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1. Introduction

The level set method is a popular technique used for representing and tracking evolving interfaces in computer simula-
tions which has found use across a wide range of areas interesting to computational physicists and engineers. This includes
applications in fluid dynamics [2], shape optimisation [3], computer vision [4] and biomechanics [5] to name just a few;
an extensive review into the methods surrounding and further applications of the level set method can be found in the
textbooks written on the subject, in particular those by Sethian [4], and Osher and Fedkiw [6]. The aim of the work to
be presented in this article is to extend the level set methodology, through the development of a level set reinitialisation
method which employs a discontinuous Galerkin (DG) spatial discretisation. The remainder of the introduction is divided
into the three following sections: Section 1.1 provides an introduction to the level set method, Section 1.2 provides an
introduction to DG methods, and finally Section 1.3 provides a review of the level set reinitialisation literature.

1.1. Level set method

The level set method was originally developed by Osher and Sethian [7], in 1988. The idea behind the level set method
is to use a real scalar valued function, ¢, called a level set function to divide a problem domain, 2, into a number of
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(a) The problem domain with interface, I'. (b) The level set function intersecting the problem do-

main.

Fig. 1. Graphical representation of a discrete level set function on a square domain.

subdomains. In general, there will be two subdomains and an interface between the two which can be defined by the value
of the level set function at any point in the domain. This can be stated as

$>0 inQ\D,
¢=0 onT and (1)
¢ <0 inD,

where Q is the problem domain, I' denotes the level set function’s zero isocontour also known as the interface (i.e. the
interface between the subdomains) and D is a subdomain implied by the level set function. An example of a circular
interface defined by a level set function in a square domain can be seen in Fig. 1.

The level set function can be evolved through the solution of a scalar transport problem, sometimes called the level set

equation, which can be stated as
9 +b-Vp=0, (2)
ote

where t, is pseudotime as related to the evolution equation and b is the interface velocity.

When evolving a level set function through the solution of (2), the level set interface can only be transported along its
normal, and as such it is a natural choice to initialise the level set function as a signed distance function to the interface.
That is ¢ = +dist(x, I'), where dist(x, I') is the minimum distance from the point x to the interface, I', and the sign of the
function is defined as positive for ¢ € Q\D and negative for ¢ € D, using the notation from equation (1). One property of a
signed distance function is that it will satisfy the Eikonal equation, which can be stated as

Vol —1=0. (3)

The example level set function shown in Fig. 1(b), is a signed distance function to the circular interface.

For a given velocity field, b, it is unlikely that after any given time step in the solution of the evolution equation, that
the level set function will maintain the properties of a signed distance function. Whilst it is not required that the level set
function must maintain these properties, it is often preferred, as it has been shown that large variations in the gradient of
the level set function, can cause numerical instability during the solution of the level set evolution problem, [8]. The desire
to maintain the level set function as a signed distance function led Chopp [9], to introduce the idea of reinitialisation, by
which, between iterations of the level set evolution problem, the level set function can be reinitialised as a signed distance
function to the new interface. Reinitialisation makes it possible to ensure that for all time, t., the level set function is, as
defined by the user, a ‘good’ approximation of a signed distance function, and therefore allows one to generate numerically
stable results.

In terms of a full level set methodology it can be observed that there is a further advantage to always ensuring that the
level set function satisfies the Eikonal equation. Given that the advection velocity can be written, b = bng where, ng = %,
is the normal of the level set function, and b, is the scalar magnitude of the advection velocity normal to the interface, then
the evolution equation (2) can be simplified as follows

o9

o = bIVel=-b. (4)
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In this way, much of the complexity in solving the evolution equation is now exchanged for the complexity of solving the
reinitialisation problem (with the potential added expense of having to reinitialise more often).

1.2. Discontinuous Galerkin methods

DG methods are a class of non-conforming finite element methods where the test and trial functions are not continuous
across the faces and edges of the mesh, [10]. This decoupling between adjacent elements allows the methods to be both
highly parallelisable and well suited for hp-adaptivity, which in turn should allow one to develop methodologies which are
both efficient and high-order accurate, [11]. This would be advantageous for use with some of the more expensive appli-
cations of the level set method, topology optimisation for example. Furthermore, when it comes to the level set method,
DG methods are particularly well suited for solving the PDE’s which naturally arise in the level set context, i.e. hyper-
bolic/advection-dominated problems, due to the built in stabilisation mechanisms DG methods possess, [12]. Details of the
DG methods as applied to elliptic problems can be found in [10]. We choose in this work to use the discontinuous Galerkin
symmetric interior penalty (SIPG) method. There are a number of reasons why SIPG can be considered preferable to other
DG discretisations for elliptic problems, some of which are outlined in the conclusions of [13]. In particular, we highlight the
well established optimal rates of convergence which are not possible for the nonsymmetric DG methods (which includes the
nonsymmetric interior penalty method (NIPG), [14], and the method of Baumann-Oden (BO), [15]), as well as the increased
efficiency in terms of the linear solve (compared with the nonsymmetric methods) and memory requirements (compared
with the Local Discontinuous Galerkin method (LDG), [16]).

1.3. Level set reinitialisation

There are many existing methods which are capable of reinitialising a level set function as a signed distance function.
In general these fall into two categories: geometric methods, and PDE based methods. Geometric methods reinitialise the
level set function at discrete nodal points by measuring the distance from the nodes to the level set interface, and using
this information as well as the sign of the level set function pre-reinitialisation to generate a signed distance function.
PDE based methods involve generating a signed distance function, by solving a PDE. PDE based methods can be further
categorised into two types. One type of PDE based reinitialisation we call pure reinitialisation methods, by which between
iterations of the evolution equation, a separate PDE is solved, the solution of which will be a signed distance function to
the interface. The other type of PDE based reinitialisation methods are known as all-in-one, by which the level set equation
(4) itself is modified to include a constraint enforcing that the level set function always satisfies the Eikonal equation (3),
such that both the evolution of the interface and reinitialisation of the level set function are computed simultaneously. In
this section the literature surrounding level set reinitialisation, which includes all of the types mentioned in this paragraph,
will be reviewed, with a focus on where such methods have been applied to DG.

It should be noted that the aim of any of the reinitialisation methods to be discussed below is to ensure that at the
beginning of each iteration of the solution of the level set equation, the level set function is a signed distance function to
the current position of the level set interface; i.e. the interface returned at the end of the previous iteration of the evolution
equation. In this sense, all of the reinitialisation techniques discussed below are equivalent, however, they vary in terms of
their computational efficiency, stability and accuracy, especially when applied to a DG level set method.

The original reinitialisation method introduced by Chopp [9], reinitialises the level set function as a signed distance
function using a direct geometric approach. This approach works by first explicitly discretising the interface, 'y ~ I, and
then at each point in the problem domain setting the value of the level set function equal to the minimum distance from
that point, to the discretised interface multiplied by the sign of the original level set function at that point, which can be
stated as

¢ = sign(¢”) dist(x, Tn(¢%)), (5)

where ¢ is the pre-reinitialisation level set function, and sign(-) denotes the signum function.

Whilst conceptually simple, there are a number of issues with the geometric reinitialisation method. One of the key
advantages of the level set method in terms of computational efficiency, is the implicit nature of the evolving interface. Not
only is this advantage surrendered by discretising the interface, but the expense required to both discretise the interface and
compute the minimum distance at each mesh node, to the discrete interface, increases with mesh density, with the number
of points used to discretise the interface and with the length of the interface itself. Chopp notes that the complexity of
this reinitialisation method is @ (n®), [9]. Furthermore, adaptation of such an approach to a discontinuous Galerkin discreti-
sation also poses some additional difficulties. As there is no longer a requirement of continuity across element edges, the
zero isocontour can be discontinuous and thus the computation of the distance from a point to the interface can become
problematic. Similarly, the sign of the level set function at each degree of freedom for a given node will not necessarily
be well-defined, particularly if a node is near to the interface. These problems will either cause strong discontinuities to
develop in the level set function, or lead to a smoothing of the level set function which will cause movement in the po-
sition of the interface post-reinitialisation. Lastly, when using the geometric reinitialisation method, the approximation of
the interface on each element will only be first-order, and any benefits arising from the high-order approximations possible
through the use of DG methods will be surrendered each time the reinitialisation routine is called.
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One of the most popular methods of reinitialisation is a PDE based, pure reinitialisation method, often referred to as the
hyperbolic reinitialisation method, which was introduced by Sussman et al. [17]. This method involves solving a hyperbolic
PDE which can be stated as

%9 —sign(¢”) (1 - V4, (6)
oty
where t, denotes pseudotime as related to the reinitialisation problem. The steady state solution to (6) will be achieved
once the level set function provides a sufficient approximate solution to the Eikonal equation, (3). The multiplication by the
sign of the pre-reinitialisation level set function, ¢°, works as a weak Dirichlet boundary condition on the interface of the
level set function, and thus the resulting function will be a signed distance function to the interface, I'(¢?).

The main issue with the hyperbolic reinitialisation method is that the (potentially poor) characteristics of the original
level set function, ¢°, can be propagated during the reinitialisation process, which most often presents as a ‘smearing’ of
the interface [18]. Mousavi [19], presented a solution to (6), using a DG discretisation along with a third-order Runge-Kutta
scheme in time. Mousavi outlines quite clearly the difficulties encountered in trying to produce a stable solution using
these methods of discretisation; the results presented demonstrate that at some point in pseudotime the solution will
always gradually begin to diverge. Independent work done by the author of this paper, instead using an explicit Euler
discretisation in time, found a similar issue when trying to solve the hyperbolic reinitialisation problem using a spatial DG
discretisation. Mousavi [19] found that it was possible to create a method which was practically viable by utilising a severe
time step restriction, a sufficiently smoothed signum function and including an artificial viscosity term. Such a solution
to the reinitialisation problem is less than ideal however, as a large number of iterations are required to return a signed
distance function everywhere in the domain, which could be considered prohibitively expensive. Similar issues were found
by Karakus et al. [20], in which the author takes advantage of the high level of parallelisation possible with DG methods to
speed up the computation of the resulting reinitialisation method.

Gomes and Faugeras [21], showed that the resulting level set function when solving a Hamilton-Jacobi equation would
not in general satisfy the Eikonal equation. They proposed modifying the evolution equation as follows

) @)

ate
such that it was no longer a Hamilton-Jacobi equation, thus developing the first all-in-one type method. Whilst theoretically
such a formulation should force the level set function to maintain it's signed distance properties, it was found that once
discretised there could still be a drift in the level sets leading to a loss of the signed distance property over time [22].
This idea however, prompted other all-in-one type methods whereby the evolution equation is modified to include a signed
distance constraint, such that at each time step the resulting level set function is a solution to both the evolution problem
and the Eikonal equation. For example, Weber et al. [22], set up their evolution problem as an optimisation problem driven
by an error functional which minimises deviations in the desired interface movement and also deviations from the signed
distance property. A similar solution was presented by Li et al. [23] whereby the level set evolution problem was reframed
as an optimisation problem including an energy driving the evolution and a penalty term restricting deviation from a signed
distance function. This lead to a formulation of the evolution equation which could be stated as

I _ . _ Ve
L= bivel +av <V¢ |V¢|)’ ()

signed distance constraint

advection term

where « is a penalty parameter. Later, Li et al. [24], named this, distance regularised level set evolution (DRLSE).
Basting and Kuzmin [1], took the distance regularisation part of the DRLSE, and considered it as a pure reinitialisation
problem, which is a parabolic PDE and can be stated as

09 _ _ Ve
A <V¢ |V¢|)' ©

By removing the time dependent part, so as to avoid pseudotime stepping, and also including an appropriate boundary
condition, Basting and Kuzmin reformulated the problem as a quasilinear elliptic PDE to be solved iteratively which can be
stated as

v <V¢> V¢>+ ¢»=0 (10)
. PR —— J/ =0,
Vol

where y is a penalty parameter. The work presented in this paper provides a solution to the elliptic reinitialisation problem
using a DG method for the spatial discretisation.

Whilst the work presented in this paper was completed independently, Utz et al. [25] recently presented a similar DG
solution to the elliptic reinitialisation problem. However, a number of issues were found with the work presented in [1] and
[25], solutions to which are discussed here. Explicitly, in this paper issues are addressed concerning: boundary conditions
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on an implicit surface; experimental orders of convergence which align with the theoretically optimal rates of convergence
in the relevant norms through the use of a narrow band approach; and the construction of a new potential function which
removes the issues when reinitialising level set functions with small gradients, i.e. [V¢| <0.5.

The rest of the paper is organised as follows. Section 2 presents the proposed elliptic reinitialisation method. Section 3
presents three numerical examples as demonstrations of the efficacy of the proposed method. The article is then concluded
in Section 4.

2. Discontinuous Galerkin elliptic level set reinitialisation

Section 2 consists of the following subsections. Section 2.1 presents the mathematical preliminaries required for the
discussion of DG methods. Section 2.2 presents the elliptic reinitialisation problem and the proposed DG discretisation.
Section 2.3 presents a discussion on the use of a narrow band approach, which is required to allow one to demonstrate
optimal rates of convergence.

2.1. Symmetric interior penalty discontinuous Galerkin method preliminaries

Let 7, denote any partition of a domain, €2, into nonoverlapping quadrilateral elements, 7, with element size, h, such
that the computational domain can be defined, Q = U;¢7; T, with boundary vertices on 3. The skeleton of the mesh, S, is
defined as the set of all interior edges, that is S =U;¢7;d7\9dRQ. The unit outward normal on the boundary, d7, of a given
element, 7, is denoted as fi. For any mesh 7, of 2, with elements of maximum polynomial degree, p, the DG finite element
space is defined as

Vpe(Th) i={v € L*(Q): VT € T, VI € Qp(D)}, (11)

where Q) (7) denotes the space of polynomials of degree no more than, p, in each coordinate direction.

It should be noted that the work to be presented here is restricted to regular quadrilateral elements, on Cartesian grids.
This is due to the Eulerian framework within which the level set method operates, which allows one to exploit the simplicity
of such an approach.

2.2. Elliptic level set reinitialisation

The reinitialisation problem can be stated, for a given level set function, ¢°, find a new level set function, ¢, which is
a signed distance function to the original position of the level set interface, I'(¢?). This can be stated mathematically as
finding a solution to the Eikonal equation, stated in equation (3), relative to the following Dirichlet boundary condition

$=0 onT(¢°). (12)

As first presented by Basting and Kuzmin in [1], the elliptic reinitialisation method aims to solve the level set reinitiali-
sation problem by minimising the least squares residual to the Eikonal equation, (3), that is

1
min fi(|v¢|—1)2 dx | . (13)
Q
Taking the derivative of the objective functional (13), leads to a strong formulation of the problem which can be stated as
Vo .
V- {Vp———]=0 in €2,
Vol 14
$=0 on I'(¢°) and (14)

V¢ -t =sign(¢®) onaQ.

The first equation forming (14) is a diffusion equation which will have positive diffusion where |V¢| > 1 and negative
diffusion where |V¢| < 1, with a solution at |V¢| = 1. There is a homogeneous Dirichlet boundary condition which ensures
that there is a unique solution defined by the position of the pre-reinitialisation level set interface, as well as a Neumann
boundary condition on the natural boundary stating that the gradient of the solution at the domain boundary must also be
equal to the sign of the pre-reinitialisation level set function at that point. This Neumann boundary condition actually exists
as a homogeneous Neumann boundary condition, as it could be rewritten as

Vo \ .
(V(ﬁ—W)-n_O on dQ. (15)

Applying a Picard linearisation to the terms which are nonlinear with respect to V¢, allows one to rewrite the above
diffusion equation as
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V¢m—l
v
where the superscript denotes the mth iteration. Discretising the problem spatially using the SIPG method then leads to a

variational formulation which can be stated as; find ¢hm € Vpg, as m — oo, such that the following weak form statement of
equilibrium is satisfied

/v¢,;n.wdx_/{{v¢,;n}}. Iv] ds—f[[¢>,’?]] V) dS+M/[[¢L"]] vl ds=
S S S

Q

V.V¢"=V inQ, (16)

m—1 m—1
/‘VL~Vde—/“VL”-[M] ds, VveVpc(Th), (17)

J V1| ) Vo]

where w is a penalty parameter, henceforth referred to as the discontinuity penalisation parameter, which for elliptic problems
can be chosen as u = Cpg/he, where C is a constant usually equal to 10, p. is the maximum polynomial order of the two
elements sharing that edge, and h, is the length of the edge. For further information on the discontinuity penalisation
parameter in quasilinear elliptic problems, please refer to [26]. The jump and average operators denoted by [-] and {{-}}
respectively, are as defined in [10] and are reproduced here as follows: for an arbitrary scalar valued function, v, and vector
valued function, ¥, on adjacent elements, T and 7, which share an edge

@t —yoHa" ondr\ae,

[vl= {1//+ﬁ+ on T NI, (18)
|t 42 onorvae,

wh = {\Iﬁ on dT NIQ. (19)

The resulting linear system can then be solved using a fixed point iterative method as follows; find ¢} € Vpg, as m — oo,
such that

Ko = F(¢™ ™), (20)
where the matrix K = (k;;), has elements given by
k,’j = / VVJ' . VV,’ dx — /{{VVj}} . [[V,']] ds — /[[Vj]] ~{{VVi}} ds +,LL/[[V]']] . [[Vi]] dS, (21)
Q S S S
and the column vector F = (f;), has elements given by
V¢m—1 V¢m—l
fl=/$VVldx—/H% '[[Vj]] dS. (22)
J Vo, | J Vo, |

It should be noted that the above formulation is incomplete as it does not enforce the Dirichlet boundary condition. This
will be discussed separately in Section 2.2.2. The homogeneous Neumann boundary condition is, however, naturally satisfied
in the above formulation.

Modifications to the above formulation will be discussed in the following subsections. Section 2.2.1 presents a discussion
on the reformulation of the elliptic reinitialisation problem by modifying the underlying objective functional such that the
proposed reinitialisation method is better suited for dealing with level set functions with small gradients. Section 2.2.2
presents a discussion on methods for imposing Dirichlet boundary conditions on implicit surfaces. Section 2.2.3 presents a
discussion on methods for integration on implicit surfaces. Each section concludes with the method adopted in this work.

2.2.1. Objective functionals for the elliptic reinitialisation problem

The reinitialisation method presented in Section 2.2, begins by attempting to minimise the residual to the Eikonal equa-
tion by taking the most natural form of a functional, the minimisation of which would be equivalent to the minimisation of
the least squares residual to the Eikonal equation, i.e. one could rewrite the problem in (13) as

min /t1(|V¢|)dx , (23)
Q

where
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Fig. 2. Three different objective functionals and their corresponding diffusion rates.
1 2
(Vo) = §(|V¢I - D (24)

Choosing the objective functional to be equal to t1, leads to a diffusion term in the weak formulation which could be stated

as

V- (di(IV9)Ve) =0,

where

(V) =1— ——
! T vl

(25)

(26)

It can be seen that the diffusion functional, di, becomes singular as |V¢| — 0. To combat this problem, authors such
as Li [24] and Basting [1], have modified the objective functional such that it minimises the least squares residual to the
Eikonal equation everywhere except in the region where |V¢| is small. For example, [1] presents the following functional

1 2 :
(Ve =1 if [Vl > 1,

tz<|V¢|)=[§ ) , (27)
5IVoIe(IVe] — 1) if [Vg| <1,

which leads to a diffusion term

1— L if |V 1,

d2(|V¢|)=[ Vol Hvel= (28)
1-(3|Ve| —2|VeH) if|Ve|<1.

Fig. 2 shows a plot of the objective and diffusion functionals presented in this section. For the objective functional, t3,
it can be observed that there are two solutions to the minimisation problem, one corresponding to the Eikonal equation,
and a second at |V¢| = 0. Furthermore, Fig. 2(b), shows that for the corresponding diffusion functional, d, that where the
gradient is small, i.e. |[V¢| < 0.5, the diffusion is positive, which corresponds to forcing the level set function towards the
solution at |V¢|=0.

In order to overcome these two issues, here we propose a new objective functional which both avoids the singularity at
[V¢| =0 and always has negative diffusion for |V¢| < 1. One such functional could be stated as

t5(IV ) {%(Wl v ver=1, (29)
3 = 3 2 .
(|V§75|) _ (|V§’D + % if V| <1,
which leads to a diffusion term
1— if Vg > 1,
d(vep=1 V¥ (30)
1-2—|Ve) if|Ve|<1.

It should be stated that conceptually any function which satisfies these conditions would suffice. Fig. 2 demonstrates that
the objective functional, t3, does indeed satisfy both of these conditions.

To include any of the above defined diffusion functionals using the formulation presented in Section 2.2, the only modi-
fication required to the linear system stated in (20) is the entries to the F vector, which can now be written
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(a) Pre-reinitialisation level set function. (b) Diverging solution after 50 iterations using

objective function, t;.

/
/
y,
/
/
/ \
(c) Converged solution using objective func- (d) Converged solution using objective func-
tional, ta. tional, t3.

Fig. 3. Converged solutions to a simple problem using the different objective functionals. The solid line shows the level set function, the dashed line shows
the analytical solution, and the horizontal line shows the problem domain.

fi= / (1 —de(IVE™ ' )V - Vv; dx — f {la-davep-tmver |- vildsk=1.2.3. (31)
Q S

Fig. 3 demonstrates by example the relative performance of these different objective functionals. A level set function,
¢9 = —(|x|/2) + 0.5, is projected onto a mesh of 38 square elements on the domain £ = (-2, 2) x (0, 8/19) with h =4/19,
such that a singularity falls at the centre of the 2 central elements. Using a mesh of linear elements, both components of
the gradient throughout these elements will therefore be close to zero, and everywhere else in the mesh the gradient can
also be considered small, i.e. |[V¢| < 0.5. The initial projection of the level set function can be seen in Fig. 3(a). For these
examples, the Dirichlet boundary condition on the level set interface is enforced using the Lagrange multiplier method,
described in Section 2.2.2, along with the integration method of Miiller et al. [27] described in Section 2.2.3, and the
solution is considered to have converged when Y (¢™ — ¢™ 1) < 1078, that is when the relative change between iterations
is less than a threshold value.

When using the objective functional, t1, it can be observed that the solution immediately begins to oscillate and does
not converge. Fig. 3(b) shows a snapshot of the level set function after 50 iterations when using t;. It can be seen that
the attempt to correct the almost zero gradients in the centre element, leads to an overcorrection causing the level set
function to twist as it tries to force the gradient back to unity, after which the solution breaks down and continues to get
worse over time. Fig. 3(c) shows the converged solution when using the objective functional, t,. It can be seen that there
are no longer overshoots as a result of the initial ‘zero’ gradients, however, some parts of the level set function converge
to the additional solution at |V¢| = 0. Fig. 3(d) shows the converged solution using the objective functional, t3. The limited
diffusion for small gradients, removes any overshoots or oscillations, and the level set function at steady state is congruent
with the analytical solution as far as possible given the coarseness of the mesh. Therefore the objective functional adopted
in this work is that defined as t3.

2.2.2. Boundary conditions on implicit surfaces
In both [1] and [25], the Dirichlet boundary condition on the level set interface is enforced using a penalty method. As
such the weak formulation would be stated as, find ¢,T € Vpg, as m — oo such that

/qu,T -Vvdx — /{{V¢,T}}- [v] ds — /[[45,’1”]] A(Vv} ds—i—u/[[(l),'f]] -[v] ds
S S S

Q
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TN

(a) Converged solution with v = 0. (b) Converged solution with v = 106.

Fig. 4. Effect of the value of the penalty parameter, y, on the solution at the boundary. The solid line shows the level set function, the dashed line shows
the analytical solution, and the horizontal line shows the problem domain.

. vor vor
+)/ / (bh vds= ﬁVV dx—/ — . [[V]] ds, VVEVDG(’Y;I), (32)
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penalty term

where y is a penalty parameter, henceforth referred to as the interface penalisation parameter.

It should be noted here that throughout this section, as the interface of the original level set function, I'(¢?), is in
general, immersed within an element, and does not correspond with an element edge for example, the integral over the
interface, is computed as a volume integral over each element intersected by the interface, multiplied by some weighting
function. Any examples presented in this section will thus be computed using the method of Miiller et al. [27], the details
of which will be discussed in Section 2.2.3.

In this work, difficulty was encountered in deciding the best choice for the value of the interface penalisation param-
eter, y. BabuSka et al. [28], note that when using a penalty method, that if the value of the penalty parameter is chosen
to be too large or too small, it can significantly decrease the accuracy of the underlying method. This can be demonstrated
through a simple numerical example. For all of the examples in this section, the problem is defined by an initial level set
function, ¢® = 1.5|x| + 1, which is discretised with 40 square elements on © = (—2,2) x (0, 0.4), such that h = 0.2. Once
again, the solution is considered to have converged when Y (¢™ — ¢™~ 1) < 1078, Fig. 4(a) demonstrates that if the penalty
parameter is too small then there is no longer a unique solution and equation (32) holds such that the solution found
satisfies the Eikonal equation, but the level set function is no longer sufficiently constrained as a rigid body in space, which
appears as a movement of the interface. Fig. 4(b), demonstrates that if the value of the interface penalisation parameter is
too large, there will be boundary locking, [29], in elements intersected by the interface.

Evidence is provided in [25], which supports the idea that an appropriate choice for the value of the interface penali-
sation parameter for a given mesh, is equal to the discontinuity penalisation parameter, @ such that, y = w. Whilst it can
be observed that the interface penalisation parameter is problem dependent, it is not necessarily apparent that it is related
to the mesh size in the same way as the discontinuity penalisation parameter. Repeating the example problem from the
previous paragraph, with a mesh of linear elements, the interface penalisation parameter would therefore be computed,

y = % =50. As evidenced at a glance by the solution in Fig. 5(b) this is an appropriate value for this penalty parameter
in this case. Increasing the order of the elements to p =5 causes an increase in this value to y = 1250; Fig. 5(c) shows
that this value is too large and causes locking/spurious oscillations in the elements at the boundary and therefore is not
appropriate. However, once again using quintic elements, but choosing y = 50 allows one to return a solution which no
longer displays locking at the boundary as shown in Fig. 5(d). The same is true when changing the number of elements
used to discretise the problem. This implies that the problem itself has a significant (and difficult to quantify) influence on
the range of admissible values for the interface penalisation parameter. This difficulty in choosing a value of the interface
penalisation parameter within the admissible range of values for a given problem led to the exploration of other possible
methods for the imposition of a Dirichlet boundary condition on an implicit surface.

The literature highlights four main approaches for the imposition of Dirichlet boundary conditions on implicit surfaces;
the aforementioned penalty method, Nitsche’s method [30], the method of Lagrange multipliers [31], and methods involving
enrichment or modification of shape functions, for example [32]. Nitsche’s method is akin to the penalty method in that
there is a penalty term which imposes the prescribed value on the boundary. Without re-presenting the evidence, the same
arguments against using the penalty method described above were found to also be true of Nitsche’s method when applied
to the implicit surface. The methods involving the modification of the shape functions require a priori knowledge of the
position of the interface, whereas the methodology here deals with evolving and implied interfaces only, and therefore
methods such as these are not appropriate in this context.

The method of Lagrange multipliers involves the reformulation of the weak form of the problem such that a new un-
known, the Lagrange multiplier, A, is to be solved for in addition to the original unknown, in this case the level set function,
¢, such that the solution on the Dirichlet boundary is constrained by a prescribed value. The weak form of the elliptic
reinitialisation problem can thus be reformulated: find ¢} € Vpc and A € L, as m — oo such that
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(a) Pre-reinitialisation level set function. (b) Converged solution using linear elements

with v = 50.

(c) Converged solution using quintic elements (d) Converged solution using quintic elements

with v = 1250. with v = 50.

Fig. 5. Examples showing problem dependency of the penalty parameter. The solid line shows the level set function, the dashed line shows the analytical
solution, and the horizontal line shows the problem domain.
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One of the difficulties of using such a method, is choosing the correct interpolation space for the Lagrange multipliers, L.
One natural choice is choosing the space, L, as follows

L = span{Qp(Th)}, (35)
TeTy
where
T ={t eTh: TN (¢ #0}, (36)

that is, ’ThF denotes the subset of elements in 7, which are intersected by the level set interface, I'. This means that the
Lagrange multiplier space will consist of the same basis functions as the finite element space, and therefore one can solve
for one Lagrange multiplier per degree of freedom on any element intersected by the interface.

When choosing the Lagrange multiplier interpolation space, it is necessary that the space is rich enough such that it
contains the approximate solution, but not so large as to overconstrain the problem. It is a known phenomena, [33], that
boundary locking or spurious oscillations can occur when the approximation spaces Vpg and L are chosen to be of equal
order. Repeating the previous experiment, using a Lagrange multiplier approach to enforce the boundary condition with the
Lagrange multiplier space defined as in (35) gives the results shown in Fig. 6, which confirms that such a choice will in fact
lead to boundary locking.

In order to rectify this problem, the order of the Lagrange multiplier space has been reduced to the space of piecewise
constant functions with one degree of freedom per element intersected by the interface. This can be stated as

L =span{17}, (37)

ey



T. Adams et al. / Journal of Computational Physics 379 (2019) 373-391 383

, yd \\\\ ;

(a) Pre-reinitialisation level set function. (b) Converged Solution.

Fig. 6. Effect of using too large of an interpolation space for the Lagrange multipliers to enforce the Dirichlet boundary condition. The solid line shows the
level set function, the dashed line shows the analytical solution, and the horizontal line shows the problem domain.

where 17 is the indicator function defined as follows

1 ifxer,
17 (%) := (38)
0 ifx¢r.

This choice of space means that for each element, T € 7,', the integral of the level set function over the portion of the
interface contained within that element, averages to be zero over the element. In other words, this reduction in the order
of the constraint space allows some movement to occur at the interface (limited by the size of the element), which is
a sufficient relaxation to remove the boundary locking observed above and allows the boundary condition to be satisfied
without affecting the signed distance property. It should be noted that even for higher order elements, i.e. p > 2, choosing
the Lagrange multiplier space, as the space of piecewise constants, is required to ensure that there is no boundary locking.

As such, the preferred method of the author therefore for enforcing a homogeneous Dirichlet boundary condition on an
implicit surface, is to use a Lagrange multiplier approach, where the Lagrange multiplier space is the space of piecewise
constant functions. Using this formulation, to enforce the Dirichlet boundary condition, (12), the linear system, (20), will be
modified as follows

T m m—
ST
A O A 0

where A = (a;j) is a matrix, where the number of rows is equal to the number of elements in Thr and the number of
columns is the total number of degrees of freedom in the problem, with elements given by

aij = / vili ds, (40)
rgo)

and K and F are defined in equations (21) and (31) respectively.

2.2.3. Integration on immersed implicit surfaces

Regardless of the method chosen to impose a boundary condition on an immersed implicit surface, it will require a
method for integrating a function on that surface. There are three general approaches found in the literature: explicit recon-
struction of the interface through mesh refinement [34]; implicit reconstruction of the interface using an approximate Dirac
delta function such as in the original immersed boundary method, [35]; and methods which generate a new quadrature rule
over the volume of an element 7 € 7?, which is equivalent to integrating an arbitrary function over the implicit surface
[36,27].

As the Eulerian nature of the level set method allows one to take advantage of the use of Cartesian meshes, methods
involving r-adaptivity to explicitly reconstruct the interface are not appropriate in the context of this work. Such methods
also suffer from extreme computational expense, especially when the desired level of accuracy is high. Methods involving
the use of an approximate Dirac delta function, allow one to replace the surface integral over the interface with an equiva-
lent volume integral weighted by the Dirac delta function. Whilst this method is simple to implement, and has found use in
other works, even prompting research into high order approximations of the delta function [37], the method depends on the
global cancellation of errors over the domain. Thus such an approach has limited accuracy when working with piecewise
discontinuous level set functions.

The final group of methods are able to provide arbitrarily high-order elementwise approximations of integrals on implicit
interfaces. One such method presented by Miiller et al. [27], involves the construction of a new quadrature rule based on
the solution to the moment-fitting equations [38], and can be stated as follows
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g\ (py) -ng(py) - g1 (py) -ng(py) w1 — [y H(=¢)g) -fids
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gy (P ng(py) - gy -ne(py) | | Wi — J3e H=¢)g), - i ds

For a given set of divergence free vector valued functions, g’, an integral over the unknown interface, I'(¢®), can be trans-
formed to an integral over the known surface, 97, using the divergence theorem, which forms the RHS of (41) which can
then be approximated using a standard Gauss quadrature rule. Then the weights, w, for a new quadrature rule over the
element, 7, using the standard 2D Gauss quadrature abscissae, p, equivalent to integrating these functions, g’, over the
interface can be solved for, which can then be used to compute the integral of any function over the interface.

Miiller et al. [27], chose the functions, g, to be the monomial basis functions, where the derivatives g’ are orthonor-
malised using a Gram-Schmidt procedure. The maximum order of these functions, determines the number of equations, M,
to be solved and it is noted that care should be taken to ensure that the number of quadrature points, N, is chosen such
that the resulting linear system is underdetermined, i.e. N > M. The full details of the method can be found in [27].

The integration method presented in [27] is the preferred method of the author, with two caveats. Firstly, it was found
that the accuracy of this integration method depends heavily on the accuracy with which one is able to compute the terms
on the RHS of equation (41). The Heaviside function, H(—¢), in each of the integrals is present such that the integral is
computed only along the part of the edge where, ¢ < 0. When using standard 1D Gauss quadrature along element edges, the
discontinuity present in the Heaviside function is smoothed to such an extent that it becomes difficult to predict whether
a given quadrature rule will be sufficient to ensure that the method is sufficiently accurate, without using a (potentially
prohibitively) high-order quadrature rule. As such for edges intersected by the interface, a Newton/bisection method is
used to find the intersection point(s) and a standard quadrature rule is used to integrate over this newly defined interval.
Secondly, as the number of quadrature points is chosen to ensure that the system is underdetermined, the linear system
will likely be rank deficient and ill-conditioned. Thus the numerically stable singular value decomposition approach is used
to solve for the least squares solution. Any singular values, s, deemed too small, that is s < max(s)/10'2, are removed to
further improve stability.

These two choices have proven imperative in ensuring the quadrature rule produced is then able to accurately integrate
a function on the interface. As a final note, whilst generally robust, this integration method is problem dependent and small
perturbations in the relative position between the mesh and the immersed surface will have an influence on the accuracy
for a given problem.

2.3. Narrow band level set methods

When using the level set method for problems involving evolving interfaces it can be noted that the maximum amount of
movement of the interface at each time step will be a known value limited by the Courant-Friedrichs-Lewy (CFL) condition,
which, if the level set function is always a signed distance function, will be a function of the smallest element size, hy;,. In
other words, the evolution can only occur within a small banded region around the interface, and therefore the information
about the level set function outside of this band can effectively be ignored. Narrow band strategies such as that presented in
[4], can therefore be a useful tool in reducing the computational expense when using level set methods, as the computation
of both the evolution problem and the reinitialisation problem can be restricted to a set of elements, defined by some
measure as being close to the interface.

Computational efficiency isn’t the only benefit of using a narrow band approach. One of the issues with choosing the
level set function to be a signed distance function, is that if the zero isocontour of the level set function, I'(¢), has at least
one loop surrounding a simply-connected subdomain, D, there will always be a singularity which occurs in the level set
function, this can be observed in Fig. 1 for example. An added benefit of narrow band strategies is that, for a ‘sufficiently
refined’ mesh, almost all of these areas would be far enough away from the level set interface so as to fall outside of the
narrow band. When using SIPG, it is known that optimal convergence rates are a function of the smoothness of the problem
[39]. Since these singularities will always occur, the use of a narrow band approach is therefore necessary to allow one to
demonstrate optimal orders of convergence when using an SIPG discretisation.

‘Sufficient refinement’ is, as of right now, a poorly defined term. In order to capture a given interface to a prescribed
level of accuracy, there is some requirement on the number and order of the elements present along the interface. In the
literature, where adaptive meshes are used, the general refinement strategy can be stated as “split any cell whose edge
length exceeds its minimum distance to the interface”, [40]. Whilst the simplicity of such a strategy is attractive and will
result in high levels of h-refinement close to the interface, it is unlikely that such a refinement strategy is optimal. One
area of future work therefore could be to develop appropriate error estimators and refinement strategies for the level set
reinitialisation problem. For the purposes of this article it will suffice to demonstrate that the combination of sufficient
mesh refinement and a narrow band approach, are required to return optimal convergence; this will be demonstrated in
Section 3.

When deciding on an appropriate width for the narrow band one needs to consider that in order to satisfy the CFL
condition, the furthest that the interface should be able to move to maintain stability is from the element within which it
currently resides, into one of it's neighbours. As such the best case scenario for a narrow band is the union of the set of
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elements cut by the interface and the set of elements which share a node with any element cut by the interface. If one
were to start with, and always maintain, a level set function as a signed distance function, on a uniform mesh, the width
of the narrow band could always be linearly related to the minimum absolute value of the level set function in a given
element. That is, to maintain for each timestep a narrow band approximately two elements wide, at each time step one
need only consider all of the elements within which the minimum value of the level set function is less than the threshold
value equal to twice the width of the smallest element. This constitutes an efficient way to compute which elements belong
to the narrow band and which do not. For the problems to be considered in this article we always start with a level set
function which is not a signed distance function however, and as such a slightly more conservative value is used, equal to
four element widths, to account for the variation in the gradient either side of the interface. Furthermore, it is noted that
the boundary conditions stated in Equation (14) naturally extend to the narrow band region. Since the narrow band will
contain the set of elements cut by the interface 7?, no change has to be made to the imposition of the Dirichlet condition
presented in Equation (39). The set of element edges constituting the Neumann boundary, 92, will change, however, it is
the same homogeneous Neumann condition, (15), which is to be applied on this new set of edges.

3. Numerical examples
3.1. Error measures

Where the analytical solution, ¢, is known, the error for the example problems in this section is given in the L* norm
which can be stated as

E}, = / (¢n — ¢)* dx, (42)
Q

the L° norm which can be stated as

Epco =max|¢y — ¢, (43)

and the DG norm which can be stated as

Eznczf(V(¢h—¢))2 dx—i—u/[[q&h—q&]]z dx. (44)
Q S

For elliptic problems discretised using SIPG the optimal convergence rates in the L2 norm are known to be h?*!, and in
the DG norm, h?, [10], assuming the problem is sufficiently smooth. Similarly, it has been shown that optimal convergence
when using the L norm is proportional to In(h~1)hP*1, where 5=1 for p =1, and 5 = 0 otherwise, [41]. It is shown in
[39], that for a problem which lacks sufficient smoothness, the convergence rates fall back equal to the linear case for all p.

When the analytical solution is not known, there are two additional error measures which can demonstrate the efficacy
of the reinitialisation method. The first is an error measure which measures globally, the degree to which the computed
solution satisfies the Eikonal equation, that is

E2y = /(|V¢h| —1)%dx. (45)
Q

This signed distance error measure acts similarly to the H! seminorm, computing the difference between measures of the
gradient of the solution. As such it would be reasonable to expect optimal convergence rates to be equivalent to optimal
convergence in the H! seminorm, which is known to be hP, once again assuming sufficient smoothness.

The second of these, is a measure of the movement of the interface in the L2 norm, which is evaluated by integrating
the difference between the computed and desired value of the solution along the original position of the interface, that is

Epy= / ¢p dx, (46)
I'(¢%

which will be referred to as the interface error measure.

For all of the numerical experiments presented in this section the following statements are true. The objective functional
defining the problem to be solved is that defined in equation (29), i.e. t3. The fixed point iterative method is considered
to have converged when |Esp(¢™) — Esp(¢™~1)| < 1078, or the number of iterations required exceeds 1000. The Dirichlet
boundary condition is enforced using the Lagrange multiplier approach, with an interpolation space consisting of piecewise
constant functions. The method of Miiller et al. [27] is used to compute the integral along the interface, with the maximum
order of the divergence free basis functions, g’, equal to 10. This is much higher than that required in practice, for the
problems to be presented, however, it allows as much as possible one to remove the error associated with the mesh/problem
dependency of the integration method and thus better evaluate the reinitialisation method.



386 T. Adams et al. / Journal of Computational Physics 379 (2019) 373-391

3.2. Circular interface

The first test case presented is that of a circular interface defined initially by a level set function, ¢°, which can be
described analytically as

0—x24+y2—1, (47)
¢ y

in the domain 2 = (-2, 2)2. The corresponding signed distance function, and therefore the analytical solution to the prob-
lem can thus be stated

dp=x2+y2—1. (48)
For this problem, the zero isocontour of the level set function can also be described analytically as follows, for 0 <6 < 2m,

x =cos(f),
. (49)
y =sin(9).
As such the interface error measure will be computed using the trapezium rule, to remove any error associated with the
methods for integrating over an implicit surface.

An h-convergence study is performed by computing the reinitialisation of the level set function, initialised as the L2
projection of (47), on a sequence of Cartesian meshes with square elements of size, h =0.8,0.4,0.2,0.1,0.05, for meshes
of uniform polynomial order, p =1, 2, 3, 4, 5. Error measures will be computed in each of the norms defined in Section 3.1.
The analytical solution for this problem, as defined in (48), is singular at the origin, and one should expect for this problem
a convergence rate in the L2 norm of hZ%, for all p, a convergence rate in the DG norm and signed distance error norms
of h', and a convergence rate of In(h~1)h? in the L° norm. The results of the h-convergence study are shown in Fig. 7
and demonstrate that beyond the initial pre-asymptotic datum the experimental orders of convergence, using the four
aforementioned error measures, are congruent with those expected for a non-smooth problem.

The convergence rate using the interface error measure does show an increase between p =1 and p = 2, but remains
constant beyond that point. For the purposes of our discussion it is useful to observe that the presence of a singularity in
the mesh, constrains the rate at which the L? error at the interface decreases when using high-order elements.

3.3. Circular interface with narrow band

For the previous example problem, the analytical solution is known to be singular, and thus the computed experimental
orders of convergence are limited. In order to demonstrate optimal rates of convergence one needs to change the domain
such that everywhere within the domain the solution is smooth, which, as discussed in Section 2.3, can be achieved through
the use of a narrow band approach. For this somewhat trivial example, the position of the singularity is known to be at
the origin and thus a naive implementation of a narrow band approach, is to simply repeat the previous experiment in the
domain, © = (=2, 2)%\(—0.4, 0.4)?, such that the singularity at the origin is removed.

The same h-convergence study is computed on the new domain leading to the results shown in Fig. 8. As expected,
removing the origin from the problem domain, allows the solution to be smooth enough everywhere to display optimal
convergence rates in all of the relevant norms. This includes a convergence rate using the interface error measure of hP*1,
which suggests that one might expect this to be the optimal rate of convergence for this error measure. It can be noted
that the quoted orders of convergence for all measures and polynomial orders are computed using the difference between
the results for h =0.4 and h =0.05.

It should also be noted here that for this example the number of iterations required to satisfy the convergence criterion
is often few, for this simple example; for the mesh with h =0.05 and p =5, just 6 iterations are required.

3.4. Smooth star shaped interface

The remaining examples will be of a more arbitrary nature than the simple circle example, thus the rule determining the
width of the narrow band will be defined as follows: remove from the mesh any element which has a minimum absolute
nodal value greater than four times the size of the smallest element, hyi,. This will also mean that analytical solutions to
the problems will be unknown and as such the convergence data presented will be using the signed distance and interface
error measures only. The interface error will be computed using the method of Miiller [27] instead of the trapezium rule,
and as such the error computed will be a measure of the movement of the interface from it’s initial projection as opposed to
the distance from the analytical solution (although in practice, calculating the error in these two ways gives similar results
except for the coarsest meshes tested).

The first of the arbitrary interfaces will be a smooth six pointed star interface, shown in Fig. 9(a), which has an initial
level set function which can be defined everywhere by

p=x+y*— (l +0.2sin (6 arctan (%))) , (50)
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Fig. 7. Error data and convergence rates for the circular interface problem in the domain € = (-2, 2)2.

387

on a domain of maximum size 2 = (—2,2)2, however for a given element size, h, the narrow band within which the

reinitialisation problem is solved will be a subset of the full domain.

In this case, an h-convergence study will be computed on a sequence of Cartesian meshes with square elements of size
h=0.4,0.2,0.1,0.05,0.025, for meshes of uniform polynomial order, p =1, 2, 3.

Fig. 10(a) shows the convergence data for the smooth star problem using the signed distance error measure. The first
two data points for all polynomial orders show linear convergence, this is because the criterion defining the narrow band,
is yet to be sufficient to remove the part of the mesh which is singular, see Fig. 9(b). As h becomes smaller, the narrow
band becomes narrower and the singular part of the solution is no longer part of the mesh, allowing for optimal rates of
convergence. The quoted orders of convergence for all measures and polynomial orders are computed using the difference
between the results for h = 0.2 and h = 0.025.
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Fig. 8. Error data and convergence rates for the circular interface problem in the domain Q = (—2,2)2\(—0.4, 0.4)2.

The rate of convergence for the interface error increases slightly between the meshes of linear and quadratic elements,
however increasing the polynomial order of the elements beyond that, no longer results in an increase in the accuracy of
the solution at the interface, despite the improving gradient solution.

3.5. Multiple arbitrary interfaces

The final example to be presented consists of multiple nested interfaces, which more closely resembles an arbitrary level
set function which one might encounter in practice. In particular, the initial level set function at a point is defined as the
maximum value of one of three analytical functions, i.e.

¢ = max(qy), k=1,2,3, (51)

where
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(a) The level set function’s zero isocontour.  (b) Contour plot of the gradient showing where
in the full mesh the level set function is singu-

lar, relative to the zero isocontour.

Fig. 9. Domain configuration for the smooth six pointed star where, = (-2, 2)%.
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Fig. 10. Error data and convergence rates for the smooth star interface problem, with narrow band, in the domain Q = (-2, 2)%.

G1=15 (J)Wy2 - (1 + 0.8sin (arctan (%))2)> ,
a2 = 2 (V¥ +y2 - (0.3 0.075sin (4arctan (1528) ))), (52)
43 = —2 (W - (0.48 —0.08sin (4 arctan (Y*S-GS)Z))) .

The original configuration of this mesh can be seen in Fig. 11(a). These curves have been chosen somewhat arbitrarily,
however, considerations were made such that across the domain, the problem has a range of gradients and curvatures to be
dealt with.

An h-convergence study is computed on a sequence of Cartesian meshes with square elements of size h = 0.4,0.2,0.1,
0.05, 0.025, 0.0125, for meshes of uniform polynomial order p =1, 2, 3. As for the previous example, there isn’t an analytical
solution available for the problem and so the convergence results are given using only the signed distance and interface error
measures.

Looking at the signed distance error measure in Fig. 12(a) it can once again be seen that until the mesh is sufficiently
refined and therefore the narrow band sufficiently narrow, there are singularities present in the solution and the experimen-
tal order of convergence for all polynomial orders, p, is equivalent to the linear case. That is the case for all meshes with
element size, h < 10~!. Beyond this point, optimal convergence rates in this error measure can be observed. The quoted
orders of convergence for all polynomial orders are computed for this example using the difference between the results for
h=0.05 and h =0.0125.

The interface error is displayed in Fig. 12(b). It shows almost equivalent errors for a given element size, h, regardless of
polynomial order, p, with a small increase in accuracy between p =1 and p =2 which was also the case for the previous
example. As has been the case for all of the presented examples, it is difficult to explain the behaviour of this error measure
for this problem. As such we restrict our comments to the following; for all examples the demonstrated movement of
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(a) The level set function’s zero isocontour.  (b) Contour plot of the gradient showing where
in the full mesh the level set function is singu-

lar, relative to the zero isocontour.

Fig. 11. Domain configuration for the multiple interface problem where, Q2 = (=2, 2)2.
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Fig. 12. Error data and convergence rates for the multiple interface problem, with narrow band, in the domain Q = (-2, 2)%.

the level set function at the interface is small (in comparison to other reinitialisation methods), and furthermore can be
decreased predictably by controlling the element size with order ~ h2.

For this example, it should also be noted that for the denser higher-order meshes, the number of iterations required to
satisfy the convergence criterion grows large, for this problem when p =3 it takes an average of 920 iterations. However,
it can also be noted that, for the most dense, high-order mesh tested, it takes just 5 iterations to improve the gradient
solution by 3 orders of magnitude, and 34 iterations for an improvement of 4 orders of magnitude. This suggests that in
practical applications of the method, it would be up to the user to decide where to strike the balance between expense and
accuracy.

4. Conclusions

A practical method for level set reinitialisation using an SIPG discretisation has been presented, based on the elliptic
reinitialisation method originally presented by Basting and Kuzmin, [1]. The proposed method is able to demonstrate optimal
convergence in the relevant norms and overcomes a number of issues found with other similar reinitialisation techniques.
This is achieved through the adoption of a Lagrange multiplier technique, with an appropriate interpolation space, for
imposing a Dirichlet boundary condition on an immersed implicit boundary; through a reformulation of the problem by the
introduction of a new objective functional driving the problem; and through the adoption of a narrow band approach. This
reinitialisation method can be combined with a much simplified level set transport problem, to create a full DG level set
methodology. It was demonstrated that a combination of sufficient refinement and a narrow band approach allow one to
return optimal convergence rates, as such future work will focus on the development of error estimators and strategies for
driving mesh adaptivity, based on the reinitialisation problem.
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