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1 Introduction

The mixing of neutral mesons proceeds through flavour-changing neutral currents and

is therefore loop suppressed in the Standard Model. Thus, mixing observables are very

sensitive to new physics effects. Our ability to constrain new contributions strongly relies

on a high degree of precision in both experiment and theory. Mixing is most pronounced

in the Bs system where the relative decay rate difference amounts to about 13%. Here the

experimental precision has surpassed the theoretical one by a significant margin [1].
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The theory expression for mixing observables is a product of perturbative coefficients

and non-perturbative matrix elements. The perturbative part is known up to NLO-QCD

(see the discussion below) and first steps in the direction of a NNLO-QCD evaluation have

recently been performed by [2]. However, the dominant theoretical uncertainties still stem

from hadronic matrix elements of local ∆B = 2 four-quark operators. They are usually

determined by lattice simulations and results for the leading dimension-six operators are

available from several collaborations [3–5]. If only the latest lattice results [5] are used,

small tensions at the level of two sigma emerge in Bs mixing [5, 6]. To either settle or solidify

this issue, an independent determination of the matrix elements and further scrutinization

of the theoretical methods are necessary. We address both these points in this paper.

An alternative way to determine hadronic matrix elements is given by QCD sum

rules [7, 8]. This approach employs quark-hadron duality and the analyticity of Green

functions instead of the discretization of space-time. Thus, its sources of uncertainties are

entirely different from lattice simulations and sum rule analyses can provide truly inde-

pendent results. We determine the hadronic matrix elements of the dimension-six ∆B = 2

operators for B-mixing from a sum rule for three-point correlators first introduced in [9].

The sum rule is valid at scales µρ ∼ 1.5 GeV which are much smaller than the bottom-

quark mass. Therefore the sum rule is formulated in HQET, where quantum fluctuations

with a characteristic scale of the order of the bottom-quark mass have been integrated out.

We then run the HQET matrix elements up to a scale µm of the order of the bottom-quark

mass where the matching to QCD can be performed without introducing large logarithms.

Earlier sum rule results are available for the SM operator Q1 [10, 11] and condensate cor-

rections have been computed for dimension-six [11–15] and seven [12, 13] operators. The

same strategy is then applied to determine the matrix elements of dimension-six ∆B = 0

operators, which are the non-perturbative input for calculating ratios of lifetimes of dif-

ferent mesons, like τ(B+)/τ(Bd) and τ(Bs)/τ(Bd), see e.g. [16] for a review. Here the

perturbative part of the prediction is also known to NLO-QCD.

The theory prediction for the Bs decay rate difference ∆Γs and for ratios of lifetimes

of different B mesons is based on the Heavy Quark Expansion (HQE) [17–20]. The HQE

is an OPE in the Minkowski domain which has fuelled speculations about large violations

of duality, in particular for ∆Γs which is dominated by the b → cc̄s transition.1 A recent

confrontation of HQE predictions with experiment has ruled out duality violations larger

than about 20% [6]. Ratios of meson lifetimes are a good testing ground for the validity of

the HQE, but have suffered from large hadronic uncertainties [16] in the past because only

outdated lattice results [22, 23] for the required ∆B = 0 matrix elements of four quark

operators were available. We present the first state-of-the-art calculation of the ∆B = 0

matrix elements and determine the lifetimes with significantly reduced uncertainties.

In the charm sector the validity of the HQE is rather uncertain due to its smaller mass

mc ∼ mb/3. The direct translation of the predictions for B mixing fails by several orders of

magnitude [24]. However it has been argued that higher-dimensional contributions can lift

1Interestingly we find that the HQE prediction for the b → cc̄s branching ratio [21] is in excellent

agreement with experiment.
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the severe GIM suppression in the charm sector and potentially explain the size of mixing

observables [24–28]. D-meson lifetimes have been studied recently [29] and have shown

no indications for a breakdown of the HQE, albeit with large hadronic uncertainties. We

translate our sum rule results to the charm sector as well. The ∆C = 2 matrix elements

show good agreement with lattice results [30–32] and the ∆C = 0 results are used to update

the D+ −D0 lifetime ratio.

The outline of this work is as follows: in section 2 we describe the details of the

QCD-HQET matching computation focussing on ∆B = 2 operators. The sum rule and

the calculation of the three-point correlators are discussed in section 3. Our results for

the matrix elements are presented in section 4 and compared to other recent works. In

section 5 we study ∆B = 0 operators and ratios of B-meson lifetimes. We determine the

matrix elements of ∆C = 0, 2 operators in section 6 and update the HQE result for the

D+ −D0 lifetime ratio using these results. Finally, we conclude in section 7.

2 QCD-HQET matching for ∆B = 2 operators

We perform the matching computation between QCD and HQET operators at the one-loop

level. The details of the computation are described in section 2.1 for the ∆B = 2 operators.

Our results for the matching of the operators and Bag parameters are given in section 2.2

and section 2.3, respectively.

2.1 Setup

The matching calculation for the SM operator Q1 appearing in ∆Ms has been performed

in [33–35]. We compute the matching coefficients of the full dimension-six ∆B = 2 operator

basis needed for ∆Ms in BSM theories and for ∆Γs in the SM. We work in dimensional

regularization with d = 4− 2ε and an anticommuting γ5 (NDR scheme). We consider the

following operators in QCD

Q1 = b̄iγµ(1− γ5)qi b̄jγ
µ(1− γ5)qj ,

Q2 = b̄i(1− γ5)qi b̄j(1− γ5)qj , Q3 = b̄i(1− γ5)qj b̄j(1− γ5)qi,

Q4 = b̄i(1− γ5)qi b̄j(1 + γ5)qj , Q5 = b̄i(1− γ5)qj b̄j(1 + γ5)qi. (2.1)

To fix the renormalization scheme we also have to specify a basis of evanescent opera-

tors [36–38]. We do this following [39]. The explicit form of the evanescent operators can

be found in appendix A. On the HQET side, we have the operators

Q̃1 = h̄
{(+)
i γµ(1− γ5)qi h̄

(−)}
j γµ(1− γ5)qj , Q̃2 = h̄

{(+)
i (1− γ5)qi h̄

(−)}
j (1− γ5)qj ,

Q̃4 = h̄
{(+)
i (1− γ5)qi h̄

(−)}
j (1 + γ5)qj , Q̃5 = h̄

{(+)
i (1− γ5)qj h̄

(−)}
j (1 + γ5)qi, (2.2)

where the HQET field h(+)(x) annihilates a bottom quark, h(−)(x) creates an anti-bottom

and we have introduced the notation

h̄{(+)ΓAq h̄
(−)}ΓBq = h̄(+)ΓAq h̄

(−)ΓBq + h̄(−)ΓAq h̄
(+)ΓBq. (2.3)
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b̄α d̄δ

bγdβ

D2

b̄α d̄δ

bγdβ

D3

b̄α d̄δ

bγdβ

D4

b̄α d̄δ

bγdβ

D1

b̄α d̄δ

bγdβ

E2

b̄α d̄δ

bγdβ

E3

b̄α d̄δ

bγdβ

E4

b̄α d̄δ

bγdβ

E1

Figure 1. QCD (Di) and HQET (Ei) diagrams that enter the matching. Symmetric diagrams are

not shown.

Note that no operator Q̃3 appears on the HQET side because it is not linearly independent,

just like its QCD equivalent at leading order in 1/mb [40]. We define the evanescent HQET

operators up to three constants ai with i = 1, 2, 3 which allow us to keep track of the

scheme dependence. Again the explicit basis of the evanescent operators can be found in

appendix A. The matching condition for the ∆B = 2 operators is given by

〈Qi〉 (µ) =
∑

CQiQ̃j (µ) 〈Q̃j〉 (µ) +O
(

1

mb

)
, (2.4)

where 〈A〉 = 〈B̄|A|B〉. The matching coefficients can be expanded in perturbation theory

and take the form

CQiQ̃j (µ) = C
(0)

QiQ̃j
+
αs(µ)

4π
C

(1)

QiQ̃j
(µ) + . . . . (2.5)

Thus the matching calculation can be performed with external quark states. The partonic

QCD matrix elements are

〈Q〉 =
δαβδγδ
Nc

ZOS
b ZOS

q ZQO

 O
b̄α d̄δ

bγdβ O

b̄α d̄δ

bγdβ

+

+O(αs)

 ,
(2.6)

where we sum over O, including all physical and evanescent operators, and the color singlet

initial and final state have been projected out. The two tree-level contractions appear with

a relative minus sign. The gluon corrections are shown in figure 1 and do not contain

self-energy insertions on the external legs, since the quark fields are renormalized in the

on-shell scheme. The HQET matrix elements follow from the replacements Q→ Q̃, O → Õ,
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ZOS
b → ZOS

h and using HQET propagators instead of the full QCD ones for the bottom

quark. The heavy quark on-shell renormalization constants are

ZOS
b = 1− αsCF

4π

(
3

ε
+ 4 + 3 ln

µ2

m2
b

)
+O(α2

s), ZOS
h = 1. (2.7)

The light-quark renormalization is trivial in the massless case ZOS
q = 1. For the renormal-

ization of the physical operators the MS scheme is used. In accordance with [36–38] the

evanescent operators are renormalized by a finite amount such that their physical matrix

elements vanish. Consequently the Wilson coefficients CQiẼj are not required for the de-

termination of the hadronic matrix elements and are omitted in the results shown below.

However, in the matching computation itself the matrix elements are taken between exter-

nal on-shell quark states and are therefore not IR finite. While the IR divergences cancel in

the matching of the QCD to the HQET operators there are non-vanishing contributions to

the physical matching coefficients CQQ̃ from matrix elements of the evanescent operators

that are multiplied by IR poles since the evanescent operators are defined differently in

QCD and HQET, cf. appendix A.

We also find that the NLO matching coefficients C
(1)

Q3Q̃j
of the operator Q3 are affected

by the finite renormalization of the evanescent operator Ẽ2 which contains contributions

proportional to the physical operators. This usually only happens at NNLO (as is the case

for the other operators) but is already present here at NLO because the tree-level matching

coefficient C
(0)

Q3Ẽ2
of this operator is non-vanishing and, therefore, the NLO matrix element

of the evanescent HQET operator Ẽ2 already appears at NLO in the matching calculation.

In the computation we have used both a manual approach and an automated setup

utilizing QGRAF [41] and Mathematica to generate the amplitudes. The Dirac algebra has

been performed with a customized version of TRACER [42] as well as with Package-X [43, 44]

and the QCD loop integrals have been evaluated using Package-X [43, 44]. We have also

checked our results by performing the calculation with a gluon mass as an IR regulator

and found full agreement.

2.2 Results

We write the LO QCD anomalous dimension matrix (ADM) as

γ(0) =

(
γ

(0)
QQ γ

(0)
QE

γ
(0)
EQ γ

(0)
EE

)
, (2.8)

where γ
(0)
QQ is the ADM for the physical set of operators (2.1), γ

(0)
QE describes the mixing

of the physical operators into the evanescent ones (A.1), γ
(0)
EQ vanishes (see [38]) and γ

(0)
EE

is not required. We decompose the LO HQET ADM γ̃(0) analogously. Our results for the

non-vanishing entries are given in appendix A.

The non-vanishing Wilson coefficients at LO are

C
(0)

Q1Q̃1
= 1, C

(0)

Q2Q̃2
= 1, C

(0)

Q3Q̃1
= −1

2
, C

(0)

Q3Q̃2
= −1, C

(0)

Q4Q̃4
= 1, C

(0)

Q5Q̃5
= 1. (2.9)

– 5 –
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The NLO corrections to the matching coefficients read

C
(1)

QQ̃
=


−41

3 + a2
12 − 6Lµ −8 0 0

3
2 − a1

12 + Lµ 8 + 4Lµ 0 0

5 + 2a1−a2
24 + 4Lµ 4 + 4Lµ 0 0

0 0 8− a3
24 +

9Lµ
2 −4 + a3

8 −
3Lµ

2

0 0 4 + a3
8 +

3Lµ
2 −8− a3

24 −
9Lµ

2

 , (2.10)

where Lµ = ln(µ2/m2
b) and we have set Nc = 3 to keep the results compact.

2.3 Matching of QCD and HQET Bag parameters

We define the QCD bag parameters BQ following [45]

〈Q(µ)〉 = AQ f
2
BM

2
B BQ(µ), (2.11)

where the coefficients read

AQ1 = 2 +
2

Nc
,

AQ2 =
M2
B

(mb +mq)2

(
−2 +

1

Nc

)
, AQ3 =

M2
B

(mb +mq)2

(
1− 2

Nc

)
,

AQ4 =
2M2

B

(mb +mq)2
+

1

Nc
, AQ5 = 1 +

2M2
B

Nc(mb +mq)2
,

(2.12)

the B meson decay constant fB is defined as

〈0|b̄γµγ5q|B(p)〉 = −ifBpµ, (2.13)

MB is the mass of the B meson and BQi = 1 corresponds to the VSA approximation.

We note that the quark masses appearing in (2.12) are not MS masses which is the usual

convention today [5, 46], but pole masses. We prefer the definition (2.11) for the analysis

because the use of MS masses makes the LO ADM of the Bag parameters explicitly µ-

dependent and prohibits an analytic solution of the RGE. At the end we convert our

results to the convention of [5, 46] which we denote as

〈Q(µ)〉 = AQ(µ) f2
BM

2
B BQ(µ), (2.14)

where the AQ(µ) follow from AQ with the replacements mb → mb(µ) and mq → mq(µ).

Similar to (2.11), we use for the HQET operators

〈〈Q̃(µ)〉〉 = AQ̃ F
2(µ)BQ̃(µ), (2.15)

where

AQ̃1
= 2 +

2

Nc
, AQ̃2

= −2 +
1

Nc
, AQ̃4

= 2 +
1

Nc
, AQ̃5

= 1 +
2

Nc
, (2.16)

and the matrix elements have been taken between non-relativistically normalized states

〈〈Q̃i(µ)〉〉 ≡ 〈B|Q̃i(µ)|B〉 with

|B(p)〉 =
√

2MB |B(v)〉+O (1/mb) , (2.17)

– 6 –
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such that

〈B(v′)|B(v)〉 =
v0

M3
B

(2π)3δ(3)(v′ − v). (2.18)

The parameter F (µ) is defined as

〈0|h̄(−)γµγ5q|B(v)〉 = −iF (µ)vµ, (2.19)

and related to the decay constant by

fB =

√
2

MB
C(µ)F (µ) +O (1/mb) , (2.20)

with [47]

C(µ) = 1− 2CF
αs(µ)

4π
+O(α2

s). (2.21)

From (2.11) and (2.15), we obtain, using (2.4), (2.17) and (2.20),

BQi(µ) =
∑
j

AQ̃j
AQi

CQiQ̃j (µ)

C2(µ)
BQ̃j (µ) +O(1/mb). (2.22)

The HQET bag parameters BQ̃ are determined from a sum rule analysis.

3 HQET sum rule

The HQET sum rule is introduced in section 3.1. We give results for the double-

discontinuity of the three-point correlators in section 3.2 and describe the determination

of HQET and QCD Bag parameters in section 3.3.

3.1 The sum rule

We define the three-point correlator

KQ̃(ω1, ω2) =

∫
ddx1d

dx2e
ip1·x1−ip2·x2 〈0|T

[
j̃+(x2)Q̃(0)j̃−(x1)

]
|0〉 , (3.1)

where ω1,2 = p1,2 · v and

j̃+ = q̄γ5h(+), j̃− = q̄γ5h(−), (3.2)

are interpolating currents for the pseudoscalar B and B mesons. The correlator (3.1) is

analytic in ω1,2 apart from discontinuities for positive real ω. This allows us to construct

a dispersion relation

KQ̃(ω1, ω2) =

∞∫
0

dη1dη2

ρQ̃(η1, η2)

(η1 − ω1)(η2 − ω2)
+ [subtraction terms] , (3.3)

where ρQ̃ is the double discontinuity of KQ̃ in ω1 and ω2. The second term on the right

originates from the integration of KQ̃ along the circle at infinity in the complex η1 or

– 7 –
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(and) η2 planes and is therefore polynomial in ω1 or (and) ω2. The correlator KQ̃ can be

computed by means of an OPE

KOPE
Q̃

(ω1, ω2) = Kpert

Q̃
(ω1, ω2) +K

〈q̄q〉
Q̃

(ω1, ω2) 〈q̄q〉+K
〈αsG2〉
Q̃

(ω1, ω2) 〈αsG2〉+ . . . (3.4)

for values of ω1,2 that lie far away from the physical cut. Assuming quark-hadron duality,

we can equate the correlator KOPE
Q̃

with its hadronic counterpart

Khad
Q̃

(ω1, ω2) =

∞∫
0

dη1dη2

ρhad
Q̃

(η1, η2)

(η1 − ω1)(η2 − ω2)
+ [subtraction terms] , (3.5)

which is obtained from integration over the hadronic spectral function

ρhad
Q̃

(ω1, ω2) = F 2(µ)〈〈Q̃(µ)〉〉δ(ω1 − Λ)δ(ω2 − Λ) + ρcont
Q̃

(ω1, ω2). (3.6)

We use a double Borel transformation with respect to ω1,2 to remove the contribution from

the integration over the circle at infinity and to suppress the sensitivity to the continuum

part ρcont
Q̃

of the spectral function, which yields the sum rule

∞∫
0

dω1dω2e
−ω1
t1
−ω2
t2 ρOPE

Q̃
(ω1, ω2) =

∞∫
0

dω1dω2e
−ω1
t1
−ω2
t2 ρhad

Q̃
(ω1, ω2). (3.7)

In principle one can proceed by modelling the continuum ρcont
Q̃

. The desired matrix element

of the operator Q̃ between the mesonic ground state can then be disentangled by varying

the Borel parameters. However, the continuum contribution is exponentially suppressed in

the Borel sum rule and it is safe to simply “cut off” the sum rule by assuming that

ρcont
Q̃

(ω1, ω2) = ρOPE
Q̃

(ω1, ω2) [1− θ(ωc − ω1)θ(ωc − ω2)] , (3.8)

which directly yields a finite-energy sum rule for the matrix elements

F 2(µ)〈〈Q̃(µ)〉〉e−
Λ
t1
− Λ
t2 =

ωc∫
0

dω1dω2e
−ω1
t1
−ω2
t2 ρOPE

Q̃
(ω1, ω2). (3.9)

Thus, the determination of the HQET Bag parameters requires the computation of the spec-

tral functions ρOPE
Q̃

. The leading condensate corrections have been determined in [12, 13].

We compute the O(αs) corrections to the perturbative contribution below.

3.2 Spectral functions at NLO

We determine the spectral functions by first computing the correlator

Kpert

Q̃
(ω1, ω2) = K

(0)

Q̃
(ω1, ω2) +

αs
4π
K

(1)

Q̃
(ω1, ω2) + . . . (3.10)

– 8 –
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Q̃ j+j−

q

q̄h(−)

h(+)

Figure 2. Leading order diagram for the three-point HQET correlator (3.1). The sum over the

two possible contractions of the operator Q̃ is implied.

Figure 3. Diagrams contributing to the three-point HQET correlator (3.1) at NLO. Symmetric

diagrams are not shown.

and then taking its double discontinuity. At LO we have to evaluate the diagram in figure 2

which factorizes into two two-point functions. We obtain2

K
(0)

Q̃i
(ω1, ω2) =

(
AQ̃i − δi1

2ε

Nc

)
Π(0)(ω1)Π(0)(ω2), (3.11)

where

Π(0)(ω) = − 4Nc

(4π)2−ε µ̃
2ε (−2ω)2−2ε Γ(2− ε)Γ(−2 + 2ε) (3.12)

is the LO result for the two-point correlator

Π(ω) = i

∫
ddxeipx 〈0|T

[
j̃†+(0)j̃+(x)

]
|0〉 , (3.13)

where ω = p · v and the use of µ̃2 = µ2 exp(γE)/(4π) corresponds to the MS scheme.

The bare NLO correction K
(1),bare

Q̃
is given by the diagrams shown in figure 3. At

this order we get corrections that do not factorize due to gluon exchange between the left

and right-hand side. These genuine three-loop contributions — given by the diagrams in

the second row of figure 3 — are the most computationally challenging. The Dirac traces

2As discussed below the sum rule reproduces the VSA at LO. Therefore the factors AQ̃i
appear at

leading order in the expansion of the results in ε. However, the correlator is computed in d dimensions and

corrections can appear. We find that this happens only for Q̃1 where the contraction of the two γ matrices

inside the trace yields a d-dimensional factor.

– 9 –
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have been evaluated with both TRACER [42] and Package-X [43, 44]. We use the code

FIRE [48–50] to find IBP relations [51] between the three-loop integrals and to reduce them

to a set of master integrals via the Laporta algorithm [52]. The relevant master integrals

have been computed analytically in [11, 53].

The renormalized NLO correlators are given by

K
(1)

Q̃i
= K

(1),bare

Q̃i
+

1

2ε

[(
2γ̃

(0)

j̃
δij + γ̃

(0)

Q̃iQ̃j

)
K

(0)

Q̃j
+ γ̃

(0)

Q̃iẼj
K

(0)

Ẽj

]
, (3.14)

where γ̃
(0)

j̃
= −3CF is the LO anomalous dimension of the currents j̃±. The contributions

from the evanescent operators modify the double discontinuities of the correlators by a

finite amount and introduce a dependence of the correlator on the choice of basis of the

HQET evanescent operators. This dependence propagates to the HQET bag parameters

extracted in the sum rule and cancels with the HQET evanescent scheme dependence of the

matching coefficients (2.10) in the matching equation (2.22) for the QCD Bag parameters.

The results for the bare correlators are available as an ancillary Mathematica file with

the arXiv version of this article. Here, we only show the compact results for the double

discontinuities of the correlators.

Methods to compute the double discontinuities of the correlators have been described

in [11, 54]. The results take the form

ρpert

Q̃i
(ω1, ω2) = AQ̃iρΠ(ω1)ρΠ(ω2) + ∆ρQ̃i , (3.15)

where

ρΠ(ω) ≡ Π(ω + i0)−Π(ω − i0)

2πi

=
Ncω

2

2π2

[
1 +

αsCF
4π

(
17 +

4π2

3
+ 3 ln

µ2

4ω2

)
+O(α2

s)

]
, (3.16)

is the discontinuity of the two-point correlator (3.13) up to two-loop order [55–57]. The

non-factorizable contributions are

∆ρQ̃i ≡
ω2

1ω
2
2

π4

αs
4π
rQ̃i(x, Lω), (3.17)

where x = ω2/ω1, Lω = ln(µ2/(4ω1ω2)) and we obtain

rQ̃1
(x, Lω) = 8− a2

2
− 8π2

3
,

rQ̃2
(x, Lω) = 25 +

a1

2
− 4π2

3
+ 6Lω + φ(x),

rQ̃4
(x, Lω) = 16− a3

4
− 4π2

3
+ 3Lω +

φ(x)

2
,

rQ̃5
(x, Lω) = 29− a3

2
− 8π2

3
+ 6Lω + φ(x), (3.18)

where

φ(x) =

{
x2 − 8x+ 6 ln(x), x ≤ 1,
1
x2 − 8

x − 6 ln(x), x > 1.
(3.19)

Taking a2 = −4 in accordance with [11] we reproduce their result for rQ̃1
up to a factor of

2 which is due to the different normalization of the HQET operators.
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3.3 Sum rule for the Bag parameters

Inserting the decomposition (3.15) into the sum rule (3.9) allows us to subtract the factor-

ized contribution using the sum rule [55–57] for the HQET decay constant

F 2(µ)e−
Λ
t =

ωc∫
0

dωe−
ω
t ρΠ(ω) + . . . . (3.20)

The factorizable part of (3.15) exactly reproduces the VSA for the matrix elements. After

subtracting it, we obtain a sum rule for the deviation ∆BQ̃ = BQ̃ − 1 from the VSA. In

the traditional sum rule approach this gives

∆BQ̃i =
1

AQ̃iF (µ)4

ωc∫
0

dω1dω2e
Λ−ω1
t1

+
Λ−ω2
t2 ∆ρQ̃i(ω1, ω2) (3.21)

=
1

AQ̃i

ωc∫
0

dω1dω2e
−ω1
t1
−ω2
t2 ∆ρQ̃i(ω1, ω2)(

ωc∫
0

dω1e
−ω1
t1 ρΠ(ω1)

)(
ωc∫
0

dω2e
−ω2
t2 ρΠ(ω2)

) . (3.22)

The stability of the sum rule (3.22) can then be assessed numerically by variation of the

cutoff ωc and the Borel parameters ti, see e.g. [54, 56].

In our analysis we follow a different approach that allows us to obtain analytic results

for the HQET Bag parameters. This exploits the fact that the dispersion relation (3.3) is

not violated by the introduction of an arbitrary weight function w(ω1, ω2) in the integration

as long as it is chosen such that no additional discontinuities appear in the complex plane.3

In the presence of such a weight function w the square of the sum rule (3.20) takes the form

F 4(µ)e
− Λ
t1
− Λ
t2w(Λ,Λ) =

ωc∫
0

dω1dω2e
−ω1
t1
−ω2
t2 w(ω1, ω2)ρΠ(ω1)ρΠ(ω2) + . . . . (3.23)

Since the condensate contributions have already been taken into account in [11–13] and are

in the subpercent range we only focus on the perturbative contribution to the sum rule.

By using (3.23) with the choice

wQ̃i(ω1, ω2) =
∆ρpert

Q̃i
(ω1, ω2)

ρpert
Π (ω1)ρpert

Π (ω2)
=

4

N2
c

αs
4π

rQ̃i(x, Lω), (3.24)

we can remove the integration in (3.21) altogether and find the simple result

∆Bpert

Q̃i
(µρ) =

4

N2
cAQ̃i

αs(µρ)

4π
rQ̃i

(
1, log

µ2
ρ

4Λ
2

)
. (3.25)

3The arbitrariness of the weight function is a mathematical statement which holds for the dispersion

relation. The sum rule (3.7) does however also assume quark-hadron duality and breaks down if pathological

weight functions are used, e.g. rapidly oscillating ones. In the following we only use slowly varying weight

functions with support on the complete integration domain.
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The sum rule is valid at a low scale µρ ∼ 2ωi ∼ 2Λ where the logarithms that appear

in the spectral functions are small. From there we have to evolve the results for the Bag

parameters up to the scale µm ∼ mb where the matching (2.22) to the QCD Bag parameters

can be performed without introducing large logarithms. From (2.15) and the running of

the HQET operators and decay constant

d ~̃Q

d lnµ
= −ˆ̃γQ̃Q̃

~̃Q,
dF (µ)

d lnµ
= −γ̃j̃F (µ), (3.26)

we obtain the RG equations for the HQET Bag parameters

d ~BQ̃
d lnµ

= −
(
Â−1
Q̃

ˆ̃γQ̃Q̃ÂQ̃ − 2γ̃j̃

)
~BQ̃ ≡ −ˆ̃γB̃

~BQ̃, (3.27)

where ÂQ̃ is the diagonal matrix with entries AQ̃ given in (2.16). The LO solution to (3.27)

takes the form
~BQ̃(µ) = Û

(0)

B̃
(µ, µ0) ~BQ̃(µ0), (3.28)

with the LO evolution matrix

Û
(0)

B̃
(µ, µ0) =

(
αs(µ)

αs(µ0)

) ˆ̃γ
(0)

B̃
2β0

= V̂

(
αs(µ)

αs(µ0)

) ~̃γ
(0)

B̃
2β0

V̂ −1, (3.29)

where V̂ is the transformation that diagonalizes the ADM ˆ̃γ
(0)

B̃

ˆ̃γ
(0),D

B̃
= V̂ −1 ˆ̃γ

(0)

B̃
V̂ , (3.30)

and the vector ~̃γ
(0)

B̃
contains the diagonal entries of ˆ̃γ

(0),D

B̃
. As part of our error analysis

we allow the matching scale µm to differ from mb(mb) and then evolve the QCD Bag

parameters back to mb(mb). The LO evolution matrix has the same form as its HQET

counterpart (3.29) while the anomalous dimension matrix of the QCD Bag parameters is

given by

γ̂B = Â−1
Q γ̂QQÂQ. (3.31)

We only resum the leading logarithms because the NLO anomalous dimensions in HQET

are currently not known. This implies that dependence of the QCD matrix elements on

the basis of evanescent HQET operators does not fully cancel. As discussed below, we use

variation of the parameters ai to estimate the effects of NLL resummation. We expect this

effect to be small since the scales µρ and µm are not very widely separated and ln(µm/µρ)

is of order one.

4 Results for ∆B = 2 operators

We describe our analysis in section 4.1 and give the results for the Bag parameters, together

with a comparison with other works, in section 4.2. In section 4.3 the results for the mixing

observables with our Bag parameters are shown.
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4.1 Details of the analysis

We determine the HQET Bag parameters from the sum rule (3.25) with the central values

µρ = 1.5 GeV and Λ = 0.5 GeV. We use RunDec [58, 59] to evolve αs(MZ) = 0.1181 [60]

down to the bottom-quark MS mass mb(mb) = 4.203 GeV [61, 62] with five-loop accu-

racy [63–67]. From there we use two-loop running with four and five flavours in HQET

and QCD, respectively. The decoupling of the bottom quark is trivial at this accuracy.

The HQET Bag parameters are then evolved from the scale µρ up to the scale µm =

mb(mb) using (3.28). There the matching (2.22) to the QCD Bag parameters is performed.

The factors CQiQ̃j (µ)/C2(µ) are expanded in αs and truncated after the linear term. We

also expand the ratios AQ̃j/AQi strictly in Λ/mb and mq/mb. Up to higher order perturba-

tive corrections, this is equivalent to the use of the VSA for the power-suppressed HQET

operators that arise in the QCD-HQET matching (2.4).

A small dependence on the choice of basis for the evanescent HQET operators remains

in the QCD Bag parameters because the RG evolution of the HQET Bag parameters is

only known at the LL level. We have checked that the ai-dependence fully cancels when

the scales µρ and µm are identified and the matching (2.22) is strictly expanded in the

strong coupling, which serves as a strong cross-check of our calculation. For different scales

µρ and µm the remaining ai-dependence can be removed by a future computation of the

NLO ADMs.

Finally, we convert the QCD Bag parameters BQ to the usual convention BQ defined

in (2.14). This is done by expanding the ratios of the prefactors AQ/AQ(mb(mb)) in αs
and truncating them after the linear term.

To estimate the errors of the Bag parameters we take the following sources of uncer-

tainties into account:

• The uncertainty in the analytic form (3.25) of the sum rule is estimated through

variation of the residual mass Λ in the range [0.4,0.6] GeV. In addition we include an

intrinsic sum rule uncertainty of 0.02 in the HQET bag parameters. The numerical

value is determined from the comparison of the analytic values (3.25) with results

obtained from the traditional sum rule approach (3.22).

• The condensate contributions to BQ̃1
and BQ̃2

are taken from [12, 13] and are in

the subpercent range. For BQ̃4
and BQ̃5

, which have not been determined there, we

therefore add an error of ±0.01 to the perturbative results.

• To assign an uncertainty from the unknown α2
s contributions to the spectral densities

we vary the scale µρ in the range [1,2] GeV.

• As discussed above we implicitly include higher-order corrections in 1/mb in the

VSA approximation. The non-factorizable corrections of this kind are of the order

(αs/π) · (Λ/mb) ∼ 0.01, which we take as an estimate for the error.

• Higher order perturbative contributions to the QCD-HQET matching relation and

the RG evolution of the Bag parameters are estimated through variation of µm in
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the range [3,6] GeV and variation of the ai in the range [-10,10]. The QCD Bag pa-

rameters are then evolved to the central scale mb(mb) with LL accuracy as described

in section 3.3.

The variation of µm by the usual factors of 1/2 and 2 would lead to a doubling of

the matching uncertainty estimates given below, which would significantly exceed the

effect of the NLO matching at the central scale. We therefore use a less conserva-

tive range but cannot exclude larger matching effects at NNLO at present, while a

calculation is not available.

• The parametric uncertainty from αs(MZ) is in the permille range and neglected.

The individual errors are then summed in quadrature. We also divide the uncertainties

into a sum rule uncertainty which contains the first three items in the list above and a

matching uncertainty which contains the remaining three.

4.2 Results and comparison

From the sum rule we obtain the HQET Bag parameters

BQ̃1
(1.5 GeV) = 0.910 +0.023

−0.031 = 0.910 +0.000
−0.000(Λ) +0.020

−0.020(intr.) +0.005
−0.005(cond.) +0.011

−0.024(µρ),

BQ̃2
(1.5 GeV) = 0.923 +0.029

−0.035 = 0.923 +0.016
−0.020(Λ) +0.020

−0.020(intr.) +0.004
−0.004(cond.) +0.013

−0.020(µρ),

BQ̃4
(1.5 GeV) = 1.009 +0.024

−0.023 = 1.009 +0.007
−0.006(Λ) +0.020

−0.020(intr.) +0.010
−0.010(cond.) +0.003

−0.003(µρ),

BQ̃5
(1.5 GeV) = 1.004 +0.030

−0.028 = 1.004 +0.020
−0.016(Λ) +0.020

−0.020(intr.) +0.010
−0.010(cond.) +0.004

−0.006(µρ),

(4.1)

where we have set ai = 0 for i = 1, 2, 3 to specify a unique basis of evanescent HQET

operators. The individual uncertainties were determined as described above and added in

quadrature. The corrections to the VSA for scales in the range from 1–2 GeV are at the

level of 5–11 % for Q̃1,2 and 0–4 % for Q̃4,5. We find that the total sum rule uncertainties

of the Bag parameters are quite small. This is because the sum rule (3.25) is formulated

for the deviation from the VSA and the substantial relative uncertainties of the sum rule

itself are small in comparison with the VSA contribution to the Bag parameters.

Following the steps outlined in section 4.1 we obtain the following results for the QCD

Bag parameters

BQ1(mb(mb)) = 0.868 +0.051
−0.050 = 0.868 +0.021

−0.029(sum rule) +0.046
−0.041(matching),

BQ2(mb(mb)) = 0.842 +0.078
−0.073 = 0.842 +0.028

−0.033(sum rule) +0.073
−0.065(matching),

BQ3(mb(mb)) = 0.818 +0.162
−0.159 = 0.818 +0.126

−0.132(sum rule) +0.102
−0.087(matching),

BQ4(mb(mb)) = 1.049 +0.092
−0.084 = 1.049 +0.025

−0.025(sum rule) +0.089
−0.080(matching),

BQ5(mb(mb)) = 1.073 +0.083
−0.075 = 1.073 +0.028

−0.026(sum rule) +0.078
−0.070(matching). (4.2)

The evolution to the scale mb(mb)) and the matching to QCD increase the deviations

from the VSA to up to 18 %. With the exception of BQ3 the uncertainties of the Bag

parameters are dominated by the matching. A detailed list of the uncertainties can be

found in appendix B.
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Figure 4. Comparison of our results for the ∆B = 2 Bag parameters at the scale mb(mb) to the

lattice values of HPQCD’07 [3], ETM’14 [4] and FNAL/MILC’16 [5], the FLAG averages [68] and

the sum rule result GKMP’16 [11].

In figure 4 we compare our results to other recent determinations from lattice simu-

lations [3–5, 68] and sum rules [11]. We find excellent agreement for the Bag parameters

of the operators Q1, Q2 and Q3. The uncertainties of our sum rule analysis are similar to

those obtained on the lattice. We observe that the uncertainty of the Bag parameter BQ3

is significantly larger than those of BQ1 and BQ2 . This is related to the small color factor

AQ3 = 1/3 +O(1/mb) which implies that the sum rule uncertainties get enhanced by the

factors AQ̃1
/AQ3 = 8 +O(1/mb) and AQ̃2

/AQ3 = −5 +O(1/mb) in the matching (2.22) of

the Bag parameters. The absolute sum rule uncertainty of the matrix element of Q3 is of

a similar size as that of the other operators.

The tiny difference of the central value of BQ1 compared to the sum rule determi-

nation [11] is mostly due to different scale choices. Since BQ1 does not run at the LL

order, [11] sets all scales equal to the bottom-quark mass. We, however, evaluate the sum

rule at a lower scale µρ ∼ 1.5 GeV where the strong coupling is larger and causes a bigger

deviation from the VSA.

Only two previous lattice results [4, 5] exist for the matrix elements of the operators

Q4 and Q5, and they differ at the level of more than two sigma. Our results are in

very good agreement with those of [5] and show an even higher level of tension with [4]

in BQ5 .
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4.3 Bs and Bd mixing observables

We consider the mass and decay rate differences ∆Ms = M s
H −M s

L and ∆Γs = ΓsL − ΓsH ,

where M s
H/L and ΓsH/L are the mass and width of the heavy (H) and light (L) physical

eigenstates of the Bs–B̄s system, as well as the semileptonic decay asymmetry

assl =
Γ(B̄s(t)→ f)− Γ(Bs(t)→ f̄)

Γ(B̄s(t)→ f) + Γ(Bs(t)→ f̄)
, (4.3)

where f is a flavor-specific final state, i.e. B̄s → f and Bs → f̄ are forbidden (see [1] for a

recent review of Bs mixing). Using our values for the Bag parameters, we give predictions

for these observables and compare them to the current experimental averages given by the

HFLAV [69]. In our sum rule determination we have assumed the light quark q in the Bq
meson to be massless. The corrections to (3.25) from a non-zero strange-quark mass are of

the order (αs/π)(ms/(2Λ)) ≈ 0.02. This point has recently been discussed in more detail

in [70]. We add another uncertainty of ±0.02 in quadrature to the results (4.2) to account

for the unknown corrections. The effect on the total uncertainty is small.

We find excellent agreement between experiment and the SM prediction for the mass

difference:

∆M exp
s = (17.757± 0.021) ps−1,

∆MSM
s = (18.1+1.9

−1.8) ps−1 = (18.1+1.3
−1.2 (had.)± 0.1 (scale)+1.4

−1.3 (param.)) ps−1,
(4.4)

where we have used the input values given in appendix B. The 10% uncertainty of the SM

prediction is dominated by the hadronic and parametric CKM uncertainties which are of

the same size. We also give results for the mass difference in the Bd system

∆M exp
d = (0.5065±0.0019)ps−1,

∆MSM
d = (0.61±0.09)ps−1 = (0.61±0.04(had.)±0.00(scale)±0.08(param.))ps−1,

(4.5)

where the agreement is at the level of 1.1 sigma.

We determine the decay rate difference and the semileptonic decay asymmetry in

the MS, PS [71], 1S [72] and kinetic [73] mass schemes with the mass values given in

appendix B. The MS charm-quark mass at the scale of the bottom-quark mass has been

used throughout. We obtain

∆Γexp
s = (0.090±0.005)ps−1,

∆ΓMS
s = (0.080+0.018

−0.023)ps−1 = (0.080±0.016(had.)+0.006
−0.015 (scale)±0.006(param.))ps−1,

∆ΓPS
s = (0.079+0.020

−0.026)ps−1 = (0.079±0.018(had.)+0.007
−0.018 (scale)±0.006(param.))ps−1,

∆Γ1S
s = (0.075+0.021

−0.028)ps−1 = (0.075±0.019(had.)+0.008
−0.020 (scale)±0.006(param.))ps−1,

∆Γkin
s = (0.076+0.020

−0.027)ps−1 = (0.076±0.018(had.)+0.008
−0.019 (scale)±0.006(param.))ps−1,

(4.6)

and

as, exp
sl = (−60± 280) · 10−5,

as,MS
sl = (2.1± 0.3) · 10−5 = (2.1± 0.1 (had.)+0.0

−0.1 (scale)+0.2
−0.3 (param.)) · 10−5,

as,PS
sl = (2.0+0.2

−0.3) · 10−5 = (2.0± 0.1 (had.)+0.0
−0.1 (scale)± 0.2 (param.)) · 10−5,

as, 1S
sl = (2.0+0.2

−0.3) · 10−5 = (2.0± 0.0 (had.)+0.0
−0.1 (scale)± 0.2 (param.)) · 10−5,

as, kin
sl = (2.0+0.2

−0.3) · 10−5 = (2.0± 0.1 (had.)+0.0
−0.1 (scale)± 0.2 (param.)) · 10−5.

(4.7)
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The different mass schemes are in good agreement with each other and we adopt the PS

mass scheme as our central result. The SM value for the decay rate difference is in good

agreement with the experimental average. The theory uncertainty is currently at the level of

30%. It is dominated by the matrix elements of the dimension seven operators, in particular

the VSA estimate BR2 = 1 ± 0.5 contributes ±0.016 ps−1 to the uncertainty. The second

largest contribution is the scale variation. A detailed overview is given in appendix B.

To achieve a significant reduction of the combined uncertainties, a determination of the

dimension seven matrix elements and a NNLO calculation of the perturbative matching

are needed.

The experimental uncertainty for the semileptonic decay asymmetry is two orders of

magnitude larger than the SM prediction, which makes this a clear null test for the SM [74].

The decay rate difference and the semileptonic decay asymmetry in the Bd system have

also not been measured yet. The current experimental averages and our predictions are

∆Γexp
d = (−1.3±6.6)·10−3 ps−1,

∆ΓPS
d = (2.7+0.8

−0.9)·10−3 ps−1 = (2.7+0.6
−0.6 (had.)+0.2

−0.6 (scale)+0.4
−0.4 (param.))·10−3 ps−1,

ad,exp
sl = (−21±17)·10−4,

ad,PS
sl = (−4.0±0.5)·10−4 = (−4.0±0.1(had.)+0.2

−0.1 (scale)±0.5(param.))·10−4.

(4.8)

The results obtained in different mass schemes are compatible and the relative uncertainties

of the predictions are of the same magnitude as in the Bs system.

5 ∆B = 0 operators and ratios of B-meson lifetimes

The dominant contribution to lifetime differences between the mesons Bq with q = u, d, s is

due to spectator effects which first appear as dimension-six contributions in the HQE. The

NLO Wilson coefficients have been computed in [75–77]. The dimension seven contributions

are known at LO [29, 78]. We define the set of operators in section 5.1 and present the

results for their Bag parameters in section 5.2. The updated HQE results for the B-meson

lifetime ratios are given in section 5.3.

5.1 Operators and matrix elements

The following QCD operators enter at dimension six:

Qq1 = b̄γµ(1− γ5)q q̄γµ(1− γ5)b, T q1 = b̄γµ(1− γ5)TAq q̄γµ(1− γ5)TAb,

Qq2 = b̄(1− γ5)q q̄(1 + γ5)b, T q2 = b̄(1− γ5)TAq q̄(1 + γ5)TAb. (5.1)

On the HQET side they match onto

Q̃q1 = h̄γµ(1− γ5)q q̄γµ(1− γ5)h, T̃ q1 = h̄γµ(1− γ5)TAq q̄γµ(1− γ5)TAh,

Q̃q2 = h̄(1− γ5)q q̄(1 + γ5)h, T̃ q2 = h̄(1− γ5)TAq q̄(1 + γ5)TAh. (5.2)

Our basis of evanescent operators and the results of the matching computation can be

found in appendix A.2. We only consider the isospin-breaking combinations of operators

Qi = Qui −Qdi , Ti = T ui − T di , (5.3)
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j− j†−

q
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q′

h(−) h(−)

Figure 5. Leading order eye contraction.

and their analogues in HQET. This implies that the eye contractions displayed in figure 5

cancel in the limit of exact isospin symmetry.

The matrix elements are

〈Qi(µ)〉 = Ai f
2
BM

2
B Bi(µ), 〈Ti(µ)〉 = Ai f

2
BM

2
B εi(µ), (5.4)

where 〈Q〉 = 〈B−|Q|B−〉, the coefficients read

A1 = 1, A2 =
M2
B

(mb +mq)2
, (5.5)

and Bi = 1, εi = 0 corresponds to the VSA approximation. Similarly we obtain for the

HQET operators

〈〈Q̃i(µ)〉〉 = Ãi F
2(µ) B̃i(µ), 〈〈T̃i(µ)〉〉 = Ãi F

2(µ) ε̃i(µ), (5.6)

where

Ã1 = 1, Ã2 = 1. (5.7)

5.2 Results for the spectral functions and bag parameters

For the ∆B = 0 operators we use the same conventions for the decomposition of the three-

point correlator and the sum rule as for the ∆B = 2 operators above. We obtain for the

double discontinuities of the non-factorizable contributions

rQ̃i(x, Lω) = 0,

rT̃1
(x, Lω) = −8 +

a1

8
+

2π2

3
− 3

2
Lω −

1

4
φ(x),

rT̃2
(x, Lω) = −29

4
+
a2

8
+

2π2

3
− 3

2
Lω −

1

4
φ(x). (5.8)

The leading condensate contributions have been determined in [14]. From their results we

deduce that

ρcond
Q̃i

(ω1, ω2) = 0 + . . . ,

ρcond
T̃1

(ω1, ω2) =
〈gsq̄σµνGµνq〉

128π2
[δ(ω1) + δ(ω2)] + . . . ,

ρcond
T̃2

(ω1, ω2) = − 1

64π2

[〈αs
π
G2
〉

+ 〈gsq̄σµνGµνq〉 [δ(ω1) + δ(ω2)]
]

+ . . . , (5.9)
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where the dots indicate factorizable contributions, αs corrections and contributions from

condensates of dimension six and higher. To determine the condensate contributions to the

HQET parameters we have used the traditional form of the sum rule, because the appear-

ance of the δ-functions obviously prevents the application of a weight function analogous

to (3.24). We find

∆B̃ cond
i (1.5 GeV) = 0.000± 0.002,

∆ε̃ cond
1 (1.5 GeV) = −0.005± 0.003,

∆ε̃ cond
2 (1.5 GeV) = +0.006± 0.004. (5.10)

The associated errors were determined from an uncertainty of ±0.002 for missing higher-

dimensional condensates, variations of the Borel parameters and the continuum cutoff and

the uncertainty in the condensates〈αs
π
G2
〉

= (0.012± 0.006) GeV4, 〈gsq̄σµνGµνq〉 = (−0.011± 0.002) GeV5. (5.11)

We note that our results for the contributions of the condensate corrections to the deviation

of the Bag parameters from the VSA are much smaller than those of [14]. This is mostly

due to the choice of the Borel parameter. We use t ∼ 1 GeV where the sum rule is

stable against variations of the Borel parameter, while the Borel region of [14] translates

to t = (0.35− 0.5) GeV where the sum rule becomes unstable as can be seen in their plots.

Our choice is also preferred by other modern sum rule analyses [12, 13, 80, 82].

Following analysis strategy for the perturbative contributions described for the ∆B = 2

Bag parameters in section 4.1, we find the HQET Bag parameters

B̃1(1.5 GeV) = 1.000 +0.020
−0.020 = 1.000 +0.000

−0.000(Λ) +0.020
−0.020(intr.) +0.002

−0.002(cond.) +0.000
−0.001(µρ),

B̃2(1.5 GeV) = 1.000 +0.020
−0.020 = 1.000 +0.000

−0.000(Λ) +0.020
−0.020(intr.) +0.002

−0.002(cond.) +0.000
−0.001(µρ),

ε̃1(1.5 GeV) = −0.016 +0.021
−0.022 = −0.016 +0.007

−0.008(Λ) +0.020
−0.020(intr.) +0.003

−0.003(cond.) +0.003
−0.003(µρ),

ε̃2(1.5 GeV) = 0.004 +0.022
−0.022 = 0.004 +0.007

−0.008(Λ) +0.020
−0.020(intr.) +0.004

−0.004(cond.) +0.002
−0.002(µρ).

(5.12)

where we have set a1 = a2 = 0. At the considered order there is no deviation from the VSA

for the Bag parameters of the color singlet operators, as can be seen in (5.8) and (5.9),

because the corresponding color factors vanish. The deviations for the color octet operators

are in the range 0–2 % for scales µρ between 1 and 2 GeV. In QCD we obtain

B1(µ = mb(mb)) = 1.028 +0.064
−0.056 = 1.028 +0.019

−0.019(sum rule) +0.061
−0.053(matching),

B2(µ = mb(mb)) = 0.988 +0.087
−0.079 = 0.988 +0.020

−0.020(sum rule) +0.085
−0.077(matching),

ε1(µ = mb(mb)) = −0.107 +0.028
−0.029 = −0.107 +0.023

−0.024(sum rule) +0.015
−0.017(matching),

ε2(µ = mb(mb)) = −0.033 +0.021
−0.021 = −0.033 +0.018

−0.018(sum rule) +0.011
−0.011(matching). (5.13)

The RG evolution and the perturbative matching cause larger deviations from the VSA

which, however, do not exceed 11%. In figure 6 we compare our results to previous ones

from sum rules [14, 15] and the lattice [22, 23]. The results of [14, 15, 22] were obtained

within HQET. For the comparison we match their results to QCD at tree level while
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Figure 6. Comparison of our results for the ∆B = 0 Bag parameters at the scale mb(mb) to the

HQET sum rule results BLLS’98 [14] and CY’98 [15], and the lattice values of UKQCD’98 [22] and

Becirevic’01 [23].

expanding factors of Ãi/AQ(mb(mb)) in 1/mb. As discussed in section 4.1 this effectively

includes 1/mb corrections in the VSA approximation.

The Bi are in good agreement, with the exception of the value for B2 from [23],

which differs from the other results and the VSA by a factor of about two. While the

other sum rule results for the εi agree reasonably well with ours, the lattice results for

ε1 show significantly smaller deviations from the VSA. The similarity between the sum

rule results [14, 15] and ours appears to be mostly coincidental. As discussed above, we

find that the bulk of the deviation from the VSA in the εi is due to the RG running and

matching, while the latter was not considered in [14, 15]. In their analyses, there is instead

a sizeable deviation at the hadronic scale, originating from the condensate contributions. In

comparison with [14] we find that this is due to the choice of very small values of the Borel

parameter which lie outside of the stability region as discussed above. The assessment of

the origin of the smallness of the lattice results [22, 23] for the εi is beyond the scope of

this work. Many of the approximations made in [22, 23], like quenching, have since been

reappraised and a comparison with a state-of-the art lattice simulation is required.

– 20 –



J
H
E
P
1
2
(
2
0
1
7
)
0
6
8

5.3 Results for the lifetime ratios

Using our results (5.13) for the dimension-six Bag parameters and the VSA for the

dimension-seven Bag parameters defined in [29], ρi = 1± 1/12, σi = 0± 1/6,

τ(B+)
τ(B0)

∣∣∣
exp

= 1.076± 0.004,

τ(B+)
τ(B0)

∣∣∣
MS

= 1.078+0.021
−0.023 = 1.078 +0.020

−0.019 (had.) +0.002
−0.011 (scale)± 0.006 (param.),

τ(B+)
τ(B0)

∣∣∣
PS

= 1.082+0.022
−0.026 = 1.082± 0.021 (had.) +0.000

−0.015 (scale)± 0.006 (param.),

τ(B+)
τ(B0)

∣∣∣
1S

= 1.082+0.023
−0.028 = 1.082 +0.022

−0.021 (had.) +0.001
−0.017 (scale) +0.007

−0.006 (param.),

τ(B+)
τ(B0)

∣∣∣
kin

= 1.081+0.022
−0.027 = 1.081± 0.021 (had.) +0.001

−0.016 (scale)± 0.006 (param.),

(5.14)

we find excellent agreement with the experimental value and very good consistency between

different mass schemes. The biggest contributions to the total uncertainty are still from

the hadronic matrix elements, specifically from ε1 with ±0.015 and σ3 with ±0.013. In the

future, they can be reduced with an independent determination of the dimension-six Bag

parameters and a sum-rule determination of the dimension-seven Bag parameters.

We also update the prediction for the lifetime ratio τ(B0
s )/τ(B0) in the MS scheme

using eq. (117) from [16]:

τ(B0
s )

τ(B0)

∣∣∣∣
exp

= 0.994± 0.004,

τ(B0
s )

τ(B0)

∣∣∣∣
MS

= 0.9994± 0.0025

= 0.9994± 0.0014 (had.) ± 0.0006 (scale) ± 0.0020 (1/m4
b),

(5.15)

where we have added an uncertainty estimate for the spectator effects at order 1/m4
b which

have not been considered in [16]. With respect to last year [6], the difference between

the theory prediction and the experimental value for τ(B0
s )/τ(B0) is reduced from 2.5σ

to 1.1σ.

6 Matrix elements for charm and the D+ −D0 lifetime ratio

The HQET sum rule analysis can easily be adapted to the charm sector. It is common to

quote the matrix elements for the charm sector at the scale 3 GeV instead of the charm-

quark mass, see [30–32], and we adopt that convention for ease of comparison. Consequently

we also use 3 GeV as the central matching scale. In the error analysis it is varied between

2 and 4 GeV. To account for the lower value of charm-quark mass we assume that the

uncertainty due to power corrections is 0.03 instead of 0.01 for the bottom sector. Otherwise

we use the same analysis strategy as in the bottom sector which is outlined in section 4.1.

6.1 Matrix elements for D mixing

The latest lattice QCD study [32] for D mixing only gives results for the matrix elements

and not for the Bag parameters. We do the same here and obtain, using the value of the
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Figure 7. Comparison of our results for the ∆C = 2 matrix elements at the scale 3 GeV to the

lattice values of ETM’14 [30], ETM’15 [31] and FNAL/MILC’17 [32]. The values for the matrix

elements of the ETM collaboration are extracted from figure 16 of [32].

D-meson decay constant from appendix B,

〈Q1(3GeV)〉/GeV4 = 0.265+0.024
−0.021 = 0.265+0.006

−0.010 (s.r.)+0.019
−0.014 (matching)+0.013

−0.012 (fD),

−〈Q2(3GeV)〉/GeV4 = 0.502+0.124
−0.092 = 0.502+0.094

−0.078 (s.r.)+0.076
−0.044 (matching)+0.024

−0.023 (fD),

〈Q3(3GeV)〉/GeV4 = 0.135+0.037
−0.029 = 0.135+0.031

−0.026 (s.r.)+0.019
−0.010 (matching)+0.006

−0.006 (fD),

〈Q4(3GeV)〉/GeV4 = 0.792+0.175
−0.122 = 0.792+0.116

−0.093 (s.r.)+0.125
−0.070 (matching)+0.038

−0.037 (fD),

〈Q5(3GeV)〉/GeV4 = 0.340+0.060
−0.039 = 0.340+0.027

−0.021 (s.r.)+0.051
−0.029 (matching)+0.016

−0.016 (fD). (6.1)

The relative uncertainties in the charm sector are consistently larger than those in the

bottom sector because of larger perturbative corrections due to a larger value of αs at the

smaller scales and larger power corrections. This effect is most pronounced for Q2, Q4 and

Q5 where the relative uncertainty is larger by a factor of order two. In the matrix elements

we have an additional uncertainty from the value of the decay constant which is added

in quadrature.

We compare our results to those from the lattice in figure 7. There is a consistent

hierarchy with decreasing values from the results of the FNAL/MILC collaboration [32],

those of the ETM collaboration [30, 31] and ours. The only exception is the value of

〈Q5〉 from [31] which lies below ours. If we use the lattice average [60] for the decay

constant f lattice
D = (211.9± 1.1) MeV in place of the experimental average f exp

D = (203.7±
4.8) MeV [60], we find very good agreement between our results and those of ETM and the
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remaining differences with respect to the FNAL/MILC results are comfortably below two

sigmas. We prefer the experimental average of the decay constant since it is in significantly

better agreement with recent sum rule results [79–82]. On the other hand, using the lattice

value yields a more meaningful comparison with the lattice results since the quantities we

determine with the sum rule are the Bag parameters and the decay constant cancels out

in the comparison if the same value is used on both sides. We therefore conclude that our

sum rule results for the non-factorizable contributions to the Bag parameters are in good

agreement with lattice simulations. An investigation of the differences in the numerical

values of the decay constant is beyond the scope of this work.

6.2 Matrix elements for D lifetimes and τ (D+)/τ (D0)

Our results for the ∆C = 0 Bag parameters are

B1(3 GeV) = 0.902 +0.077
−0.051 = 0.902 +0.018

−0.018 (sum rule) +0.075
−0.048 (matching),

B2(3 GeV) = 0.739 +0.124
−0.073 = 0.739 +0.015

−0.015 (sum rule) +0.123
−0.072 (matching),

ε1(3 GeV) = −0.132 +0.041
−0.046 = −0.132 +0.025

−0.026 (sum rule) +0.033
−0.038 (matching),

ε2(3 GeV) = −0.005 +0.032
−0.032 = −0.005 +0.011

−0.012 (sum rule) +0.030
−0.030 (matching). (6.2)

While the uncertainties in B1,2 are similar to those in the B sector we find that those in

ε1,2 are larger by about 50%. The latter ones are dominated by the non-factorizable power

correction and the intrinsic sum rule errors which are both based on somewhat ad-hoc

estimates. Thus, our values for the uncertainties of ε1,2 should be taken with a grain of salt

and lattice results for the ∆C = 0 Bag parameters could provide an important consistency

check. Alternatively, one could also improve the dominant error due to non-factorizable

1/mc corrections by performing the operator matching up to the order 1/mc and determine

the matrix elements of the subleading HQET operators using sum rules.

We update our result for the D-meson lifetime ratio from [29] using the dimension six

Bag parameters (6.2) and the VSA ρi = 1±1/12, σi = 0±1/6 for the dimension-seven Bag

parameters. We have converted the MS value of the charm-quark mass to the PS mass

at µf = 1 GeV and the 1S mass at four-loop accuracy using RunDec. The kinetic mass

at the scale 1 GeV is determined with two-loop accuracy using an unpublished version of

the QQbar Threshold code [83, 84]. The central value for the scales µ1 and µ0 is fixed to

1.5 GeV for all mass schemes and varied between 1 and 3 GeV. We find

τ(D+)

τ(D0)

∣∣∣∣
exp

= 2.536± 0.019,

τ(D+)

τ(D0)

∣∣∣∣
MS

= 2.61+0.72
−0.77 = 2.61 +0.70

−0.66 (had.) +0.12
−0.38 (scale)± 0.09 (param.),

τ(D+)

τ(D0)

∣∣∣∣
PS

= 2.70+0.74
−0.82 = 2.70 +0.72

−0.68 (had.) +0.11
−0.45 (scale)± 0.10 (param.), (6.3)

τ(D+)

τ(D0)

∣∣∣∣
1S

= 2.56+0.81
−0.99 = 2.56 +0.78

−0.74 (had.) +0.22
−0.65 (scale)± 0.10 (param.),

τ(D+)

τ(D0)

∣∣∣∣
kin

= 2.53+0.72
−0.76 = 2.53 +0.70

−0.66 (had.) +0.13
−0.37 (scale)± 0.10 (param.),
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which is in very good agreement. The various mass schemes are all consistent and we

again take the PS result as our preferred value. The dominant sources of uncertainties

are the Bag parameters ε1 and σ3 which both contribute ±0.5 to the error budget of the

lifetime ratio. Both errors can be reduced in the future with a lattice determination of

the dimensions-six matrix elements and a sum-rule determination of the dimension-seven

Bag parameters, respectively. In the PS scheme, the radiative and power corrections are

of the order +27% and −34%, respectively, which indicates good convergence behaviour.

We therefore conclude that the HQE provides a good description of the lifetime ratio

τ(D+)/τ(D0).

7 Conclusions

We have determined the matrix elements of the dimension six ∆F = 0, 2 operators for

the bottom and charm sector using HQET sum rules. Our findings for the ∆F = 2

matrix elements are in good agreement with recent lattice [3–5, 30–32] and sum rule [11]

results. Our ∆F = 0 results are the first state-of-the-art values for the matrix elements

required for B and D meson lifetime ratios. The uncertainties in our analyses for the

Bag parameters are similar to those of recent lattice determinations in the B sector and

somewhat larger in the D sector. This suggests that the uncertainty of the ∆C = 0 matrix

elements could be reduced by a lattice simulation. In most cases, the dominant errors in

our approach stem from the matching of QCD to HQET operators, see appendix B. These

could be reduced substantially by performing the matching calculation at NNLO. Some

first steps towards this goal have recently been taken in [70]. Consequently, in the future,

sum rules will continue to be competitive with lattice simulations in the determination of

four-quark operators.

Our predictions for the mixing observables and lifetime ratios in the B sector are in

good agreement with the experimental averages as summarized in figures 8 and 9. In

particular, the small tensions [5, 6] that follow from using the FNAL/MILC results [5] for

the matrix elements are not confirmed by our results. We note that the predictions based

on matrix elements from sum rules and from lattice simulations are compatible and lead to

overall uncertainties of the same size. Taking the naive average of the Bag parameters, the

relative uncertainties of the mass and decay rate difference are, however, only reduced by

about 9% and 6%, respectively, because other sources of uncertainties, like e.g. the matrix

elements of dimension-seven operators, are dominant.

We find that the experimental value for the lifetime ratio τ(D+)/τ(D0) can be repro-

duced within the HQE. This is a strong indication that the HQE does not break down in

the charm sector. However, due to sizeable hadronic uncertainties, we cannot exclude large

duality violations at the level of 20-30% yet. On the other hand, the D-mixing observables

are very sensitive to duality violations and might offer a handle on a better quantitative

understanding of these effects [25].

Our comprehensive study demonstrates that the HQET sum rules for hadronic four-

quark matrix elements provide a competitive alternative to lattice simulations. Due to

completely different systematics they facilitate powerful independent checks of lattice re-
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Figure 8. Comparison of our predictions for the mass and decay rate difference in the Bs (left) and

Bd (right) system with the present experimental averages (error bars). We also show the results

obtained with the lattice results of [5] for f2Bq
BQi

and the matrix element 〈R0〉 and the values given

in appendix B for the other input parameters. The PS mass scheme for the bottom quarks has

been used in both cases.
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(B0
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HFLAV: 0.994 ± 0.004
    HQE: 0.9994 ± 0.0025
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    HQE: 1.082+0.022
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(B +)/ (B0
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Figure 9. Comparison of our predictions for the lifetime ratios of heavy mesons with the present

experimental averages.
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sults. Sum rules can also be applied to obtain the matrix elements of the subleading

dimension-seven operators, which have never been determined using lattice simulations.

This is crucial to achieve a substantial reduction of the current theoretical uncertainties.
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A Basis of evanescent operators and ADMs

A.1 ∆B = 2 operators

Our choice of basis for the evanescent operators is given by

E1 = b̄iγµ(1− γ5)qj b̄jγ
µ(1− γ5)qi −Q1,

E2 = b̄iγµγν(1− γ5)qi b̄jγ
µγν(1− γ5)qj − (8− 4ε)Q2 − (8− 8ε)Q3,

E3 = b̄iγµγν(1− γ5)qj b̄jγ
µγν(1− γ5)qi − (8− 8ε)Q2 − (8− 4ε)Q3,

E4 = b̄iγµγνγρ(1− γ5)qi b̄jγ
µγνγρ(1− γ5)qj − (16− 4ε)Q1,

E5 = b̄iγµγνγρ(1− γ5)qj b̄jγ
µγνγρ(1− γ5)qi − (16− 4ε)(Q1 + E1),

E6 = b̄iγµ(1− γ5)qi b̄jγ
µ(1 + γ5)qj + 2Q5,

E7 = b̄iγµ(1− γ5)qj b̄jγ
µ(1 + γ5)qi + 2Q4,

E8 = b̄iγµγν(1− γ5)qi b̄jγ
µγν(1 + γ5)qj − 4Q4,

E9 = b̄iγµγν(1− γ5)qj b̄jγ
µγν(1 + γ5)qi − 4Q5, (A.1)

for QCD and

Ẽ1 = h̄
{(+)
i γµ(1− γ5)qj h̄

(−)}
j γµ(1− γ5)qi − Q̃1,

Ẽ2 =
1

2
Q̃1 + Q̃2 + h̄

{(+)
i (1− γ5)qj h̄

(−)}
j (1− γ5)qi,

Ẽ3 = h̄
{(+)
i γµγν(1− γ5)qi h̄

(−)}
j γµγν(1− γ5)qj + (4 + a1ε)Q̃1,

Ẽ4 = h̄
{(+)
i γµγν(1− γ5)qj h̄

(−)}
j γµγν(1− γ5)qi + (4 + a1ε)(Q̃1 + Ẽ1),

Ẽ5 = h̄
{(+)
i γµγνγρ(1− γ5)qi h̄

(−)}
j γµγνγρ(1− γ5)qj − (16 + a2ε)Q̃1,

Ẽ6 = h̄
{(+)
i γµγνγρ(1− γ5)qj h̄

(−)}
j γµγνγρ(1− γ5)qi − (16 + a2ε)(Q̃1 + Ẽ1),

Ẽ7 = h̄
{(+)
i γµ(1− γ5)qi h̄

(−)}
j γµ(1 + γ5)qj + 2Q̃5,

Ẽ8 = h̄
{(+)
i γµ(1− γ5)qj h̄

(−)}
j γµ(1 + γ5)qi + 2Q̃4,

Ẽ9 = h̄
{(+)
i γµγν(1− γ5)qi h̄

(−)}
j γµγν(1 + γ5)qj − (4 + a3ε)Q̃4,

Ẽ10 = h̄
{(+)
i γµγν(1− γ5)qj h̄

(−)}
j γµγν(1 + γ5)qi − (4 + a3ε)Q̃5, (A.2)
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for HQET. It is straightforward to verify that the evanescent operators vanish in four

dimensions by using the Fierz identities

[γµ(1±γ5)]ij [γµ(1±γ5)]kl =− [γµ(1±γ5)]il [γ
µ(1±γ5)]kj ,

[1±γ5]ij [1±γ5]kl =
1

2
[1±γ5]il [1±γ5]kj+

1

8
[σµν(1±γ5)]il [σ

µν(1±γ5)]kj ,

[γµ(1±γ5)]ij [γµ(1∓γ5)]kl = 2[1∓γ5]il [1±γ5]kj ,

(A.3)

and the relation

γµγνγρ = gµνγρ + gνργµ − gµργν − iεµνρλγλγ5. (A.4)

A useful strategy to simplify expressions with two Dirac matrices is to use projection

identities, e.g.

h̄(±)γµγν(1− γ5)q = ±h̄(±)/vγµγν(1− γ5)q, (A.5)

and then reduce the number of Dirac matrices with eq. (A.4).

In the decomposition (2.8) the LO QCD ADM is

γ
(0)
QQ =



6(Nc−1)
Nc

0 0 0 0

0 −2(3N2
c−4Nc−1)
Nc

4Nc−8
Nc

0 0

0 4(Nc−2)(Nc+1)
Nc

2(Nc+1)2

Nc
0 0

0 0 0 −6(N2
c−1)
Nc

0

0 0 0 −6 6
Nc


, (A.6)

γ
(0)
QE =


6 0 0 − 1

Nc
1 0 0 0 0

0 − 1
Nc

1 0 0 0 0 0 0

0 1
2

Nc
2 − 1

Nc
0 0 0 0 0 0

0 0 0 0 0 0 0 − 1
Nc

1

0 0 0 0 0 0 0 1
2

Nc
2 − 1

Nc

 . (A.7)

In HQET we find

γ̃
(0)

Q̃Q̃
=


3
Nc
− 3Nc 0 0 0

1 + 1
Nc

−3Nc + 4 + 7
Nc

0 0

0 0 6
Nc
− 3Nc −3

0 0 −3 6
Nc
− 3Nc

 , (A.8)

γ̃
(0)

Q̃Ẽ
=


0 0 0 0 − 1

4Nc
1
4 0 0 0 0

−1 −4 − 1
4Nc

1
4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 − 1
4Nc

1
4

0 0 0 0 0 0 0 0 1
4 − 1

4Nc

 . (A.9)

Our result (A.6) with Nc = 3 differs from the results of [85, 86] because we have

only used the replacements implied by the basis of evanescent operators (A.1) to simplify

products of Dirac matrices. We can reproduce their result by applying 4-dimensional Fierz

identities that relate Q1, Q2 and Q3. The upper left 2 × 2 submatrix of (A.8) agrees

with [34].
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A.2 ∆B = 0 operators

We define the basis of evanescent operators in QCD following [75]:

Eq1 = b̄γµγνγρ(1− γ5)q q̄γργνγµ(1− γ5)b− (4− 8ε)Qq1,

Eq2 = b̄γµγν(1− γ5)q q̄γνγµ(1 + γ5)b− (4− 8ε)Qq2,

Eq3 = b̄γµγνγρ(1− γ5)TAq q̄γργνγµ(1− γ5)TAb− (4− 8ε)T q1 ,

Eq4 = b̄γµγν(1− γ5)TAq q̄γνγµ(1 + γ5)TAb− (4− 8ε)T q2 . (A.10)

In HQET we again introduce parameters a1,2 to keep track of the scheme dependence

Ẽq1 = h̄γµγνγρ(1− γ5)q q̄γργνγµ(1− γ5)h− (4 + a1ε)Q̃
q
1,

Ẽq2 = h̄γµγν(1− γ5)q q̄γνγµ(1 + γ5)h− (4 + a2ε)Q̃
q
2,

Ẽq3 = h̄γµγνγρ(1− γ5)TAq q̄γργνγµ(1− γ5)TAh− (4 + a1ε)T̃
q
1 ,

Ẽq4 = h̄γµγν(1− γ5)TAq q̄γνγµ(1 + γ5)TAh− (4 + a2ε)T̃
q
2 . (A.11)

The isospin breaking combinations of the evanescent operators are defined in analogy

to (5.3). The LO ADM in QCD takes the form

γ
(0)
QQ =


0 0 12 0

0 6
Nc
− 6Nc 0 0

3− 3
N2
c

0 − 12
Nc

0

0 0 0 6
Nc

 , (A.12)

γ
(0)
QE =


0 0 −2 0

0 0 0 −2
1

2N2
c
− 1

2 0 2
Nc
− Nc

2 0

0 1
2N2

c
− 1

2 0 2
Nc
− Nc

2

 . (A.13)

The HQET result is given by

γ̃
(0)

Q̃Q̃
=


3
Nc
− 3Nc 0 6 0

0 3
Nc
− 3Nc 0 6

3
2 − 3

2N2
c

0 − 3
Nc

0

0 3
2 − 3

2N2
c

0 − 3
Nc

 , (A.14)

γ̃
(0)

Q̃Ẽ
=


0 0 −1

2 0

0 0 0 −1
2

1
8N2

c
− 1

8 0 1
2Nc
− Nc

4 0

0 1
8N2

c
− 1

8 0 1
2Nc
− Nc

4

 . (A.15)

Our result (A.12) is in agreement with [87, 88] and (A.14) reproduces the result of [89].4

The results (A.13) and (A.15) are new. The matching coefficients read

C
(0)

QiQ̃j
= δij , (A.16)

4Note that [89] contains a misprint that has been identified in [76].
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at LO and

C
(1)

QiQ̃j
=


−4Lµ − 32

3
16
3 −a1

4 − 3Lµ − 13 −2

0 4Lµ + 16
3 −3

2 −a2
4 + 3Lµ − 1

−a1
18 −

2Lµ
3 − 26

9 −4
9 −7a1

24 +
3Lµ

2 + 7
6 −3

−1
3 −a2

18 +
2Lµ

3 − 2
9 −1

4 −7a2
24 −

3Lµ
2 − 29

6

 , (A.17)

at NLO where we have set Nc = 3 for brevity.

B Inputs and detailed overview of uncertainties

Parameter Value Source

mb(mb) (4.203+0.016
−0.034) GeV [61, 62]

mPS
b (2 GeV) (4.532+0.013

−0.039) GeV [61, 62]

m1S
b (4.66+0.04

−0.03) GeV [60]

mkin
b (1 GeV) (4.553± 0.020) GeV [90]

mc(mc) (1.279± 0.013) GeV [91]

αs(MZ) 0.1181± 0.0011 [60]

Vus 0.2248± 0.0006 [60]

Vub 0.00409± 0.00039 [60]

Vcb 0.0405± 0.0015 [60]

γ (73.2+6.3
−7.0)◦ [60]

fB (189± 4) MeV [60]5

fBs (227.2± 3.4) MeV [60]

fD (203.7± 4.8) MeV [60]6

Table 1. Input values for parameters.

∆B = 2 Λ intrinsic SR condensates µρ 1/mb µm ai

BQ1
+0.001
−0.002 ±0.018 ±0.004 +0.011

−0.022 ±0.010 +0.045
−0.039

+0.007
−0.007

BQ2
+0.014
−0.017 ∓0.020 ±0.004 +0.012

−0.019 ±0.010 +0.071
−0.062

+0.015
−0.015

BQ3
+0.060
−0.074 ±0.107 ±0.023 +0.016

−0.008 ±0.010 +0.086
−0.069

+0.053
−0.052

BQ4
+0.007
−0.006 ±0.021 ±0.011 +0.003

−0.003 ±0.010 +0.088
−0.079

+0.005
−0.006

BQ5
+0.019
−0.015 ±0.018 ±0.009 +0.004

−0.006 ±0.010 +0.077
−0.068

+0.012
−0.012

Table 2. Individual errors for the Bag parameters of the ∆B = 2 matrix elements.

5We take the mean of fB+ and fB0 .
6We use the ‘experimental’ value instead of the lattice average, since the former is in significantly better

agreement with sum rule results [79–82].
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∆B = 0 Λ intrinsic SR condensates µρ 1/mb µm ai

B1
+0.003
−0.002 ±0.019 ±0.002 +0.002

−0.002 ±0.010 +0.060
−0.052

+0.002
−0.003

B2
+0.001
−0.001 ∓0.020 ±0.002 +0.000

−0.001 ±0.010 +0.084
−0.076

+0.001
−0.002

ε1
+0.006
−0.007 ±0.022 ±0.003 +0.003

−0.003 ±0.010 +0.010
−0.012

+0.006
−0.007

ε2
+0.005
−0.006 ±0.017 ±0.003 +0.002

−0.001 ±0.010 +0.001
−0.002

+0.003
−0.004

Table 3. Individual errors for the Bag parameters of the ∆B = 0 matrix elements.

∆C = 2 Λ intrinsic SR condensates µρ 1/mc µm ai

BQ1
+0.001
−0.002 ±0.013 ±0.003 +0.009

−0.021 ±0.030 +0.039
−0.021 ±0.003

BQ2
+0.011
−0.014 ∓0.015 ±0.003 +0.010

−0.016 ±0.030 +0.092
−0.050 ±0.012

BQ3
+0.037
−0.045 ±0.059 ±0.013 +0.016

−0.016 ±0.030 +0.116
−0.059 ±0.016

BQ4
+0.006
−0.005 ±0.017 ±0.009 +0.003

−0.003 ±0.030 +0.131
−0.071 ±0.004

BQ5
+0.014
−0.012 ±0.014 ±0.007 +0.004

−0.005 ±0.030 +0.127
−0.069 ±0.004

Table 4. Individual errors for the Bag parameters of the ∆C = 2 matrix elements.

∆C = 0 Λ intrinsic SR condensates µρ 1/mc µm ai

B1
+0.004
−0.003 ±0.017 ±0.002 +0.002

−0.002 ±0.030 +0.068
−0.037

+0.003
−0.005

B2
+0.001
−0.000 ∓0.015 ±0.001 +0.000

−0.000 ±0.030 +0.120
−0.065

+0.000
−0.001

ε1
+0.007
−0.008 ±0.024 ±0.004 +0.003

−0.004 ±0.030 +0.012
−0.022

+0.006
−0.008

ε2
+0.003
−0.004 ±0.011 ±0.002 +0.001

−0.001 ±0.030 +0.000
−0.000

+0.001
−0.002

Table 5. Individual errors for the Bag parameters of the ∆C = 0 matrix elements.
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∆MSM
s [ps−1] ∆ΓPS

s [ps−1] as,PS
sl [10−5]

BQ1 ±1.1 ±0.005 ±0.01

BQ3 ±0.0 ±0.005 ±0.01

BR0 ±0.0 ±0.003 ±0.00

BR1 ±0.0 ±0.000 ±0.00

BR′1
±0.0 ±0.000 ±0.00

BR2 ±0.0 ±0.016 ±0.00

BR3 ±0.0 ±0.001 ±0.02

BR′3
±0.0 ±0.000 ±0.05

fBs ±0.5 ±0.002 ±0.00

µ1 ±0.0 +0.007
−0.018

+0.04
−0.08

µ2 ±0.1 +0.000
−0.002 ±0.01

mb ±0.0 +0.000
−0.001 ±0.01

mc ±0.0 +0.000
−0.001 ±0.06

αs ±0.0 ±0.000 ±0.04

CKM +1.4
−1.3 ±0.006 +0.21

−0.22

Table 6. Individual errors for the Bs mixing observables.
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∆MSM
d [ps−1] ∆ΓPS

d [10−3 ps−1] ad,PS
sl [10−4]

BQ1
+0.04
−0.03 ±0.16 ±0.02

BQ3 ±0.00 +0.17
−0.16 ±0.03

BR0 ±0.00 ±0.11 ±0.01

BR1 ±0.00 ±0.01 ±0.00

BR′1
±0.00 ±0.01 ±0.00

BR2 ±0.00 ±0.54 ±0.00

BR3 ±0.00 ±0.00 ±0.04

BR′3
±0.00 ±0.01 ±0.09

fB ±0.03 ±0.11 ±0.00

µ1 ±0.00 +0.24
−0.62

+0.17
−0.07

µ2 ±0.00 +0.00
−0.08

+0.01
−0.03

mb ±0.00 +0.01
−0.03

+0.01
−0.03

mc ±0.00 +0.01
−0.02 ±0.13

αs ±0.00 ±0.01 ±0.08

CKM ±0.08 +0.38
−0.37

+0.47
−0.44

Table 7. Individual errors for the Bd mixing observables.

B1 B2 ε1 ε2 ρ3 ρ4 σ3 σ4

±0.002 ±0.000 +0.016
−0.015 ±0.004 ±0.001 ±0.000 ±0.013 ±0.000

fB µ1 µ0 mb mc αs CKM
+0.004
−0.003

+0.000
−0.013

+0.000
−0.006

+0.000
−0.001 ±0.000 ±0.002 ±0.006

Table 8. Individual errors for the ratio τ(B+)/τ(B0) in the PS mass scheme.

B1 B2 ε1 ε2 ρ3 ρ4 σ3 σ4

+0.07
−0.05 ±0.00 +0.52

−0.47 ±0.017 ±0.05 ±0.00 ±0.46 ±0.00

fB µ1 µ0 mc ms αs CKM

±0.08 +0.07
−0.40

+0.08
−0.21 ±0.08 ±0.00 +0.07

0.06 ±0.00

Table 9. Individual errors for the ratio τ(D+)/τ(D0) in the PS mass scheme.
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