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Abstract

The use of discontinuity surface propagation (e.g. shock waves and
acceleration waves) is well known in modern continuum mechanics and
yields a very useful means to obtain important information about a fully
nonlinear theory with no approximation whatsoever. A brief review of
some of the recent uses of such discontinuity surfaces is given and then we
mention modelling of some social problems where the same mathematical
techniques may be used to great effect. We specifically show how to de-
velop and analyse models for evolution of one language overtaking use of
another leading to possible extinction of the former language. Then we
analyse shock transmission in a model for the evolutionary transition from
the human period when hunter-gatherers transformed into farming. Fi-
nally we address modelling discontinuity waves in the context of diffusion
of an innovation.

1 Introduction

The topics of acceleration wave motion and their transition into shock waves
is one with a rich history. Such discontinuity surface analyses have provided a
means to obtaining highly useful information on the transmission of a wave in
the fully nonlinear situation without any approximation whatsoever. Largely
because of this fact, use of such discontinuity surface waves is still very prevalent
in the modern continuum mechanics literature, see e.g. Bissell & Straughan [6],
Christov & Jordan [8, 9, 10], Christov et al. [11, 12], Currò et al. [15, 16],
Fabrizio et al. [18], Fabrizio & Morro [19], Gentile & Straughan [21], Jordan
[26, 27, 28, 29, 30, 31, 32], Marasco [39, 40], Marasco & Romano [41], Paoletti
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[47], Ruggeri & Sugiyama [48], Sharma & Venkatramani [49], Straughan [50,
51, 52], and Valenti et al. [55]. In particular, hyperbolic theories in continuum
mechanics have recently been shown to be dominant in many cases rather than
traditional diffusion mechanisms, see e.g. Christov [7], Ciarletta et al. [14],
Gentile & Straughan [22], Morro [42], and many such cases are reported in the
book by Straughan [52].

In another development, mathematical modelling and analysis of social prob-
lems has became a dominant topic. With governments having to spend huge
amounts of money to combat problems of alcoholism, drug abuse, obesity, and
many others, there is clearly a need for mathematics to develop solutions via
predictive modelling. Such models and their associated solutions are already
appearing, e.g. in alcoholism, Huo & Song [24], Mulone & Straughan [44],
Walters et al. [56]; in anorexia and in bulimia, Ciarcià et al. [13]; in heroin
and other drug abuse, Kalula & Nyabadza [34], Liu & Zhang [38], Mulone &
Straughan [43], Nyabadza et al. [45, 46]; in integration of different ethnic com-
munities, Fabrizio [17]; in crowd behavioural problems, Bellomo & Bellouquid
[3], Bellomo et al. [4], Bissell & Straughan [6]; in smoking, Bissell et al. [5]; in
virus transmission, such as the Hantavirus or HIV, Barbera et al. [2], Bissell
& Straughan [6], Hussaini & Winter [25]; and many further references to these
challenging topics are provided in these articles.

Apart from stability studies and travelling wave analyses, another important
way to tackle models for cultural and social problems was developed by Jordan
[29]. In a novel piece of work Jordan [29] developed a detailed analysis for the
evolutionary behaviour of a shock wave for a hyperbolic version of the famous
Fisher equation

∂ρ

∂t
− ν

∂2ρ

∂x2
= γρ

(

1−
ρ

ρs

)

(1)

where ρ(x, t) is a density and ν, γ and ρs are positive constants. This equation
was proposed by Fisher [20] as a model for the spread of an advantageous gene,
and was also simultaneously proposed by Kolmogoroff et al. [37]. The articles
of Jordan [29] and of Jordan & Puri [33] refer to equation (1) as the Fisher -
KPP equation. Jordan [29] pertinently points out that equation (1) has been
studied with great effect in a variety of contexts in the biological, physical and
social sciences.

Jordan [29], in fact, uses Green & Naghdi [23] thermodynamics (cf. Straughan
[52]) to replace equation (1) by a pair of equations which convert it to a hyper-
bolic system. Jordan’s [29] system is

∂ρ

∂t
= −

∂q

∂x
+ γρ

(

1−
ρ

ρs

)

,

∂q

∂t
= −V 2 ∂ρ

∂x
,

(2)

where V is a constant which turns out to be the shock speed and q is the flux
for the density ρ. Jordan’s important ideas have recently been extended to
study a nonlinear model for a mutant gene which is linked to a cultural trait by
Straughan [53].
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In this paper we firstly illustrate the mathematical theory of an acceleration
wave by studying wave motion in an elastic body which has a double porosity
structure. We stress, though, that both acceleration and shock wave techniques
are useful as a means of obtaining information from models for social problems
or for those of concern in a cultural context. This is a new application area for
the theory of singular surfaces and hinges on Jordan’s [29] fundamental paper.
In this connection we develop hyperbolic models for three areas of interest. The
first problem we consider is one of a language in a mixed language community
becoming dominant with possible extinction of other languages. We then study
a model for the transmission of human behaviour from the period where we
lived by hunting and by gathering such foods as berries to that when mankind
became organised farmers. The final problem we present analyses a model for
the transmission of an innovation, often referred in the business and economic
literature as diffusion of innovation. We show how to derive the equations
for the propagation of a shock wave in each case. In each of the cases we
derive the shock speed and then derive a coupled set of nonlinear ordinary
differential equations for the amplitudes of the shock wave. These systems are
easily integrated numerically.

2 Acceleration waves in elasticity with a double

porosity structure

A background to the theory of elastic bodies with double porosity may be found
in e.g. Straughan [54], see also the references therein. We simply present the
relevant linearized equations and these are

ρüi =(aijkhuk,h),j − (βijp),j − (γijq),j , (3)

α1ṗ =(kijp,j),i − γ̂(p− q)− βij u̇i,j , (4)

α2q̇ =(mijq,j),i + γ̂(p− q)− γij u̇i,j , (5)

where ρ(x) is the solid density, aijkh(x) are the elastic coefficients, βij(x), γij(x)
are constitutive coefficients which couple equations (3) - (5), α1(x) > 0 and
α2(x) > 0 are measures of compressibilities of the macro pore and fissure sys-
tems, respectively, kij(x), mij(x) are anisotropic permeabilities, and γ̂(x) is an
internal transport coefficient. In addition ui is the elastic displacement, p is the
macro pressure and q is the micro pressure. Throughout this article we employ
standard indicial notation in conjunction with the Einstein summation conven-
tion. Hence, for example, a subscript ,j denotes ∂/∂xj , and a superposed dot
denotes ∂/∂t, namely, partial differentiation with respect to time.

The compatibility conditions for an acceleration wave analysis may be found
in Fabrizio & Morro [19], and in Straughan [50], pp. 297–374, or Straughan [52],
pp. 100–136. An acceleration wave for the system (3) - (5) is a two-dimensional
surface, S, in R

3, such that ui(x, t), p(x, t) and q(x, t) are C1 everywhere but
across S, üi, u̇i,j , ui,jk, p̈, ṗ,i, p,ij, q̈, q̇,i, q,ij , and their higher derivatives suffer a
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finite discontinuity. The jump of a function f across S, [f ], is defined as

[f ] = f− − f+ (6)

where
f+ = lim

x→S

f(x, t) from the right,

and
f− = lim

x→S

f(x, t) from the left.

We define the amplitudes ai(t), P (t), Q(t) of the acceleration wave as

ai(t) = [üi], P (t) = [p̈(t)], Q(t) = [q̈(t)] . (7)

Upon taking the jumps of equations (3) - (5) one finds

ρ[üi] = aijkh[uk,hj ] (8)

together with

kij [p,ji] = βij [u̇i,j ] and mij [q,ji] = γij [u̇i,j]. (9)

If UN denotes the wavespeed then one has the Hadamard relation

δ

δt
[f ] = [ḟ ] + UN [f,ini] (10)

cf. Straughan [50], equation (7.27), the compatibility relations,

[f,i] = ni[f,jnj] and [f,ij ] = ninj[f,rsnrns] . (11)

Given the regularity of an acceleration wave for system (3) - (5) we use the
Hadamard relation (10) to deduce that

[üi] = −UN [nau̇i,a] = U2
N [nanbui,ab] (12)

and we employ the compatibility relation to see that

[uk,hj ] = nhnj [uk,rsnrns] . (13)

Further use of the Hadamard relation allows us to deduce

[p̈] = U2
N [ninjp,ij ], [q̈] = U2

N [ninjq,ij ] . (14)

Employing expressions (12) and (13) in equation (8) we find

(ρU2
Nδij −Qij)aj = 0 (15)

where Qij is the acoustic tensor

Qij = airjsnrns . (16)
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If ai = a(t)λi then from (15) we see that an acceleration wave will propagate
when λ is an eigenvector of Q. Once one knows λi then the wavespeed UN

follows from (15) as

U2
N =

Qijλiλj

ρ
. (17)

If λi = ni, where n is the unit normal to the wave S, then the acceleration wave
is longitudinal.

Employing (9) together with the compatibility relations we then find

kijninjP = −
βijnj

UN
ai and mijninjQ = −

γijnj

UN
ai . (18)

Thus, once we know ai we may determine the wave amplitudes P and Q from
equations (18).

In fact, one can proceed and determine the wave amplitude ai by differen-
tiation of (3). The analysis is more transparent if we consider a plane wave
since this effectively reduces to the one-dimensional situation, to which we now
restrict attention.

2.1 Wave amplitudes in one space dimension

Let now A, β, γ, k and m be the one-dimensional equivalents of the tensors
aijkh, βij , γij , kij and mij and for simplicity we suppose these are constants.
Then the one-dimensional forms of equations (3) - (5) become

ρü = Auxx − βpx − γqx

α1ṗ = kpxx − γ̂(p− q)− βu̇x

α2q̇ = mqxx + γ̂(p− q)− γu̇x

(19)

where px = ∂p/∂x, etc. The one-dimensional wavespeed, V , satisfies V 2 = A/ρ
and equations (18) now reduce to

kP = −
βa

V
, mQ = −

γa

V
. (20)

If we differentiate equation (19)1 with respect to x and take the jumps we then
find

ρ[üx] = A[uxxx]− β[pxx]− γ[qxx] . (21)

From the Hadamard relation we have

[ü] = −V [u̇x] = V 2[uxx] , (22)

and
δ

δt
[u̇x] = [üx] + V [u̇xx] ,

δ

δt
[uxx] = [u̇xx] + V [uxxx] . (23)

Combining (23) we find

[üx] = −
2

V

δa

δt
+ V 2[uxxx] ,

5



and use of this in (21) shows that

−
2ρ

V

δa

δt
+ ρV 2[uxxx] = A[uxxx]−

βP

V 2
−

γQ

V 2
. (24)

Thus, using the fact that V 2 = A/ρ and equations (20) we find equation (24)
reduces to

δa

δt
= −

1

2ρV 2

(

β2

k
+

γ2

m

)

a. (25)

This, of course, integrates to show the wave amplitude decays exponentially.
This is becasue we started with the linearized equations (3) - (5) or (19). For
the fully nonlinear case the situation is different, for example one may witness
finite time blow-up of the amplitude, see Gentile & Straughan [21].

3 Language extinction

The question of language extinction is an important one and mathematical
models for this are proposed by Kandler & Steele [35] and by Kandler et al. [36].
They use as an example the fact that while Scottish Gaelic was the dominant
language in the islands off North West Scotland, and in the North West of
Scotland itself in the late 1800’s, the English language is slowly taking over
as the dominant language there. There are many examples of such language
competition worldwide including such as the old Neapolitan language of Naples
and its competition with Italian.

Kandler & Steele [35] develop a two component model for language compe-
tition. They suppose v(x, t) represents the number of speakers of a language B
in a region Ω ⊆ R

2, say, while u(x, t) represents the number of speakers of a
different language A which threatens to overtake language B due to the move-
ment of speakers of language A into the region Ω. Their model is based on the
equations

∂u

∂t
= d1∆u+ a1u− b1u

2 + c1uv,

∂v

∂t
= d2∆v + α1v − β1v

2 − c1uv,

(26)

where d1, d2, a1, b1, c1, α1 and β1 are positive constants. It is convenient to
non-dimensionalize equations (26) and so let T = L2/d1 be a time scale with

L =
√

d1/c1 being the length scale. Let now d̂ = d1/d2, a = a1/c1, b =

b1/c1, α = α1d̂/c1, β = β1d̂/c1, and then equations (26) may be written in the
non-dimensional form

∂u

∂t
= ∆u+ au− bu2 + uv,

d̂
∂v

∂t
= ∆v + αv − βv2 − d̂ uv.

(27)

We wish to study propagation of a shock wave via a hyperbolic form of
equations (27), i.e. we wish to study how effectively a sudden influx of speakers
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of language A into Ω would propagate and influence the numbers u and v. To
this end we generalize equations (27) into a hyperbolic form in the manner of
the method of Jordan [29], as was done for gene-culture waves by Straughan
[53]. Thus, let J and R be fluxes associated to u and v, respectively. Then take

d̂ = 1, assume Ω is in one-dimension, and write instead of equations (27) the
system

ut = −Jx + au− bu2 + uv,

τJt + J = −ux,

vt = −Rx + αv − βv2 − uv,

τRt +R = −vx.

(28)

To understand the above procedure of how and why we change the parabolic
form into a hyperbolic one consider equation (27)1 in one space dimension.
Equation (27)1 is essentially employing a flux simultaneously with Fourier’s
law, i.e. equation (27)1 is

ut = −Jx + au− bu2 + uv

where the flux has the Fourier form

J = −
∂u

∂x
. (29)

Jordan’s [29] idea (for the Fisher equation) was to replace the Fourier law (29)
by a Cattaneo one of form

τ
∂J

∂t
+ J = −

∂u

∂x
, (30)

where τ > 0 is a relaxation time. A detailed explanation of Cattaneo’s equations
and other thermodynamic laws, and why they are needed, including a historical
account, is given in the book of Straughan [52]. We stress that hyperbolic forms
of equations for many sociological or biological systems have been the subject
of recent study, e.g. in traffic flow, in population dynamics, in fish migration,
in the spread of a virus, in chemotaxis, and in skin burns, see chapter 9 of
Straughan [52]. For the history and motivation of such hyperbolic systems as
(28) we refer to Straughan [52] and we here concentrate on an analysis of shock
waves in this system.

A shock wave for system (28) is a singular surface S such that u, v, J and
R suffer a finite discontinuity on S but are at least C1 everywhere else. If the
shock speed is V , the Rankine-Hugoniot equations from (28) are

V [u] = [J ], τV [J ] = [u],

V [v] = [R], τV [R] = [v],
(31)

cf. Straughan [53], equations (6). The novel aspect of Jordan’s [29] work was to
show that a shock wave for the hyperbolic Fisher system propagates in a sense
in the manner of an acceleration wave in many continuum mechanics systems
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and leads to a Bernoulli equation for the shock amplitude. In our case we do
not arrive at a single Bernoulli equation since (28) is a system of four equations.
Nevertheless, we proceed by now taking the jump of equations (28).

Note that the Rankine-Hugoniot equations (31) show

V 2 =
1

τ
> 0, (32)

so V is constant. The Hadamard relation shows that

δ

δt
[u] = [ut] + V [ux], (33)

and we repeatedly employ this together with the analogous form for v. Define
the shock ampltudes A(t), B(t), C(t) and D(t) by

A = [u], B = [v], C = [J ], D = [R].

Then, from the jumps of (28) and use of the Hadamard relation (33) we may
derive the equations

Ȧ− V [ux] = −[Jx] + aA− bA2 − 2bu+A+AB + v+A+ u+B, (34)

τ(Ċ − V [Jx]) + C = −[ux], (35)

Ḃ − V [vx] = −[Rx] + αB − βB2 − 2βv+B −AB − v+A− u+B, (36)

and
τ(Ḋ − V [Rx]) +D = −[vx], (37)

where here a superposed dot denotes δ/δt, e.g. Ȧ = δA/δt, and we have em-
ployed the relation for the product of a jump

[fg] = f+[g] + g+[f ] + [f ] [g] . (38)

We next use the fact that V is constant and from (31), V A = C, V B = D,
and we then form the combinations V ×(34)+τ−1×(35) and V ×(36)+τ−1×(37).
In this way one arrives at the coupled system of nonlinear ordinary differential
equations for the wave amplitudes A and B, of form

2Ȧ =
(

a− 2bu+ + v+ −
1

τ

)

A+ u+B − bA2 +AB,

2Ḃ =
(

α− 2βv+ − u+ −
1

τ

)

B − v+A− βB2 −AB.

(39)

The evolution of the shock amplitude may be determined for given u+, v+

by solving equations (39) numerically, cf. the numerical solutions for the gene-
culture system in Straughan [53].

A particular situation of interest might be when u+ = 0. This could, for
example, correspond to the situation where a group of English speakers arrives
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on an island on which there are only Gaelic speakers. In this case system (39)
reduces to the simplified form

2Ȧ = λ1A− bA2 +AB,

2Ḃ = λ2B − v+A− βB2 −AB,
(40)

where the coefficients λ1 and λ2 are given by

λ1 = a+ v+ −
1

τ
and λ2 = α− 2βv+ −

1

τ
.

Steady states of system (40) are easily found by setting the left hand sides of
equations (40) to be equal to zero. One then finds there are four plausible steady
states (Ā, B̄) given by

(i) (0, 0) (ii)
(

0,
λ2

β

)

(41)

(iii)
(λ1

b
+

B1

b
, B1

)

(iv)
(λ1

b
+

B2

b
, B2

)

where B1, B2 are solutions to

B1,2 =

−v+ − λ1

b
+ λ2 ±

√

(
v+ + λ1

b
− λ2)

2 −
4λ1v

+

b
(β +

1

b
)

2(β +
1

b
)

One may study the stability of these steady states and analyse how a shock
evolves to such, as is done in the gene-culture model by Straughan [53].

Kandler et al. [36] present a three component model for language competi-
tion. They let u and w be the numbers of speakers of the single languages A and
B and they further let v be the number of people who speak both. Their model
actually involves a logistic term which has a nonlinear coefficient of the u2, v2

and w2 terms. If we adopt their model but retain the structure of the Kandler
& Steele [35] model, with equal diffusion coefficients, then one may derive the
following set of equations for the evolution of u, v and w:

ut = d uxx + a1u(1− ku)− c31 uw + c12 uv,

vt = d vxx + a2v(1 − kv) + (c13 + c31)uw − c32 vw − c12 uv,

wt = dwxx + a3w(1− kw) − c13 uw + c32 vw.

If one non-dimensionalizes this system by choosing time and length scales as
T = L2/d, L =

√

d/c12 and then one selects α = a1/c12, δ = c31/c12, β =
a2/c12, µ = c32/c12, γ = a3/c12, and ǫ = c13/c12, then one may arrive at the
following non-dimensional form of equations

ut = uxx + αu − αku2 − δuw + uv,

vt = vxx + βv − βkv2 + (ǫ+ δ)uw − uv − µvw,

wt = wxx + γw − γkw2 − ǫuw + µvw.

(42)
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By using the Jordan - Cattaneo method, Jordan [29], one easily derives a hy-
perbolic analogue of (42) employing J,K and L as the fluxes for u, v and w, to
find

ut = −Jx + αu− αku2 − δuw + uv,

τJt + J = −ux,

vt = −Kx + βv − βkv2 + (ǫ + δ)uw − uv − µvw,

τKt +K = −vx,

wt = −Lx + γw − γkw2 − ǫuw + µvw,

τLt + L = −wx.

(43)

One could develop a shock wave analysis for system (43) and arrive at three
coupled nonlinear ordinary differential equations for the wave amplitudes which
would then need to be solved numerically. Details for a system of six equations
describing the “diffusion of an innovation” are given in section 5.

4 Hunter - gatherer to farmer transition

A very interesting system of equations is derived by Aoki et al. [1]. They model
the situation where the population involves farmers and hunter-gatherers. The
idea is that some of the hunter-gatherers come into contact with farmers and
are converted to farming. Aoki et al. [1] denote the densities of each of these
categories of people by F (x, t), farmers, C(x, t), converted farmers, and H(x, t),
hunter-gatherers. They derive a non-dimensional form of their equations as

Ft = Fxx + aF (1− F − C),

Ct = Cxx + C(1− F − C) + s(F + C)H,

Ht = Hxx + bH(1−H − g{F + C}),

(44)

for constants a, b, g and s. One could clearly write a hyperbolic analogue of
system (44) and study shock wave evolution.

We here consider a simplified model in which a = 1 (this means the initial
growth rate of farmers and converted farmers is the same). If we then let
A = F + C from equations (44) we may derive the system

Ht = Hxx + bH(1−H − gA),

At = Axx +A(1−A+ sH).
(45)

If we follow the Jordan-Cattaneo approach then from (45) one may derive the
following hyperbolic system of equations,

Ht = −Jx + bH(1−H − gA),

τJt + J = −Hx,

At = −Mx +A(1−A+ sH),

τMt +M = −Ax,

(46)
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where τ is a positive constant and where J and M are the fluxes related to H
and A.

If one defines the wave amplitudes h and a by h(t) = [H ] and a(t) = [A] then
one may develop a shock wave analysis as in section (3). We omit details, but
one may show the wavespeed V is given by V 2 = 1/τ , and the coupled system
of amplitude equations is

δh

δt
+

1

2

(1

τ
− b+ 2bH+ + bgA+

)

h+
bg

2
H+a+

b

2
h2 +

bg

2
ah = 0,

δa

δt
+

1

2

(1

τ
− 1 + 2A+ − sH+

)

a−
sA+

2
h−

s

2
ah = 0.

(47)

Numerical solutions of system (47) are found in a straightforward manner.

5 Diffusion of innovation shock waves

The final model we consider is one of economic and business interest and involves
the diffusion of an innovation. Wang et al. [57] produce an ordinary differential
equation model for the diffusion of an innovation which divides the relevant
public who might buy this product into the class of people not aware of the
product, N , those aware but who have not yet adopted the product, I, and those
who have already adopted the product, A. If one denotes the total population
(market potential) by m then m = N + I + A. The differential equations
introduced by Wang et al. [57] are

dN

dt
= −pN −

q1
m

AN + γI + µA,

dI

dt
= pN +

q1
m

AN − γI − g
(A

m

)

I,

dA

dt
= −µA+ g

(A

m

)

I,

(48)

where p, q1, γ and µ are positive constants, and g is a function, e.g. g(x) =
α+ c1x+ c2x

2, α, c1, c2 constants. We here concentrate on one of the functions
chosen by Wang et al. [57], namely, g = α + c1x. Wang et al. [57] investigate
the stability of solutions to the ordinary differential equation system (48).

Our interest is in studying how an innovation will move in both space and
time and so we consider adding flux terms to each equation in (48) and allowing
N, I and A to depend on both x and t. Let now JN , JI and JA be fluxes
associated to the variables N, I and A. Then for τ a relaxation time we employ
the Jordan-Cattaneo argument, cf. Jordan [29], to generalize (48) into the
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system of equations

∂N

∂t
= −

∂JN
∂x

− pN −
q1
m

AN + γI + µA,

τ
∂JN
∂t

+ JN = −D
∂N

∂x
,

∂I

∂t
= −

∂JI
∂x

+ pN +
q1
m

AN − γI −
(

α+ c1
A

m

)

I,

τ
∂JI
∂t

+ JI = −D
∂I

∂x
,

∂A

∂t
= −

∂JA
∂x

− µA+
(

α+ c1
A

m

)

I,

τ
∂JA
∂t

+ JA = −D
∂A

∂x
,

(49)

D being a positive constant, the diffusion coefficient.
We define a shock wave for equations (49) to be a singular surface, S, such

that N, I and A and their higher derivatives possess a discontinuity on S, but
are at least C1 everywhere else.

We provide some details for the development of the equations for the shock
amplitudes because the calculations are non-standard due to the presence of the
1/m terms. The Rankine-Hugoniot equations for (49) are shown to be

V [N ] = [JN ], τV [JN ] = D[N ],

V [I] = [JI ], τV [JI ] = D[I],

V [A] = [JA], τV [JA] = D[A],

(50)

from which we find

V 2 =
D

τ
> 0, (51)

so that the shock speed V is a constant.
We define the shock amplitudes E(t), F (t) and G(t) to be

E = [N ], F = [I], G = [A], (52)

and then we take the jumps of each of the equations (49). The Hadamard and
product rules are used extensively. For example, from (49)1,2 we find

δ

δt
[N ]− V

[∂N

∂x

]

= −
[∂JN
∂x

]

− p[N ]− q1

[AN

m

]

+ γ[I] + µ[A], (53)

and

τ
δ

δt
[JN ]− τV

[∂JN
∂x

]

+ [JN ] = −D
[∂N

∂x

]

. (54)

Now form (53)+(τV )−1(54) to derive with the aid of the Rankine-Hugoniot
equations (50),

2
δE

δt
+

1

τ
E = −pE − q1

[AN

m

]

+ γF + µG. (55)
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To progress from this point we need to observe that with J = JN +JI +JA,
by adding appropriate groups of equations from (49) we obtain

∂m

∂t
= −

∂J

∂x

τ
∂J

∂t
+ J = −D

∂m

∂x
.

(56)

The Rankine-Hugoniot equations for the system (56) are

V τ [J ] = D[m], V [m] = [J ], (57)

so that V 2 = D/τ , as above. Then from the jumps of (56) together with the
Hadamard relation we find

δ

δt
[m]− V

[∂m

∂x

]

+
[∂J

∂x

]

= 0,

τ

(

δ

δt
[J ]− V

[∂J

∂x

]

)

+ [J ] +D
[∂m

∂x

]

= 0.
(58)

By adding equations (58) appropriately and by using (57) we thus find

δ

δt
[m] +

1

2τ
[m] = 0. (59)

Thus we find from (59) that the total amplitude (jump) is

[m(t)] = [m(0)]e−t/2τ . (60)

Recall [f ] = f− − f+ so that

[ 1

f

]

=
1

f−
−

1

f+

and this may be rearranged to deduce

[ 1

f

]

= −
1

f+
+

1

(f+ + [f ])
. (61)

Define now
Q(t) = m+ + [m(0)]e−t/2τ , (62)

where we recall m+ = N+ + I+ +A+. Then

[AN

m

]

= A+N+

[ 1

m

]

+
1

m+
[AN ] + [AN ]

[ 1

m

]

. (63)

We employ (61) and (62) in (63) to find

[AN

m

]

= A+N+

{

−
1

m+
+

1

Q(t)

}

+
A+[N ] +N+[A] + [N ] [A]

Q(t)
. (64)
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Next, we return to equation (55) and employ (64) to derive

2
δE

δt
=− E

(1

τ
+ p+

A+q1
Q(t)

)

+ γF +G
(

µ−
N+q1
Q(t)

)

−
q1

Q(t)
EG− q1A

+N+

{

−
1

m+
+

1

Q(t)

}

.

(65)

The calculations involving equations (49)3,4 and (49)5,6 are similar. Omit-
ting details one finds

2
δF

δt
=− F

(1

τ
+ γ + α−

c1A
+

Q

)

+
G

Q
(q1N

+ − c1I
+)

+ E
(

p+
A+q1
Q(t)

)

+
q1
Q

EG−
c1
Q

FG

+A+(q1N
+ − c1I

+)

{

−
1

m+
+

1

Q(t)

}

(66)

and

2
δG

δt
=
(

α+
c1A

+

Q

)

F +G
(

−µ−
1

τ
+

c1I
+

Q

)

+ c1A
+I+

{

−
1

m+
+

1

Q(t)

}

+
c1
Q

FG.

(67)

Equations (65) - (67) are a nonlinear system of coupled ordinary differential
equations for the wave amplitudes E,F and G, and these may be solved by a
suitable numerical method.

While it is straightforward to solve (65) - (67) by a numerical method we
observe that from (60) we have

E + F +G = [m(0)]e−t/2τ = m0e
−t/2τ (68)

where m0 is the data term indicated. Thus, if we wish we may write E =
m0e

−t/2τ − F −G and eliminate E from equations (66) and (67) to find

δF

δt
=−

F

2

(1

τ
+ γ + α+ p+

(q1 − c1)A
+

Q

)

+
G

2

(q1N
+ − c1I

+

Q
− p−

q1A
+

Q
+

q1m0e
−t/2τ

Q

)

+
A+

2
(q1N

+ − c1I
+)

{

−
1

m+
+

1

Q(t)

}

+
1

2

(

p+
A+q1
Q(t)

)

m0e
−t/2τ −

(c1 + q1
2Q

)

FG−
q1
2Q

G2,

(69)

and
δG

δt
=
1

2

(

α+
c1A

+

Q

)

F +
G

2

(

−µ−
1

τ
+

c1I
+

Q

)

+
c1A

+I+

2

{

−
1

m+
+

1

Q(t)

}

+
c1
2Q

FG.

(70)
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An alternative way to solving (65) - (67) is to integrate equations (69) and
(70) numerically.

6 Conclusions

The purpose of this article is to show that the mathematical techniques asso-
ciated with shock waves, acceleration waves, and other discontinuity surfaces
are not restricted to only the fields of continuum mechanics such as elasticity,
or fluid mechanics. They represent a valuable way to obtain information con-
cerning models in many other fields such as anthropology, business, economics,
or social sciences. We have chosen to illustrate this by deriving the wavespeeds
and the equations governing the evolution of the wave amplitudes by employing
examples of language competition, the emergence of farming in a world where
only hunter-gathering existed, and the propagation of an innovation, typically
in a business or economic situation. Nevertheless, there are many emerging
interdisciplinary areas where the techniques of discontinuity surfaces may be
applied with undoubtedly highly useful results.

A key to the extension of discontinuity waves to other areas rather than
just to continuum mechanics was the highly influential paper of Jordan [29],
who showed how one could develop a hyperbolic analogue of the famous Fisher
equation which has been employed extensively in biology and in business. Fur-
ther examples of hyperbolic models in a variety of interdisciplinary scenarios
are described at length in chapter 9 of the book by Straughan [52]. We believe
that the methods of discontinuity surface analysis will provide a very useful way
to explore many of the exciting emerging areas of applied mathematics where
nonlinear wave propagation with no approximation is desirable.
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