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ABSTRACT
The reconstruction of the initial conditions of the Universe is an important topic in cosmology,
particularly in the context of sharpening the measurement of the baryon acoustic oscillation
(BAO) peak. Non-linear reconstruction algorithms developed in recent years, when applied
to late-time matter fields, can recover to a substantial degree the initial density distribution,
however, when applied to sparse tracers of the matter field, the performance is poorer. In
this paper, we apply the Shi et al. non-linear reconstruction method to biased tracers in order
to establish what factors affect the reconstruction performance. We find that grid resolution,
tracer number density, and mass assignment scheme all have a significant impact on the
performance of our reconstruction method, with triangular-shaped-cloud mass assignment
and a grid resolution of ∼1–2 h−1 Mpc being the optimal choice. We also show that our
method can be easily adapted to include generic tracer biases up to quadratic order in the
reconstruction formalism. Applying the reconstruction to halo and galaxy samples with a
range of tracer number densities, we find that the linear bias is by far the most important bias
term, while including non-local and non-linear biases only leads to marginal improvements
on the reconstruction performance. Overall, including bias in the reconstruction substantially
improves the recovery of BAO wiggles, down to k ∼ 0.25 h Mpc−1 for tracer number densities
between 2 × 10−4 and 2 × 10−3 ( h−1 Mpc)−3.
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1 IN T RO D U C T I O N

The measurement of distances on large scales is one of the biggest
cosmological challenges, with crucial implications for our under-
standing of the Universe. Distance measurement techniques usually
rely on observables which can be predicted theoretically, such as the
peak luminosity of a Type Ia supernova light curve, which can be
used as a ‘standard candle’, the Tully–Fisher relation which links the
angular velocity of a spiral galaxy with its intrinsic luminosity, or
the relationship between the pulsation period of a Cepheid variable
and its luminosity. In this work, we are concerned with the baryon
acoustic oscillations (BAO) which result from the propagation of
sound waves in the baryon-photon fluid prior to recombination that
imprints a characteristic length-scale on the large-scale structure
of the Universe (Cole et al. 2005; Eisenstein et al. 2005), provid-
ing us with a so-called standard ruler that can be used to measure
(angular diameter) distances. In the current standard cosmological
model, this primordial baryon-photon fluid is highly homogeneous,
with tiny density fluctuations. Overdense regions are subject to a
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higher pressure, causing the fluid to propagate outwards from their
centres. These ‘ripples’ propagate at speeds of order c until re-
combination, when the photons decouple from the baryons, leaving
a shell of baryonic matter with a radius determined by the dis-
tance travelled since recombination. Since the Universe contains
many of these small overdensities, these shells overlap and inter-
fere, and the result is that matter clusters with a characteristic scale
– the BAO scale. Statistically, the BAO manifests as a peak in the
matter correlation function, ξ (r), at r ∼ 100 h−1 Mpc, or as a se-
ries of oscillations in the matter power spectrum P(k), which is
the Fourier transform of the correlation function (Eisenstein et al.
2007). Large-scale surveys of the past, present and future [e.g. SDSS
(Alam et al. 2017), LSST (Ivezić et al. 2008), EUCLID (Laureijs
et al. 2011), and DESI (Aghamousa et al. 2016)] map the distribu-
tion of matter on large scales, allowing us to measure the angular
diameter distance dA and the Hubble parameter H as a function of
redshift and thus map the cosmic expansion history. This can be
particularly effective when combined with data from type Ia super-
novae and the cosmic microwave background (see e.g. Aubourg et
al. 2015).

As the number of large-scale galaxy surveys grows, so does our
ability to map the Universe to higher redshifts and measure the size
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of the BAO features to high precision. However, as the majority
of our observations are at a relatively low redshift (as an example,
DESI will target quasars up to z ∼ 3.5 for Ly-α forest absorption;
Aghamousa et al. 2016), the BAO peak in the correlation function
is weakened and broadened due to non-linear structure formation.
As a result, measurements of the BAO scale are less precise and
the constraints that we can place on our cosmological model are
weaker (Wang et al. 2017).

A common solution to this problem is to ‘reverse’ the evolution
of the Universe and recover the distribution of matter at early times,
before non-linear evolution weakened the BAO signal. This process,
known as ‘reconstruction’, dates back long before the discovery of
the BAO to the work of Peebles (1989), who attempted to predict
the trajectories of Local Group galaxies by applying the principle
of least action. Weinberg (1992) proposed the ‘Gaussianization’
method for reconstruction, which is centred on the assumption that
gravitational evolution preserves the rank order of the initial den-
sity field. Croft & Gaztanaga (1997) introduced the Path Interchange
Zel’dovich Approximation (PIZA) method, assuming that the initial
conditions are homogeneous and swapping pairs of particles in the
final distribution until the total action in the evolution between the
initial and final states is minimized. Recently, forward reconstruc-
tion models of the initial conditions have gained a lot of attention
(e.g. Kitaura & Enßlin 2008; Jasche & Wandelt 2013; Wang et al.
2014; Lavaux 2016). These employ efficient Monte Carlo sampling
of the initial power spectrum and phases, which is then non-linearly
evolved to low redshift and compared against observations. While
such methods can recover the initial conditions down to scales of a
few Mpc, they come at the expense of a large computational cost
and complex modelling of bias and redshift-space distortions (e.g.
see Jasche & Lavaux 2018).

It was first shown by Eisenstein et al. (2007) that the weakening
of the BAO signal is reversible, by suggesting that one can use lin-
ear theory to determine the velocity field from the density field, and
subsequently reverse the gravitational flow of objects to (almost)
recover their initial positions. Even with this relatively simple argu-
ment, Eisenstein et al. have shown that the reconstruction procedure
can considerably enhance the BAO peak in the correlation function,
or equivalently the oscillations in the power spectrum. Padmanab-
han et al. (2012) provided the first application of reconstruction to
survey data, finding a ∼50 per cent reduction in the uncertainty as-
sociated to the BAO scale measurement in the SDSS Data Release
7 (see also Aubourg et al. 2015; Alam et al. 2017, for more recent
examples).

The method mentioned above makes use of the Zel’dovich ap-
proximation which is accurate down to quasi-linear scales. More
recently proposed techniques, including our own (see Shi, Cau-
tun & Li 2018), extend into the non-linear regime and can therefore
recover information from the initial conditions on scales of several
Mpc. For example, a method which is closely related to ours is
the Monge–Ampeŕe–Kantorovich technique of Frisch et al. (2002),
Brenier et al. (2003), and Mohayaee et al. (2006). These works pre-
sented and subsequently built on the idea that reconstruction can be
treated as an example of the optimal mass transportation problem.
We will see in Section 2 that our method begins with the same
basic principles and assumptions. More recent non-linear methods
include, but are not limited to: the non-linear isobaric reconstruc-
tion technique of Zhu et al. (2017, see also Wang et al. 2017), the
iterative technique described in Schmittfull, Baldauf & Zaldarriaga
(2017) and the multigrid relaxation method proposed by Shi et al.
(2018), the latter of which this work will build on. All of the afore-
mentioned methods have been shown to be capable of recovering the

initial conditions on intermediate to non-linear scales when applied
to a late-time matter field, and, in the case of the Zhu et al. method,
a late-time halo field (Yu, Zhu & Pen 2017). For example, Wang
et al. (2017) showed that isobaric reconstruction could significantly
recover the BAO signal from the matter field.

When a reconstruction method is applied to a tracer field, such
as a halo or a galaxy field, an additional complication is the biasing
between the tracer and underlying matter fields. Dark matter haloes
and galaxies, for example, are known to be biased tracers, i.e. their
density fields are different from the matter density field. Recon-
struction directly from the former, therefore, can lead to errors in
the recovery of the initial matter distribution and hence the position
and width of the BAO peaks. This issue has been discussed in, e.g.
Wang & Pen (2018) which shows the non-negligible effect of halo
bias on the reconstruction of BAO wiggles.

In this paper, we extend the reconstruction method of Shi et al.
(2018) to accommodate biased tracers and develop it further to in-
clude up to quadratic-order bias schemes. We then investigate how
including these bias terms impacts on the reconstruction perfor-
mance and results. Furthermore, we also study the effect of grid
size, mass assignment scheme, and tracer number density on the
reconstruction performance. We do so for both halo and galaxy
distributions with varying number densities.

The paper is organized as follows: in Section 2, we give a brief
review of the Shi et al. (2018) reconstruction method and describe
the extension for including biased tracers. In Section 3, we detail
the simulations used, along with the halo and galaxy fields used in
this work. Section 4 contains the main results, including tests of
the impacts of a number of factors that can physically or numeri-
cally affect reconstruction performance, and the effects of including
tracer biases up to the quadratic order. We then show how our biased
reconstruction method can help improve the measurements of BAO
wiggles from the tracer power spectra. Finally, Section 5 presents a
summary of the findings of this paper, conclusions, and discussions
of possible future work.

2 R E C O N S T RU C T I O N M E T H O D

2.1 The reconstruction equation

We assume that the initial Lagrangian position q of a particle can
be mapped to its final Eulerian position x by the gradient of a
‘displacement potential’ �, i.e.

q = ∇x�(x). (1)

This is valid on large scales where stream crossing has not occurred.1

Note that equation (1) also assumes that there is no curl component
in the relation between q and x. The absence of stream crossing
also implies mass conservation in a given volume element:

ρ(x)d3x = ρ(q)d3q ≈ ρ̄d3q, (2)

where d3q and d3x are the volume elements at the initial and final
times, respectively, and ρ(q) and ρ(x) are the densities of the corre-
sponding volume elements. The Universe is almost homogeneous at

1Note that, due to the hierarchical nature of structure formation in �CDM
cosmology, stream crossing, i.e. particles crossing the trajectories of each
other, is inevitable on small enough scales. Therefore, the assumption of no
stream crossing is good only on large enough scales. We shall see later that
this means that the reconstruction method is less accurate on smaller scales.

MNRAS 483, 5267–5280 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/4/5267/5238735 by U
niversity of D

urham
 - Stockton C

am
pus user on 11 January 2019



BAO reconstruction using biased tracers 5269

early times, however, and we can therefore assume that ρ(q) ≈ ρ̄,
where ρ̄ is the mean matter density.

Using equation (1), equation (2) can be rearranged to obtain

det
[∇ i∇j�(x)

] = ρ (x)

ρ
≡ 1 + δ (x) , (3)

where i, j = 1, 2, and 3 represent the three Cartesian coordinates
and δ is the density contrast. The left-hand side of equation (3)
represents a Jacobian matrix comprising the derivatives of the three
components of q with respect to the three components of x. Frisch
et al. (2002) found the solution to equation (3) by treating recon-
struction as an ‘optimization problem’ and finding the arrangement
of particles which minimizes a ‘cost function’. Similar to the PIZA
method, an algorithm is used to swap particles in the final distribu-
tion until the optimal arrangement is obtained.

In this work, we follow the new and efficient method developed in
Shi et al. (2018), and recast equation (3) into a non-linear elliptical
partial differential equation (PDE) which can be solved numerically.
The result is

1

6

(∇2�
)3 − 1

2
∇ i∇j�∇j∇i�∇2� + 1

3
∇ i∇j�∇j∇k�∇k∇i�

= ρ(x)

ρ
, (4)

where we have used the Einstein summation convention. We shall
apply the multigrid relaxation technique to solve equation (4) for
�, but for numerical implementation, it is essential to split ∇ i∇ j�

into a diagonal part and a traceless part (see Shi et al. 2018 for a
more detailed description of the numerical algorithm) as follows

∇ i∇j� ≡ 1

3
δij∇2� + ∇̄ i∇̄j�, (5)

which can be regarded as a definition of the barred derivative ∇̄ i .
Inserting equation (5) into equation (4) gives

(∇2�)3 − 9

2
∇̄ i∇̄j�∇̄j ∇̄i�∇2� + 9∇̄ i∇̄j�∇̄j ∇̄k�∇̄k∇̄i�

− 27(1 + δ) = 0, (6)

which we will refer to as the reconstruction equation from now on.
In Shi et al. (2018), this method was studied in the context of

reconstruction from a late-time matter density field, where it was
shown to be capable of recovering the sharpness of the first five
BAO peaks. However, cosmological observations do not usually
provide us with the 3D matter density fields, but instead catalogues
of tracers of the large-scale structure, such as galaxies, clusters,
quasars or 21cm intensities. These tracers are biased, i.e. δtracer(x) ≡
ntracer(x)/n̄tracer − 1, where ntracer(x) is the number density of the
tracer type at x and n̄tracer is its mean value, is generally not equal to
the matter density contrast δ(x) ≡ ρ(x)/ρ̄ − 1. In the simplest case,
a constant linear bias b1 applies, where δtracer = b1δ, but this usually
works only on very large scales, while in general, the bias effects
can be more complicated and include non-linear and non-local terms
(Fry & Gaztanaga 1993; Chan, Scoccimarro & Sheth 2012, see e.g.
Desjacques, Jeong & Schmidt 2018 for a comprehensive review).
Clearly, as the reconstruction algorithm described above requires
δ(x), while observations give δtracer(x), the bias needs to be included
in the reconstruction procedure.

As we shall now see, our method can be naturally extended to
include the effects of non-linear and non-local biases. For simplicity,
here we consider these bias parameters up to second order, in which
case the matter and tracer density contrasts are related by

δh = b1δ + b2

2
δ2 + γ2G2, (7)

where b1 is the linear bias, b2 is the quadratic bias, γ 2 is a non-
local bias parameter, and δh replaces δtracer to make the notation
more compact, representing the number density contrast of haloes,
although this could be interchanged with any tracer type. The non-
local bias term in equation (7) can be expressed as (Chan et al.
2012):

G2 = ∇ i∇j
v∇j∇i
v − (∇2
v

)2
, (8)

where 
v is the velocity potential, which in the Zel’dovich approx-
imation is related to the displacement field by

�(q) = x(q) − q = −∇
v. (9)

As � can be expressed as a derivative of �, ∇2
v and ∇ i∇ j
v can
be written in terms of second-order derivatives of �. This suggests
a way to include non-local bias in a slightly modified version of the
reconstruction equation, equation (6). To see this, let us note

∇ i∇j
v = ∇ i(qj − xj ) = ∇ i∇j� − δi
j , (10)

and

∇2
v = ∇2� − 3. (11)

Substituting equations (10) and (11) into equation (7) gives

δ = δh

b1
− b2

2b3
1

δ2
h − γ2

b1

(
∇ i∇j�∇j∇i� + 4∇2� −

(
∇2�

)2 − 6

)
,

(12)

in which the second term on the right-hand side is obtained by ap-
proximating δ ≈ b−1

1 δh. One can then replace the δ in equation (6)
using equation (12) to derive a modified reconstruction equation,
which is still a PDE for � but which is now sourced by δh (the
directly observable quantity) rather than δ. The resulting modified
reconstruction equation, which is a more general version of equa-
tion (6), is given by

(∇2�)3 − 9

2
∇̄ i∇̄j�∇̄j ∇̄i�∇2� + 9∇̄ i∇̄j�∇̄j ∇̄k�∇̄k∇̄i�

− 27

[
1 + δh

b1
− b2

2b3
1

δ2
h − γ2

b1

(∇ i∇j�∇j∇i� + 4∇2�

− (∇2�
)2 − 6

)]
= 0. (13)

This can be applied to any distribution of tracers, and reduces to the
standard reconstruction equation in the case of the matter density
field (i.e. by setting b1 = 1, γ 2 = b2 = 0, and δh = δ).

2.2 The numerical algorithm

We solve for � numerically on a discrete grid, i.e. � ≡ �i, j, k where
i, j, and k are the indices of cells in the x-, y-, and z-directions respec-
tively. A crucial benefit of the operator splitting in equation (5) is
that ∇2� depends on �i, j, k, whereas ∇̄ i∇̄j� does not. This allows
us to treat equation (6) or (13) as a cubic equation for ∇2�, which
can be solved for given ∇̄i∇̄j� and δ (or δh). From ∇2�, we can
then calculate �i, j, k.

It is useful to adjust the form of the reconstruction equations
before solving them. Let us take equation (13) as an example here
and below. Consider the case of an entirely uniform density field,
i.e. δ(x) = 0. From equation (3), det[∇ i∇ j�(x)] = 1, so the uniform
solution is

� = �0 = 1

2
(x2 + y2 + z2), (14)
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and we can define a new variable θ as the perturbation of � around
the uniform solution �0, i.e.

� ≡ �0 + θ. (15)

It is advantageous to rewrite equation (13) in terms of θ since
our method for solving the PDE is iterative and requires an initial
guess for the solution. If we are solving for θ , which represents a
perturbation from the uniform solution, then a natural choice for an
initial guess is zero. Equation (13) can be recast into the following
cubic equation for θ

a(∇2θ + 3)3 + b(∇2θ + 3)2 + c(∇2θ + 3) + d = 0, (16)

with coefficients

a = 1

b = −18γ2

b1

c = 108γ2

b1
− 9

2
∇̄ i∇̄j θ∇̄j ∇̄iθ

d = 9∇̄ i∇̄j θ∇̄j ∇̄kθ∇̄k∇̄iθ −
27

b1

(
b1 + δh − b2

2b2
1

δ2
h − γ2∇̄ i∇̄j θ∇̄j ∇̄iθ + 6γ2

)
, (17)

In practice, the quantities ∇2θ , c, and d in equation (16) are calcu-
lated on a discretized grid (a and b are constants), and one should
add the subscripts i, j, and k to label the coordinate of the cell, but
these are omitted here for brevity.

As a cubic equation, equation (16) has multiple analytical solu-
tions, meaning we need a method for establishing which solution is
physical. To this end, we define the discriminant as

 ≡ q2

4
+ p3

27
, (18)

where

p = 3ac − b2

3a2
, (19a)

q = 2b3 − 9abc + 27a2d

27a3
, (19b)

For  ≥ 0, the equation has a single real root, which is the
physical solution, while for  < 0, there are three real roots, and
the physical one must change continuously as  crosses zero. The
physical solution in each case is therefore found to be

∇2θ = −3 +
[
−q

2
+ 

1
2

] 1
3 +

[
−q

2
− 

1
2

] 1
3

if  ≥ 0, (20a)

∇2θ = −3 −
(
−p

3

) 1
2

cos

[
1

3
(σ + 2π)

]
if  < 0, (20b)

where

cos(σ ) ≡ 3q

2p

(−3

p

) 1
2

, (21)

and σ takes a value between 0 and π .
Equations (20a) and (20b) are then solved to find θ using a

multigrid Gauss–Seidel technique. As previously mentioned, these
two equations are discretized on mesh cells (θ → θ i, j, k). As θ i, j, k is
not a continuous function, the spatial derivatives such as ∇θ have
to be calculated as finite differences, e.g.

∇xθ = 1

2�

(
θi+1,j ,k − θi−1,j ,k

)
. (22)

which represents the x-component of the gradient of θ , and where
� is the side size of a cell which is taken as cubic for simplicity.
The finite-difference expression in equation (22) is known to have a
second-order accuracy, meaning that the error due to the discretiza-
tion decreases quadratically as we reduce the cell length �. We can
similarly write finite-difference expressions for higher order deriva-
tives of θ and their products, but for brevity, these are not listed here,
and interested readers can find them in Shi et al. (2018).

Upon discretization, equations (20a) and (20b) can be written as
an operator L�

[
θi,j,k

]
:

L�
[
θi,j,k

] = 1

�2

(
θi+1,j ,k + θi−1,j ,k + θi,j+1,k + θi,j−1,k

+ θi,j,k+1 + θi,j,k−1 − 6θi,j,k

) − �i,j,k = 0, (23)

where �i, j, k is a discretization of the right-hand side of equa-
tion (20a) or (20b), depending on the value of . As mentioned
above, the use of the operator splitting ensures that �i, j, k does not
contain θ i, j, k, so that L�

[
θi,j,k

]
is effectively a linear operator of

θ i, j, k.
The Gauss–Seidel relaxation technique can be used to iteratively

update the values of θ i, j, k:

θn+1
i,j ,k = θn

i,j,k − L�
[
θn
i,j,k

]
∂L�

[
θn
i,j,k

]
/∂θn

i,j,k

, (24)

where the superscript n represents the value at the nth iteration (re-
member that the use of θ instead of � gives us the natural choice
of θ0

i,j ,k = 0 as the initial guess for the first iteration). While equa-
tion (24) is a general expression for non-linear operators L, because
L�

[
θi,j,k

]
is a linear operator, one can directly write θn+1

i,j ,k analyti-
cally as

θn+1
i,j ,k = 1

6

(
θn
i+1,j ,k + θn+1

i−1,j ,k + θn
i,j+1,k + θn+1

i,j−1,k

+ θn
i,j,k+1 + θn+1

i,j1,k−1

) − 1

6
�2�i,j,k, (25)

where we note that the right-hand side uses a mixture of the nth and
(n + 1)th iteration values of θ in neighbouring cells of cell (i, j, k) –
this is because in the Gauss–Seidel method the relaxation iterations
always make use of the most updated values of neighbouring cells.

We define the residual ε as

ε ≡
⎡
⎣ 1

N3

N∑
i,j ,k=1

(
L�[θi,j,k]

)2

⎤
⎦

1/2

, (26)

where N is the number of cells along each axis. Provided the algo-
rithm is stable, ε decreases as the number of iterations increases.
Convergence is deemed to have occurred for ε < 10−8, at which
point the iterations stop and θ is outputted along with ∇xθ . To im-
prove the convergence, we have used the multigrid technique (Press
et al. 2007), which employs a hierarchy of coarser meshes to speed
up the decrease of ε (see Shi et al. 2018, for more details).

The method for calculating θ and ∇xθ is incorporated into the
ECOSMOG code (see Li et al. 2012), which is based on the publicly
available N-body simulation code RAMSES (Teyssier 2002). This
gives us the values of θ (x) and ∇xθ on a uniform x-grid, from
which we can calculate the corresponding q(x) coordinates. Then,
the displacement field, �(q) = x − q, represents a vector defined
at an irregular set of points with coordinates q and can be used to
calculate the reconstructed initial density field, δr, as

δr = ∇q · � (q) , (27)
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Table 1. Cosmological parameters and simulation details. The values of
the density parameters, �, correspond to those at present day.

Cosmological parameters Simulation details
Parameter Value Parameter Value

�m 0.3072 Particle number 10243

�b 0.0481 Box size 1 h−1 Gpc
�� 0.6928 Particle mass 7.94 × 1010 h−1 M	
h 0.68 Refinement 4, 4, 4, 5, 6, 7, 8, 8...
σ 8 0.8205

which we implement using the DTFE (Delaunay Tessellation Field
Estimator) code (Cautun & van de Weygaert 2011; Schaap & van
de Weygaert 2000, see Section 3.2.1 for more details). Note that this
calculation is very similar to the use of DTFE to compute the velocity
divergence field, for which we have the velocities v(x) (analogous
to �(q)) of a set of particles with known x-coordinates (analogous
to the q-coordinates).

3 SI M U L AT I O N S

3.1 Simulation details

We adopt a �CDM cosmology in our simulations. The specifi-
cations of the simulations, along with their cosmological param-
eters, can be found in Table 1. Initial conditions were generated
using second-order Lagrangian perturbation theory (2LPT, the 2LP-
TIC code) (see Scoccimarro 1998) at zi = 49, which has been found
to be a suitable choice of initial redshift for 2LPT initial conditions
(Crocce, Pueblas & Scoccimarro 2006). We evolve the initial condi-
tions using the RAMSES code, which uses adaptive mesh refinement
when solving the Poisson equation, meaning that the simulations
begin with a uniform domain grid until the number of particles
within a cell exceeds some refinement criterion (see Table 1), at
which point the cell is refined to achieve a higher resolution. In
our case, this means that a cell will refine itself when it contains
four particles, and the resulting cells will refine themselves again
when they contain four particles. This pattern will continue using
the refinement criterion given in Table 1.

In order to highlight the BAO signal, in what follows we shall
compare the matter power spectra from a full simulation with those
from a paired no-wiggle simulation, Pnw. To generate initial con-
ditions for these two sets of simulations, we calculated the initial
matter power spectra with and without the BAO signal using the
transfer functions of Eisenstein & Hu (1998), and used these as
the input to 2LPTIC. More information can be found in that work,
although we will state here that these functions are appropriate for
a high baryon model, which is not what we are using here. How-
ever, the objective of this work is not to accurately model the BAO
wiggles, but to test to what extent the reconstruction method can
recover them. The initial conditions for the paired simulations with
and without BAO wiggles were generated using the same random
number seeds to ensure that the corresponding initial density fields
have the same random phases and only differ by the BAO features.

3.2 Tracers of the dark matter field

In this work, we will test the reconstruction technique when starting
from late-time halo density fields, in a similar way to the study of
Yu et al. (2017), and late-time galaxy density fields, proceeding to
examine the effects of including halo/galaxy bias in the reconstruc-

tion. Dark matter haloes are a tracer of the total matter distribution,
and can be used as a rough proxy for galaxies in a large-scale survey.
As tracers such as galaxies and dark matter haloes generally have
much lower number densities than the dark matter particles in an N-
body simulation, naturally the reconstruction performance will be
worse than in Shi et al. (2018). However, understanding the effects
of using tracers is important since the application of reconstruction
to large-scale survey data involves determining the matter density
field from tracers.

3.2.1 Dark matter haloes

The dark matter halo catalogues used in this paper are generated
using the ROCKSTAR halo finder (Behroozi, Wechsler & Wu 2013).
ROCKSTAR uses a variant of the 3D friends-of-friends method with a
modified algorithm that requires a reduced number of calculations
and therefore a shorter computation time. We approximate haloes as
spherical objects and define their boundary to be at the radius within
which their mean mass density is 200 times the critical density
ρcrit of the universe. The halo mass, i.e. the mass contained within
this radius, is denoted by M200c. Subhaloes are excluded from our
analysis. We apply a mass cut-off, i.e. we ignore haloes with a lower
mass than this cut-off, which allows us to tune our halo catalogues to
a particular number density. This will be important when comparing
halo and galaxy reconstructions (we will use equal number densities
for these two tracer types), and when testing reconstruction using
different tracer number densities.

We calculate the linear halo bias according to

b1(r) = ξhh(r)

ξhm(r)
, (28)

where ξ hh(r) is the halo autocorrelation function and ξ hm(r) is the
cross-correlation between the halo and the dark matter distributions.
Since we have chosen a standard �CDM cosmology, the linear
bias b1 is constant for large scales. ξ hh(r) and ξ hm(r) are computed
using the Correlation Utilities and Two-Point Estimates (CUTE) code
(Alonso 2012). We calculate the large-scale value of b1 by using
equation (28) to measure b1(r) at different scales, r, and then taking
the average value in the scale range 10–70 h−1 Mpc. While this
gives a reasonable estimate, in Section 4, we test several other b1

values around the measured value of equation (28).
According to linear perturbation theory, the non-local bias pa-

rameter γ 2 can be calculated by (Chan et al. 2012)

γ2 = −2(b1 − 1)

7
, (29)

although we will see that this expression does not work well for
both halo and galaxy reconstruction, so we also test different values
of γ 2 to see which value gives the best reconstruction performance
for a given tracer number density. We do the same for the non-linear
bias to quadratic order, b2.

We compare different methods of calculating the number density
field of dark matter haloes, nhalo(x). The first approach consists of
the DTFE (Schaap & van de Weygaert 2000) method implemented
in the DTFE code (Cautun & van de Weygaert 2011), which offers
the ability to compute a continuous density field from the posi-
tions of discrete tracers. DTFE constructs a Delaunay triangulation
that tessellates the entire volume with tetrahedra whose vertices
are given by the distribution of tracers, which can be dark matter
particles, haloes, or galaxies. The mass of each tracer particle is
distributed among the tetrahedra which have that particle as a ver-
tex. Then, to obtain the density on a regular grid, the mass in each
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Table 2. The parameters of the HOD model used to obtain galaxy cata-
logues. We use three different Mmin values to obtain galaxy number densities
of 20, 7, and 2 × 10−4 (h−1 Mpc)−3 , respectively.

Parameter Value

log Mmin 11.22, 12.30, 13.22
log M0 13.077
log M1 14.000
σ log M 0.596
α 1.0127

tetrahedron is distributed among the grid cells which intersect that
tetrahedron. The tessellation is space filling and thus all grid cells
contain a non-zero mass and thus a non-zero density. The DTFE

method is adaptive to the local tracer distribution: tracer particles
in high number density regions typically distribute their mass to
a small region around them, while tracers in low number density
regions typically distribute their mass up to large distances.

In the second approach, we use the cloud-in-cell (CIC) and
triangular-shaped-cloud (TSC) mass assignment schemes to cal-
culate nhalo on the uniform grid used for reconstruction. In three
dimensions, the TSC and CIC assignment schemes respectively
distribute the mass of a given particle to the 27 and 8 neighbouring
cells which overlap with its ‘cloud’ (Hockney & Eastwood 1988).
For tracers with a low number density, and using a relatively high-
resolution computational grid for reconstruction, a lot of grid cells
will be left with zero density. As we shall see later, this has a non-
negligible impact on the reconstruction result, because TSC and
CIC differ significantly from DTFE in low-density regions, with the
latter spreading masses into larger spatial regions.

In the results shown below, we do not weight haloes according to
their mass; we treat all haloes used for reconstruction as particles
of equal mass. We will briefly comment on the tests and results
using halo-mass-weighted reconstruction, and possible future de-
velopment, in the conclusion section.

3.2.2 Galaxies

We build galaxy catalogues by populating haloes using the halo
occupation distribution (HOD) method (Berlind & Weinberg 2002;
Zheng et al. 2005), which assumes that the probability of a halo
hosting one or more galaxies is dependent on the mass of the halo.
Specifically,

〈Ncen(M)〉 = 1

2

[
1 + erf

(
logM − logMmin

σlogM

)]
, (30a)

〈Nsat(M)〉 = 〈Ncen(M)〉
(

M − M0

M1

)α

, (30b)

as was suggested by Zheng, Coil & Zehavi (2007). 〈Ncen(M)〉 and
〈Nsat(M)〉 are the mean numbers of central and satellite galaxies,
respectively, and erf is the error function. The number of galaxies
within a halo is then a sum of the number of central and satellite
galaxies. The model contains five free parameters, with our choices
for these parameter values being shown in Table 2.

In order to directly compare the performance of the reconstruction
method for both haloes and galaxies, it is necessary to tune the tracer
number density to be the same in each case. Unlike the friends-
of-friends method which tells us the mass of each halo, the HOD
method does not predict galaxy masses and we cannot obtain a given
number density by having a galaxy stellar mass cut. We instead tune

the galaxy number density by changing the Mmin parameter, where
Mmin is the minimum mass of haloes which can host a central galaxy.

The galaxy bias can be calculated in the same way as the halo
bias, and also remains constant on large scales.

4 R ESULTS AND DI SCUSSI ON

Fig. 1 shows a visual comparison of the initial and non-linear mat-
ter density fields, the non-linear halo field, and the reconstructed
density fields from the non-linear dark matter and halo distribu-
tions. All density fields are smoothed using a Gaussian filter with
R = 2 h−1 Mpc, with the exception of (1a), which we have left
unsmoothed for comparison with (1b). For panels (1a) and (1b),
the initial matter density field at z = 49 has been calculated using
TSC mass assignment, and extrapolated to z = 0 using the �CDM
linear growth factor. In the second and third columns, we show
the non-linear matter and halo density fields respectively on the
top, with the resulting reconstructed density field on the bottom. In
panels (1a), (1b), (2b), and (3b), there are some regions where the
density contrast δ is less than −1, implying a negative density ρ:
for (1a) and (1b) this is simply a result of the fact that these fields
are linearly extrapolated versions of the initial density field, which
is also true to leading order for the reconstructed density fields in
(2b) and (3b). Visually, there is a greater similarity between (1b)
and (2b) than (1b) and (3b), which is because the halo field contains
less information than the dark matter field, in particular on small
scales.

To test the performance of our reconstruction method quantita-
tively, we define the correlation coefficient between two density
fields δ1 and δ2 as

r12 = δ̃1δ̃
∗
2 + δ̃∗

1 δ̃2

2
√

δ̃1δ̃
∗
1

√
δ̃2δ̃

∗
2

, (31)

where a ∗ indicates the complex conjugate, and δ̃ is the Fourier
transform of the density field, δ(x). The correlation coefficient r12

describes the similarity between the two density fields. By definition
r12 = 1 if the two fields are identical and r12 = 0 if they are com-
pletely unrelated. We are interested in the correlation between the
initial and final density fields, which we denote with rif, and the cor-
relation between the initial and reconstructed density fields, which
we denote with rir. We expect to find that rif is closer to 1 on large
scales where evolution is linear, with a decline towards 0 on smaller
scales where matter has clustered strongly. The performance of the
reconstruction method can be quantified by the difference in rif and
rir, which tells us how much information it has recovered from the
initial conditions. As the main aim of this study is to analyse the
ability of the reconstruction method to recover the BAO peaks, it is
important to observe an improvement on the scales where the first
few and most prominent peaks in the power spectrum P(k) occur
(0.05 � k � 0.3 h Mpc−1). To assess quantitatively the reconstruc-
tion performance in different scenarios, we define k80, k50, and k20

to be the wavenumbers at which the corresponding reconstructed
density field is 80 per cent, 50 per cent, and 20 per cent correlated
with the initial conditions, respectively.

4.1 Comparison of mass assignment schemes

Before testing the effects of tracer biases, we first compare the
different mass assignment methods described in Section 3.2.1
in order to better understand their impact on reconstruction
performance.
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BAO reconstruction using biased tracers 5273

Figure 1. Illustration of the reconstruction results. Each panel shows the same 500 × 500 (h−1 Mpc)2 region with 1.0 h−1 Mpc thickness of the simulation
box. The panels (1a) and (1b) show the initial matter density contrast, δ(x), linearly extrapolated to z = 0, with (1a) corresponding to the unsmoothed density
field, while (1b) corresponds to the field smoothed with a spherical Gaussian filter of size, R = 2 h−1 Mpc. Panel (2a) shows the non-linearly evolved matter
density at z = 0, and (2b) shows the reconstructed linear density, δr(x), from the z = 0 dark matter distribution. Panel (3a) shows the dark matter halo
number density, δh(x), at z = 0, and (3b) shows the reconstructed linear density from the same halo distribution. For (3a) and (3b), the halo number density is
2 × 10−3 (h−1 Mpc)−3 . The density fields in (1b), (2a), (2b), (3a), and (3b) are all smoothed with the same R = 2 h−1 Mpc Gaussian filter. All six panels use
the same colour scheme (see the bottom of the figure) which corresponds to the δ values shown on a linear scale between [−2, 2].

The result is shown in Fig. 2, with k80, k50, and k20 values pre-
sented in Table 3. From Fig. 2, it is clear that both the CIC and TSC
mass assignments perform better than DTFE mass assignment, with
improvements found in both rif and rir. Regardless of the method
used for mass assignment, we find reconstruction to be more effec-
tive when using a high tracer number density, as expected. On the
other hand, when moving from DTFE to CIC/TSC mass assignment
greater improvements are found when the tracer number density is
lower, and in the bottom panel, we can see that the non-linear TSC
density field is actually more strongly correlated with the initial
conditions than the reconstructed density field from DTFE for k �
0.2 h Mpc−1.

The fact that TSC/CIC mass assignment results in a greater im-
provement over DTFE mass assignment when applied to sparse tracer
catalogues is due to the adaptive nature of the DTFE formalism.
In DTFE, haloes in low-density regions distribute their mass up to
distances many times the mean halo separation, which effectively
corresponds to a large-scale smoothing of the density field and in-
evitably erases information. The largest effective smoothing is for
the sparsest halo sample, which is also the one which shows the
largest difference in rir between the DTFE and the TSC/CIC mass
assignments (see Fig. 2). On the other hand, the performances of

TSC and CIC are very similar, with the former slightly better than
the latter. Given these tests, in the rest of our analyses we use TSC
mass assignment.

4.2 Comparison of reconstruction grid resolutions

Here, we investigate the optimal resolution of the regular grid used
for the reconstruction procedure. Increasing the grid size, that is
reducing the grid spacing, allows us to better recover the initial
density on small scales and to reduce discretization errors when
solving equation (13) numerically. However, this comes at the price
of higher computational resources. There is a physical scale below
which structure formation is highly non-linear, representing a phys-
ical limit down to which our method can recover the initial density
field. This limiting scale can be reached by using a high number
density of tracers, such as when applying the reconstruction to the
dark matter distribution, however, in the case of halo or galaxy dis-
tributions, the limiting scale is likely higher and arises due to the
sparsity of the tracer distribution.

We note that varying the grid size employed by our calculation
is not the same as varying the smoothing scale used for linear re-
construction methods. Our method is fully non-linear and does not
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5274 J. Birkin et al.

Figure 2. Correlation coefficients between the initial and final density
fields, rif (blue), and between the initial and reconstructed density fields,
rir (orange). The final and reconstructed density fields were calculated us-
ing the halo number density, δh, obtained using the DTFE (dashed curves),
TSC (solid), and CIC (dotted) mass assignment schemes. The three panels
correspond to different halo number density samples, nhalo = 2 × 10−3,
7 × 10−4, and 2 × 10−4(h−1 Mpc)−3 (from top to bottom).

Table 3. The wavenumbers k80, k50 and k20 corresponding to the correlation
coefficient, rir, between the initial and reconstructed density fields for two
mass assignment schemes, TSC and DTFE, and for three halo samples with
different number densities. The wavenumber kf corresponds to the k value
where rir = f per cent.

nhalo Method k80 k50 k20

2 × 10−3 DTFE 0.22 0.34 0.46
TSC 0.30 0.51 0.73

7 × 10−4 DTFE 0.18 0.26 0.34
TSC 0.24 0.43 0.61

2 × 10−4 DTFE 0.12 0.18 0.24
TSC 0.18 0.33 0.47

employ smoothing apart from the effective smoothing caused by
assigning particles to the computational grid using, e.g. TSC. Start-
ing from a uniform distribution, our reconstruction finds the min-
imum displacement field needed to obtain the present-day mass
distribution. Using a smaller grid spacing does not affect the large-
scale modes of the displacement field (although it can reduce dis-
cretization errors) and only leads to recovering smaller scale modes.
If the scales are small enough to be affected by non-linear struc-
ture formation, then the recovered small-scale displacement field
is uncorrelated with the original field. Thus, decreasing the grid

Figure 3. Correlation coefficients between the initial and final density fields
rif (dashed), and between the initial and reconstructed density fields rir (solid)
for the nhalo = 2 × 10−3 (top panel), 7 × 10−4 (middle panel), and 2 × 10−4

(bottom panel) (h−1 Mpc)−3 halo reconstruction performed using different
grid resolutions. The legend shows the reconstruction grid cell spacings.
Note that the pink solid lines (the results from grid size 1283) do not reach
r(k) = 0 because for this grid size, the power spectrum is only measured
down to a length-scale corresponding to k = 0.4h Mpc−1.

size does not affect our reconstruction. In contrast, the performance
of linear reconstruction methods, such as the inverse Zel’dovich
approach of Eisenstein et al. (2007), is sensitive to the employed
smoothing scale. This is because that reconstruction procedure is
based on an analytic description of structure formation which is
valid only down to quasi-linear scales, with the optimal BAO re-
construction corresponding to a smoothing scale ∼10 h−1 Mpc (see
e.g. Vargas-Magaña et al. 2017).

We employ a grid with uniform spatial resolution, using (2nl )3

cubic cells, where nl is an integer. We test four cases, with nl = 7,
8, 9, and 10, respectively. This paper uses a cubic simulation box
with 1 h−1Gpc side length, therefore these nl values correspond to a
resolution (cubic cell size) of � = 7.81, 3.91, 1.95, and 0.98 h−1 Mpc
respectively. Clearly, for larger boxes, larger nl are needed to achieve
the same spatial resolution. For simplicity, we consider only halo
reconstruction here.

The results are given in Fig. 3. Note that the curves represent-
ing the 1283 grid reconstruction stop at k ∼ 0.4 h Mpc−1 because
scales smaller than this cannot be sampled on this coarse grid; the
same is true for the 2563 grid, which does not sample scales smaller
than k ∼ 0.8 h Mpc−1. We note that the convergence between dif-
ferent grid resolutions depends sensitively on the tracer number
density; for example, grid sizes ≥2563 give similar k80 for the case
of nhalo = 2 × 10−4 (h−1Mpc)−3, but a 2563 grid is clearly insuffi-
cient for the other two halo number densities. For all three number
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densities, the 5123 and 10243 grids give comparable results, in
particular for k80 (while for k50 and k20, the 5123 grid has not com-
pletely converged yet). It is also notable that rif is independent of
the grid size, which was found not to be the case for DTFE mass
assignment (not shown here).

Computing time is not an issue for our reconstruction method.
For the 10243 grid resolution, the reconstruction code takes ∼20
min with 504 CPUs, using 180 GB RAM, and it is much faster for
lower grid resolutions. On the other hand, as we shall see below,
the grid resolution can be important when including non-linear and
non-local halo bias in the reconstruction, because a higher resolution
means that δh in equation (13) can become large in cells from high-
density regions, and this will effect the reconstruction performance,
resulting in a severe constraint on b2, namely |b2|  1. To illustrate
the impacts of biased halo reconstruction, therefore, in what follows,
we opt to use the 5123 grid for all our tests. In general, however,
where computational resources allow, a higher resolution grid is
recommended to make the best of the reconstruction method.

4.3 Effects of varying tracer bias

Having fixed the mass assignment scheme and grid resolution, we
now move on to analyse the impacts on the reconstruction perfor-
mance of varying the tracer bias parameters. We start by varying
the linear bias, b1, then proceed to vary the non-local bias, γ 2, and,
finally, the non-linear bias at quadratic order, b2, as described in
Section 2. More explicitly, we first test a range of values for the
linear bias b1, fixing γ 2 = b2 = 0, then we fix b1 to the best-fitting
value and test multiple values of γ 2, then again we fix both b1

and γ 2 to their best-fitting values and study the effect of varying
b2. In this subsection, we focus on the correlation coefficients of
the reconstructed density fields, with the impact on the BAO peak
recovery being studied in the following subsection.

Figs 4 and 5 show our findings when applying reconstruction
to the halo and galaxy distributions, respectively. All panels show
the correlation coefficients between the linear matter and non-linear
tracer density fields (rif; dashed), along with those between the linear
matter and reconstructed density fields (rir; solid) for a range of bias
parameter values for b1 (left-hand column), γ 2 (middle column),
and b2 (right-hand column). As the difference between curves is
subtle in many cases, we indicate the chosen ‘best’ configuration
by a thicker curve and a bold value in the legend. The k80, k50, and
k20 values for the highest and lowest tracer number densities are
given in Table 4, and we refer to this in our analysis. Given the quite
similar behaviour seen in Figs 4 and 5, in the discussion below we
focus on the case of halo reconstruction, and comment on galaxy
reconstruction when appropriate.

As noted above, a common feature in both rif and rir is the
decrease of the correlation coefficient from approximately 1.0 on
large scales to 0.0 on small scales, and the rate of this decrease
is slower for higher tracer number densities, which contain more
accurate information about the underlying dark matter field. In gen-
eral, reconstruction boosts the correlation coefficient and extends
the range of scales over which it is non-zero. We have tested five
values of b1 for each number density, with the central value being
the one calculated using the method outlined in Section 3.2.1. The
measured values are b1 = 1.2, 1.4, and 1.7 for nhalo = 2 × 10−3,
7 × 10−4, and 2 × 10−4 (h−1 Mpc)−3 , respectively. The reconstruc-
tion performance is quite sensitive to the value of b1 in the highest
number density case, though the range of b1 ∈ [1.2, 1.3] seems to
give very similar results. We chose b1 = 1.2 as our best-fitting value

to be fixed when varying γ 2 and b2, despite the fact that b1 = 1.3
gives slightly better results on small scales (k > 0.6 h Mpc−1), as
we are more interested in the large scales when aiming to recover
the BAO peaks. We choose b1 = 1.4 and 1.7 for nhalo = 7 × 10−4

and 2 × 10−4 (h−1 Mpc)−3 respectively, noting that the optimal b1

value for reconstruction takes the value measured in the simulation
for all three number densities. For the two lowest number density
samples, the linear bias is not very important and adding ±0.2 does
not significantly change the reconstruction performance; in the high
number density case, however, the result is more sensitive to b1 but
increasing b1 by up to 0.2 from its best-fitting value again has a
negligible impact on the correlation coefficient of the reconstructed
density field. This is positive news for reconstruction in real obser-
vations, where b1 is usually not known accurately.

We next employ the optimal linear bias value b1 for each num-
ber density and repeat the reconstruction process by varying the
non-local bias parameter γ 2 in the central column of Figs 4 and 5.
Applying equation (29), we predict γ 2 ≈ −0.06, −0.11, and −0.20
for the three halo catalogues with decreasing number densities;
while trying a range of values for γ 2 in the reconstruction we find
γ 2 ≈ −0.05, −0.10, and −0.30, respectively, to be the best values.
Although not shown here, using the DTFE mass assignment scheme
results in an optimal reconstruction when γ 2 ≈ −0.2, −0.3, and
−0.5 for the three corresponding halo number densities. It is note-
worthy that the two mass assignment methods lead to different
optimal values of the non-local bias, suggesting that the difference
in the methods introduces an additional non-physical bias. When
using TSC mass assignment, the optimal γ 2 agree more closely
with the perturbation theory prediction (Chan et al. 2012), although
this agreement is worse in the lowest number density case of halo
reconstruction and in galaxy reconstruction. Among the three halo
number densities, we find that the greatest improvement in recon-
struction performance when including non-local bias is attained
for the sparsest sample, where nhalo = 2 × 10−4 (h−1 Mpc)−3 , for
which γ 2 is also the largest. Even in this case, the increase of k80

is marginal (0.01), suggesting that including non-local bias in the
reconstruction will not substantially improve the recovery of BAO
peaks.

The right-hand columns of Figs 4 and 5 show the recon-
struction results by fixing b1 and γ 2 to their respective best-
fitting values for each tracer number density, while varying b2

around b2 = 0. For all but the case of halo reconstruction where
nhalo = 2 × 10−3 (h−1 Mpc)−3 , we find that the best-fitting value
is b2 = 0, and that any significant deviation from this value would
quickly downgrade the performance. As mentioned above, this is
because b2 enters the reconstruction equation [see equation (13)]
through b2δ

2
h , so that in high-density regions where δh � 1, this

would lead to a large unphysical contribution to the source of that
equation. Physically, the b2 bias term has been introduced as a cor-
rection which is valid in the regime δ  1, and so should really be
used only in the mildly non-linear regime rather than cases where δh

� 1. Indeed, we have explicitly checked that for lower reconstruc-
tion grid resolutions, e.g. 1283 and 2563, b2 takes larger non-zero
best-fitting values; in those cases adding the non-linear bias indeed
leads to noticeable improvements in the correlation coefficients rir,
but at the price that rir for b2 = 0 is generally much poorer than
the 5123 grid case to start with (cf. Fig. 3). Therefore, at least for
the method to model non-linear bias above, using a high-resolution
reconstruction grid removes the necessity or appropriateness to in-
clude b2. More complicated treatments, e.g. which first smooth the
tracer number density field before doing the reconstruction, might
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5276 J. Birkin et al.

Figure 4. Correlation coefficients between the initial and final density fields rif (dashed), and between the initial and reconstructed density fields rir (solid) for
three halo samples with different number densities (each row corresponds to a different number density). Each column tests a different halo bias parameter:
the linear bias, b1 (left-hand column); the non-local bias, γ 2, using the optimal b1 value (middle column); and the quadratic bias, b2, using the optimal b1 and
γ 2 values (right-hand column). The optimal value in each panel is indicated by a thicker curve and a bold value in the legend.

reduce the largest values of δh and therefore allow b2 to be included,
but this is beyond the scope of this work.

In general, the reconstruction performance varies little between
the two types of tracers considered, however we find that HOD
galaxies have a larger associated linear and non-local bias for a given
number density. From the simulation, we measure b1 = 1.25, 1.5,
and 2.0 for ngalaxy = 2 × 10−3, 7 × 10−4, and 2 × 10−4 (h−1 Mpc)−3

respectively, and we find these values to be optimal for reconstruc-
tion in the three cases (b1 = 1.25 was not tested but b1 = 1.3 was the
best value chosen). The tests of non-local bias found γ 2 ≈ −0.10,
−0.20, and −0.60 to be optimal for reconstruction from the three
corresponding number density distributions. We note that while
equation (29) gives a poor estimate for γ 2, it need only be multiplied
by a factor of 2 to give agreement with the galaxy reconstruction
results.

4.4 Recovery of the BAO peaks

Having found the optimal bias values (b1, γ 2, b2) for each tracer
(halo and galaxy) catalogue and number density sample, we now
assess the recovery of the BAO peaks using biased tracer recon-
struction.

The left-hand panels of Fig. 6 show the correlation coefficients rif

(blue) and rir (orange) from halo (solid lines), galaxy (dashed lines)
and matter (dotted lines) reconstruction for the three tracer num-
ber densities as before, decreasing from top to bottom. For matter
reconstruction the curves are the same in all three rows. These

plots show that tracer reconstruction generally performs worse
than matter reconstruction, even for the highest number density
used here, but increasing ntracer does bring rir closer to the mat-
ter reconstruction case; it will be interesting to study the value of
ntracer at which rir for tracers and matter become very close. On
the other hand, rif depends less sensitively on the tracer number
density.

The panels in the right-hand column of Fig. 6 show the power
spectra of the initial, non-linear halo, and reconstructed density
fields in the form (P/Pnw) − 1, where Pnw comes from a simula-
tion identical to that of the original, except that there are no BAO
wiggles in the linear power spectrum used to generated the simu-
lation initial conditions. Plotting this quantity allows us to clearly
visualize the damping, due to non-linear structure formation, and
the recovery, due to reconstruction, of the BAOs in the power spec-
trum. The black solid curve, which represents the BAO of the initial
linear matter power spectrum, is identical in all three rows, whereas
the blue curves, which represent the BAO peaks in the z = 0 halo
power spectrum, are dependent on the halo number density nhalo.
The damping of the BAO wiggles is more severe when nhalo is low,
and the curves become very noisy, particularly in the lowest num-
ber density case. The loss of information from the initial conditions
increases with the damping of the BAO wiggles, and this is more
significant in the lower halo number density cases where rif drops
off towards zero more rapidly. Similarly, the BAO wiggles are re-
covered to a great extent when the halo number density is greater,
as would be expected from the left-hand panels. Note that we have
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Figure 5. Same as Fig. 4, but now the reconstruction has been performed using HOD galaxy distributions which are built on the halo catalogues used for
Fig. 4. Each row corresponds to a different galaxy number density which is the same as the halo number density in the corresponding row in Fig. 4.

Table 4. The k80, k50, and k20 values corresponding to rir found for halo and galaxy reconstruction with different halo number densities and different bias
parameters.

nhalo b1 k80 k50 k20 γ 2 k80 k50 k20 b2 k80 k50 k20

2 × 10−3 1.0 0.23 0.38 0.54 0.00 0.28 0.48 0.68 − 0.02 0.25 0.41 0.60
(h−1 Mpc)−3 1.1 0.27 0.45 0.63 − 0.05 0.29 0.48 0.68 − 0.01 0.27 0.45 0.64

1.2 0.28 0.48 0.68 − 0.10 0.28 0.47 0.67 0.00 0.29 0.48 0.68
1.3 0.28 0.48 0.70 − 0.15 0.28 0.47 0.67 0.01 0.28 0.49 0.70
1.4 0.26 0.47 0.69 − 0.20 0.27 0.46 0.66 0.02 0.27 0.47 0.69

2 × 10−4 1.5 0.18 0.32 0.43 0.00 0.18 0.33 0.45 − 0.02 0.17 0.28 0.40
(h−1 Mpc)−3 1.6 0.18 0.33 0.44 − 0.20 0.19 0.33 0.46 − 0.01 0.18 0.31 0.44

1.7 0.18 0.33 0.45 − 0.30 0.19 0.33 0.47 0.00 0.19 0.33 0.47
1.8 0.18 0.33 0.46 − 0.40 0.18 0.33 0.47 0.01 0.17 0.31 0.47
1.9 0.17 0.32 0.46 − 0.50 0.16 0.31 0.46 0.02 0.14 0.26 0.42

ngalaxy b1 k80 k50 k20 γ 2 k80 k50 k20 b2 k80 k50 k20

2 × 10−3 1.0 0.23 0.38 0.53 0.00 0.30 0.50 0.71 − 0.02 0.28 0.47 0.67
(h−1 Mpc)−3 1.1 0.28 0.45 0.63 − 0.05 0.30 0.50 0.72 − 0.01 0.30 0.49 0.69

1.2 0.30 0.49 0.69 − 0.10 0.30 0.50 0.72 0.00 0.30 0.50 0.72
1.3 0.30 0.50 0.71 − 0.15 0.30 0.49 0.70 0.01 0.29 0.49 0.71
1.4 0.28 0.49 0.71 − 0.20 0.29 0.48 0.69 0.02 0.27 0.47 0.69

2 × 10−4 1.8 0.16 0.29 0.42 0.00 0.16 0.30 0.43 − 0.02 0.13 0.24 0.35
(h−1 Mpc)−3 1.9 0.16 0.30 0.43 − 0.40 0.17 0.31 0.45 − 0.01 0.15 0.28 0.41

2.0 0.16 0.30 0.43 − 0.50 0.18 0.31 0.45 0.00 0.18 0.31 0.46
2.1 0.16 0.30 0.43 − 0.60 0.18 0.31 0.46 0.01 0.14 0.27 0.43
2.2 0.15 0.30 0.44 − 0.70 0.13 0.27 0.42 0.02 0.11 0.22 0.36
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Figure 6. Left-hand column: correlation coefficients with the initial density distribution of the final (rif; blue) and reconstructed density (rir; orange) fields,
for matter (dotted lines), haloes (solid lines), and HOD galaxies (dashed lines). The three panels show the reconstruction results for different tracer number
densities, while the dotted lines (for matter reconstruction) are identical in all panels. Right-hand column: the BAO wiggles in the power spectrum plotted as
P(k)/Pnw(k) − 1, where P(k) and Pnw(k) are, respectively, the power spectra extracted from the full and from the no-wiggle simulations. It shows the power
spectra ratio for the initial conditions (black solid lines), the final halo distribution (blue solid lines), and the reconstructed initial density from the dark matter
(orange dotted lines) and halo (orange solid lines) distributions. For clarity, the right-hand panels do not show the result of the HOD galaxy reconstruction. All
halo and galaxy reconstruction results are obtained using the optimal bias parameter values (b1, γ 2, b2) from Figs 4 and 5.

omitted the galaxy power spectra due to the similarity of the cross
correlations with haloes for all three number densities.

The BAO wiggles from the reconstructed density fields are shown
in orange in the right-hand panels of Fig. 6, with dotted and solid
lines representing respectively the results from dark matter and halo
reconstruction. The dotted orange lines are the same in all three
rows, and they show that dark matter reconstruction is capable of
recovering the BAO peaks down to k ≈ 0.4 h Mpc−1. Halo recon-
struction does not perform as well, as expected, but for all three
halo number densities, we still observe a substantial recovery of the
BAO wiggles, e.g. compared with the blue curves, in the first four
peaks, down to k ≈ 0.25 h Mpc−1. The improvement is substantial
for all halo number densities. Note that the orange and blue curves
have been shifted vertically to align them with the black curve. This
is because the same value of b1 was used for both the wiggle and
no-wiggle simulations, when in reality the measured values differ
by roughly 1 per cent, and so taking the ratio of the P(k) and Pnw(k)
propagates this error to ∼2 per cent. It is therefore appropriate to
shift the curves to provide a clearer comparison.

To assess the competitiveness of our method, we can compare the
enhancement of the BAO feature with results of other reconstruc-
tion approaches. The Yu et al. (2017) study represents a suitable

comparison as they have applied their non-linear reconstruction
procedure to similar populations of tracers and redshifts as us. For
example, comparing our nhalo = 2 × 10−3 (h−1 Mpc)−3 results with
the nhalo = 2.77 × 10−3 (h−1 Mpc)−3 there, we find that our method
performs better in this case. In particular, there the reconstructed
density field is approximately 95 per cent and 65 per cent corre-
lated with the initial conditions at k = 0.1 and 0.3 h Mpc−1 respec-
tively (see their fig. 2), whereas we find a correlation coefficient of
95 per cent and 80 per cent for the same k values. We note, however,
that this difference is likely due to the different density assignment
schemes used – DTFE there and TSC here (as we have found above,
using DTFE causes additional smoothing of the pre-reconstruction
density field, which can downgrade the outcome of reconstruc-
tion even though it is not related to the reconstruction method
itself).

5 SUMMARY, D I SCUSSI ON, AND
C O N C L U S I O N S

We have tested the non-linear density reconstruction method in-
troduced by Shi et al. (2018), applying it to late-time halo and
galaxy distributions, to study the potential of recovering BAO peaks
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from a tracer field, and how this depends on a number of fac-
tors including tracer type, tracer number density, mass assignment
scheme, reconstruction grid resolution, and tracer bias parameters
up to quadratic order. For this, we have developed an extension
to the original Shi et al. (2018) method to incorporate non-local
and non-linear tracer bias. These terms can be included naturally
in the reconstruction equation – which is a non-linear PDE that
takes the form of the Monge–Ampere equation – by changing
the coefficients and source terms of the equation. The original nu-
merical algorithm still works efficiently when applied to the new
equation.

Our results confirm that, as expected, tracer number density plays
an important role in determining the performance of reconstruc-
tion (which we assess by calculating the correlation coefficient, rir,
between the initial and reconstructed density fields), with higher
number density tracers giving larger rir values. The mass assign-
ment scheme used to calculate the tracer density at each position is
another important factor for reconstruction performance, with TSC
faring significantly better than DTFE and slightly better than CIC for
all tracer number densities used. Using a sufficiently high-resolution
computational grid for reconstruction is also crucial, and we find
that once the grid cell size decreases to ∼1–2 h−1Mpc the results
converge for all tracer number densities studied here. Reconstruc-
tion from HOD galaxy and halo distributions with the same number
density gives quite similar results.

Of the three bias parameters studied in this work, the linear tracer
bias, b1, is by far the most important. For high tracer number densi-
ties, the reconstruction performance depends sensitively on it, while
this dependence is much weaker for low tracer number densities. In
all cases, we find that the linear bias parameter measured in the sim-
ulation by comparing the clustering of dark matter and halo/galaxy
distributions works best, but using larger (by up to 0.2) values does
not affect the reconstruction significantly. For TSC mass assign-
ment, we find that the non-local bias parameter γ 2 predicted by
perturbation theory is close to the values that give rise to the best
reconstruction result, but this is not the case when DTFE mass as-
signment is used, which is another reason why we use TSC in the
bias analysis. Including non-local bias, however, only marginally
improves rir, with the largest improvement found for the lowest
number density sample, for which the optimal |γ 2| value is also the
largest. Finally, the non-linear bias at quadratic order, b2, if non-
zero, can lead to poorer reconstruction, because our reconstruction
method calculates the displacement field on all scales, while the
non-linear bias does not work on small scales where the density
field can become large.

These results are confirmed by visually inspecting the recovery
of the BAO peaks, as shown in the right-hand panels of Fig. 6. We
can see there that, when applied to halo reconstruction using the
best-fitting bias parameters, our method substantially improves the
recovery of the first few BAO peaks compared with the case of no
reconstruction, down to k ∼ 0.25 h Mpc−1.

For all the tracer reconstruction results shown here, the tracer
density field, δh, is calculated by treating the tracers as particles
of equal mass, which is a simplified assumption. For example,
some haloes are more massive (e.g. >1015h−1M	) than others
(e.g. <1012h−1M	). Naturally, more massive haloes contain more
matter, implying that the non-linear dark matter field may be more
reliably constructed using a mass-weighted halo number density
field. To verify this, we have also carried out halo reconstruction
tests in which δh is calculated using the actual masses of the haloes.
However, this approach leads to a poorer reconstruction, with the re-
sulting rir being smaller than the ones seen in Fig. 3, in particular for

the high halo number density case. This happens regardless of the
value of b1 used, and it could be because the simple mass-weighting
scheme above gives too little weight to low-mass haloes, which are
important tracers of the underlying matter field. This therefore in-
dicates a more sophisticated weight scheme may be required. We
leave an investigation on this to future work.

As mentioned above, in principle our method for biased tracer
reconstruction can be straightforwardly generalized to higher order
bias terms. For example, the non-local bias at cubic order can be
similarly expressed in terms of derivatives of the displacement po-
tential, θ , amounting to a further change of various coefficients in
the reconstruction equation (13). However, we have decided not to
pursue this line of research, given that the effect of including bias
terms up to the quadratic order is already small.

As the first attempt to add more reality to the reconstruction
method of Shi et al. (2018), in this work we have only considered
a few simple cases of tracer reconstruction. In order to be able to
apply the method to observational data, such as galaxy catalogues,
a few important factors need to be taken into account. First, while
the tests in this paper have all been done in a cubic box for a fixed
snapshot (z = 0), both the spatial and the redshift distributions of
galaxies in real observations are more complicated. For example,
observed galaxy catalogues are usually in a light-cone rather than a
box, and certain regions of the field of view are masked with no data
collected; for reconstruction, we will need to embed the light-cone
into a cubic box, adding a density field (e.g. zero, random, or uni-
form) outside the light-cone ensuring periodic boundary conditions.
Second, real galaxy catalogues may suffer from incompleteness is-
sues which can be caused by observing conditions, redshift failures,
fibre collisions, etc., and care must be taken to deal with this or make
corrections. Third, while we have used constant bias values in this
study, for observed galaxy catalogues covering a significant redshift
interval the bias parameters do evolve, and this should be taken into
account as well. Fourth, in this study we have not considered the
redshift space distortions of galaxy line-of-sight (los) distances, but
in reality only the redshifts of galaxies are measured, whose re-
lation with the los distances are complicated due to coherent and
virialized galaxy motions (see e.g. Zhu, Yu & Pen 2018; Hada &
Eisenstein 2018, for some recent studies of reconstruction from
redshift space). It will be interesting to extend the reconstruction
method used here to include redshift space distortions. It is also
useful to apply the method to different tracer types (bright galax-
ies, luminous red galaxies, emission line galaxies, quasars, etc.),
which cover different redshift ranges and have different bias prop-
erties. In order to verify its accuracy, it is also important to test
the final pipeline using some realistic mock galaxy catalogues (e.g.
Smith et al. 2017). We leave these interesting developments to future
works.
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