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Abstract 4 

Subaerial particle size data holds a wealth of valuable information for fluvial, coastal, 5 

glacial and other sedimentological applications. Recently, we have gained the 6 

opportunity to map and quantify particle sizes at the mesoscale using data derived 7 

from small unmanned aerial system (sUAS) imagery processed using structure from 8 

motion (SfM) photogrammetry. These sUAS-SfM approaches have been based 9 

typically on calibrating orthoimage texture or point cloud roughness with particle size. 10 

Variable levels of success are reported and a single, robust method capable of 11 

producing consistently accurate and precise results in a range of settings has 12 

remained elusive. In this paper, we develop an original method for particle size 13 

mapping with the specific constraints of sUAS and SfM in mind. This method uses 14 

the texture of single sUAS images, rather than orthoimages, calibrated with particle 15 

sizes normalised by individual image scale. We compare results against existing 16 

orthoimage texture and roughness approaches, and provide the first quantitative 17 

investigation into the implications of the use of sUAS camera gimbals. Our results 18 

indicate that our novel single image method delivers the optimal particle size 19 

mapping performance for our study site, outperforming both other methods and 20 

delivering residual mean errors of 0.02mm (accuracy), standard deviation of residual 21 

errors of 6.90mm (precision) and maximum residual errors of 16.50mm. Accuracy 22 

values are more than two orders of magnitude worse when a camera gimbal is not 23 

used, thereby demonstrating the critical importance of mechanical image 24 

stabilisation for particle size mapping using measures of image texture. 25 



Introduction 1 

The quantification of subaerial particle sizes is of value in a range of environmental 2 

scenarios. In river science, for instance, we rely on mapping particle size 3 

distributions for assessing habitat quality and diversity, for modelling flow hydraulics 4 

and determining the impact of fluvial transport on engineering structures, flood 5 

protection measures and restoration works. Here, we use the term ‘particle size’ 6 

interchangeably with ‘grain size’ to refer to material typically within the gravel size 7 

classification and larger (Wentworth, 1922). Traditional methods of characterising 8 

grain size distributions include quantitative sampling, such as laboratory based 9 

sieving or the measurement of in-situ grains at set intervals along transects, as well 10 

as qualitative classification schemes such as the Wentworth Scale (Wentworth, 11 

1922; Wolman, 1954; Hey and Thorne, 1983; Church et al., 1987; Rice and Church, 12 

1996). In recent decades, remote sensing approaches have provided alternative 13 

techniques that are typically faster, less labour intensive and less affected by bias 14 

than traditional manual measurements (Leopold, 1970; Church et al., 1987; Verdú et 15 

al., 2005). Readers are referred to Woodget and Austrums (2017) for an overview of 16 

the key remote sensing methods used for grain size quantification to date. These 17 

methods can be broadly categorised into two main schools of thought, where the 18 

focus is typically on either;  19 

(1) The use of high resolution remotely sensed data to delineate individual grains, 20 

or;  21 

(2) The development of a statistical relationship between grain size and remotely 22 

sensed data properties.  23 

The former, commonly referred to as ‘photo-sieving’, has been dominated by the use 24 

of close range, high-resolution photography, often collected by hand or from tripods 25 



and gantries set up over the material of interest (Adams, 1979; Ibbeken and 1 

Schleyer, 1986; Butler et al., 2001; Sime and Ferguson, 2003). Automated software 2 

packages (e.g. Sedimetrics, Basegrain) have been developed to measure individual 3 

grains with high levels of accuracy (Graham et al., 2005a; Graham et al., 2005b; 4 

Detert and Wietbrecht, 2012).  5 

The second category comprises a variety of methods used to establish a correlation 6 

with measured grain sizes, including;  7 

(a) Textural analysis of imagery collected from manned aircraft (Carbonneau 8 

et al., 2004; Carbonneau, 2005; Carbonneau et al., 2005; Verdú et al., 9 

2005). 10 

(b) Analysis of the roughness of point cloud data obtained from terrestrial 11 

laser scanners (TLS) (McEwan et al., 2000; Entwistle and Fuller, 2009; 12 

Heritage and Milan, 2009; Hodge et al., 2009; Brasington et al., 2012; 13 

Milan and Heritage, 2012; Rychov et al., 2012; Baewert et al., 2014). 14 

(c) Analysis of the spectral or frequency content of imagery acquired at close 15 

range (Rubin, 2004; Buscombe, 2008; Buscombe and Masselink, 2009; 16 

Buscombe et al., 2010; Buscombe and Rubin, 2012; Buscombe, 2013).  17 

These methods have been established in a variety of sedimentological settings, but 18 

here we focus on their application to river systems in particular. Whilst approach (a) 19 

is used at the macroscale (i.e. over many kilometres of channel length at metre 20 

spatial resolution), and method (c) at the patch scale (i.e. over about a square metre, 21 

with millimetre spatial resolution), few methods are yet capable of surveying grain 22 

size at the mesohabitat scale (i.e. channel lengths of 50-500m with centimetre 23 

spatial resolution) without the significant expense of purchasing a laser scanner 24 



under method (b). Critically however, the mesoscale is the scale most relevant for 1 

fluvial ecosystems and the health and survival of their inhabitant biota (Newson and 2 

Newson, 2000). 3 

Very recently, the development of small unmanned aerial systems (sUAS) and 4 

structure from motion digital photogrammetry (SfM) (e.g. Westoby et al., 2012; 5 

Fonstad et al., 2013) has provided a new remote sensing based approach for fluvial 6 

surveying, which has shown great potential for application at the mesoscale 7 

(Woodget et al., 2017). Outputs from sUAS-SfM typically comprise an orthoimage, a 8 

digital elevation model (DEM) and a dense point cloud, similar to the point clouds 9 

obtained using TLS. Data acquired using a sUAS-SfM approach has been tested 10 

using both the image textural analysis methods of group (a) and the point cloud 11 

roughness methods of group (b).  12 

The work of de Haas et al., (2014) found that images acquired from sUAS, which are 13 

more unstable than manned aircraft, suffer from blurring which precludes a strong 14 

predictive relationship between image texture and grain size. In contrast, Tamminga 15 

et al., (2015) found strong calibration relationships (R2 = 0.82), but these could not be 16 

replicated by the more recent work of Woodget and Austrums (2017), where the best 17 

calibration relationships reached an R2 of just 0.48. Woodget and Austrums (2017) 18 

also report weak validation relationships, as indicated by a slope of 0.44 for the 19 

observed versus predicted grain size relationship. They suggest that these poor 20 

results, as well as those of de Haas et al., (2014), relate to the use of an inadequate 21 

camera gimbal that introduces additional blur to the sUAS imagery. The set-up used 22 

by Tamminga et al., (2015) featured a more advanced gimbal, isolating the camera 23 

from platform vibrations and permitting the collection of higher quality images. In 24 

addition, earlier work on the texture method, by Carbonneau et al., 2004 and Verdú 25 



et al., 2005, found that the process of orthorectification introduces further visual 1 

distortions that then negatively affected grain size predictions. It is likely then, that 2 

the SfM orthorectification process may be partly responsible for limiting the strength 3 

of results obtained from sUAS platforms. 4 

Point cloud roughness approaches using sUAS-SfM data have also been 5 

demonstrated recently, as pioneered by Woodget (2015) and subsequently applied 6 

by others (Vázquez-Tarrío et al., 2017; Woodget and Austrums, 2017). Inspired by 7 

methods used with TLS data (e.g. Brasington et al., 2012), these papers sought to 8 

develop a predictive calibration between the roughness of dense point clouds (i.e. 9 

fine scale variation in elevation of the points), obtained using the SfM process, with 10 

grain size data. To date, more consistent results have been obtained using this 11 

method than by using image textural approaches. Vázquez-Tarrío et al., (2017) 12 

report high R2 calibration values (R2 = 0.89), as do Woodget and Austrums (2017) 13 

(R2 = 0.80) and others (M. Detert, pers. comm). Validation results are also promising, 14 

and with mean errors of <1mm and standard deviation of errors of <2cm (Woodget 15 

and Austrums, 2017).  16 

Despite the encouraging outcomes of some of these initial studies however, 17 

quantitative investigations aimed at explaining the discrepancies in results between 18 

different papers is lacking. Furthermore, we are largely reliant on methods which 19 

have been developed with manned aircraft or terrestrial laser scanners in mind, 20 

which may not be wholly suitable when applied to sUAS-SfM data. Further 21 

investigation is therefore necessary if we are to develop a consistent and reliable 22 

method of determining grain size distributions at the critical mesoscale, both in fluvial 23 

settings and beyond. Therefore, within this paper, our main aim is to present a 24 

comprehensive approach to particle sizing from sUAS platforms that relies on 25 



methods designed with the specific characteristics of sUAS image acquisition and 1 

flight patterns in mind. We address the following objectives: 2 

(1) To quantify the impact of camera gimbals (i.e. sUAS image blur) on the 3 

derived metrics of orthophoto image texture which are used to model grain 4 

sizes. 5 

 6 

(2) To adapt image-based methods of grain size determination developed for 7 

manned aircraft to sUAS and compare performance to the derived metrics 8 

obtained under objective 1.  9 

 10 

Site Details 11 

We selected a c. 80m long fluvial gravel bar for this research, which is located along 12 

the right bank of the River Wear, near Willington, County Durham, UK. At this 13 

location, the River Wear is c. 20m wide, with a bed composed of imbricated gravels 14 

and cobbles.  A pre-flight visit confirmed that this site was easily accessible and safe 15 

for sUAS flying.  16 

Methods 17 

sUAS surveys 18 

We acquired image data in July 2016 during dry and bright weather conditions. To 19 

investigate the effects of sUAS image blur, we flew two different rotary-winged sUAS 20 

at the River Wear, with different camera gimbal set-ups. The first was a DJI Phantom 21 

3 Pro (P3P) with an integrated camera held within a 3-axis brushless gimbal. The 22 

P3P camera has a resolution of 12Mp and a field of view (FOV) of 94°. The second 23 

was an older platform, a DJI F550, mounted with a Canon Powershot S100 camera 24 



having a resolution of 12Mp and an FOV of 84°, which we strapped to the underside 1 

of the sUAS without the use of a gimbal. We used each sUAS to perform two 2 

surveys: 3 

 Survey 1 comprised the collection of a series of images whilst hovering the 4 

sUAS above a set location on the gravel bar, to address objective (1). 5 

 Survey 2 involved collecting imagery over the entire area of interest, to 6 

address objectives (1) and (2).  7 

 8 

For survey 1, we flew each sUAS at an altitude of 20-30m to collect a series of RGB 9 

images of a set location on the gravel bar. For survey 2, we flew each sUAS at 10 

heights of c. 20m and 50m above ground level to collect RGB imagery of the whole 11 

site.  Dual altitudes were used in accordance with the findings of Carbonneau and 12 

Dietrich (2017). This flight was easily controlled using the P3P since the flight 13 

controller app displays altitude in real time. For the F550, a best guess of the altitude 14 

was made by the pilot due to a lack of available flight information. We obtained 15 

imagery with a high level of overlap (c. 80%) and with a mix of nadir and convergent 16 

view angles, to facilitate camera self-calibration during the subsequent SfM 17 

processing. Figure 2 presents the resulting flying altitudes that were estimated a 18 

posteriori with the photogrammetry outputs described below.  We note the much 19 

greater variability in flying altitudes for the F550 which reflects the manual nature of 20 

the F550 surveys.  The gravel bar was systematically imaged with nadir imagery and 21 

convergent view imagery was added to support the nadir imagery. For the P3P, the 22 

off-nadir imagery was acquired with a simple change in the camera angle using the 23 

gimbal.  For the F550 and the non-gimballed camera, we used a bespoke set-up to 24 

fix the camera at an angle.  We acquired more than 100 images using each sUAS. 25 



We distributed 10 ground control points (GCPs) prior to the sUAS surveys and 1 

positioned them carefully, based on prior experience, to ensure adequate 2 

representation of variations in topography within our site. We used a total station to 3 

survey the position of each GCP in a local co-ordinate system.  4 

 5 

Ground truthing 6 

To calibrate and validate the grain size determination models for objective (2), we 7 

established 30 ground truth plots along the gravel bar. Each plot was 1m2 in size and 8 

efforts were made to ensure within plot grain size was as uniform as possible, since 9 

plot uniformity is known to impact upon the strength of the grain size/roughness 10 

relationship (Pearson et al., 2017; Woodget and Austrums, 2017). We recorded the 11 

location of two opposing corners of each plot using a total station and acquired a 12 

scaled, close-range photograph of the plot using a handheld digital camera. Next, we 13 

georeferenced each photograph within a GIS environment based on the associated 14 

total station data.  15 

 16 

Within the GIS environment, we selected a sample of grains for measurement by 17 

placing a regular 10 cm x 10 cm grid over each ground truth photograph (Figure 3). 18 

Those grains that fell beneath each grid node were measured for their A- and B-axes 19 

dimensions using the scaled and reference photograph of each plot (Figure 3). Some 20 

grains were unsuitable for measurement, including those that were obscured by 21 

other grains, those that were not fully visible within the photograph and those that 22 

were too small to measure at a scale of 1:1. We used these measurements to 23 

compute grain size statistics for each plot, including the mean, D50 and D84 of both 24 

the A- and B-axes. 25 



Structure from motion photogrammetry 1 

Prior to SfM processing, we conducted a subjective quality check on all Survey 2 2 

images from both sUAS. We excluded images with notable blur or other visual 3 

artefacts from further processing. Whilst this was a subjective decision based on 4 

prior experience, subsequent results suggest that in future this could be established 5 

quantitatively using image entropy information. Sufficient redundancy within the 6 

surveys meant we would exclude images without compromising the subsequent 7 

processing chain. We imported a total of 70 P3P images and 79 F550 images from 8 

Survey 2 into Agisoft’s PhotoScan Pro digital photogrammetry software. These 9 

image sets were processed separately to create an orthophoto (c. 1cm resolution) 10 

and a dense 3D point cloud for each sUAS set-up. We referenced all data to the 11 

local co-ordinate system by importing GCP locations and optimising the image 12 

alignments accordingly. Further information on the SfM-photogrammetry method can 13 

be found in recent papers by Fonstad et al., (2013), Smith et al., (2015) and Eltner et 14 

al., (2016). 15 

 16 

Quantifying the impact of camera gimbals 17 

To judge the quality of imagery collected by the two sUAS during Survey 1, we 18 

employed the ‘Estimate image quality’ tool within Agisoft’s PhotoScan Pro software. 19 

This tool returns a value between 0 and 1, where higher values relate to higher 20 

quality images (Agisoft, pers. comm.). Using this information, we selected a set of 15 21 

images for each sUAS survey over a range of image qualities, including the best and 22 

worst quality images. Whilst maintaining a range of image qualities, we also ensured 23 

that all images had a minimum image quality of 0.5, because lower quality images 24 

are not recommended for photogrammetric processing (Agisoft LLC, 2016). The 25 



image quality of the F550 images ranged from 0.582 to 0.803, with the P3P image 1 

quality ranging from 0.828 to 0.834. It should be noted that the PhotoScan image 2 

quality does not specifically measure image blur, but instead provides a normalised 3 

measure of image quality, relating to the sharpest area of the image (Agisoft, pers. 4 

comm.). As a result and in order to better compare between images (and gimbal set-5 

ups), for subsequent analysis we decided to use a measure of image entropy as 6 

indicative of the magnitude of image blur, since this would allow a more consistent 7 

and repeatable approach. 8 

Entropy (E) is defined by Equation 1, which uses a grey level co-occurrence matrix 9 

(Haralick et al., 1973). This matrix (P) reports the probabilities of all pairwise (i, j) 10 

grey level combinations occurring within a neighbourhood of a specified size. We 11 

computed entropy for every image within each set using the Entropyfilt function in 12 

Matlab (Mathworks Inc.), with a neighbourhood size of 21 pixels on only the red band 13 

of the image (i.e. a greyscale image). High entropy values indicate large differences 14 

in the spectral values of neighbouring pixels. This suggests that the imagery is sharp 15 

and of high quality. In contrast, blurred imagery features small differences between 16 

nearby pixels and therefore lower entropy values.  17 

𝐸 =  − ∑ 𝑃𝑖,𝑗 (log 2𝑃𝑖,𝑗)

𝑖,𝑗

 18 

Equation 1.  19 

Next, we used the OpenSURF feature point matching function in Matlab (Kroon, 20 

2010) to find the 30 best matched points between the image with the highest entropy 21 

(i.e. highest quality) and the remaining 14 images within each sUAS image set (using 22 

full colour images). We exported the coordinates of each of these matched points, 23 



and at the location of each point, we extracted the entropy values for each pair of 1 

images within each set. This allowed us to compare the entropy for the same 2 

location between the highest quality image and each of the other images in the set. 3 

As a result, where values of entropy between the best image and the matched image 4 

are similar we would expect consistent image quality, and where they diverge we 5 

would expect inconsistent image quality, with the entropy values at each point 6 

relating to the level of blur. 7 

 8 

Grain size mapping: Image-based approaches 9 

We use both (a) orthomosaics and (b) single, non-mosaicked, images from both the 10 

F550 and the P3P drones: 11 

(a) The Orthomosaic Approach 12 

PhotoScan was used to produce orthomosaics with spatial resolutions of 13 

11mm for the F550 and 9mm for the P3P. Verdú et al., (2005) suggest the use 14 

of image orthomosaics in grain size mapping because they have a constant 15 

scale. However, de Haas et al., (2014) found that image mosaics produced 16 

from non-gimballed sUAS images have considerable and spatially variable 17 

levels of image blur that can significantly affect grain-size mapping 18 

performance.  Here, we aim to separate out the effect of camera gimbal from 19 

the possible noise induced by the orthomosaicking process. Additionally, it is 20 

now well established that texture-based grain size mapping approaches are 21 

sensitive to the kernel size used during the local texture mapping process 22 

(Carbonneau, 2005; Carbonneau et al., 2005a, Carbonneau et al., 2005b, 23 

Black et al., 2014). Therefore, here we use an iterative approach that scans 24 

through a range of kernel sizes in a Leave-One-Out Cross-Validation (LOOCV) 25 



approach that simultaneously calibrates and validates the grain sizes against 1 

local values of textural entropy.   2 

 3 

For the purpose of calibration, we introduce a key innovation to the grain size 4 

mapping process: dimensionless grain sizes. Co-occurrence based metrics, 5 

such as entropy, compare pixel brightness values for pairs of pixels separated 6 

by a fixed distance which is measured in image pixel units. In order to 7 

harmonise the units used in the grain size mapping algorithm, we normalise 8 

the grain sizes measured in the field by the spatial resolution of the image 9 

where they are captured. For the orthomosaic approach, this equates to using 10 

the unique spatial resolution of the orthomosaic (9mm for the P3P and 11mm 11 

for the F550).   12 

The analysis begins by pre-calculating and storing textural entropy images 13 

obtained from a range of kernel sizes ranging from 5 to 101 pixels, in steps of 14 

4 pixels, for each orthomosaic. Then, we take the D50 of the B-axis calculated 15 

for each ground truth plot. The LOOCV process starts by excluding the data 16 

from the first plot. For the remaining 29 plots, the D50 is normalised by the 17 

spatial resolution of the orthomosaic and the algorithm builds a table of 18 

normalised D50 vs. entropy values for the first kernel size. These values are 19 

regressed to determine a linear model which is then used to predict and store 20 

the value of the excluded plot. The LOOCV code loop then iterates and 21 

excludes the second of 30 plots and repeats the calibration for the first kernel 22 

size. Once all 30 plots have been excluded and the corresponding 32 23 

predictions calculated, we iterate the kernel size, reset the LOOCV loop and 24 

repeat the entire process for kernel sizes ranging from 5 pixels to 101 pixels in 25 



steps of 4 pixels. This algorithm is applied to the orthomosaics from both the 1 

F550 and P3P sUAS. The results are analysed by identifying the calibration 2 

with the strongest fit (via the adjusted R2) and the corresponding quality of the 3 

predictions.  Figure 4 shows a flowchart for this process. 4 

 5 

(b) The Single Image Approach 6 

Given the observations of de Haas et al., (2014), we now develop a method 7 

that obviates the orthomosaic by using a series of individual images which 8 

cover the study site. As noted by Verdú et al., (2005), in a critique of 9 

Carbonneau et al., (2004), one issue in using individual images is the 10 

possibility of variable scale, which weakens the cross-comparability of image 11 

textures calculated on image pixel units which have slightly different scales. 12 

We expect this effect to be even more significant for sUAS imagery since the 13 

lower flying heights and weaker altitude control will lead to greater variations in 14 

scale than those experienced with manned aircraft. In the case of the present 15 

data, the data in Figure 2 shows variability in the flying altitudes. Even for the 16 

automated flight of the P3P surveys, we find that the altitude of imagery 17 

collected at 20m AGL has a standard deviation of 0.53m. For the F550, 18 

standard deviation of the lower altitude flights was 3.44 m.  Another related 19 

difficulty in working with single images is the need to establish a spatial 20 

reference system that can allow for a geospatial algorithm to retrieve ground 21 

truth values of grain size, referenced to map coordinates, and compare them 22 

to local texture values. We therefore begin by developing a semi-automated 23 

approach, similar to Dugdale et al., (2010), to georeference individual sUAS 24 

images.  25 



 1 

The first step is to export undistorted images from PhotoScan Pro (Agisoft 2 

LLC).  These images have been corrected for the lens distortion effect as 3 

calibrated by the Photoscan Bundle adjustment (see Carbonneau and Dietrich, 4 

2017 for a discussion of camera calibration in Photoscan).  Carbonneau and 5 

Dietrich (2017) found that at the edges, Phantom 3 images have a radial 6 

displacement on the order of 100 pixels.  This could add significant 7 

georeferencing errors and it is preferable to correct this lens effect and export 8 

the individual images.  Next, we export camera locations and orientations from 9 

PhotoScan. This information gives the adjusted XYZ positions along with yaw 10 

(azimuth), pitch and roll for each camera as calculated by the photogrammetric 11 

bundle adjustment. Our experience strongly suggests that this information is 12 

more accurate than that which can be obtained from drone flight logs. The 13 

camera parameters, along with the single images and the orthomosaic are 14 

then used in a MATLAB code for automatic registration point generation. The 15 

core principle of this algorithm is to find matching points shared by the 16 

georeferenced orthomosaic and single images. Once matched, the position 17 

information of a point can be extracted from the orthomosaic in order to define 18 

a 2D ground control point. Multiple points can then be used to georeference 19 

the single image with a standard affine transform. We begin by using the 20 

camera position and yaw information to roughly locate the image with respect 21 

to the orthomosaic. This approximate position is used to constrain the search 22 

area of the OpenSURF keypoint descriptor used above. The sensitivity 23 

threshold of the OpenSURF algorithm was manually adjusted to very high 24 

severity in order to minimise the presence of false positive matches and to 25 



deliver between 5 and 15 matches between the orthomosaic and each given 1 

single image. Once adjusted, the algorithm extracts the spatial position of the 2 

matched points and outputs a control points file in the open-source format 3 

used by the QGIS software (version 2.18). It was found that, despite the 4 

severity of the matching criteria used in the OpenSURF algorithm, false 5 

positives persist. We therefore used the georeferencing tool in QGIS to 6 

manually eliminate these false positives. Once developed, this process allows 7 

for a user to georeference an image in 3-4 minutes. We georeferenced 10 8 

images covering the gravel bar for each sUAS.  9 

 10 

The main drawbacks of this method of georeferencing are that; (1) we do not 11 

account for roll and pitch angles of the sUAS when each image was captured, 12 

and (2) the process is 2D and we do not account for the slope of the bank. 13 

Therefore, images that were off-nadir are expected to have higher residual 14 

errors and areas on top of the bank, in the vegetated areas, are expected to 15 

have even higher errors. The quality of the outputs was checked by finding 3 16 

distinct gravel-bar features in each sUAS image.  For each feature, we 17 

measure the 2D distance between the position of the feature in the 18 

orthomosaic and the single image. If the single image is perfectly co-registered 19 

to the orthomosaic, this distance should be zero.  We then conducted an 20 

additional check on the quality of the spatial resolution of each image as 21 

derived from the georeferencing process. We used the exported camera 22 

locations, focal length and the point cloud of the ground in order to derive the 23 

spatial resolution according to Equation 2, where Rs is the spatial resolution, H 24 

is the flying height, p is the linear size of 1 pixel on the camera detector and f is 25 



the focal length. Here we use the adjusted focal length exported from 1 

PhotoScan after the bundle adjustment process. We then compare this 2 

measurement of spatial resolution to the one derived from the georeferencing 3 

process which is directly written as a term in the affine transformation matrix 4 

saved in the world file.   5 

 6 

 7 

𝑅𝑠 =
𝐻𝑝

𝑓
 8 

Equation 2.  9 

 10 

 11 

The LOOCV grain size mapping algorithm used above was then adapted to 12 

single images. This involved pre-calculating the texture for all individual sUAS 13 

images. We used the same range of kernel window sizes as above: 5 to 101 14 

pixels in steps of 4 pixels. We then run the adapted LOOCV algorithm. This 15 

starts by excluding the first of the 30 ground truth plots. The algorithm then 16 

loads the first of 10 sUAS images and, by using the surveyed location, 17 

determines which plots were captured in this image. We then apply an 18 

exclusion criterion of twice the current texture kernel size in order to eliminate 19 

plots which fall too close to the edge of the image and whose texture might be 20 

affected by edge effects. The spatial resolution of the image is then used to 21 

normalise the D50 values for each visible plot. Local textural entropy values for 22 

the first kernel size (5 pixels) are then extracted for each visible plot and stored 23 

as a table of dimensionless grain size against texture. The algorithm then 24 

moves to the next image and again locates the visible plots. The D50 values 25 



are normalised by the new image scale. Readers should note that the 1 

normalised D50 value for a given plot visible in more than 1 image will be 2 

different for successive images as the image scale varies. Once again, 3 

textures are extracted and the table of texture vs. normalised D50 is expanded 4 

and stored. Once all images and plots have been processed, the algorithm fits 5 

a linear model of normalised D50 vs. texture and attempts to predict the 6 

excluded plot with the texture from each image where it is visible. This means 7 

that each excluded plot may be associated with more than 1 prediction. Once 8 

the first LOOCV prediction is calculated, the second plot is excluded and the 9 

entire process is repeated. Once all 30 plots have been excluded in the 10 

LOOCV loop, the kernel size is iterated, the LOOCV loop is reset, and the 11 

entire process is again repeated for kernel sizes up to 101 pixels, in steps of 4 12 

pixels. This algorithm is applied to the single images from both the F550 and 13 

P3P sUAS. The results are analysed by identifying the calibration with the 14 

strongest fit (via the adjusted R2) and the corresponding quality of the 15 

predictions. Figure 5 gives a workflow. 16 

 17 

Grain size mapping: Roughness-based approach 18 

An overview of the grain size mapping approach using roughness, based on the 19 

method first presented by Woodget (2015), is presented in Figure 6. We begin by 20 

detrending and cleaning the cloud to remove the unwanted effects of local slope and 21 

noise within the cloud respectively, which might otherwise adversely impact 22 

roughness calculations. Both operations are conducted within the open source 23 

CloudCompare software (www.danielgm.net/cc/): detrending by fitting a 3D plane to 24 

the cloud and cleaning by applying the in-built noise filter with a radius of 0.15m and 25 

http://www.danielgm.net/cc/


an absolute maximum error of 0.3m, based on a priori knowledge of typical grain 1 

sizes at this site. A visual sensitivity check was used to ensure that sufficient noise 2 

removal occurred whilst not sacrificing topographic detail.   3 

Next, we select the kernel size which will be used to compute roughness using 4 

CloudCompare’s inbuilt tool. This tool defines roughness as the shortest distance 5 

between each point in the cloud and the ordinary least-squares best fitting plane 6 

computed on the nearest neighbours of that point within a spherical kernel of a user-7 

specified size. We selected a starting roughness kernel size of 0.1m, based on a 8 

priori knowledge of the typical grain size and point cloud density at this site, which 9 

was then used to compute roughness for every point in the cloud. The only time 10 

when roughness is not computed for a point is when less than four points fall within 11 

the kernel, as a minimum of three points are required for computing the least-12 

squares plane. Next, we compute the mean roughness of all points falling within 13 

each ground truth plot, and regress this against the equivalent A- and B-axis grain 14 

size statistics (i.e. mean, D50, D84) for each plot. We repeat this process multiple 15 

times, incrementing the kernel size by 0.05m each time, up to a maximum kernel 16 

size of 0.5m. Linear regression of mean roughness and grain sizes statistics is then 17 

possible for all ground truth sample plots and all kernel sizes, to find the best 18 

calibration relationship between these two variables.  19 

Finally, we validate the best calibration relationship using jack-knifing (Quenouille, 20 

1949; Tukey, 1958). This is an iterative validation approach which excludes one 21 

ground truth plot with each iteration. It uses the regression relationship computed 22 

from all remaining plots to predict the grain size from the roughness value of the 23 

excluded plot. This is repeated until all plots have been excluded and their grain size 24 

predicted. A comparison of observed versus predicted grain sizes is then possible, 25 



permitting an assessment of the strength of the predictive relationship and the 1 

calculation of error metrics, including mean error (accuracy), standard deviation of 2 

error (precision) and maximum error.  3 

Results  4 

 5 

Quantifying the impact of camera gimbals 6 

Table 1 details the PhotoScan image quality and entropy values computed for each 7 

sUAS image set from Survey 1. Overall, it is clear that absolute image quality is 8 

lower for those images acquired using the F550 with no gimbal, than for those 9 

images acquired using the P3P sUAS with a three-axis gimbal, as indicated by lower 10 

F550 values for the minimum PhotoScan image quality.  11 

In addition, we observe a greater range in image quality within the F550 imagery 12 

compared to the P3P, as indicated by the PhotoScan image quality range, the 13 

entropy range, the entropy standard deviation and the average and standard 14 

deviation of difference in entropy between the best quality and other images (mean 15 

error and standard error). This greater range of blur within the F550 images is 16 

demonstrated in Figure 7, where we observe a greater scatter in the arrangement of 17 

points and a lower R2 value when compared to the P3P data. The tight clustering of 18 

points obtained from the P3P imagery and high R2 value are indicative of 19 

consistently sharp, higher quality imagery. Furthermore, whilst maximum image 20 

entropy values for the two sUAS set-ups are similar (Table 1), Error! Reference source 21 

not found.7 shows that values greater than 7 are only seen consistently within the 22 

P3P imagery. These results indicate that the use of a gimbal (within the P3P set up) 23 

is paramount for collecting consistently high quality, sharp imagery. These results do 24 



not provide information about the effects of using different gimbal types, but rather 1 

provide the first quantitative evidence of the effect of (a) using a gimbal, versus (b) 2 

not using a gimbal, on the quality of imagery which can be captured from a sUAS.  3 

 4 

Grain size mapping: Image-based approaches 5 

Figure 8 shows the results for the orthomosaic approach applied to the F550 data 6 

and Figure 9 shows the same results for the P3P data. Calibration performance (part 7 

A of each figure) is better for the P3P with a maximum R2 of approximately 0.48 for a 8 

kernel size of 69 pixels. In contrast, the best calibration for the F550 had an R2 of 9 

only about 0.32 for a kernel size of 41 pixels. We define error as the difference 10 

between predicted and observed grain sizes. A negative error means an under-11 

prediction. Validation performance is very similar with a significant underestimation 12 

of grain sizes (mean error of -34mm in both cases) and a standard deviation of error 13 

of 8.8mm and 8.7mm for the F550 and the P3P respectively. Validation slopes in 14 

part C of both figures are low (<0.65) and indicate a relatively poor prediction of grain 15 

sizes. Given the marked difference in image qualities displayed in Table 1 and 16 

Figure 7, these results suggest that the orthorectification process significantly 17 

degrades the consistent textures in the single P3P images.   18 

In the case of the single image approach, the georeferencing quality check revealed 19 

mean errors of 224mm and 91mm, and standard deviations of error of 209mm and 20 

88mm for the F550 and P3P sUAS respectively. Maximum errors were 581mm and 21 

833mm for the P3P and the F550, respectively. Despite the larger errors for the 22 

F550, which are to be expected in the absence of a gimbal, both mean errors are 23 

significantly smaller that the 1m size of the ground truth plots.  Verification of the 24 



spatial resolution revealed that the georeferencing process resulted in scales that 1 

were very consistent with those obtained with Equation (2). For the P3P, the 2 

difference in spatial resolutions was on average 0.04mm with a standard deviation of 3 

0.13mm. For the F550, the difference in spatial resolutions was on average 0.06mm 4 

with a standard deviation of 0.35mm.  When compared to the average spatial 5 

resolution, the standard deviation of differences equates to 1.3% and 3.1% for the 6 

P3P and F550, respectively. Closer examination of the data in Figure 2 shows that, 7 

even for the P3P flights which were programmed to fly at a set altitude of 20m, there 8 

is an actual range in flight altitudes of +/- c. 2m. At altitudes of c. 20m, this 9 

represents a variance of scale of nearly 15%. The case is more severe for the F550 10 

with a range in flight altitudes of +/- c. 10m for a mean flight altitude of 34m. This 11 

demonstrates that calculating a single spatial resolution based on the average flying 12 

altitude would be highly inaccurate.  13 

Figure 10 presents the result for the F550 while Figure 11 presents the results for the 14 

P3P for the single image approach. For the F550, the results are poor with low 15 

calibration R2 values and a very high scatter for the validation associated with a 16 

mean error of 12.4mm and a standard error of 9.7mm. The validation slope is 0.5, 17 

once again indicating proportional under-estimation. Results for the P3P are 18 

significantly better. Calibration R2 reaches 0.6 for window sizes of 61 pixels. The 19 

best validation now has a mean error of 0.02mm and a standard error 0f 6.9mm. 20 

Crucially, the slope of the best validation is 0.97. However, despite these positive 21 

indicators, the maximum error remains high at 16.5mm.  22 



Grain size mapping: Roughness-based approaches 1 

Figure 12 shows the results for the point cloud roughness approach applied to the 2 

F550 data and Figure 13 shows the same results for the P3P data. Calibration 3 

performance (part A of each figure) is better for the P3P with a maximum R2 of 4 

approximately 0.6 for a kernel size of 0.4m. In contrast, the best calibration for the 5 

F550 has an R2 of only about 0.39 for a kernel size of 0.35m. Validation performance 6 

is markedly different between the P3P and F550, with all error metrics for the P3P 7 

being significantly lower (i.e. better) than those obtained for the F550 (Table 2). 8 

Validation slopes in part C of both figures are low and indicate a relatively poor 9 

prediction of grain sizes, although the slope for the P3P data (0.59) is notably higher 10 

than that for the F550 data (0.33). 11 

 12 

Summary of grain size mapping results 13 

Table 2 provides a summary comparing key metrics across methods and for both 14 

sUAS. Our new single image texture method produces stronger calibration and 15 

validation results than either the orthomosaic or roughness methods, when used on 16 

data collected by the P3P with a 3-axis gimbal. The roughness method tends to 17 

perform better than the orthomosaic approach when applied to the P3P data, with a 18 

stronger calibration R2 and notably lower mean and maximum errors. The results 19 

from the F550 sUAS are almost always inferior to the P3P results, regardless of the 20 

method. No single method consistently outperforms the other methods where no 21 

gimbal is used on the F550 sUAS.  22 



Discussion 1 

Our results show that our novel approach of using single sUAS images, acquired 2 

from a 3-axis stabilised gimbal and calibrated with grain sizes normalised by 3 

individual image scale, delivered the optimal grain size mapping performance for our 4 

study site. This new method outperformed an advanced roughness-based method 5 

and a more traditional image-based method reliant on orthoimagery to control image 6 

scale. Our results also demonstrate the critical importance of mechanical image 7 

stabilisation for grain size mapping or any other analysis method which relies on 8 

image texture. We focus our discussion on the following key points; the poor 9 

performance of the roughness mapping in comparison with existing research, the 10 

excellent performance of our novel single image approach, the need for camera 11 

gimbals and the implications of these findings for future work on grain size mapping. 12 

The sUAS-SfM point cloud roughness method was originally developed in response 13 

to concerns about the effects of blurring within sUAS imagery (Woodget, 2015; 14 

Woodget and Austrums, 2017). Initial results have shown promise, yet applications 15 

have been focussed on sites where grain size is clearly expressed in three 16 

dimensions (i.e. in the topographic signature) and where the range in grain size is c. 17 

0.16m (D84 of B axis). At our site, however, particles are imbricated and grain size 18 

range is notably smaller (c. 0.07m for D84 of B axis). As a result, we observe that 19 

grain size is not being expressed in 3D to the same extent and therefore roughness 20 

does not readily calibrate with grain size. This is some of the first evidence to 21 

suggest that the topographic roughness approach may not have universal 22 

applicability. The level of imbrication is significant to the success of this approach. 23 

Furthermore, very recently, others have suggested that grain shape also impacts on 24 

the success of roughness based grain size quantification methods (Pearson et al., 25 



2017). Clearly, further work to quantify the range in grain size, shape and level of 1 

imbrication where the roughness method performs successfully is required. 2 

In contrast, our single image method performs exceptionally well (when a gimbal is 3 

used). For studies at the micro and mesoscale, this novel method produces results 4 

of a spatial resolution, accuracy, precision and grain size predictive strength (i.e. 5 

slope of observed versus predicted regression) which is at least as good as, and 6 

sometimes better than, all existing remote-sensing based grain size quantification 7 

measures, including close range photosieving (e.g. Butler et al., 2001; Graham et al., 8 

2005a; Graham et al., 2005b), statistical image analysis (e.g. Rubin, 2004; 9 

Buscombe, 2008; Buscombe and Masselink, 2009; Buscombe et al., 2010; 10 

Buscombe and Rubin, 2012; Buscombe, 2013) and terrestrial laser scanning (e.g. 11 

McEwan et al., 2000; Entwistle and Fuller, 2009; Heritage and Milan, 2009; Hodge et 12 

al., 2009; Brasington et al., 2012; Milan and Heritage, 2012; Rychov et al., 2012). 13 

Furthermore, it is more robust to imbrication because the particles on the top layer of 14 

an imbricated bed will have a significant portion of their edges, in the two-15 

dimensional AB plane, uncovered. This means that these edges will produce 16 

shadows which is the mechanism postulated by Carbonneau et al. (2004) which 17 

permits the correlation of image texture with grain size. In addition, because grain 18 

size is inferred from the two dimensional patterns of image brightness, image-based 19 

approaches are less affected by variability in grain shape. For example, where flat, 20 

disc-like particles produce little topographic signature, and therefore minimal 21 

roughness within the point cloud, their 2D appearance within the image is unaffected 22 

and thus the calibration with texture is uncompromised. This would suggest that 23 

image-based approaches (single image or orthomosaic) should always provide a 24 

more robust method of grain size mapping than roughness-based methods. 25 



However, this is not borne out by existing research where sUAS-SfM derived 1 

orthomosaics are compared with roughness approaches (Woodget and Austrums, 2 

2017), nor within the results we present here. The processing of single sUAS images 3 

into orthomosaics using SfM modifies the patterns of image brightness in a way 4 

which compromises the texture-grain size relationship. For the first time, we have 5 

presented a single image method which circumvents this problem and promises 6 

wider applicability for use on sUAS imagery. Further testing at a range of contrasting 7 

locations is required however. At present, the complexity of this approach may 8 

present barriers to applicability in terms of the required technical expertise, time and 9 

processing power. For example, whilst the georeferencing of 10 images took us 30-10 

40 minutes to process, it would not be unreasonable to expect the collection of more 11 

than 1000 images during a survey of numerous gravel bars on a longer stretch of 12 

river. This has become possible recently given the longer battery lives of the sUAS 13 

which are now available, and the efficient image acquisition missions now made 14 

possible by flight planning apps such as Ground Station Pro (DJI, 2017) or Litchi (VC 15 

Technology Ltd, 2017). In such scenarios, it is hoped that future developments of 16 

SfM packages would include the option to export georeferenced individual images 17 

without orthocorrection.   18 

Our results also provide evidence that without the use of a gimbal, grain size 19 

mapping results will be poor, regardless of the choice of method. This is of particular 20 

significance to our single image method, where we have shown that the outputs for 21 

the F550 drone remain of poor quality even when dimensionless grain sizes are 22 

used to account for changes of image scale and spatial resolution. That is, we 23 

observe a deterioration of mean error by more than two orders of magnitude when a 24 

gimbal is not used. A notable deterioration in quality metrics are also observed for 25 



our roughness method when the gimbal is not used. This provides the first 1 

quantitative evidence of the implications of camera stabilisation for the acquisition of 2 

aerial imagery from sUAS. It also provides evidence that camera stabilisation may be 3 

responsible for the variable success of sUAS grain size mapping methods reported 4 

previously (de Haas et al., 2014; Tamminga et al., 2015; Vázquez-Tarrío et al., 2017; 5 

Woodget and Austrums, 2017). Fortunately, many newer sUAS are equipped with 3-6 

axis stabilisation gimbals as standard, driven by requirements of the video filming 7 

community in particular. Such developments may obviate the need for methods of 8 

detecting and eliminating blur from imagery post-acquisition, and we suggest that 9 

particle size quantification should not be undertaken using a sUAS which does not 10 

have a gimbal mounted sensor. 11 

Further work on grain size quantification from sUAS should focus on developing an 12 

approach which works regardless of whether grain size is expressed in 2D or 3D. 13 

Our new single image method may be capable of this, however further quantitative 14 

evidence at a range of sites is needed. It will be of interest to those requiring a quick 15 

and easy approach to know how our single image method compares to the less 16 

complex roughness method at sites where 3D expression of grain size is stronger. 17 

Alternatively, improvements to the speed and automation of georeferencing single 18 

images would be advantageous, as would dedicated experiments within submerged 19 

parts of the fluvial environment. As an ultimate goal, a method which removes the 20 

need for ground truth calibration plots altogether would be of great value, as this 21 

often consumes the greatest time and effort during the data acquisition phase.  22 

Conclusion 23 

Within this paper we have developed and presented a comprehensive approach to 24 

particle sizing from sUAS within a fluvial setting. This has comprised quantifying the 25 



impacts of camera gimbals on image quality and subsequent grain size estimation, 1 

and the adaptation of a traditional image-based texture method for use with single 2 

images acquired from sUAS. Our key findings demonstrate that the use of a 3-axis 3 

stabilising gimbal is paramount for accurate and precise grain size estimation from 4 

sUAS data. Furthermore, our novel approach using the texture of single sUAS 5 

images with dimensionless calibration grain sizes has outperformed the equivalent 6 

results of an orthophoto texture approach and a method based on the roughness of 7 

SfM point clouds. Whilst improvements in the usability and efficiency of our new 8 

method are required before more widespread use is possible, our results clearly 9 

demonstrate proof of concept for our method which compare favourably to existing 10 

grain size mapping methods based on remote sensing data. Further testing is 11 

required to confirm the wider applicability of this approach and in particular, its ability 12 

to predict grain size in a range of environments, over a range of scales, over a range 13 

of grain shapes and at different imbrication levels. 14 
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Table 1. Image quality for both UAVs, as determined by PhotoScan and the entropy 1 

values of selected points. *denotes that measure relates to the linear regression 2 
between highest quality image and all other images, as shown in Figure 7. 3 

Impact measure 
3-axis 
gimbal 
(P3P) 

No 
gimbal 
(F550) 

PhotoScan image quality minimum (worst) 0.828 0.582 

PhotoScan image quality range 0.006 0.221 

Maximum entropy 7.280 7.070 

Entropy range 4.020 5.680 

Entropy standard deviation 0.770 0.850 

*Average difference in entropy (mean error) 0.033 0.442 

*Standard deviation of difference in entropy 
(standard error) 

0.124 0.508 

*R2 0.902 0.652 

*Slope 0.974 0.902 
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Table 2. Summary of key quality metrics for orthomosaic, single image and 1 

roughness methods performed using imagery acquired by two different sUAS/gimbal 2 

set-ups. 3 

Quality Metric Method 
3-axis 
gimbal 
(P3P) 

No gimbal 
(F550) 

Strongest calibration R2 

Orthomosaic  0.48 0.32 

Single Image 0.69 0.14 

Roughness  0.60 0.39 

Predicted v. observed 
slope 

Orthomosaic 0.59 0.64 

Single Image 0.97 0.50 

Roughness  0.59 0.33 

Mean error (mm) 

Orthomosaic  -34.00 -34.10 

Single Image 0.02 12.40 

Roughness 0.07 0.30 

Standard deviation of 
error (mm) 

Orthomosaic  8.80 8.70 

Single Image  6.90 9.70 

Roughness  10.15 23.63 

Maximum error (mm) 

Orthomosaic  53.40 49.30 

Single Image 16.50 33.90 

Roughness  19.46 53.81 
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