just the FOF haloes.

The simulation is made publicly available1 for exploitation by
interested parties. We have included the z = 0 GADGET snapshots,
the FOF halo catalogue as well as the output of each cosmic-web
method included in this work. Where available, each method’s clas-
sification is returned on a regular grid. Included in the data set is
also the FOF catalogue appended with the classification of each
halo for each method. We encourage other methods not included in
this paper, to use this data set as a bench mark of the community’s
current status.

4 W E B I D E N T I F I C AT I O N M E T H O D S :
D E S C R I P T I O N A N D D E TA I L S

The following section describes each method as well as the prac-
tical details in the analysis of this data set. See Table 1 for a brief
summary.

4.1 Adapted minimal spanning tree (Alpaslan and Robotham)

The adapted minimal spanning tree algorithm (Alpaslan et al. 2014a,
see also Barrow et al. 1985; Doroshkevich et al. 2004; Colberg 2007)
uses a multiple pass approach to detect large-scale structure, similar
to Murphy, Eke & Frenk (2011).

Designed to be run on galaxy survey data, the adapted MST algo-
rithm begins by identifying filamentary networks by using galaxy
group centroids as nodes for an initial MST; in doing so, redshift-
space distortion effects typically present in such data are success-
fully removed. The maximal allowable distance b between two
group (or halo) centres is selected such that at least 90 per cent of
groups or haloes with Mhalo ≥ 1011 M� are considered to be in fil-
aments. A large b will cause galaxies in voids to be associated with
filaments, and a small b will only identify close pairings of groups
to be in filaments and ignore the expansive structures visible in the
data.

Following the identification of filaments from group centres,
galaxies that are within an orthogonal distance r of filaments are
associated with those filaments. Additionally, the topological struc-
ture of the MST that forms each filament is analysed, with the
principal axis of each filament (the so-called backbone) identified
as the longest contiguous path of groups that spans the entirety of
the filament, along with tributary ‘branches’ that link to it. The sizes
and shapes of these pathways are used to successfully compare ob-
servational results to simulated universes in Alpaslan et al. (2014a).
Galaxies associated with each filament are further associated with
the branch of the filament they are closest to, allowing for a detailed
analysis of galaxy properties as a function of filament morphology
(Alpaslan et al. 2015, 2016).

1 All the data used in this paper can be found at the following URL:
http://data.aip.de/tracingthecosmicweb/. The database was compiled by
Noam I Libeskind (doi:10.17876/data/2017_1).
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Figure 1. A thin slice through the cosmological simulation used for comparing the web identification methods. The left-hand panel shows the density field
in a 2 h−1 Mpc slice with darker colours corresponding to higher density regions. The red lines show the δ = 0 contours (dividing overdense and underdense
regions, with respect to the mean) and are reproduced in the right-hand panel (and in Fig. 2 as black lines). The right-hand panel shows the positions of haloes
in a 10 h−1 Mpc slice, where symbol sizes are scaled by halo mass. This same slice will be used to showcase the web identification methods in Figs 2 and 3 as
well as the level of agreement across web finders in Fig. 7.

Table 1. An overview of the methods compared in this study.

Method Web types Input Type Main references

Adapted minimal spanning tree (MST) Filaments Haloes Graph and percolation Alpaslan et al. (2014a)

Bisous Filaments Haloes Stochastic Tempel et al. (2014, 2016)
FINE Filaments Haloes Stochastic González & Padilla (2010)

Tidal shear tensor (T-web) All Particles Hessian Forero-Romero et al. (2009)
Velocity shear tensor (V-web) All Particles Hessian Hoffman et al. (2012)
CLASSIC All Particles Hessian Kitaura & Angulo (2012)

NEXUS+ All Particles Scale-space, Hessian Cautun et al. (2013)
Multiscale Morphology Filter-2 (MMF-2) All except knots Particles Scale-space, Hessian Aragón-Calvo et al. (2007a)

Aragón-Calvo & Yang (2014)
Spineweb All except knots Particles Topology Aragón-Calvo et al. (2010c)
DisPerSE All except knots Particles Topology Sousbie (2011)

ORIGAMI All Particles Phase space Falck et al. (2012); Falck & Neyrinck (2015)
Multi-Stream Web Analysis (MSWA) All Particles Phase space Ramachandra & Shandarin (2015)

Galaxies that are too distant from filaments are reprocessed un-
der a second MST that identifies smaller scale interstitial structures
dubbed ‘tendrils’ (Alpaslan et al. 2014b). Tendrils typically contain
a few tens of galaxies, and typically exist within voids, or bridge the
gap between two filaments within underdense regions. The proper-
ties of galaxies in these structures are often similar to those in more
dense filaments (Alpaslan et al. 2015).

Finally, galaxies that are beyond a distance q from tendrils are
identified as isolated void galaxies. The distances r and q are selected
such that the integral over the two-point correlation,

∫
R2ξ (R) dR, of

void galaxies is minimized. This definition of a void galaxy ensures
that the algorithm identifies a population of very isolated galaxies;
this differs from searching for void galaxies in low-density regions,
which does allow for clustering.

4.2 Bisous (Tempel, Stoica and Saar)

The detection of cosmic-web filaments is performed by applying an
object (marked) point process with interactions (the Bisous process;
Stoica et al. 2005) to the spatial distribution of galaxies or haloes.
This algorithm provides a quantitative classification that complies
with the visual impression of the cosmic web and is based on a robust
and well-defined mathematical scheme. More detailed descriptions
of the Bisous model can be found in Stoica et al. (2007, 2010)
and Tempel et al. (2014, 2016). A brief and intuitive summary is
provided below.

The model approximates the filamentary web by a random con-
figuration of small segments (cylinders). It is assumed that locally,
galaxy conglomerations can be probed with relatively small cylin-
ders, which can be combined to trace a filament if the neighbouring

MNRAS 473, 1195–1217 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/473/1/1195/4062204
by University of Durham user
on 03 January 2018



1202 N. I. Libeskind et al.

cylinders are oriented similarly. An advantage of the approach is
that it relies directly on the positions of galaxies and does not require
any additional smoothing for creating a continuous density field.

The solution provided by the model is stochastic. Therefore,
it has found some variation in the detected patterns for different
Markov chain Monte Carlo (MCMC) runs of the model. On the other
hand, thanks to the stochastic nature of the method simultaneously
a morphological and a statistical characterization of the filamentary
pattern is gained.

In practice, after fixing an approximate scale of the filaments, the
algorithm returns the filament detection probability field together
with the filament orientation field. Based on these data, filament
spines are extracted and a filament catalogue is built in which every
filament is represented by its spine as a set of points that defines the
axis of the filament.

The spine detection follows two ideas. First, filament spines are
located at the highest density regions outlined by the filament prob-
ability maps. Secondly, in these regions of high probability for the
filamentary network, the spines are oriented along the orientation
field of the filamentary network. See Tempel et al. (2014, 2016) for
more details of the procedure.

The Bisous model uses only the coordinates of all haloes. These
were analysed using a uniform prior for filament radius between
0.4 and 1.0 h−1 Mpc, which determines the scale of the detected
structures. This scale has a measurable effect on properties of galax-
ies (Guo, Tempel & Libeskind 2015; Tempel & Tamm 2015; Tempel
et al. 2015). Using the halo distribution, the Bisous model gener-
ates two fields – the filament detection and the filament orientation
fields. These two fields are continuous and have a well-defined value
at each point. To generate the data sets required by the comparison
project, each grid cell on the target 1003 mesh and each FOF halo
was tagged as either part of a filament or not. For the visitmap2 a
threshold value 0.05 was used, which selects regions that are rea-
sonably covered by the detected filamentary network. To exclude
regions where the filament orientation is not well defined (e.g. re-
gions at intersection of filaments), it is required that orientation
strength parameter is higher than 0.7. The same values were used
in previous studies (e.g. Nevalainen et al. 2015).

4.3 FINE (Gonzalez and Padilla)

The filamentary structure in the cosmic web can be found by follow-
ing the highest density paths between density peaks. The Filament
Identification using NodEs (FINE) method described in González
& Padilla (2010) looks for filaments in halo or galaxy distributions.

The method requires halo/galaxy positions and masses (lumi-
nosities for galaxies), and we define as nodes, the haloes/galaxies
above a given mass/luminosity. The mass of the nodes will define
the scale of the filaments in the search. The smaller the node masses,
the smaller the filaments that will be found between them.

The density field is computed using Voronoi Tessellations similar
to Schaap & van de Weygaert (2000). The method looks first for
a filament skeleton between any node pair by following the high-
est density path and a minimum separation; those two parameters
characterize the filament quality. Filament members are selected
by binding energy in the plane perpendicular to the filament; this
condition is associated with characteristic orbital times. However,
if one assumes a fixed orbital time-scale for all filaments, the result-
ing filament properties show only marginal changes, indicating that

2 In mathematics the visitmap is also called a ‘level set’, and refers to a
probabilistic filament detection map, see Heinrich, Stoica & Tran (2012).

the use of dynamical information is not critical for this criterion.
Filaments detected using this method are in good agreement with
Colberg et al. (2005) who use by-eye criteria.

In this comparison we define nodes as the haloes with masses
above 5 × 1013 M�, and the minimum density threshold for the
skeleton search is five times the mean Voronoi density.

4.4 V-web: velocity shear tensor (Libeskind, Hoffman, Knebe
and Gottlöber)

The cosmic web may be quantified directly using the cosmic ve-
locity field, as suggested by Hoffman et al. (2012). This method is
ideally suited to numerical simulations but may be applied to any
cosmic velocity field, for example reconstructed ones from redshift
or velocity data.

The method is similar to that suggested by Hahn et al. (2007a)
but uses the shear field instead of the Hessian of the potential. In
the linear regime, these two methods give similar results. First, a
grid is superimposed on the particle distribution. A ‘clouds in cells’
(CIC) technique is used to obtain a smoothed density and velocity
distribution at each point on the grid. The CIC of the velocity field
is then fast Fourier transformed into k-space and smoothed with
a Gaussian kernel. The size of the kernel determines the scale of
the computation and must be at least equal to one grid cell (i.e. in
this case we use a 2563 grid and so rsmooth ≥ Lbox/256) in order to
wash out artificial effects introduced by the preferential axes of the
Cartesian grid. Using the Fourier Transform of the velocity field the
normalized shear tensor is calculated as

�αβ = − 1

2H0

(
∂vα

∂rβ

+ ∂vβ

∂rα

)
, (1)

where α, β are the x, y, z components of the positions r and ve-
locity v and H0 is the Hubble constant. Note that the shear tensor
is simply the symmetric part of the velocity deformation tensor
(the antisymmetric part being the curl or vorticity, see Libeskind
et al. 2013b,2014a). The shear tensor is then diagonalized and the
eigenvalues are sorted, according to convention (λ1 > λ2 > λ3).
The eigenvalues and corresponding eigenvectors (e1, e2, e3) of the
shear field are obtained at each grid cell. Note that the eigenvectors
(ei’s) define non-directional lines and as such the +/− orientation
is arbitrary and degenerate.

A web classification scheme based on how many eigenvalues
are above an arbitrary threshold may be carried out at each grid
cell. If none, one, two or three eigenvalues are above this threshold,
the grid cell may be classified as belonging to a void, sheet, fila-
ment or knot. The threshold may be taken to be zero (as in Hahn
et al. 2007a) or may be fixed to another value, e.g. to reproduce
the visual impression of the matter distribution; for the purposes
of �CDM simulations, such as this one, the threshold is chosen to
be 0.44 (Forero-Romero et al. 2009; Libeskind et al. 2012, 2013a,
2014b).

4.5 T-web: tidal shear tensor (Forero-Romero, Hoffman and
Gottlöber)

This method (T-web; Forero-Romero et al. 2009) works on density
field grids obtained either from numerical simulations or recon-
structions from redshift surveys.

The method builds on the work by Hahn et al. (2007a). It also
uses the Hessian of the gravitational potential

Tαβ = ∂2φ

∂xα∂xβ

, (2)
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where the physical gravitational potential has been normalized by
4πGρ̄ so that φ satisfies the Poisson equation

∇2φ = δ, (3)

with δ the dimensionless matter overdensity, G the gravitational
constant and ρ̄ the average density of the Universe.

This tidal tensor can be represented by a real symmetric 3 × 3
matrix with eigenvalues λ1 > λ2 > λ3 and eigenvectors e1, e2

and e3. The eigenvalues are indicators of orbital stability along the
directions defined by the eigenvectors.

This method introduces a threshold λth to gauge the strength of
the eigenvalues of the tidal shear tensor. The number of eigenvalues
larger than the threshold is used to classify the cosmic web into
four kinds of environments: voids (3 eigenvalues smaller than λth),
sheets (2), filaments (1) and knots (0).

In practice, the density is interpolated over a grid using the particle
data and a CIC scheme. The Poisson equation is solved in Fourier
space to obtain the potential over a grid. At each grid cell the
shear tensor is computed to obtain and store the corresponding
eigenvalues and eigenvectors. The grid cell has a size of ∼1 h−1Mpc
and the threshold is fixed to be λ = 0.2 as suggested by previous
studies that aim at capturing the visual impression of the cosmic
web (Forero-Romero et al. 2009).

4.6 MMF/Nexus: the Multiscale Morphology Filter
(Aragón-Calvo, Cautun, van de Weygaert and Jones)

The MMF/Nexus MMF technique (Aragón-Calvo et al. 2007a,
2010a; Cautun et al. 2013, 2014; Aragón-Calvo & Yang 2014)
performs the morphological identification of the cosmic web us-
ing a Scale-space formalism that ensures the detection of structures
present at all scales. The formalism consists of a fully adaptive
framework for classifying the matter distribution on the basis of
local variations in the density field, velocity field or gravity field
encoded in the Hessian matrix in these scales. Subsequently, a set of
morphological filters is used to classify the spatial matter distribu-
tion into three basic components, the clusters, filaments and walls
that constitute the cosmic web. The final product of the procedure is
a complete and unbiased characterization of the cosmic-web com-
ponents, from the prominent features present in overdense regions
to the tenuous networks pervading the cosmic voids.

Instrumental for this class of MMF cosmic-web identification
methods is that it simultaneously pays heed to two principal aspects
characterizing the web-like cosmic mass distribution. The first as-
pect invokes the Hessian of the corresponding fields to probe the
existence and identity of the mostly anisotropic structural compo-
nents of the cosmic web. The second, equally important, aspect
uses a scale-space analysis to probe the multiscale character of the
cosmic mass distribution, the product of the hierarchical evolution
and buildup of structure in the Universe.

The scale-space representation of a data set consists of a sequence
of copies of the data having different resolutions (Florack et al. 1992;
Lindeberg 1998). A feature searching algorithm is applied to all of
these copies, and the features are extracted in a scale-independent
manner by suitably combining the information from all copies.
A prominent application of the scale-space analysis involves the
detection of the web of blood vessels in a medical image (Sato
et al. 1998; Li, Sone & Doi 2003). The similarity to the structural
patterns seen on megaparsec scales is suggestive. The MMF has
translated, extended and optimized the scale-space technology to
identify the principal characteristic structural elements in the cosmic
mass and galaxy distribution. The final outcome of the MMF/Nexus

procedure is a field that at each location x specifies what the local
morphological signature is, cluster node, filaments, wall or void.
The MMF/Nexus algorithms perform the environment detection by
applying the above steps first to knots, then to filaments and finally
to walls. Each volume element is assigned a single environment
characteristic by requiring that filament regions cannot be knots and
that wall regions cannot be either knots or filaments. The remaining
regions are classified as voids.

Following the basic version of the MMF technique introduced by
Aragón-Calvo et al. (2007a), it was applied to the analysis of the
cosmic web in simulations of cosmic structure formation (Aragón-
Calvo et al. 2010a) and for finding filaments and galaxy–filament
alignments in the SDSS galaxy distribution (Jones et al. 2010).
The principal technique, and corresponding philosophy, has sub-
sequently branched into several further elaborations and devel-
opments. In this survey, we describe the Nexus formalism devel-
oped by Cautun et al. (2013) and the MMF2 method developed by
Aragón-Calvo & Yang (2014). Nexus has extended the MMF for-
malism to a substantially wider range of physical agents involved in
the formation of the cosmic web, along with a substantially firmer
foundation for the criteria used in identifying the various web-like
structures. MMF-2 not only focusses on the multiscale nature of
the cosmic web itself, but also addresses the nesting relations of the
hierarchy.

4.6.1 NEXUS+ (Cautun, van de Weygaert and Jones)

The NEXUS+ version of the MMF/Nexus formalism (Cautun
et al. 2013, 2014) builds upon the original MMF (Aragón-Calvo
et al. 2007a, 2010a) algorithm and was developed with the goal of
obtaining a more physically motivated and robust method.

NEXUS+ is the principal representative of the full NEXUS suite
of cosmic-web identifiers (see Cautun et al. 2013). These include
the options for corresponding multiscale morphology identifiers on
the basis of the raw density, the logarithmic density, the veloc-
ity divergence, the velocity shear and tidal force field. NEXUS has
incorporated these options in a versatile code for the analysis of
cosmic-web structure and dynamics following the realization that
they are significant physical influences in shaping the cosmic mass
distribution into the complexity of the cosmic web.

NEXUS+ takes as input a regularly sampled density field. In a
first step, the input field is Gaussian smoothed over using a Log-
Gaussian filter (see Cautun et al. 2013) that is applied over a set of
scales [R0, R1, . . . , RN], with Rn = 2n/2R0. NEXUS+ then computes
an environmental signature for each volume element.

The NEXUS suite of MMF identifiers pays particular attention to
the key aspect of setting the detection thresholds for the environ-
mental signature. Physical criteria are used to determine a detection
threshold. All points with signature values above the threshold are
valid structures. For knots, the threshold is given by the requirement
that most knot-regions should be virialized. For filaments and walls,
the threshold is determined on the basis of the change in filament
and wall mass as a function of signature. The peak of the mass
variation with signature delineates the most prominent filamentary
and wall features of the cosmic web.

For the NEXUS+ implementation, the Delaunay Tessellation
Field Estimator DTFE method (Schaap & van de Weygaert 2000;
van de Weygaert & Schaap 2009) is used to interpolate the dark
matter particle distribution to a continuous density field defined
on a regular grid of size 6003 (grid spacing of 0.33 h−1 Mpc).
NEXUS+ was applied to the resulting density field using a set
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of seven smoothing scales from 0.5 to 4 h−1 Mpc (in increments
of

√
2 factors). This resulted in an environment tag for each grid

cell that, in a second step, was down sampled to the target 1003

grid using a mass-weighted selection scheme. For each cell of the
coarser grid, we computed the mass fraction in each environment
using all the fine level cells (63 in total) that overlap the coarser one.
Then, the coarser cell was assigned the environment corresponding
to the largest mass fraction. Each FOF halo was assigned the web
tag corresponding to the fine grid cell in which the halo centre was
located.

4.6.2 MMF-2: Multiscale Morphology Filter-2 (Aragón-Calvo)

The MMF-2 implementation of the MMF formalism differs from
the NEXUS formalism in that it focusses on the multiscale charac-
ter of the initial density field, instead of that of the evolved mass
distribution. In order to account for hierarchical nature of the cos-
mic web, MMF-2 introduces the concept of hierarchical space
(Aragón-Calvo et al. 2010b; Aragon-Calvo & Szalay 2013). While
the conventional scale-space approach emphasizes the scale of the
structures, it does not address their nesting relations. To accom-
plish this, MMF-2 resorts to the alternative of hierarchical space
(Aragón-Calvo et al. 2010b; Aragon-Calvo & Szalay 2013; Aragón-
Calvo & Yang 2014).

Hierarchical space is created in the first step in the MMF-2 pro-
cedure (Aragón-Calvo et al. 2010b; Aragon-Calvo & Szalay 2013).
It is obtained by Gaussian-smoothing the initial conditions, and in
principal concerns a continuum covering the full range of scales
in the density field. For practical purposes, however, a small set
of linear-regime-smoothed initial conditions is generated. Subse-
quently, by means of an N-body code these conditions are gravita-
tionally evolved to the present time.

By applying to linear-regime smoothing, hierarchical space in-
volves density field Fourier modes that are independent. This al-
lows the user to target specific scales in the density field before
Fourier mode-mixing occurs. The subsequent gravitational evolu-
tion of these smooth initial conditions results in a mass distribution
that contains all the anisotropic features of the cosmic web, while it
lacks the small-scale structures below the smoothing scale. Dense
haloes corresponding to these small scales are absent. This reduces
the dynamic range in the density field and greatly limits the contam-
ination produced by dense haloes in the identification of filaments
and walls.

In line with the MMF procedure, for each realization in the hi-
erarchical space a set of morphology filters is applied, defined by
ratios between the eigenvalues of the Hessian matrix (λ1 < λ2 < λ3,
see Aragón-Calvo et al. 2007a). It also involves the applications of
a threshold to the response from each morphology filter. This leads
to a final product consisting of a set of binary masks sampled on a
regular grid indicating which voxels belong to a given morphology
at a given hierarchical level.

4.7 CLASSIC (Manti, Nuza and Kitaura)

The CLASSIC approach is based on performing a prior linearization
to the cosmological density field and later a cosmic-web classifica-
tion of the resulting matter distribution. The method is implemented
in two steps: first, a linearization is made to better fulfil the mathe-
matical conditions of the original idea of cosmic-web classification,
which is based on a linear Taylor expansion of the gravitational field
(see Zel’dovich 1974; Hahn et al. 2007a), and then, cosmological

structures are divided into voids, sheets, filaments and knots. The
linearization is done using higher order Lagrangian perturbation
theory as proposed by Kitaura & Angulo (2012). In this frame-
work, a given density field can be expressed as the sum of a linear
component and a non-linear component that are tightly coupled to
each other by the tidal field tensor. The cosmic-web classification
is performed on a grid cell in a similar way as suggested by Hahn
et al. (2007a), i.e. counting the number of eigenvalues of the Hes-
sian of the gravitational potential above a given threshold (see also
Forero-Romero et al. 2009). In particular, the threshold adopted was
chosen to obtain a volume filling fraction (VFF) of voids of about
70 per cent as done by Nuza et al. (2014) for their reconstruction
on the local universe based on peculiar velocity fields. As a result,
the corresponding VFFs of sheets, filaments and knots are uniquely
determined by this choice.

4.8 Spineweb (Aragón-Calvo, Platen and van de Weygaert)

The Spine method (Aragón-Calvo et al. 2010c) produces a char-
acterization of space based on the topology of the density field,
catalogues of individual voids, walls and filaments and their connec-
tivity. Its hierarchical implementation (Aragón-Calvo et al. 2010a;
Aragon-Calvo & Szalay 2013) allows us to describe the nesting
properties of the elements of the cosmic web in a quantitative way.
The Spine can be applied to both simulations and galaxy catalogues
with minimal assumptions. Given its topological nature, it is highly
robust against geometrical deformations (e.g. fingers of God or
polar grid sampling) as long as the topology of the field remains
unchanged.

The Spine method extends the idea introduced in the watershed
void finder (Platen et al. 2007) to identify voids as the contiguous
regions sharing the same local minima. Walls are then identified
as the 2D regions where two voids meet and filaments correspond
to the 1D intersection of two or more walls. Nodes correspond to
the intersection of two or more filaments but due to the finite size
of voxels in practice they are difficult to recover and therefore we
merge them with the filaments into the filament-node class.

The Spine method can be extended to a fully hierarchical analysis
as explained in Aragón-Calvo et al. (2010a) and Aragon-Calvo &
Szalay (2013). In this approach, void regions are identified at several
hierarchical levels (see MMF-2 method), then voids identified at
large scales (high in the hierarchical space) are reconstructed in
terms of the voids they contain at smaller scales in order to recover
their original boundaries lost by the smoothing procedure used to
create the hierarchical space. From the reconstructed voids, we
compute the watershed transform and identify walls and filament
nodes as described above.

We use the fact that walls are the intersection of two voids to
identify voxels belonging to a unique wall (voxels at the boundary
between the same pair of walls). The same can be done for filaments
in order to obtain a catalogue of voids, walls and filaments. The
same connectivity relations can be used to reconstruct the full graph
describing the elements of the cosmic web.

4.9 DisPerSE (Sousbie)

DISPERSE is a formalism designed for analysing the cosmic web,
and in particular its filamentary network, on the basis of the topo-
logical structure of the cosmic mass distribution (Sousbie 2011;
Sousbie et al. 2011). The elaborate framework of DISPERSE is based
on three mathematical and computational pillars. These are Morse
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theory (Morse 1934; Milnor 1963), Discrete Morse theory (For-
man 1998; Gyulassy 2008) and the Delaunay Tessellation Field
Estimator DTFE (Schaap & van de Weygaert 2000; van de Weygaert
& Schaap 2009; Cautun & van de Weygaert 2011). The formal-
ism uses three concepts in computational topology: Persistent Ho-
mology and Topological Simplification (Edelsbrunner, Letscher &
Zomorodian 2002; Gyulassy 2008; Edelsbrunner & Harer 2010).
These are used for the removal of noise and the selection of the sig-
nificant morphological features from a discretely sampled cosmic
mass distribution.

DISPERSE analyses and characterizes the cosmic web in terms of a
spatial segmentation of space defined by the singularity structure of
the cosmic mass distribution, the Morse complex. The morpholog-
ical components of the cosmic web are identified with the various
k-dimensional manifolds that outline this uniquely defined seg-
mentation. Filaments are identified with the ascending 1-manifold.
Voids, walls and clusters are identified with the ascending 3, 2
and 0 manifolds (also see Aragón-Calvo et al. 2010c; Shivashankar
et al. 2016). DISPERSE follows earlier applications of Morse the-
ory to structural classification in astrophysical data sets (Colombi
et al. 2000). The immediate precursor to DISPERSE is the skele-
ton formalism (Sousbie et al. 2008a,b; Sousbie, Colombi & Pi-
chon 2009).

Morse theory, which forms the basis for DISPERSE, looks at the
singularity structure of the density field f(x). It leads to the transla-
tion of the spatial distribution and connectivity of maxima, minima
and saddle points in the density fields into a geometric segmentation
of space that is known as the Morse complex. This is a uniquely
defined segmentation of space in a spatial tessellation of cells, faces,
edges and nodes defined by the singularities and their connections
by integral lines. The index of a non-degenerate critical point is the
number of negative eigenvalues of its Hessian: a minimum of a field
f has index 0, a maximum has index 3, while there are two types of
saddles, with index 1 and 2. Morse theory captures the connectivity
of a field f via the flowlines defined by the field gradient ∇f, the
integral lines. The field minima and maxima are the divergence and
convergence points of these lines. It leads to a natural segmenta-
tion of space into distinct regions of space called ascending and
descending manifolds. The ascending k-manifold of a critical point
P defines the k-dimensional region of space defined by the set of
points along integral lines that emanate from origin P. Conversely,
the descending m-manifold of a critical point P is the m-dimensional
region of space defined by the set of points along integral lines for
which P is the destination.

Since astronomical data sets (N-body simulations, galaxy cat-
alogues, etc.) are discrete and intrinsically noisy tracers of the
density field, DISPERSE utilizes Discrete Morse theory (see e.g.
Forman 1998). It consists of a combinatorial formulation of Morse
theory in terms of intrinsically discrete functions defined over a
simplicial complex.3 A well-known example is the Delaunay tes-
sellation D (van de Weygaert 1994; Okabe et al. 2000). DISPERSE
uses the Delaunay tessellation, and specifically its role as functional
basis in the DTFE formalism (Schaap & van de Weygaert 2000; van
de Weygaert & Schaap 2009; Cautun & van de Weygaert 2011).
DISPERSE uses the DTFE density estimate at each sample point, while
it assigns a density value f(σ k) to each simplex σ k of the Delaunay
simplicial complex D. On the basis of these values, and the mutual
connections between the various simplices, one may identify dis-

3 In essence, a simplicial complex is a geometric assembly of cells, faces,
edges and vertices marking a discrete map of the volume. Cells, faces, edges
and nodes/vertices are 3D, 2D, 1D and 0D simplices.

crete simplicial analogues to the singularity points, gradient vector
field, integral lines and Morse complex (see e.g. Gyulassy 2008;
Sousbie 2011, for a detailed treatment).

The finite sampling of the density field introduces noise into the
detection of structural features. Instead of resorting to a simplistic
feature-independent filtering operation, which tends to suppress or
even annihilate real structural features, DISPERSE uses persistent
homology (Edelsbrunner et al. 2002; Edelsbrunner & Harer 2010).
Topological persistence is the language that allows the identification
of features according to their significance (Edelsbrunner et al. 2002).
Persistence theory defines a topological criterion for the birth and
the death of features, and the persistence of a feature, i.e. its signifi-
cance, is quantified according to the interval between its appearance
and demise. For the removal of insignificant features, DISPERSE
augments the persistence measurement with the topological simpli-
fication of the discrete Morse complex (Edelsbrunner et al. 2002;
Gyulassy 2008), consisting of an ordered elimination of simplicial
singularities and their connections.

The final product of DISPERSE is a simplicial complex with appro-
priately adapted gradient lines and corresponding ascending mani-
folds. It provides a map of the morphological structures that make
up the web-like arrangement of galaxies and mass elements on
megaparsec scales, identified in terms of the ascending manifolds
of a discrete and topologically filtered Morse complex. Most out-
standing is the filamentary network corresponding to the index 1
ascending manifolds.

4.10 ORIGAMI (Falck and Neyrinck)

The gravitational collapse of dark matter can be thought of as the
6D distortion, in phase-space, of an initially flat 3D manifold. Folds
in this manifold occur at caustics and mark out regions of shell-
crossing within which the velocity field is multivalued. ORIGAMI
uses the association between shell-crossing and non-linear struc-
ture formation to identify the different components of the cosmic
web, which are fundamentally distinguished by the dimensional-
ity of their collapse: haloes are collapsing along three orthogonal
axes, filaments along two, walls along one and voids are instead
expanding (Falck et al. 2012).

ORIGAMI determines whether, and in how many dimensions,
shell-crossing has occurred for each dark matter particle in the sim-
ulation by checking whether particles are out of order with respect
to their initial orientation on the Lagrangian grid. For computational
efficiency, ORIGAMI currently requires grid instead of ‘glass’ ini-
tial conditions; we check for crossings along the Cartesian grid
of the simulation box and additionally along three sets of rotated
axes (for details, see Falck et al. 2012). For each particle, we test
for crossings with respect to all particles along a given Lagrangian
axis, extending up to 1/4th of the box size in each direction. The
number of orthogonal axes along which shell-crossing is detected
is counted for each set of axes, and the maximum among all sets
of axes is the particle’s morphology index: 0, 1, 2 and 3 crossings
indicate void, wall, filament and halo particles, respectively.

ORIGAMI thus provides a cosmic-web classification for each
dark matter particle in the simulation without using a density pa-
rameter or smoothing scale. Since we apply no smoothing or oth-
erwise impose a scale, the cosmic-web classification thus depends
on the simulation resolution: there is more small-scale structure
present in higher resolution simulations, so ORIGAMI identifies a
higher fraction of halo particles and lower fraction of void particles
as resolution increases (Falck et al. 2012; Falck & Neyrinck 2015).
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For the purpose of this comparison project, the cosmic-web iden-
tification for each particle is converted to classification on a regular
grid as follows: for each grid cell, select the morphology having
the maximum number of particles as the morphology of that cell. If
there are no particles in a cell, then that cell may be designated as a
void. If there is a tie, with two morphologies having the maximum
number of particles, assign the lower morphology to the cell (i.e.
void < wall < filament < halo). Ties can be quite common between
void and wall particles, especially for low-resolution simulations
and fine grids.

Because of the particle-based web definition, most halo parti-
cles identified by ORIGAMI correspond to haloes identified by
FOF. In previous work (Falck et al. 2014), the web environment
of ORIGAMI haloes is defined according to the morphology of
particles that neighbour the haloes, but this does not work for FOF
haloes since the neighbour particles of FOF haloes are most often
included as part of ORIGAMI haloes. For this comparison project,
then, we classify each FOF halo according to the web identification
of the grid cell it is in.

4.11 Multi-Stream Web Analysis (Shandarin
and Ramachandra)

The growth of CDM density perturbations results in the emergence
of regions where the velocity has distinct multiple values. These
regions are also of high densities. The DM web can be viewed as
a multistream field. For example, voids are the regions where the
velocity field has a single value. This is because no gravitationally
bound DM object can form prior to origin of shell crossing, which
corresponds to the formation of regions with at least three streams.
Three-stream flows associated with Zel’dovich’s pancakes are grav-
itationally bound only in one direction, roughly perpendicular to the
pancake. Filaments are bound in two directions orthogonal to the
filament, and haloes are of course fully bound. The generic geomet-
rical structures of the web, i.e. walls aka pancakes, filaments and
haloes, cannot be uniquely defined by any particular threshold of the
multistream field, which is also true for the density field. Generally
all three-stream regions belong to the walls, but the transition to the
filaments and to the haloes may occur at different levels.

The multistream field can be easily computed from the final and
initial coordinates of the particles in cosmological N-body simula-
tions (Abel et al. 2012; Shandarin et al. 2012). A cold collisionless
matter represents an extremely thin 3D sheet called a Lagrangian
submanifold in 6D space made by three initial and three final coor-
dinates at a chosen state of the simulation. Similarly to the 3D sheet
in the 6D phase space, the Lagrangian submanifold contains full
dynamic information about the system. It needs to be tetrahedral-
ized only once by using initial positions of the particles on a regular
grid as vertices of the tetrahedra. During the following evolution
the tessellation remains intact. It always remains continuous, and
its projection in 3D coordinate space fully tiles it at least by one
layer in voids and many times in the web regions. The tetrahedra
during the evolution are deformed, but the deformation has no effect
on the connectivity assignments between the particles. The number
of streams can be computed on an arbitrary set of spatial points by
simply counting how many tetrahedra contain a given point. The
first study of the multistream environment of DM haloes has been
recently described in Ramachandra & Shandarin (2015).

Delineating the web components (walls, filaments and haloes) in
multistream fields is not straightforward, and could be done using
various approaches. By studying the scaling of multistream varia-
tion around dark matter haloes, Ramachandra & Shandarin (2015)

showed that the geometries of structures change from sheets to fila-
ments at a multistream value of nstr � 17. The next transition from
filaments to knots is seen at around nstr � 90 – which also roughly
corresponds to the virial mass density �vir = 200. These thresholds
are heuristic – the analysis may have to be repeated for different
simulations for the calibration of thresholds. On the other hand, lo-
cal Hessian-based geometric methods were recently used to identify
multistream structures by Ramachandra & Shandarin (2017). This
approach hints towards a portrait of structures in multistream fields
that are free of ad hoc thresholds. For instance, the haloes could be
identified simply as convex surfaces enclosing a local maxima of
the multistream field (Ramachandra & Shandarin, in preparation).

A summary of the classification scheme used for this comparison
project is as follows: voids are simply the regions with nstr = 1.
The web components are delineated by utilizing the first approach
of calibrating thresholds, i.e. sheets: 3 ≤ nstr < 17, filaments: 17 ≤
nstr < 90 and knots: nstr ≥ 90.

5 C O M PA R I S O N A N D R E S U LT S

Here, we present a visual and quantitative comparison of the differ-
ent methods. We focus on comparing general features of the cosmic
web: mass and VFFs, density distributions and halo mass functions
in each environment. As already mentioned, all methods were ap-
plied to the same simulation and they all used, depending on the
method, either the dark matter particle distribution or the FOF halo
catalogue.

5.1 Visual comparison

We begin our analysis by performing a visual comparison of the
various web finders. Figs 2 and 3 show the environments returned
by the web identification methods that took part in the compari-
son. Each panel shows the same 2 h−1 Mpc thick slice through the
simulation box. Broadly speaking, there are two types of methods:
the ones that return multiple cosmic-web environments (i.e. voids,
sheets, filaments and possibly knots; these are shown in the Fig. 2)
and the ones that identify only filaments (shown in Fig. 3). Among
the first type, DISPERSE, MMF and Spineweb do not identify knots.
For the second type of methods, we show either the grid cells iden-
tified as filaments (the Bisous method) or the positions of the haloes
associated with filaments for the methods that did not return a web
classification for each volume element (the FINE and MST meth-
ods). A number of general points are immediately visible from the
inspection of Figs 2 and 3 (in no particular order):

(i) DISPERSE provides no knots, and its filaments are relatively
thick compared to the other methods.

(ii) MMF-2 and Spineweb fill much of the simulation’s volume
with sheets and filaments.

(iii) ORIGAMI ascribes much of the overdense volume as knots
– owing primarily to the fact that these regions contain haloes that
have undergone shell crossing along three orthogonal axes.

(iv) The Hessian methods (NEXUS+, T-web, V-web and CLAS-
SIC) have a mix of knots, filaments and sheets, with voids dominat-
ing the underdense volume.

(v) The Bisous model and MST seem more or less agree with
each other, whereas the FINE method ascribes far fewer haloes to
filaments.

It is important to note that some of these methods (specifically
NEXUS+, MMF-2, T-web and V-web) have been designed, to var-
ious degrees, to reproduce the visual impression of the cosmic web.
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Figure 2. Visual comparison of environments as detected by the different cosmic-web finders. All panels show a thin, 2 h−1 Mpc thick slice, where the
various colours indicate: knots (red), filaments (blue), walls (green) and voids (white). Each panel has a set of solid lines that indicate the δ = 0 contours (see
the density distribution in Fig. 1). The simulation is purposefully coarse grained with cells of size 2 h−1Mpc, as it is on this scale that the methods returned a
classification.

Furthermore, given that voids are by definition underdense regions,
it is ideologically unlikely that a given method would be designed
to identify clusters deep inside voids.4

5.2 Density PDF

The relationship between the cosmic web and the density field
can be quantified by studying the probability distribution function
(PDF) of the density field for each volume element (grid cell) as
a function of web environment. This is shown in Fig. 4, where the
total density PDF for this simulation (computed on a regular grid

4 The measure of a density depends on scale: large enough volumes that
include relatively small overdensities can, on average, be well below the
mean density and thus considered voids.

with cell spacing of 2 h−1 Mpc) is shown in black and is the same
in all panels; we quantify the density by normalizing to the mean
density of the universe, δ = ρ/ρ̄. Note that only those methods that
assign web classification to volume elements are included here –
the FINE and MST methods assign a cosmic-web environment only
to haloes and are therefore excluded. The median of each PDF is
denoted by the corresponding arrow.

5.2.1 Knots

In Fig. 4(a), we show that knots are characterized by a wide variety
of environmental densities. Although the T-web, V-web and CLAS-
SIC roughly agree, they differ substantially from the fourth Hessian
method, NEXUS+, which has a much narrower and higher distri-
bution of densities. Indeed, NEXUS+ is in closer agreement with
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Figure 3. Same as Fig. 2 but for the three methods that identify only filaments.

Figure 4. Comparison of the density contrast, 1 + δ, PDF as a function of environment for the different cosmic-web finders. The panels show the density PDF
for: knots (top-left), filaments (top-right), sheets (bottom-left) and voids (bottom-right). The vertical arrows indicate the median of each distribution. Each PDF
is normalized to unity and thus does not correspond to the VFF.
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Multi-Stream Web Analysis (MSWA). ORIGAMI peaks at roughly
the same density as V-web, although it is a little narrower.

Perhaps the strongest conclusion we can draw from Fig. 4(a) is
that the local density by itself is a poor proxy for being considered
a knot by any given method. Or, conversely, where knots are found,
their density may differ by an order of magnitude or more.

5.2.2 Filaments

In Fig. 4(b), we show the PDF of densities for cells identified as
filaments. Qualitatively, the picture is similar to that for knots, but
pushed to slightly lower densities. There also appears to be a weak
convergence of the median density among methods. Namely, al-
though the widths of the PDF are similar, their medians are more
strongly in agreement (with the exception of MSWA), and span less
than an order of magnitude. MSWA stands out here in labelling
higher density cells as filamentary; the Bisous model (the only
filament-only model that can participate in this test) closely resem-
bles ORIGAMI, while the PDFs of three of the Hessian methods
(T-web, V-web and CLASSIC) have similar shapes but are offset
with respect to each other. The PDF of Spineweb peaks at the lowest
density.

5.2.3 Sheets

The density PDF for cells labelled as sheets, shown in Fig. 4(c),
displays more coherence than those of knots or filaments. Despite
the PDFs still varying widely among the web finders, the median
densities of the PDFs are roughly similar and take values around
δ = 0. The median of the set of density PDFs moves to lower
values, although, like the PDFs for knots and filaments, there is
still a wide variety of permissible environments. Three pairs of
methods produce nearly identical PDFs: NEXUS+ and ORIGAMI,
DISPERSE, T-web, and MMF-2, and V-web and CLASSIC. Again,
the PDF of Spineweb peaks at the lowest density.

5.2.4 Voids

The best agreement between methods is found in regions denoted
as voids, as shown in Fig. 4(d). The void density PDFs show less di-
versity and generally have the same shape. The spread in medians is
small: less than 0.2 dex. As voids purport to be the most underdense
regions in the universe, they also make up the greatest fraction of
the simulation’s volume (as can be inferred by the overlap between
the void density PDF and the total density PDF). It can thus be
said that the methods studied here all agree that the majority of the
simulation volume is indeed categorized as void.

5.2.5 Trends in the density PDFs

The cosmic-web classification is layered: knots are embedded in
filaments, which, in turn, reside in sheets, which, in turn constitute
the boundaries between different void basins. As our analysis of
the cosmic web moves from knots to voids, the median of the
density distribution of each method and for each web type moves
to lower values in tandem. Although for a given web type there
may be a wide variety of permissible density environments across
the analysed methods, each method follows a similar trend. The
peak of the density PDF moves to lower and lower densities, with
most methods converging in the lowest density and most abundant
environment in the simulation: voids.

5.3 Mass and volume fraction

We continue the cosmic web finder’s comparison with a study of
the VFFs and mass filling fractions that are ascribed to a specific
cosmic-web type. These quantities are shown in Fig. 5 for knots,
filaments, sheets and voids. The mass fraction is found by summing
up the particles in all the cells with the same cosmic-web type and
dividing by the total number of particles in the simulation. The
volume fraction is found by counting all the cells with the same
cosmic-web type and dividing by the total number of cells. Note
that for these tests we have a 1003 grid with (2 h−1 Mpc)3 cells.

(i) Knots: as ORIGAMI makes no distinction between knots and
haloes, it is perhaps unsurprising that this method finds that nearly
half the simulation’s mass is confined in ∼7 per cent of the volume.
Most other methods tag far fewer cells as knots, claiming they
constitute below ∼1 per cent of the volume with between 10 per cent
and 20 per cent of the mass. Interestingly the mass–volume fraction
relation for knots follows a fairly tight linear proportionality – the
more mass found in knots, the more volume, regardless of method
used.

(ii) Filaments: a similar, but slightly weaker proportionality be-
tween mass and volume fraction is found for filament regions.
Here, Spineweb and DISPERSE place roughly 60 per cent of the
simulations mass in filaments which occupy some ∼35 per cent
and ∼25 per cent of the simulation volume, respectively. Unlike
knots, there is considerably more spread in the relationship be-
tween mass and volume fractions amongst the methods, although
a linear relationship is still discernible to the eye. Similar to knots,
MSWA continues to place virtually none of the volume and roughly
∼10 per cent of the simulation’s mass in filaments. The Bisous
model – the only one of the filament-only models that can par-
ticipate in this comparison – finds very similar filament VFFs and
mass filling fractions as CLASSIC, V-web and MMF-2, with some
∼5 per cent of the simulations volume and ∼30 per cent of the sim-
ulations mass labelled as filaments. To summarize, the filament
VFF spans from virtually nothing (MSWA) to more than a third
of the volume (Spineweb); while the filament mass filling fraction
spans roughly double that range, from ∼10 per cent (MSWA) to
∼60 per cent (DISPERSE).

(iii) Sheets: the spread of the sheet mass filling fraction is quite
tight, with most methods assigning ∼30 per cent ± 5 per cent of the
total mass to sheets (with the exception of ORIGAMI and MMF-2,
which find lower values). However, the sheet VFFs vary substan-
tially between methods, ranging from less than ∼10 per cent for
MWSA to more than 40 per cent for T-web. As in knots and fila-
ments, MWSA continues to assign only a small volume fraction to
sheets.

(iv) Voids: The volume fraction associated with voids shows
three distinct groups: three methods with ∼40 per cent (DISPERSE,
Spineweb and T-web), five with ∼70 per cent (NEXUS+,
ORIGAMI, V-web, MMF-2 and CLASSIC) and one with
∼90 per cent (MSWA). For the first group of finders (DISPERSE,
Spineweb and T-web), the mass fraction is more or less the
same at around 10–15 per cent. For the second group (NEXUS+,
ORIGAMI, V-web, MMF-2 and CLASSIC), the mass fraction in
voids spans a large range from ∼15 per cent for NEXUS+ to �
50 per cent for MMF-2. In general it is apparent that the mass frac-
tion assigned to void regions spans a large range. It is interesting
to note how the void mass filling fractions of these methods have
flipped compared to their estimate for the filament mass fraction.
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Figure 5. The mass and VFF of knots (top-left), filaments (top-right), sheets (bottom-left) and voids (bottom-right) as identified by the various cosmic-web
finders. These quantities were computed using a regular grid with a cell spacing of 2 h−1 Mpc. The solid line shows the mean filling fraction, i.e. a slope of
unity, where the VFF equals the mass filling fraction. Namely, points above this line lie in underdensities, points below it in overdensities.

Table 2. The fraction of the volume, total mass and mass in haloes (with Mhalo > 1011 h−1 M�) in each web environment for each method. Note that two
methods (MST and FINE) identify filaments in the halo (not particle) distribution and do not provide an environment characterization of individual volume
elements. MST assigns all haloes not ascribed to a filament as being in voids.

Volume fraction (cells) Mass fraction (cells) Mass fraction (haloes)
Method Knots Filaments Sheets Voids Knots Filaments Sheets Voids Knots Filaments Sheets Voids

MST – – – – – – – – – 0.941 – 0.023

Bisous – 0.051 – – – 0.286 – – – 0.377 – –
FINE – – – – – – – – – 0.411 – –

V-web 0.003 0.034 0.204 0.755 0.097 0.235 0.331 0.337 0.231 0.317 0.293 0.159
T-web 0.013 0.149 0.413 0.425 0.166 0.380 0.319 0.135 0.328 0.415 0.211 0.045
CLASSIC 0.006 0.053 0.238 0.703 0.121 0.239 0.324 0.315 0.271 0.276 0.290 0.163

NEXUS+ 0.001 0.113 0.228 0.657 0.084 0.488 0.250 0.178 0.245 0.658 0.088 0.006
MMF-2 – 0.078 0.190 0.732 – 0.295 0.197 0.508 – 0.909 0.072 0.019

Spineweb – 0.361 0.307 0.332 – 0.600 0.235 0.165 – 0.971 0.027 0.001
DisPerSE – 0.239 0.373 0.388 – 0.621 0.254 0.125 – 0.797 0.158 0.044

ORIGAMI 0.074 0.064 0.123 0.738 0.489 0.131 0.137 0.243 0.898 0.067 0.024 0.010
MSWA 0.001 0.007 0.088 0.903 0.070 0.106 0.264 0.560 0.641 0.219 0.130 0.009

In summary, the various methods predict fairly large ranges for
the volume and mass fractions assigned to a given web type. Given
the substantial differences in how these methods identify the web
components, it is not very surprising that there are large discrepan-

cies in these fractions. That said, in each plot of Fig. 5, clusters of
methods can be identified which have similar values of either the
volume fraction, mass fraction or both. The values for the mass and
volume fractions are shown in the first two columns of Table 2.
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Figure 6. Comparison of the halo mass function as a function of environment for the various cosmic-web finders. The panels show the mass function for:
knots (top-left), filaments (top-right), sheets (bottom-left) and voids (bottom-right). The black solid line shows the total halo mass function.

5.4 Halo assignment and mass functions

We now compare how the web environment assigned to haloes
varies across cosmic-web finders. For most methods, each halo is
assigned the cosmic-web environment of the cell in which its centre
is located in. For the filament-only methods (Bisous, FINE, and
MST), the methods themselves directly identify which haloes are
part of a filamentary structure.

In Fig. 6, we show the halo mass function for the entire halo
sample and for each web type. We find a mixed picture, with sub-
stantial variations in the halo mass function of web types. Despite
this, there are also agreements. For example, all the methods place
the most massive haloes (i.e. M � 1014 M�) into knots. Similar
trends are visible in how the filament halo mass function behaves
– the mass functions are similarly valued at low masses and show
a ‘knee’ that precipitates a quick decline in the mass function.
The agreement of mass functions in filaments is strongest (ex-
cept the phase-space methods, ORIGAMI and MSWA), and the

shape of the halo mass function in filaments is the closest one
to the total halo mass function. Indeed, MMF-2 and Spineweb
place nearly all haloes in filaments: the green dashed and dot–
dashed curves are only visibly separate from the black line below
∼1012.5 h−1 M�.

The last column of Table 2 shows how much mass is locked
up in haloes of a given web type for each web finder. The four
Hessian methods (NEXUS+, T-web, V-web and CLASSIC) agree
that around 20–30 per cent of mass in haloes is found in knot
haloes. This is dramatically different from DISPERSE, MMF-2 and
Spineweb which do not identify haloes as belonging to knots, and
the phase-space methods (ORIGAMI and MSWA), which place the
bulk of halo mass in knots. It is interesting to note that the meth-
ods that do not identify knots, but do identify filaments, sheets and
voids (Spineweb, MMF-2 and DISPERSE) place the overwhelming
bulk of halo mass in filaments (with �80 per cent of all halo mass
in filaments). All methods also agree that haloes in voids have
the least amount of total halo mass, although they disagree on
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Figure 7. The level of agreement, on a halo by halo basis, in assigning a web classification to a given halo. For each halo in a given mass bin, we ask how many
methods have assigned it the same web type. We plot the fraction of these haloes as a function of halo mass for the four web environments: knots (top-left),
filaments (top-right), sheets (bottom-left) and voids (bottom-right). Each line shows the fraction of haloes at fixed halo mass that were assigned by N methods
to that environment, with N from 0 (no assignments) to 10 (all methods agree). Note that not all methods identify all web types, so that the maximum number
of agreements varies with web type: 6 for knots, 12 for filaments, 9 for sheets and 10 for voids.

exactly how much this is, with methods predicting either
∼15 per cent (V-web, CLASSIC), ∼5 per cent (T-web, DISPERSE)
or �1 per cent (NEXUS+, ORIGAMI, MSWA, Spineweb, MMF-
2) of halo mass in voids.

It is important to compare the environment tag associated with
haloes on a halo per halo basis too, not only globally as is the case
when comparing halo mass functions. To accomplish this, we ask
the following question: for haloes in a given mass range, how many
methods agree that some fraction of these have the same cosmic-
web environment? The answer to this question is shown in Fig. 7.

To better understand our analysis, let us consider the panel of
Fig. 7(a), which gives the agreement across methods for individ-
ual knot haloes. For high halo masses, M � 1014 h−1 M�, the
panel shows that most such haloes (∼90 per cent) are assigned
to knots by all the six methods (namely: NEXUS+, T-web, V-
web, CLASSIC, ORIGAMI and MSWA) that identify knot envi-
ronments (dot–dashed red curve). Conversely, 60 per cent of the
smallest haloes (with M ∼ 1011 h−1 M�) are not assigned by any
method to the knot environment (solid black curve). In between
the two extreme masses, we find two bell-like curves where haloes
with M ∼ 1012 h−1 M� are assigned to knots by only one method

(black dotted curve), and haloes with M ∼ 1013 h−1 M� (black
dashed curve) are assigned to knots by the two phase-space meth-
ods, MSWA and ORIGAMI.

In Fig. 7(b), we show the agreement among filament haloes. Note
the two peaks in the blue dashed and blue dot–dashed lines at Mhalo

≈ 1013.5: nine methods agree that ∼30 per cent of haloes of this mass
are in filaments while 10 methods agree that at least 10 per cent of
haloes of this mass are in filaments. Here, four methods (DISPERSE,
Spineweb, MMF-2 and MST) place the most massive haloes in
filaments. Figs 7(c) and 7(d) indicate that no method puts the most
massive haloes in sheets or voids. Specifically, this means that no
haloes with M � 1014 h−1 M� are found in sheets, and no haloes
with M � 1013.5 h−1 M� are found in voids, by any method.

The degree of agreement of web classifiers on a halo per halo
basis varies accordingly to the spatial distribution of haloes, as
we illustrate in Fig. 8. Here, each halo is coloured by how many
methods agree on its given classification. Because the number of
methods capable of assigning haloes to a given web type changes
(e.g. filament-only finders cannot identify knot haloes, etc.) the
colour scheme is not identical in each panel (see caption for exact
colour explanation). In general, if many of the capable methods
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Figure 8. A visualization of the agreement across methods regarding a specific halo’s classification shown in the same 10 h−1 Mpc thick slice as in Figs 1–3.
Not all web types are identified by each method, so for each panel the various colours indicate a different number of agreements. In the ‘Knot haloes’ panel, a
halo is plotted in black if 5–6 methods agree, blue if 3–4 methods agree and red if 1–2 methods agree that a halo is in a knot. In the ‘Filament haloes’ panel
colours represent: black if 9–12 methods agree, blue if 4–8 methods agree and red if 1–3 methods agree that a halo is in a filament. For ‘Sheet haloes’ the
colours represent: black if 7–9 methods agree, blue if 4–6 methods agree and red if 1–3 methods agree that a halo is in a sheet. For the ‘Void haloes’ the colours
represent: black if 7–10 methods agree, blue if 4–6 methods agree and red if 1–3 methods agree that a halo is in a void. In all panels, haloes not assigned that
web classification are shown in grey.

agree on a specific halo’s classification the halo is shown in black;
if around half of the capable methods agree, the halo is plotted in
blue. If a small number of capable methods agree, the halo is plotted
in red. If no method assigns a halo a given classification, the halo is
plotted in grey.

Fig. 8 ‘Knot’ and ‘Filament’ halo panels show quite clearly that
the haloes where the most methods agree belong to a biased set
and are not simply random. Knot haloes find the most agreement in
the densest areas of the simulation – a reassuring result. Similarly,
those haloes that by eye appear to define the filamentary network too
have the most agreements. Accordingly, none of the haloes in either
the densest parts of the simulation or in the filaments are assigned

as void haloes (appearing as grey points). Sheets appear, as often is
the case, as tenuous structures. Fig. 8 indicates that most or many
methods are likely to agree on a specific halo’s classification based
on its location.

6 SU M M A RY A N D C O N C L U S I O N S

Large galaxy redshift surveys (e.g. 2dFGRS, SDSS, 2MRS) re-
veal that at megaparsec scales the Universe has a salient web-
like structure. On these scales, the galaxies and the matter
distribution in the universe has arranged itself into a complex web-
like network of dense, interconnected knots, elongated filaments,
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2D sheets and large nearly empty voids. These cosmic environments
characterize the universe on the largest scales. One important aspect
of the cosmic web is its multiscale character, manifesting itself in
the existence of web-like structures over a sizeable range of scale.
High-resolution simulations have revealed that such structures can
be found down to very small scales, even down to the virial radius of
haloes, and that they play a prominent role in the accretion of cold
gas on to young and assembling protogalaxies in the early Universe
(Danovich et al. 2012). It ties in with the results of a range of recent
studies that have analysed the role of environment on the forma-
tion and the evolution of galaxies (e.g. Carollo et al. 2013; Creasey
et al. 2015; Eardley et al. 2015; Guo, Tempel & Libeskind 2015;
Martı́nez, Muriel & Coenda 2016; Poudel et al. 2017). Furthermore,
theoretical studies have suggested that around half of the warm gas
in the Universe is hiding in a ‘warm-hot intergalactic medium’, pre-
sumably in the filaments of the cosmic web (e.g. Eckert et al. 2015).
It has therefore become of key importance to gain more insight into
the structure and dynamics of the web-like universe, and into the
interaction of the cosmic web with galaxy scale processes.

The cosmic web is one of the most intriguing and striking pat-
terns found in nature, rendering its analysis and characterization far
from trivial. This is evidenced by the many elaborate descriptions
that have been developed. The absence of an objective and quantita-
tive procedure for identifying and isolating knots, filaments, sheets
and voids in the cosmic matter distribution has been a major obsta-
cle in investigating the structure and dynamics of the cosmic web.
The overwhelming complexity of the individual structures and their
connectivity, the huge range of densities and the intrinsic multiscale
nature prevent the use of simple tools. Over the past years, we have
seen the introduction and proliferation of many new approaches and
techniques. These methods are very varied in how they identify the
cosmic-web environments; being designed with different cosmo-
logical data in mind and to answer different questions. These issues
are compounded since the techniques available to theorists and sim-
ulators differ substantially from those employed by observers. This
makes it even more important to understand how the various web
identification methods compare with each other.

The main driver of this paper is to quantify in a systematic way
both the similarities and differences between cosmic-web finders.
There is no well-motivated common framework to objectively de-
fine the constituents of the cosmic web, so there is no way of judging
which methods are successful or which ones are – in some objec-
tive way – ‘better’. As such, the goal is to compare the output of
the various methods to better relate studies that use different web
identification methods. We proceeded by comparing several basic
properties of the cosmic web: the mass and VFF of each compo-
nent, the density distribution and the halo mass function in each
environment, and a halo by halo comparison of their environment
tag. For this, we asked the authors of each method to apply their
technique to the same data, the output of an N-body simulation, and
to return the resulting web classification in a common format.

We find a substantial diversity in the properties of the cosmic
web across the various methods. This is to be expected given the
challenges inherent in identifying the cosmic web and the multitude
of approaches undertaken in doing so. In spite of this, we also find
many similarities across the methods. Some of the most important
agreements are as follows:

(i) Voids correspond to the most underdense regions and are
consistently identified as such by all the methods. The voids occupy
the largest volume fraction, with the majority of methods finding a
∼70 per cent VFF.

(ii) Most methods, except ORIGAMI and T-web, find that knots
contain ∼10 per cent of the total mass in less than 1 per cent of the
volume of the universe.

(iii) All the methods find that the density PDF systematically
shifts towards lower densities as we go from knots to filaments,
than to sheets and voids. Despite this trend, there is still a sub-
stantial overlap between the density PDF of different environments,
which suggests that a simple density is inadequate for cosmic-web
identification.

(iv) Most massive haloes, M � 1014 h−1 M�, are classified as
residing in knot environments by all the methods that identify knots.

(v) The voids are only sparsely populated with haloes and they
lack completely massive haloes with M � 1013.5 h−1 M�.

We have a very incomplete knowledge of what is the effect of
environment on galaxy formation and evolution or of what is the
cosmological information encoded in the cosmic-web pattern. The
lack of knowledge is a result of the limitations of analytical ap-
proaches in modelling these non-linear processes. Each web finder
captures different aspects of this very complex pattern, i.e. the cos-
mic web, so it is a worthwhile pursuit to analyse the connection
between the environments identified by each method and the effect
on galaxies and cosmological constraints.
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González R. E., Padilla N. D., 2010, MNRAS, 407, 1449
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Hahn O., Porciani C., Carollo C. M., Dekel A., 2007a, MNRAS, 375,

489
Hahn O., Carollo C. M., Porciani C., Dekel A., 2007b, MNRAS, 381, 41
Heinrich P., Stoica R. S., Tran V. C., 2012, Spat. Stat., 2, 47
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Steinmetz M., Klypin A., 2013a, MNRAS, 428, 2489
Libeskind N. I., Hoffman Y., Steinmetz M., Gottlöber S., Knebe A., Hess
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Novikov D., Colombi S., Doré O., 2006, MNRAS, 366, 1201
Nuza S. E., Kitaura F.-S., Heß S., Libeskind N. I., Müller V., 2014, MNRAS,

445, 988
Okabe A., Boots B., Sugihara K., Chiu S. N., 2000, Spatial tessellations:

Concepts and applications of Voronoi diagrams, 2nd edn. Wiley, New
York

Pahwa I. et al., 2016, MNRAS, 457, 695
Pan D. C., Vogeley M. S., Hoyle F., Choi Y.-Y., Park C., 2012, MNRAS,

421, 926
Park D., Lee J., 2007, Phys. Rev. Lett., 98, 081301
Peebles P. J. E., 1969, ApJ, 155, 393
Peebles P. J. E., 1980, The Large Scale Structure of the Universe, Princeton

Univ. Press, Princeton, NJ
Pichon C., Codis S., Pogosyan D., Dubois Y., Desjacques V., Devriendt J.,

2016, in van de Weygaert R., Shandarin S., Saar E., Einasto J., eds, Proc.
IAU Symp. 308, The Zeldovich Universe: Genesis and Growth of the
Cosmic Web. Cambridge Univ. Press, Cambridge, p. 421

Pisani A., Sutter P. M., Hamaus N., Alizadeh E., Biswas R., Wandelt B. D.,
Hirata C. M., 2015, Phys. Rev. D, 92, 083531

Planck Collaboration XVI, 2014, A&A, 571, A16

Platen E., van de Weygaert R., Jones B. J. T., 2007, MNRAS, 380, 551
Platen E., van de Weygaert R., Jones B. J. T., 2008, MNRAS, 387, 128
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19Departamento de Fı́sica Teórica, Módulo 15, Facultad de Ciencias, Uni-
versidad Autónoma de Madrid, E-28049 Madrid, Spain
20Astro-UAM, UAM, Unidad Asociada CSIC
21Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
22Instituto de Astronomı́a y Fı́sica del Espacio (IAFE, CONICETUBA), CC
67, Suc. 28, 1428 Buenos Aires, Argentina
23Department of Physics and Astronomy, University of Kansas, Lawrence,
KS 66045, USA
24ICRAR, M468, University of Western Australia, Crawley, WA 6009,
Australia
25Institut Elie Cartan de Lorraine, Université de Lorraine, F-54506
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