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Abstract

We study the dynamics and interaction of coaxial vortex rings in the FitzHugh-
Nagumo excitable medium. We find that threading vortex rings with a vortex string
results in significant qualitative differences in their evolution and interaction. In partic-
ular, threading prevents the annihilation of rings in a head-on collision, allows generic
ring overtaking, and can even reverse the direction of motion of a ring. We identify
that an important mechanism for producing this new behaviour is that threaded vortex
rings interact indirectly via induced twisting of the threading vortex string.
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1 Introduction

Spiral wave vortices have been extensively studied experimentally, modelled mathemat-
ically and simulated numerically in a range of biological, chemical and physical excitable
media. Notable examples include the chemotaxis of slime mould, oxidation waves in redox
reactions, and depolarization waves in cardiac tissue [1, 2]. In a three-dimensional excitable
medium vortices form extended vortex strings that either end on the boundary of the medium
or form closed loops. In the latter case a vortex ring is the simplest possibility.

The numerical study of vortex rings, and more general knotted and linked vortex strings,
began more than thirty years ago in a series of papers by Winfree and Strogatz [3, 4, 5, 6].
Advances in computing power allowed the study of linked and knotted vortex strings over
much longer time scales than early investigations and provided further evidence for their sta-
bility [7]. Modern parallel computations, together with a new technique for the initialization
of vortex strings with arbitrary conformation and topology, has enabled a very recent detailed
study of a range of different knot types [8] and has revealed remarkably complex dynamics
that includes untangling knots without untying [9]. Naively, knot untangling might simply be
understood as a consequence of vortex core repulsion, together with shrinking string length
as captured by effective models built on local curvature driven dynamics [10, 11]. However,
it turns out that this simple picture is too crude due to the significant role that twist plays
in the dynamics of vortex strings and the fact that linking enforces twisting [12].

The ultimate aim is to fully understand the mechanisms that produce complicated knot
evolution and untangling. Here we make some progress towards this goal by studying simple
geometries and identifying dynamical features of vortex strings that are topological, in the
sense that they appear because of linking and the associated mandatory twist that this
entails. In detail, we investigate the dynamics of multiple coaxial vortex rings and contrast
the evolution with the same situation modified by the addition of a single vortex string that
threads all the rings. By comparing the findings both with and without the threading vortex
string, we are able to report on the additional features that appear in the dynamics and
interaction of twisted vortex rings due to their linking with the vortex string.

We perform our numerical simulations within the FitzHugh-Nagumo medium [13, 14],
which is the simplest model used to describe cardiac tissue as an excitable medium [15]. In
section 2 we review the FitzHugh-Nagumo model and the dynamics of an isolated vortex
ring solution. In section 3 we study the dynamics of a pair of coaxial vortex rings and
observe that the generic outcome is the annihilation of at least one of the rings, usually
via a swallowing phenomenon in which a smaller ring attempts to pass through a larger
ring but is destroyed in the process. Finally, in section 4 we introduce an additional vortex
string that threads all the coaxial vortex rings and find that this yields significant qualitative
differences in the evolution and interaction of the vortex rings. In particular, annihilation is
no longer the generic outcome and instead rings can overtake each other without one being
swallowed by the other. This leads to a much richer dynamics for coaxial rings and includes
new phenomena, such as the reversal of the direction of motion of a ring. We identify that
an important mechanism for producing this new behaviour is that the vortex rings interact
indirectly via induced twisting of the threaded vortex string.
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2 The vortex ring in the FitzHugh-Nagumo model

The FitzHugh-Nagumo medium is described by the nonlinear reaction-diffusion equations

∂u

∂t
=

1

ε
(u− 1

3
u3 − v) +∇2u,

∂v

∂t
= ε(u+ β − γv), (2.1)

where u(r, t), represents the electric potential and v(r, t) is the recovery variable, both being
real-valued physical fields defined throughout the three-dimensional medium with spatial
coordinate r and time t. The Greek letters in the FitzHugh-Nagumo equation (2.1) are
constant parameters, which we take to be ε = 0.3, β = 0.7, γ = 0.5. This choice avoids
complications due to spiral wave meander [2]. With this choice of parameter values, the
FitzHugh-Nagumo equation has a two-dimensional rotating spiral wave vortex solution [1],
with a period T = 11.2. The vortex has u and v wavefronts in the form of an involute spiral
with a wavelength λ = 21.3, and the speed of plane waves is given by c = λ/T = 1.9. The
constants T and λ are the characteristic time and length scales of the excitable system.

To visualize spiral wave vortex strings, it is useful to introduce the quantity

B = ∇u×∇v, (2.2)

because in two spatial dimensions the centre of a spiral wave vortex is the point at which
|B| is maximal, and this quantity is localized in the vortex core [16]. In a three-dimensional
medium the spiral wave tip forms a curve that is either closed or ends at the medium
boundary. This vortex string can be visualized as the centreline of the tube obtained by
plotting the isosurface |B| = 0.1.

To compute numerical solutions of the FitzHugh-Nagumo partial differential equations
(2.1) we employ standard methods, with time evolution performed using a fourth-order
Runge-Kutta method with timestep ∆t = 0.1 and spatial derivatives calculated using the
discrete cosine transform with a lattice spacing ∆x = 0.5. No-flux (Neumann) boundary
conditions are employed on all boundaries of the medium. To generate initial conditions for
vortex strings we use the fact that the one-parameter family of FitzHugh-Nagumo fields

u = 2 cosϕ− 0.4, v = sinϕ− 0.4, (2.3)

where ϕ ∈ [0, 2π), provides an adequate approximation to the excitation-recovery loop of
the excitable medium. Initial fields u(r, 0) and v(r, 0) are given by specifying a phase profile
ϕ(r) that generates vortex strings at the phase singularities where ϕ is undefined (if such a
point coincides with a simulation lattice point then it is sufficient to set the phase to zero at
this lattice point).

To provide initial conditions for a vortex ring it is convenient to introduce cylindrical
polar coordinates ρ, θ, z, where x = ρ cos θ and y = ρ sin θ. The phase profile for a vortex
ring with initial radius R0 and vertical position z0 is given by the axially symmetric formula

ϕring = arg
(
ρ−R0 ± i(z − z0)

)
, (2.4)
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where the choice of sign determines whether the ring moves up or down the z-axis. We begin
by reviewing the well-known dynamics of an isolated vortex ring [17]. The main features are
presented in Fig. 1, where we display the results of the evolution of the radius and position
of a ring (obtained by locating the maximal value of |B|) with a large initial radius R0 = 33
and an initial position z0 = −7.9. For the parameter values used in this paper there is a
stable vortex ring with a radius R? = 4.7 ≈ λ/5 that drifts along its symmetry axis like a
smoke ring with a speed 0.27 ≈ c/7.

For a vortex ring with an initial radius R0 � R? the radius has small amplitude oscil-
lations with the period T but averaging over this period reveals the underlying evolution
where the ring shrinks in a way that is well-described by curvature driven dynamics, with
the rate of change of the radius being inversely proportional to the radius. This behaviour
can be derived within an analytic approximation [10, 11] that is valid for small curvature
and within the regime that vortex cores are well-separated. A ring that shrinks in this way
is usually used to define the system as one in which there is a positive filament tension. The
motion along the symmetry axis can also be derived within the same approximation [10, 11].
Orient the vortex ring so that the z-axis is the symmetry axis and define the initial position
along this axis as z0 and the subsequent position as z(t). The small curvature approximation
yields the results for the radius R(t) and position z(t) presented in the upper line in (2.5)

R(t) =

{√
R2

0 − 2c1t for t < t1

R? for t ≥ t1
, z(t) =

{
z0 + c2

c1
(R0 −

√
R2

0 − 2c1t) for t < t1

z̃0 + c3
R?
t for t ≥ t1

(2.5)

valid for t < t1 = 1
2
(R2

0−R2
?)/c1. Here the positive constant c1 is, by definition, the filament

tension and the positive constant c2 is proportional to the drift speed of the ring along its
symmetry axis. Both these constants depend upon the parameters in the FitzHugh-Nagumo
equation (2.1) and for the parameters used in this paper a fit yields the values c1 = 1.28 and
c2 = 0.89.

For times greater than t1 the diameter of the ring is smaller than the spiral wavelength
and repulsive forces between the vortex cores prevents further shrinking, so that the radius
is (almost) constant at the stabilized value R?. The radius is not perfectly constant because
there is an oscillation associated with the relative position of the involute spiral wave and
thus a small amplitude oscillation of the radius around R?, with a period that is 14% larger
than the spiral period T . In this regime, the expressions in the lower line in equations (2.5)
are obtained from a constant radius approximation together with a linear fit for the time
dependence of the position. With the parameter values c3 = 1.26 and z̃0 = −107.2 these
expressions provide a good approximation to the late time evolution, with the ring drifting
along its symmetry axis with the constant speed c3/R? = 0.27 mentioned earlier. Note
that c3 is larger than c2, whereas simply fixing the radius by hand in the small curvature
approximation would yield a drift speed with c3 equal to c2.

The numerical results and the analytic approximations are clearly within reasonable
agreement for the motion of an isolated vortex ring, although even in this simple case we
have seen that different approximations must be applied once vortex cores are no longer
well-separated and local curvature driven motion fails to be an appropriate description.
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Figure 1: The results of a numerical simulation to study the dynamics of a single vortex ring
with a large initial radius R0 = 33. The square of the radius is shown in the upper image and
the position along the symmetry axis is shown in the lower image. The oscillating curves
are fits to the numerical data, represented by dots, and the non-oscillating curves are the
analytic approximations (2.5). The insets show magnified portions of the plots. There are
two regimes: one where the period is T and the radius shrinks, and one where the period is
1.14T and the radius oscillates about the value R? = 4.7 with the ring drifting at a constant
speed 0.27.

3 The interaction of coaxial vortex rings

The main objective of the present paper is to demonstrate that the presence of other vortex
rings or strings significantly alters the dynamics of a vortex ring and that the topological
property of linking or threading produces dramatic qualitative differences. In this section we
discuss the evolution of rings in the absence of linking or threading and consider the simplest
case of multiple rings, namely coaxial rings. In the subsequent section we shall then contrast
these results with the same situation modified by the introduction of a single vortex string
that threads all the coaxial vortex rings.

To produce initial conditions for coaxial vortex rings the phase profile is simply taken to
be a sum of phase profiles of the single ring form (2.4), with independent radii and positions
for each ring. As mentioned earlier, we visualize vortex rings by plotting the isosurface
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|B| = 0.1, which yields a torus for an isolated vortex ring. For later use, it is also helpful to
colour this isosurface according to the value of the phase ϕ defined by (2.3), namely,

ϕ = tan−1
(

2(v + 0.4)

u+ 0.4

)
. (3.1)

Any curve on the toroidal isosurface specified by a constant value of ϕ has an integer linking
number with the centre-line of the vortex ring. We refer to this linking number as the total
twist and visually it is equal to the number of full turns made by the colour wheel as the
toroidal direction of the vortex ring isosurface is traversed once. It is a consequence of a more
general theorem [12] that for each vortex ring the total twist (defined with an appropriate
sign convention) is equal to the sum of the linking numbers of the given vortex ring with all
the other rings or threading strings. As linking or threading is absent in this section, all rings
will have zero total twist and indeed the colouring of any ring will remain fixed as one moves
along the toroidal direction of the ring’s isosurface, reflecting the fact that all the solutions
discussed in this section are axially symmetric. Note that every colour on the colour wheel
is attained once along the poloidal direction of the isosurface, because the phase singularity
is located inside the torus. To help clearly identify and track individual rings during the
evolution, we often include insets within each figure where each ring is coloured with a given
fixed colour.

Figure 2: Two coaxial rings moving in opposite directions collide head-on and mutually
annihilate.

Fig. 2 displays the result of a head-on collision of a pair of coaxial vortex rings that
are initially moving in opposite directions and mutually annihilate as they collide head-on.
This is not a new result and has been studied in detail in a different excitable medium by
imposing axial symmetry directly within the numerical simulations [18]. Indeed, this process
is equivalent to the annihilation of an isolated ring on encountering a no-flux boundary, where
it effectively interacts with its mirror image. We present this head-on collision here so that
we can compare with the equivalent threaded version in the next section.

The annihilation of one ring can be prevented if it is initialized with a radius that is larger
than the other. This is illustrated by the example presented in Fig. 3, where again each ring
is moving towards the other. The smaller lower blue ring moves inside the larger upper red
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Figure 3: Two coaxial rings with different initial radii move in opposite directions and collide
head-on. The upper ring (red in inset) is larger that the lower ring (blue in inset). Both rings
contract and the lower blue ring attempts to pass through the upper red ring. However, the
blue ring is swallowed by the larger red ring which subsequently contracts to the stable ring
radius.

Figure 4: Two coaxial rings moving in the same direction and initialized close together
with large equal radii. The lower ring (blue in inset) shrinks and attempts to overtake the
larger (and therefore slower) upper ring (red in inset). However, overtaking fails because the
smaller blue ring is swallowed by the larger red ring before it can escape.

ring but it is unable to escape. Effectively, the blue ring is swallowed by the red ring. More
accurately, the small blue ring is destroyed by the waves emitted by the surrounding large red
ring, as these waves squeeze the small blue ring below its stable radius. After the blue ring
is destroyed, the red ring attains the stable ring radius. This process is consistent with the
wavefront slapping mechanism discussed in [19] in the context of stabilizing a knotted vortex
string against contraction. If the waves being produced by two vortex strings (or two different
parts of the same string) have different frequencies then the higher frequency wavefronts will
slap away the lower frequency source as the collision interface between wavefronts moves
towards it. As we have seen in the previous section, the period of the minimal size ring is
about 14% above that of a large ring, hence the higher frequency wavefronts from the larger
red ring slap the smaller blue ring.

The swallowing phenomenon described above is ubiquitous in the interaction of un-
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Figure 5: Two coaxial rings moving in the same direction and initialized close together with
the upper ring being larger than the lower ring. The lower ring (blue in inset) shrinks and
overtakes the larger upper ring (red in inset) and escapes to produce two well-separated
rings.

threaded coaxial rings. Another situation in which swallowing can occur is when two rings
are initialized close together with the same radius and moving in the same direction. An
example is presented in Fig. 4, where both rings have a large initial radius and are moving
up the z-axis. As in the interaction of vortex rings in fluids, the lower (blue) ring shrinks
and therefore moves faster than the upper (red) ring, initiating an overtaking manoeuvre
where the smaller (blue) ring attempts to pass through the larger (red) ring. However, the
overtaking manoeuvre is unsuccessful as the blue ring is swallowed by the surrounding red
ring.

A successful overtaking manoeuvre is possible if both rings are initialized sufficiently close
together and the leading ring is created with a very large radius that allows the following
ring to pass through it. An example is presented in Fig. 5, where both rings are moving up
the z-axis and are initialized close together with the upper (red) ring being created much
larger than the slightly lower (blue) ring. In this case the smaller (blue) lower ring is able
to pass through the larger (red) upper ring and escape before the devastating tsunami wave
arrives from the outer ring. This example shows that it is possible for overtaking to take
place for unthreaded coaxial rings but the initial positions and sizes of the rings need to be
finely tuned. The more generic outcome for unthreaded rings that encounter each other is
that one ring is swallowed by the other.

Having highlighted the main processes that occur in the collision of coaxial rings, and
demonstrated their fragility under multi-ring interactions, we now turn to the situation in
which the coaxial rings are threaded on a vortex string.

8



4 Vortex rings on a string

In this section we investigate how the dynamics of coaxial vortex rings is modified by the
introduction of a single vortex string that threads all the rings. The introduction of the
threading string means that each vortex ring must be twisted, since each ring now has unit
total twist, this being equal to the number of strings that thread it by the theorem [12]
mentioned earlier. Note that the threaded string breaks the axial symmetry of the fields in
the unthreaded case, even for rings that are initially coaxial.

The phase profile for a vortex line that lies along the z-axis is simply

ϕline = arg (x+ iy) , (4.1)

and by adding this contribution to the total phase profile we can introduce a threading string
to the initial condition for any arrangement of coaxial rings.

Figure 6: The initial condition for a single threaded vortex ring is shown in (a) and supple-
mented in (b) by the addition of the u = 0 isosurface coloured by the value of the phase ϕ,
with a quarter of the plot removed to aid visualization. In contrast to the unthreaded case,
the ring is not destroyed at the no-flux boundary but remains there in a stable configuration
(c), producing twisted wavefronts that form a kind of Archimedean screw (d).

A single threaded ring has been investigated previously, see the review [20] and references
therein, with the result that there is a twist of the threaded string in the wake of the ring.
As specific details depend upon the parameter values and the system being studied, we
reproduce the threaded ring example in Fig. 6, for the parameter values used in the present
paper, taking advantage of advances in computing capabilities to perform a more refined
computation of this situation than was possible in early investigations [20]. The initial
condition shown in Fig. 6a already reveals the twist of the vortex ring, via the variation of
the colouring along the ring, but to make this twist clearer we also present in Fig. 6b the
u = 0 isosurface coloured by the value of the phase ϕ, with the front quarter of the plot
removed to provide a better view. The threaded ring stabilizes at a radius of roughly 10,
which is more than twice the unthreaded radius R?, and the ring drifts along the z-axis axis
until it arrives at the no-flux boundary. However, in contrast to the unthreaded case, the
ring is not destroyed at the no-flux boundary but remains there in a stable configuration, as
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shown at a late time in Fig. 6c and Fig. 6d, where the complicated twisting pattern of the
phase of both the ring and the threaded string are visible. Note the twisting of the threaded
string clearly visible in Fig. 6c from the colour variation along the string, in addition to the
helical conformation of the string. The excitation wavefront is sandwiched between the two
different coloured parts of the isosurface presented in Fig. 6d.

Figure 7: The head-on collision of a pair of symmetric threaded rings travelling in opposite
directions. The threaded rings fail to annihilate but instead remain locked together. The
plots in the top row show the vortex ring and string cores, together with insets that colour
the rings to aid identification. The plots in the bottom row reproduce those in the top row
but without the insets and include u = 0 isosurfaces coloured by the value of the phase, with
a quarter of the plot removed to aid visualization.

It has been observed both numerically and experimentally [21, 22, 23] that in a range
of excitable media the boundary of the medium provides an extra force that modifies the
evolution of the radius of an approaching vortex ring. As we have seen in the previous
section, for the system parameters studied in this paper, this extra force acts to reduce
the radius of the ring and is sufficient to destroy an unthreaded ring as it approaches the
boundary. However, the extra stability provided by a threaded string is enough to overcome
this additional shrinking force and the threaded ring is able to sit snuggly at the no-flux
boundary. As discussed earlier, a single ring at a no-flux boundary should be equivalent
to a pair of rings, where one is the mirror image of the other. The situation presented in
Fig. 6 can therefore be interpreted as the head-on collision of a pair of rings travelling in
opposite directions. This is confirmed by the simulation presented in Fig. 7, where the head-
on collision of a pair of symmetric rings is presented. In contrast to the unthreaded situation
displayed in Fig. 2, the threaded rings no longer annihilate but instead remain locked in a
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Figure 8: The head-on collision of a pair of asymmetric threaded rings travelling in opposite
directions. The asymmetry is introduced by initializing the pair closer to the lower boundary
of the medium than to the upper boundary. The upper ring (red in inset) shrinks and the
lower ring (blue in inset) expands to allow one ring to pass through the other. After the
interaction both rings separate and attain the stable size of a threaded ring and eventually
settle at the upper and lower boundaries of the medium. The plots in the top row show the
vortex ring and string cores, while the plots in the bottom row also include u = 0 isosurfaces,
coloured by the value of phase.

stalemate of mutual blocking. Note the obvious lack of axial symmetry in this evolution due
to the introduction of the threaded string.

The mutual blocking stalemate of identical rings can be resolved by introducing an asym-
metry between the two rings. A novel way to introduce an asymmetry is to initialize the
pair of rings closer to the lower boundary of the medium than to the upper boundary. As we
have seen, a ring that is approaching a no-flux boundary experiences an additional shrinking
force, therefore one expects that a ring moving away from a no-flux boundary will experience
an additional expanding force, with the net result that the lower ring will initially become
larger than the upper ring. This is indeed the case, as shown in Fig. 8, where the two
rings begin with the same size but the lower (blue) ring expands and the upper (red) ring
shrinks and passes through the larger ring. Swallowing is thwarted by threading, so both
rings survive the interaction and separate to attain the stable size of a threaded ring. Both
rings move in the direction of their original motion and eventually settle at the upper and
lower boundaries of the medium. This example clearly demonstrates that threaded rings are
more robust objects than their unthreaded counterparts, which is one of the main conclu-
sions from this study. The mechanism that prevents swallowing is subtle and appears to be
a consequence of the fact that short range repulsion between all vortex cores prevents the
inner threaded ring from entering a low frequency regime. Recall from section 2 that an
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unthreaded ring with radius R? has a period 1.14T , compared with the period T of larger
rings, and is therefore susceptible to the slapping mechanism mentioned earlier. In contrast,
for a threaded ring of minimal radius the period is computed to be 0.96T and is therefore
slightly lower than the period T of a large threaded ring. This reduction in period protects
an inner threaded ring from slapping by a larger outer ring.

Figure 9: A threaded double ring interaction with insets that colour each ring to aid iden-
tification. The plots in the top row show the vortex ring and string cores, while the plots
in the bottom row also include u = 0 isosurfaces, coloured by the value of the phase. Two
identical rings initially move up the z-axis. The lower (blue) ring shrinks and the upper
(red) ring expands, so that the blue ring moves faster than the red ring and overtakes it by
passing inside it. After the overtake, the blue ring attains the stable threaded ring size and
continues to move up the z-axis until it reaches the upper boundary of the medium, where it
remains. However, the red ring changes direction and moves down the z-axis, being pushed
all the way down to the lower boundary of the medium by the twisted wavefronts. The red
ring continues to shrink until it too attains the stable threaded ring size and it remains at
the lower boundary.

The extra stability of rings provided by threading allows more complicated ring dynamics
than in the unthreaded case, and indeed overtaking is now the generic outcome of ring
interactions, rather than swallowing, as demonstrated in Fig. 9. Both rings in Fig. 9 are
initially of equal size and are moving up the z-axis. The initial part of the evolution is
similar to the unthreaded case and is familiar from the dynamics of vortex rings in fluids.
The lower (blue) ring initially shrinks and the upper (red) ring initially expands. As smaller
rings move faster, the blue ring overtakes the red ring by passing inside it. The blue ring is
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not swallowed and continues moving up the z-axis, attaining the stable threaded ring size
and eventually reaching the upper boundary of the medium, where it remains. The aspect
of the evolution that is unexpected, and differs from that of fluid vortex rings, is the motion
of the red ring after the overtake. The direction of motion of the red ring is reversed by the
overtaking manoeuvre and it now moves down the z-axis, despite its orientation remaining
that of a ring that would naturally move up the z-axis. The red ring shrinks towards the
stable threaded ring size as it moves down the z-axis and eventually it reaches the lower
boundary of the medium, where it settles.

Figure 10: A vortex ring on a twisted threading string. The ring initially moves up the
z-axis, as it would in the absence of twist, but the twisted waves from the string provide a
kind of Archimedean screw that forces the ring to reverse its direction of motion and move
down the z-axis. The plots in the top row show the vortex ring and string cores, while the
plots in the bottom row also include u = 0 isosurfaces coloured by the value of the phase,
with a quarter of the plot removed to aid visualization.

The reversal of the direction of motion of a ring seen in this double ring overtaking
evolution is surprising. A close examination of the phase of the threading string and the
u = 0 isosurfaces reveals that the mechanism producing a repulsive force in the wake of a
ring is an indirect interaction via induced twisting of the threading vortex string. Note that
in principle this twist can propagate an arbitrary distance along the string, so there is no
limit on the range of this interaction.

To verify this mechanism we can induce a twisting of the threading string by hand, rather
than due to the wake of a ring. To impose twist on a threading string we introduce a linear
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dependence on z into the phase profile of the string and impose periodic boundary conditions
in the z direction, to prevent the string from untwisting. We then thread a single vortex
ring onto this twisted string, as displayed in Fig. 10. The orientation of the ring in Fig. 10
is such that it would move up the z-axis in the absence of any twist in the threading string.
Initially the ring does moves up the z-axis until the pattern of twisted waves emanating
from the twisted threading string is established. As can be seen from the u = 0 isosurfaces
in Fig. 10, these twisted waves form a kind of Archimedean screw that forces the ring to
move down the z-axis and hence its direction of motion is reversed. As periodic boundary
conditions are imposed in this simulation the ring moves through the bottom boundary and
reappears at the top boundary, continually moving down the z-axis. Note the similarity in
the wave pattern produced by the twisted string in Fig. 10 and the wake of a threaded ring
in Fig. 6. In this example the twist rate of the string is sufficient to reverse the direction
of motion of the ring but, as expected, a lower twist rate has a reduced effect. Indeed, we
have found a critical twist rate so that the natural motion of the vortex ring up the z-axis
is exactly balanced by the strength of the Archimedean screw and the ring remains at a
constant position.

Figure 11: A threaded triple ring interaction with insets that colour each ring to aid iden-
tification. The plots in the top row show the vortex ring and string cores, while the plots
in the bottom row also include u = 0 isosurfaces coloured by the value of the phase. Three
identical rings initially move up the z-axis but a series of overtakes results in a complete
reversal of the original order. The top ring then sits at the upper boundary of the medium
and the other two rings are pushed down to the lower boundary of the medium where a
final overtake occurs, resulting in the annihilation of the lowest ring as it is pushed into the
boundary.

We have seen that the interaction of a pair of threaded rings yields interesting dynamics,
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and even more exotic behaviour is found if more rings are included. The evolution of several
threaded rings is demonstrated in the triple ring simulation presented in Fig. 11. All three
rings in Fig. 11 are initially of equal size and are moving up the z-axis. First, the upper (red)
ring expands to allow both the middle (blue) and lower (black) rings to overtake it. Next the
blue ring expands to allow the black ring to overtake it, resulting in a complete reversal of
the original order of the triple rings. The black ring then sits at the upper boundary of the
medium and induces a twisting of the threaded vortex string in its wake. The twisted waves
in the wake of the black ring are sufficient to reverse the direction of motion of the blue
and red rings, which are now pushed down the z-axis, despite their orientations remaining
those of rings that would naturally move up the z-axis. The red and blue rings move as a
pair down the z-axis until the red ring reaches the lower boundary of the medium where it
settles. The blue ring expands as it approaches the red ring and surrounds it, as it too sits at
the boundary. After a short period of this concentric configuration the inner red ring moves
slightly away from the boundary so that the larger blue ring is now the lowest ring. The
wake of the red ring then pushes the blue ring into the lower boundary where it annihilates
with its mirror image. Thus threading is sufficient to prevent annihilation of an isolated ring
moving towards the medium boundary but even the extra stability provided by threading
can be overwhelmed if sufficient forces are present due to interactions with waves generated
by other rings.

As we have demonstrated with several examples, threaded rings are more stable than
their unthreaded counterparts and behave more like fluid vortex rings in terms of their
ability to overtake. Vortex rings in fluids can perform the famous leapfrogging motion
discussed by Helmholtz [24] in the mid-nineteenth century, where the lower ring shrinks and
overtakes the upper ring but then expands so that the original configuration is recovered
but with an exchange of the two rings, allowing the overtaking process to repeat. The same
leapfrogging locomotion is found in other systems with vortex rings, such as in Landau-
Lifshitz simulations of the magnetization in a ferromagnetic medium [25], but we have been
unable to find any evidence of leapfrogging in our studies of either threaded or unthreaded
vortex rings in excitable media. This is presumably a result of the extra interaction between
rings via the induced twisting of the threaded string, which forces the change of direction of
an overtaken larger ring and means that the configuration after overtaking is never equivalent
to the configuration before overtaking (even up to an exchange of rings). In any case it is
clear that although threaded rings share some features with vortex rings in fluids there are
certainly important differences.

5 Conclusion

Motivated by recent results on knotted vortex strings and untangling in excitable media,
we have investigated the influence of linking on vortex string interactions by considering
the situation of coaxial vortex rings, with minimal linking introduced via a single threading
vortex string. This setup allows for a controlled study of linking modified interactions because
the evolution can be compared with the same scenario of coaxial rings in the absence of the
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threading string.
We have shown that linking provides an increased stability, with the fragility of un-

threaded rings being replaced by a robustness that allows threaded rings to survive over-
taking processes. We attribute this to the repulsion between all vortex cores, that prevents
threaded rings from entering the low frequency regime where they are vulnerable to slapping.
This improved stability yields a much richer range of dynamical events and reveals that the
behaviour of excitable threaded vortex rings is much closer to fluid vortex rings than their
unthreaded counterparts, in that swallowing is not a generic outcome. The signature over-
taking process of fluid vortex rings is reproduced by threaded excitable rings, in contrast
to the annihilation found in the unthreaded case. However, there are also new features due
to threading that are unexpected, and include the reversal of the direction of motion of a
ring via induced twisting of the threading vortex string in the wake of another ring. If any
type of effective string model is to reproduce the complicated dynamics found in knotted
vortex strings then it must first be able to match the examples of evolution presented in
the present paper, which represent the simplest stage to inspect the influence of linking on
interactions. As we have seen, even in the simple situation of coaxial rings with minimal
linking, the evolution is complex and will certainly provide a significant challenge to effective
string models to capture such complicated behaviour.

There has been impressive and detailed recent experimental work [22, 23] on vortex rings
in the excitable Belousov-Zhabotinsky medium. This experimental work has been able to
study the influence of the medium boundary on vortex ring dynamics and it would be very
interesting if similar work could be undertaken to investigate coaxial rings and to demonstrate
some of the qualitative new features from threading that are predicted in the present paper.
Although the numerical simulations presented are within the FitzHugh-Nagumo medium we
have also performed computations using the three-component Oregonator equations that
model the Belousov-Zhabotinsky medium and found similar results. We therefore expect
that our findings are amenable to experimental validation.
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