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ABSTRACT
We present an analysis of galaxy–galaxy weak gravitational lensing (GGL) in chameleon f(R)
gravity – a leading candidate of non-standard gravity models. For the analysis, we have created
mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations,
using a halo occupation distribution (HOD) prescription which allows a redshift dependence of
galaxy number density. To make a fairer comparison between the f(R) and � cold dark matter
(�CDM) models, their HOD parameters are tuned so that the galaxy two-point correlation
functions in real space (and therefore the projected two-point correlation functions) match.
While the f(R) model predicts an enhancement of the convergence power spectrum by up to
∼30 per cent compared to the standard �CDM model with the same parameters, the maximum
enhancement of GGL is only half as large and less than 5 per cent on separations above
∼1–2 h−1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more
strongly affected by modified gravity) and galaxy (which is weakly affected given the good
match between galaxy autocorrelations in the two models) fields. We also study the possibility
of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in
f(R) gravity. We find that the galaxy–matter cross-correlation coefficient remains at unity down
to ∼2–3 h−1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and
galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity.
The scale dependence of the model differences in their predictions of GGL can potentially
allows us to break the degeneracy between f(R) gravity and other cosmological parameters
such as �m and σ 8.

Key words: gravitational lensing: weak – methods: numerical – dark energy – large-scale
structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

One of the key, unanswered, questions in modern cosmology is the
accelerated expansion rate of our Universe. Since its discovery al-
most 20 yr ago (Riess et al. 1998; Perlmutter et al. 1999), it has
been confirmed by various other observations, leading to the estab-
lishment of the concordance � cold dark matter (�CDM) model,
in which the Universe is dominated by a small cosmological con-
stant � which is solely responsible for the accelerated expansion
at late times, while the formation of its structures has largely been
shaped by dark matter component under the action of gravity, which
is assumed to be described by Einstein’s General Relativity (GR).
While the simple �CDM model describes almost all cosmolog-
ical observations very well (WMAP Collaboration 2013; Planck
Collaboration XIII 2016), currently there still lacks a satisfactory
theoretical explanation for the smallness of � required by observa-
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tions, and this has led to significant effort in developing alternative
scenarios, such as those which assume that GR is inaccurate and
must be replaced by some modified gravity (MG) model on cosmo-
logical scales (see e.g. Joyce et al. 2015; Koyama 2016, for recent
reviews). Although a commonly accepted MG model still does not
exist, and many of the MG models being proposed indeed introduce
a � through back door, studies in this field have so far led to vari-
ous interesting possibilities of deviations from GR, which serve as
useful testbeds of the validity of GR in cosmology. In recent and
coming years, various imaging and spectroscopic galaxy surveys
are producing high-quality data for a range of cosmological probes,
with which we can hope to improve our understanding of the nature
of the cosmic acceleration, along which it is hopeful to push the test
of GR to much larger scales than previously attained.

Weak gravitational lensing (Bartelman & Schneider 2001; Re-
fregier 2003; Hoekstra & Jain 2008; Kilbinger 2015) is one of
the key cosmological probes that such galaxy surveys offer. It
describes the effect that images of distant sources (e.g. galaxies
or the cosmic microwave background itself) are distorted by the
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intervening large-scale structures, which bend the paths of the pho-
tons emitted by the sources. Such bending is caused by visible plus
dark matter, so that weak lensing offers a venue to detect the total
matter distribution between the source and observer. Weak lensing
can be observed in different ways, depending on the size of the
lensing objects. At one extreme, the lensing effect by the largest
bound objects in the Universe – galaxy clusters – is strong enough
that it can be detected around individual clusters. At the other ex-
treme, cosmic shear describes statistically the lensing effect of the
entire matter distribution along the lines of sight. Other objects,
such as cosmic voids and galaxies, produce lensing signals which
are most often not strong or clean enough to allow a clear detection
for individual lenses. However, with the stacking of a large number
of lenses, a signal can be extracted and it can tell us how matter
is distributed around such objects. In this paper, we will focus on
the lensing of background (source) galaxies by foreground (lens)
galaxies, or galaxy–galaxy lensing (GGL; Brainerd, Blandford &
Smail 1996; Hudson et al. 1998; Guzik & Seljak 2002; Hoekstra,
Yee & Gladders 2004; Mandelbaum et al. 2006; Clampitt et al.
2017). For some recent works on testing cosmological models with
cluster or void lensing, see Cai, Padilla & Li (2015), Cautun et al.
(2017), and Barreira et al. (2015a,b, 2017).

As a gravitational effect, weak gravitational lensing can natu-
rally be used to test gravitational physics. On cosmological scales,
a deviation from standard GR can leave detectable imprints on lens-
ing observations in various ways. For example, it could change
the expansion history through a different mechanism than � to
accelerate the expansion or via different best-fitting cosmological
parameters such as �m and H0, leading to different angular diame-
ter distances to lenses and sources at given redshifts. It may have a
different law of gravitational interaction, enhancing or reducing the
clustering of matter at cosmological scales. It may also affect the
propagation of photons, such as in the Galileon (Nicolis, Rattazzi &
Trincherini 2009; Deffayet, Esposito-Farese & Vikman 2009), non-
local (Maggiore & Mancarella 2014; Dirian et al. 2014), and beyond
Horndeski (Glayzes et al. 2015) gravity models. These effects, un-
fortunately, can have certain degeneracies between each other (and
degenerate with the effects of cosmological parameters such as �m

and σ 8), and in this paper we focus on a simple model – chameleon
f(R) gravity – which practically does not modify the expansion his-
tory and photon propagation. This is one of the most popular classes
of MG models, which has the property of chameleon screening
(Khoury & Weltman 2004; Mota & Shaw 2007) to suppress the
deviation from GR in regions of deep gravitational potential (such
as our Solar system) and ensure that the theory passes local tests of
gravity.

The study of GGL in chameleon f(R) gravity presented here is
based on numerical simulations. Instead of doing a ray tracing to
calculate the stacked lensing signal around galaxies, we will follow
an equivalent approach by integrating the cross-correlation func-
tion ξ gm(r) of galaxies and matter along the line of sight (los). The
calculation is standard, but a significant effort of this study will be
devoted to the construction of mock galaxy catalogues used to find
ξ gm(r). The reason for this carefulness is twofold. First, galaxies are
observable and biased tracers of the underlying matter density field,
and different populations of galaxies have different biases and den-
sity profiles around them. Therefore, it is important to know which
galaxy population in observations should our simulation prediction
of GGL signal be confronted to. Secondly (and which has perhaps
not been emphasized enough so far), there is only one observable
Universe, while there are many theories. For probes such as GGL,
which involve the distributions of both source galaxies and the total

matter field, the difference between the predictions of two models
can come from differences in both. If, say, two models predict very
different clustering of foreground galaxies, then one of them may
already be incompatible with the spectroscopic observation used to
identify these lenses, and the comparison of its GGL prediction to
observations no longer makes sense. Of course, given the complex
and poorly understood galaxy-mass and galaxy-halo connection, at
this point it is premature to rule out the models studied here purely
based on their predicted galaxy clustering. For example, commonly
adopted frameworks to populate galaxies into simulations, such as
halo occupancy distribution (HOD), abundance matching (SHAM),
and semi-analytical modelling (SAM), usually have or can accept
enough free parameters by tuning which the predicted and observed
galaxy clustering can be matched (as we shall show below). There-
fore, in this work, we follow a pragmatic approach, by assuming
that we have no idea whether GR or f(R) gravity is the correct theory,
and that for both of them the free parameters of the HOD (which
we use to make galaxy mocks) can be tuned to produce acceptable
clustering properties of the resulting galaxy catalogues, which will
then be used to make predictions of GGL.

The layout of this paper is as follows. In Section 2, we present a
short description of the f(R) gravity model studied here, a concise
summary of weak gravitational lensing and GGL, and a detailed
discussion of our numerical simulations and mock HOD galaxy
catalogues. In Section 2.2, we present the main results of this paper,
including the power spectrum of cosmic shear, cross-correlation
between galaxies and matter, galaxy bias, and GGL in both GR
and f(R) gravity. We will also present a forecast of the potential to
distinguish the two models using cosmic shear and GGL, for galaxy
surveys such as Dark Energy Survey (DES Dark Energy Survey
Collaboration et al. 2016),1 the Hyper Supreme Camera (HSC; Aihara
et al. 2017),2 and Large Synoptic Survey Telescope (LSST; Ivezic
et al. 2008).3 Finally, in Section 4, we sum up and discuss potential
ways in which this work can be further improved.

Throughout this paper, we use the unit convention c = 1 where
c is the speed of light. An overbar denotes the background value,
and a subscript 0 denotes the present-day value, of a quantity. Greek
indices μ, ν, . . . run over 0, 1, 2, 3 (space–time coordinates) while
Latin indices i, j, k, . . . run over 1, 2, 3 (space coordinates only).
The Einstein summation convention is used across the paper unless
otherwise stated. Also, we only consider a spatially flat universe.

2 T H E T H E O R E T I C A L F R A M E WO R K

We start with a concise description of f(R) gravity and the model
studied in this paper (Section 2.1), the formulae of weak gravita-
tional lensing (Section 2.2), and the N-body simulations used in the
analyses and the catalogues of HOD galaxies which are needed to
study their cross-correlation with lensing (Section 2.3).

2.1 The f(R) gravity theory

2.1.1 Generic f(R) gravity

f(R) gravity as an attempt to explain the accelerated late-time ex-
pansion of the Universe without invoking a cosmological constant
was first proposed in Carroll et al. (2004, 2005). It is constructed by

1 https://www.darkenergysurvey.org
2 http://hsc.mtk.nao.ac.jp/ssp/
3 https://www.lsst.org
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replacing the Ricci scalar R in the standard Einstein–Hilbert action
for GR with a function of R, f(R):

S =
∫

d4x
√−g

1

2
M2

Pl [R + f (R)] , (1)

in which MPl is the reduced Planck mass, with M−2
Pl = 8πG and

G being Newton’s constant, g is the determinant of the metric gμν .
The above is the gravitational action; the matter part is assumed to
be the same as in standard �CDM, and so not explicitly given here.

A modified version of the Einstein equation can be derived by
varying the action equation (1) with respect to the metric gμν :

Gμν + fRRμν +
[
�fR − 1

2
f

]
gμν − ∇μ∇νfR = 8πGTμν. (2)

where Gμν ≡ Rμν − 1
2 gμνR is the Einstein tensor, ∇μ the covariant

derivative, fR ≡ df/dR is a (new) scalar degree of freedom in this
theory, � ≡ ∇α∇α the Laplancian, and Tμν the energy-momentum
tensor for matter.

Equation (2) is a fourth-order equation in the metric tensor be-
cause the Ricii scalar R itself contains second-order derivatives of
the latter. It is convenient to cast it into a form involving the usual
Einstein equation in GR plus the new scalar field (sometimes called
the scalaron) fR. The Klein–Gordon equation for fR can be derived
as the trace of the modified Einstein equation:

�fR = 1

3
[R − fRR + 2f + 8πGρm] , (3)

in which ρm is the density for non-relativistic matter. We have
neglected the contribution of relativistic matter species in this paper
because we will focus on late times only.

The analysis in this study will be restricted to length-scales much
smaller than the horizon, in which case we can use the quasi-static
approximation to drop all time derivatives of fR as compared with
their spatial derivatives (see e.g. Bose, Hellwing & Li 2015, for
a detailed discussion of this approximation). As a result of this
simplification, equation (3) becomes

�∇2fR = −1

3
a2

[
R(fR) − R̄ + 8πG(ρm − ρ̄m)

]
, (4)

where �∇ is the spatial gradient and a the scale factor (a = 1 today).
Also under the quasi-static and weak-field approximation, the

Poisson equation that governs the Newtonian potential 
 is modi-
fied:

�∇2
 = 16πG

3
a2(ρm − ρ̄m) + 1

6

[
R(fR) − R̄

]
. (5)

The scalar field is what mediates a fifth force between massive
particles in f(R) gravity, and fR plays the role of its potential. To see
this, we can combine equations (4) and (5) to obtain the following
equation:

�∇2
 = 4πGa2(ρm − ρ̄m) + 1

2
�∇2fR. (6)

Equation (6) makes explicit the behaviour of the theory in the limit
when |fR| � |
|: here we can to a good approximation neglect the
effect of fR and recover the usual Poisson equation

�∇2
 = 4πGδρm, (7)

in which δρm ≡ ρm − ρ̄m is the matter density perturbation. The GR
solution R = −8πGρm is also recovered in this regime, where the
fifth force is effectively suppressed, as the consequence of the so-
called chameleon screening mechanism (Khoury & Weltman 2004;
Mota & Shaw 2007).

As the opposite limit, when |fR| ≥ |
|, we have |δR| � δρm with
δR ≡ R − R̄, and so the second term on the right-hand side of the
modified Poisson equation, equation (5), can be neglected:

�∇2
 ≈ 16

3
πGδρm. (8)

Compare this with equation (6), we can notice a 1/3 enhancement
of the strength of gravity, independent of the functional form of
f(R). The exact form of f(R), though, determines the transition be-
tween the two limiting regimes. We shall call these two regimes,
respectively, the screened and unscreened regimes.

We can see that the chameleon mechanism works depending on
the local Newtonian potential 
, and it efficiently screens the fifth
force in environments where 
 is deep (i.e. |
| � |fR|). This can
be qualitatively understood as follows: the fifth force is mediated
by the scalar field fR, which has a mass ms given by

m2
s = d2Veff (fR)

df 2
R

, (9)

where the effective potential Veff( fR), due to the self-interaction of
the scalar field and its interactions with (non-relativistic) matter, is
given by

dVeff (fR)

dfR
= 1

3
[R − fRR + 2f + 8πGρm] . (10)

As a result of ms �= 0 in general, the fifth force mediated by fR

has the Yukawa form, with a potential ∼r−1exp (−msr), where r
is the distance from a massive particle. The complicated form of
Veff( fR) makes ms dependent on environment, and becomes heavy in
deep 
, where the Yukawa force decays very quickly with distance,
such that its effect is not felt beyond ∼m−1

s . This is the origin of
the chameleon screening, and this property can help the theory to
pass stringent Solar system tests, since it is expected that screening
has effectively suppressed the fifth force to an undetected level at
locations where such tests have been performed.

2.1.2 The choice of f(R) model

The requirement of chameleon screening be in place for the model to
pass Solar system tests does not significantly constrain the possible
functional form of f(R). As a result, many different forms have been
studied in the literature with differing details. While many of these
are interesting, in practice it is both impossible and unnecessary to
study all of them with equal detail. Instead, there are reasons why
we should focus on a particular example which is to be studied in
greater details.

First, there is currently not a fundamental theory to naturally mo-
tivate a functional form of f(R) that leads to the cosmic acceleration,
and therefore all choices of f(R) used in the literature so far are phe-
nomenological. There is no clear reason why any choice should be
preferred over the others, apart from possibly an apparent simplicity
in the functional form of f(R). However, it is known that for general
f(R) models that realize an efficient chameleon screening, the back-
ground expansion history has to be very close to that of �CDM
(e.g. Brax et al. 2008; Wang, Hui & Khoury 2012; Ceron-Hurtado,
He & Li 2016); in other words, a � is usually introduced to the
theory, possibly in an implicit way, regardless of the simplicity of
f(R).

Second, as mentioned above, the different f(R) models gener-
ally share some common features, such as chameleon screening in
deep Newtonian potentials, and differ primarily in how efficient the
screening is. However, given a functional form of f(R), the screening
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efficiency also depends on the parameter used. At least qualitatively,
the change of behaviours by varying the form of f(R) can be mim-
icked by varying the parameters with a chosen f(R). Instead of letting
observations determine the form of f(R), it is pragmatically more
useful to use observations to determine to what extent deviations
from GR as prescribed by f(R) gravity are allowed. The latter task
can be carried out by working on a particular model which is to
be tested against as many observational data sets as possible, as
precisely as possible.

For these reasons, this work is based on the model proposed by
Hu & Sawicki (2007, hereafter HS). This is the most well-studied
example of f(R) gravity, so that the results of this paper will be built
upon various existing tests of this model. The particular functional
form of f(R) in this model makes it possible to implement an efficient
algorithm to speed up simulations of it (Bose et al. 2017), which
we adopt for the simulations used in this work. Additionally, this
model is a representative example of classes of scalar-tensor-type
MG theories, in that by varying its parameters we can have a range
of behaviours ranging from strong screening to no screening.

The HS model has the following functional form of f(R),

f (R) = − c1

(−R/M2
)n

1 + c2

(−R/M2
)n M2, (11)

where M is a parameter of mass dimension that is given by M2 ≡
8πGρ̄m0/3 = H 2

0 �m, H the Hubble rate, �m the present-day density
parameter for non-relativistic matter, and c1, c2 are dimensionless
model parameters.

In the limit |R̄| � M2, f̄ ≡ f (R̄) is approximately a constant
− c1

c2
M2, so that fR and its derivatives are small. In this case, equation

(3) can be simplified as

−R̄ ≈ −2f̄ + 8πGρ̄m ≈ 3M2

[
2c1

3c2
+ a−3

]
. (12)

The background expansion rate is therefore close to that of �CDM,
if we make mapping c1

c2
= 6 ��

�m
, where �� ≡ 1 − �m. For �� ∼

0.7 and �m ∼ 0.3, we have |R̄| ∼ 40M2 � M2 today. As |R̄|
increases with redshift, the approximation in equation (12) is good
all the time. In this approximation, we have the following simplified
relation between fR and R,

fR ≈ −n
c1

c2
2

(
M2

−R

)n+1

. (13)

This relation can be inverted to find R( fR), as the latter appears in
field equations. Therefore, with choices of n and c1/c

2
2, as well as

�m,��, H0, an f(R) model can be fully specified. In the literature,
instead of c1/c

2
2, people usually use fR0, the current value of fR, as

the model parameter. We have

c1

c2
2

= − 1

n
fR0

[
3

(
1 + 4

��

�m

)]n+1

. (14)

In this paper, we shall focus on a particular choice of model pa-
rameters: n = 1 and fR0 = −10−5, which we refer to as F5. This
choice of fR0 is almost certainly incompatible with local gravity
tests as the Milky Way galaxy is unlikely to be screened. However,
the choice is not yet completely ruled out by cosmological obser-
vations, and for the GGL analysis we would like to choose a model
that can maximize the difference from GR (see e.g. Cai, Padilla &
Li 2015; Cataneo et al. 2015; Liu et al. 2016; Shirasaki, Hamana
& Yoshida 2016; Shirasaki et al. 2017; Peirone et al. 2017; Cautun
et al. 2017, for some recent studies on the current and potential
constraints f(R) gravity).

2.2 Weak gravitational lensing

Weak lensing is a matured field with a huge body of research
works in the literature (see e.g. Bartelman & Schneider 2001;
Hoekstra & Jain 2008; Kilbinger 2015, for some reviews). Here,
we only give a very quick catch-up of some essential equation to
be used in the discussion below. For simplicity, we assume a flat
Universe.

As photons pass through the large-scale structure in the Universe,
their paths are bent by the latter, resulting in a change of their
apparent angular position �ξ0 ≡ �ξ (χ = 0) as seen by the observer at
today (where χ is the comoving distance), as compared to the true
one �ξs ≡ �ξ (χs), at the source (where χ s is the comoving distance to
the source). This is given by

�ξ0 − �ξs = 2
∫ χs

0

g (χ, χs)

χ2
�∇�ξ
dχ, (15)

where

g (χ, χs) ≡ χ

χs
(χs − χ ) , (16)

is the lensing kernel, and 
 ≡ 
(χ, �ξ ) is the lensing potential along
the los, and �∇�ξ is the 2D derivative in the plane perpendicular to the
los. The resulting distortions of source images can be described by
a 2 × 2 distortion matrix given by

Aij = δij − 2
∫ χs

0

g(χ, χs)

χ2
∇ξ0,i∇ξj
(χ, �ξ )dχ,

≈ δij − 2
∫ χs

0

g(χ, χs)

χ2
∇ξi∇ξj
(χ, �ξ )dχ, (17)

where i, j = 1, 2, δij is the Kronecker delta, ∇ξ0,i and ∇ξi are,
respectively, the derivative with respect to ξ i at χ = 0 and χ . We
have used ∇ξ0,i ≈ ∇ξi in the second step of the above equation.
This is known as the Born approximation, and its validity on weak
lensing power spectrum and GGL has been studied in, e.g. Hilbert
et al. (2009).

The lensing convergence κ , shear (γ 1, γ 2), and rotation ω are
related to the distortion matrix as

A =
[

1 − κ − γ1 −γ2 − ω

−γ2 + ω 1 − κ + γ1

]
, (18)

where one can relate the convergence κ to the density contrast
δ ≡ ρm/ρ̄m − 1, by using the Poisson equation:

κ = 3

2
�mH 2

0

∫ χs

0
g (χ, χs) ∇2 δ

a
dχ. (19)

Using the Limber approximation, the convergence power spec-
trum can be written as

Cκκ (�) =
∫ χs

0
dχ

W (χ )2

χ2
Pδδ

(
k = �

χ
, z(χ )

)
, (20)

where the lensing weight function W(χ ) is given by

W (χ ) = 3

2
�mH 2

0 g (χ, χs) [1 + z(χ )] , (21)

Pδδ is the matter power spectrum, and z(χ ) is the redshift corre-
sponding to comoving distance χ .

For GGL, we study the tangential shear profile around galaxies,
which is given by

γt(rp) = ��(rp)

�crit
, (22)

where rp is the projected distance from the galaxy, ��(rp) ≡
�̄(<rp) − �(rp) is the excess surface density defined as the
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difference between the mean surface (projected) mass density at
r < rp, �̄(< rp), and the surface mass density at rp, �(rp):

�̄(<rp) = 1

πr2
p

∫ rp

0
�(r)2πrdr, (23)

and �crit is the critical surface mass density given as

�crit ≡ 1

4πG

χs

χl (χs − χl)
[1 + z(χl)] , (24)

in which χ l is the comoving distance of the lens galaxy. Note
that, given that the background expansion history is in practice
indistinguishable in the GR and F5 models studied here, �crit is the
same for both models.

For individual galaxies, the lensing signal is weak, and so we
consider the stacking of the tangential shear profile around many
galaxies. In practice, the excess surface density profile can be com-
puted as

��(rp) = ρcrit�m
2

r2
p

∫ ∞

−∞
dχ

∫ rp

0
dr · rξgm

(√
r2 + χ2

)

− ρcrit�m

∫ ∞

−∞
dχξgm(rp, χ ), (25)

where ξ gm is the cross-correlation function between galaxies and
the matter density field.

2.3 Simulations and halo/galaxy catalogues

To accurately predict lensing effect in the non-linear regime requires
numerical simulations of the matter distribution in the Universe. To
cross-correlate this with galaxies requires mock galaxy catalogues
with mimic the real galaxy distribution as observed by galaxy sur-
veys. In this subsection, we shall describe in detail the simulations
performed for this study, and halo and galaxy catalogues used in
the analysis.

2.3.1 N-body simulations

The f(R) gravity simulations used in our analysis have been run
using the ECOSMOG code (Li et al. 2012), which is a modified version
of the publicly available simulation code RAMSES (Teyssier 2002),
by adding new modules to solve the f(R) and Einstein equations. In
this work, we have used the optimized version of the code (Bose
et al. 2017), which adopts a new algorithm to speed up simula-
tions for HS f(R) model with n = 1 by a factor of up to ∼20.
RAMSES, and therefore ECOSMOG, is efficiently parallelized using
MPI, and is an example of the class of so-called adaptive-mesh-
refinement codes, which hierarchically refine a regular base mesh
that covers the whole periodic simulation volume. In this way,
it achieves the necessary high resolution in high-density regions,
without wasting substantial amount of computing resources in low-
density regions in which the demand for resolution is not as strong.
The high resolution is also critical in order to resolve the fifth
force effects in high-density regions, such as in dark matter haloes,
where the chameleon screening makes them weak (but not always
negligible).

The cosmological parameters, listed in Table 1, have been chosen
from the best-fitting (WMAP Collaboration 2013) WMAP9 �CDM
model, and their physical meanings are explained in the table cap-
tion. The technical parameters for the simulations are given in
Table 2. All simulations have 10243 particles.

Table 1. The cosmological parameters for the models investigated in this
work. �m and �� are, respectively, the present-day fractional density of
matter and the cosmological constant (in the case of f(R) gravity, it is sim-
ply 1 − �m). h = H0/(100 km s−1 Mpc−1) with H0 being the present-day
Hubble rate, ns is the spectral index of the primordial density fluctuations,
As the amplitude of the primordial power spectrum, and σ 8 the rms linear
density fluctuation in spheres of radius 8 h−1 Mpc at z = 0 (the value quoted
here is for �CDM model only, as F5 has a different value). �b is the baryon
density used for the linear matter power spectrum, to generate the initial
conditions only.

Parameter Physical meaning Value

�m Present fractional matter density 0.2819
�b Present fractional baryon density 0.0461
�� 1 − �m 0.7181
h H0/(100 km s−1 Mpc−1) 0.6970
ns Primordial power spectral index 0.9710
log10As Amplitude of the primordial power spectrum − 8.622
σ 8 Rms density fluctuation at 8 h−1 Mpc for �CDM 0.8178

n HS f(R) parameter 1.0
fR0 HS f(R) parameter −10−5

Table 2. The simulation specifications. Lbox is the simulation box size,
Np is the number of simulation particles, mp the simulation particle mass,
Nr the number of realizations for each box size, and Ns the number of
particle outputs (which are spaced every 75 h−1 Mpc in comoving distance
from today). zini is the starting redshift of the simulations, and the initial
condition is generated using the 2LPTIC code. Out of the Ns snapshots, 33 are
between z = [0, 1].

Lbox ( h−1 Mpc) zini Np mp ( h−1M�) Nr Ns IC

450 49.0 10243 6.64 × 109 1 37 2LPT
900 36.0 10243 5.31 × 1010 1 37 2LPT

The initial conditions of the simulations are generated using the
2LPTIC code which is based on second-order Lagrangian pertur-
bation theory (Crocce, Pueblas & Scoccimarro 2006). Since we
keep the simulation particle number Np fixed to be 10243, for our
larger boxes the mass resolution is relatively low, and so following
Shirasaki, Hamana & Yoshida (2015) we compensate this by starting
those simulations at relatively low redshifts. For each F5 simulation,
we run a �CDM simulation with exactly the same cosmological pa-
rameters and simulation specifications for comparison; the �CDM
simulations also start from the same initial conditions as their F5
counterparts, because at zini � 1 the difference between the two
models is negligible. We only have one realization of simulation for
each box size.

2.3.2 Halo and galaxy catalogues

The dark matter haloes used in this paper are found using the pub-
licly available phase-space friend-of-friend halo finder ROCKSTAR

(Behroozi, Wechsler & Wu 2013), and we have chosen M200c as the
mass definition, in which the subscript means that the average mass
density within halo radius R200c is 200 times the critical density ρc.

We populate dark matter haloes using HOD ( Berlind et al. 2003;
Zheng et al. 2005). In the simplest form of this model, the mean
number density of galaxies in a host dark matter halo is a function
of the halo mass M:

〈Ng|M〉 = 〈Nc|M〉 [1 + 〈Ns|M〉] , (26)
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where Ng, Nc, and Ns are, respectively, the number of all, central,
and satellite galaxies, given as

〈Nc|M〉 = 1

2

[
1 + erf

(
log M − log Mmin

σlog M

)]
, (27)

〈Ns|M〉 =
(

M − M0

M1

)α

� (M − M0) , (28)

where erf(x) and �(x) are, respectively, the error and Heaverside
step functions. The model has five parameters: Mmin, M0, M1, σ log M,
and α, which give it great freedom to tune the galaxy catalogues to
match their statistical properties to observables.

To implement the HOD model, we shift through the halo cat-
alogue where subhaloes are eliminated, and for each halo let it
host a central galaxy if u ≤ 〈Nc|M〉 where u is a random number
generated from a uniform distribution between [0, 1]. The num-
ber of satellite galaxies is set to a random number generated from
the Poisson distribution with mean 〈Ns〉, and the satellite galaxies
are radially distributed within the dark matter halo following the
Navarro–Frenk–White (Navarro, Frenk & White 1997) profile, us-
ing the concentration parameters measured by ROCKSTAR. In the rare
cases where a halo has no central galaxy but does have satellites,
we promote the first satellite galaxy to a central galaxy.

Although this paper does not aim to compare theoretical predic-
tions with real observations, we still want the HOD catalogues to
bear a certain degree of reality. To this end, we focus on galaxies at
relatively low redshift (where the model difference is expected to be
larger) and make the resulting galaxies satisfy a redshift distribution
similar to that of the low-redshift sample (LOWZ) of Baryon Os-
cillation Spectroscopic Survey (BOSS) data release 11. Instead of
downsampling generated HOD catalogues, we follow Manera et al.
(2015) to allow a redshift dependence of the HOD mass parameters
as follows:

log Mmin = log M∗
min + Sn(z)/

(
10−4

)
, (29)

log M0,1 = log M∗
0,1 + T n(z)/

(
10−4

)
, (30)

in which n(z) is the target galaxy number density for redshift z,
S = −0.925, T = −0.928, and M∗ are the respective mass parameter
values at n∗ = 2.98 × 10−4. Note that M1/M0 has no time evolution.
We consider galaxies in the redshift range of 0.16 � z � 0.43. We
use 29 redshift bins in this range, with equal comvoing thickness,
with three bins being taken from each of the 10 snapshots of this
box. For the three bins from the same simulation snapshot, the
evolution of n(z) is only down to equations (29) and (30), while
for the bins from different snapshots n(z) is also affected by the
fact that different halo catalogues have been used to build the HOD
catalogues.

Should the HOD catalogues in F5 have been constructed with the
same HOD parameters as in their �CDM counterparts, there would
generally be a difference of ∼10 per cent–20 per cent in the number
density and clustering of galaxies. Because there is only one ob-
served galaxy catalogue in the Universe (assuming an ideal full-sky
survey), if we do not know which is the correct cosmological model,
we can only demand that both models make predictions that agree
with observations. For this reason, we have opted to tune the HOD
parameters for F5 so that the resulting galaxy catalogues match the
number density and clustering of their �CDM counterparts. The
assumption that F5 and GR should have different HOD parameters
is not unreasonable, given their different dark matter evolutions and

galaxy assembly histories. This choice indeed also helps to fix the
galaxy clustering and single out the expected difference of the GGL
signals in these two models.

The tuning of F5 HOD parameters has been performed using
a search with the Nelder-Mead simplex algorithm through the 5D
parameter space. The 3D real-space correlation functions in the F5
and GR HOD catalogues are measured between comoving separa-
tions of 0.6 and 60 h−1 Mpc, in 40 equally spaced logarithmic bins.
The root-mean-squared (rms) difference between the two models
is calculated with equal weight 1 for all bins. To try to make the
two models have similar n(z), the relative difference in their n(z)
values is also added into the rms, with a weight 8. The code then
searches through the 5D parameter space looking for the smallest
rms difference (χ2). The search stops when χ2 < 0.03, meaning
that the overall agreement (as defined in the above way) is better
than 3 per cent (for some redshift bins better than 2 per cent). We
have not attempted to do better than this accuracy, or perform a full
parameter search using Markov chain Monte Carlo, because it is not
the purpose of this paper to study in great detail the HOD model in
the context of MG, and because it is in general difficult to do better
than this level of accuracy (for example, the galaxy clustering may
change at few per cent level if a different set of random seeds is
used in generating the HOD catalogues). For the same reason, we
shall not list the HOD parameters in this paper.

In the left-hand panel of Fig. 1, we compare the measured 3D real-
space correlation functions ξ (r) as a function of galaxy separation
r, respectively for F5 (red dashed lines) and GR (blue solid) at 6
of the 29 redshift bins. In the right-hand panel of Fig. 1 (the same
colour scheme) shows the redshift distribution of the HOD galaxies
for the two models – again there is a good agreement (generally
better than 4 per cent) after tuning the HOD parameters for F5.

3 W E A K G R AV I TAT I O NA L L E N S I N G I N F ( R )
G R AV I T Y

In this section, we present the main result of this research, beginning
with an analysis of the weak lensing convergence. The convergence
power spectrum in f(R) gravity, amongst various other things, have
been studied in a few works (Shirasaki et al. 2015, 2017; Higuchi &
Shirasaki 2016; Tessore et al. 2015; Pratten et al. 2016), using var-
ious techniques. We revisit this topic in Section 3.1 with a detailed
decomposition of the convergence power spectrum Cκκ (�) in terms
of the length-scales and times where the contributions to the relative
difference between f(R) gravity and GR come from. The analysis
not only serves as a sanity check of the simulations and their cor-
responding particle snapshots, but also will be used for comparison
with results on GGL from Section 3.2, as they are based on the same
set of simulations.

3.1 The convergence field

The weak lensing convergence is an important physical quantity for
weak lensing research: it can be calculated directly from a simula-
tion by a projection of the density field, and in the regime of weak
lensing its power spectrum coincides with that of the cosmic shear,
which is a directly observable quantity. It has been one of the most
widely used quantities in theoretical analyses (see reference above
for examples in f(R) gravity).

3.1.1 The convergence power spectrum in f(R) gravity

In this work, we compute the weak lensing convergence power
spectrum Cκκ (�) by directly integrating the 3D matter power
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Figure 1. Left-hand panels: comparison of the GR (black solid) and F5 (red dashed) correlation functions, after tuning the HOD parameters for F5 such that
the two models predict similar galaxy number densities and clusterings. For clearness, we only show results for 6 of the 29 redshift bins from the 900 h−1 Mpc
box. Each bin is taken from HOD catalogues built using a different output snapshot. Right-hand panel: comparison of the predicted GR (black solid) and F5
(red dashed) galaxy redshift distributions. See the text for more details on how the galaxy numbers in each redshift bin are determined for GR and F5.

spectrum Pδδ(k, z) measured from the simulations, following the
Limber approximation equation (20), instead of using full ray trac-
ing. This is partly because the former approach essentially samples
all the relevant k modes provided by the simulation, while ray tracing
only samples those k modes that fall into the designed light-cone.
While the latter more closely mimics the real Universe, the for-
mer gives smoother theoretical curves equation (20), together with
an accurate prediction of the non-linear Pδδ such as from HALOFIT

(Smith et al. 2003; Takahashi et al. 2012), is a powerful tool to
predict Cκκ .

The non-linear Pδδ used in this work are measured using the
publicly available POWMES code (Colombi & Novikov 2011) with
a fast Fourier transform grid of size 20483. As mentioned above,
our simulations have outputs at 33 snapshots between z = 1 and
0 equally spaced in comoving distance (�χ = 75 h−1 Mpc), and
therefore this is the finest grid in z (or in χ ) that our integration of
equation (20) can be carried out. We used the five-point Newton–
Cotes formula for the numerical integration over χ , and values of
Pδδ(k) at a given redshift z(χ ) were obtained by linear interpolation
of the corresponding values at ki, ki+1 with ki < k < ki+1, where
ki is the ith grid point in the POWMES output. To check that such a
coarse spacing in χ is not causing substantial numerical errors, we
made a test using a finer sampling of Pδδ(k, z(χ )) in the χ direction,
with a comoving thickness of 25 h−1 Mpc, generated using HALOFIT.
We then integrated this sample (1) using all χ bins, and (2) using
one from every three neighbouring bins (the latter mimicking the
simulation binning of �χ = 75 h−1 Mpc). The results of these two
tests are shown as black and blue solid lines in the upper left panel of
Fig. 2, and their relative difference is presented as the blue solid line
in the lower left panel. The tests showed that the difference is much
smaller than 1 per cent, and that �χ = 75 h−1 Mpc is fine enough
for our study. We have also checked that the convergence power
spectrum (for GR) computed in this way agreed well with the result

of CAMB (Lewis & Challinor 2011) for the same cosmology, though
note that to match the k range of the simulated Pδδ(k, z) we have
limited the maximum k in the integration to kmax = 28.6 h Mpc−1,
which affects Cκκ a little bit at � ∼ 104.

The red solid line in the upper left panel of Fig. 2 is the result
of the same integration of the simulated Pδδ(k, z) for GR, and the
red solid line in the lower left panel is the relative difference from
the integration of HALOFIT Pδδ(k, z). The simulation result peels off
at � � 20 because the lowest k values used in the integration is
kmin ∼ 0.014 h Mpc−1, and the same feature appeared in the HALOFIT

results if the same kmin was applied there. We notice that the sim-
ulation and HALOFIT results agree reasonably well, with the former
lower by ∼2 per cent in a wide range of �, possibly due to sampling
variance (recall that the simulation box is 450 h−1 Mpc). The differ-
ence between the two further changes to 5 per cent−6 per cent when
� approaches 104, due to slight loss of resolution by the simulation.

The right-hand panels of Fig. 2 compare the convergence power
spectra of F5 (red) and GR (black), for two lensing source redshifts,
zsource = 1.0 (solid) and zsource = 0.5 (dashed). For both source
redshifts, an enhancement of order 10 per cent−30 per cent between
� ∼ 100 and 104 is found, which increases with �, and the relative
difference is larger in the case of zsource = 0.5.

3.1.2 The connection between matter and convergence spectra

To gain a clearer understanding of the behaviour shown in the
right-hand panels of Fig. 2, recall from equation (20) that Cκκ (�)
at a given angular scale � gets contribution from various k modes
of the non-linear Pδδ from different times. It is therefore useful
to decompose the contributions from the different times and k
modes, on to which we can readily map the relative differences in
Pδδ(k, z) themselves. Fig. 3 shows the results from such an attempt
for zsource = 1 (left-hand panel) and zsource = 0.5 (right-hand panel).
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Figure 2. Left-hand panels: the effect of choosing a coarser – �χ = 75 h−1 Mpc in blue solid versus �χ = 25 h−1 Mpc in black solid – sampling of P(k, z)
(generated using HALOFIT) when using the Limber approximation equation (20) to compute the convergence power spectrum Cκκ (�). The solid red line shows
the result of doing the same integration with �χ = 75 h−1 Mpc, but for the simulated P(k, z). The lower subpanel shows the relative differences of the other
two cases with respect to the integration of HALOFIT P(k, z) with �χ = 25 h−1 Mpc. Right-hand panels: the convergence power spectra for F5 (red) and GR
(black), using two source redshifts zsource = 1.0 (solid) and 0.5 (dashed) – all results are from integrating the simulated P(k, z) following equation (20). The
lower subpanel shows the relative differences between F5 and GR. See the main text for discussions of this plot.

Figure 3. A detailed decomposition showing how much the different time (redshift) intervals and k modes in the non-linear matter power spectrum
Pδδ(k, z) contribute to the convergence power spectrum Cκκ (�) at a given �. The decomposition is done for two source redshifts: zsource = 1.0 (left-hand panel)
and 0.5 (right-hand panel). The vertical axis is the fractional contribution from distances smaller than a given χ , defined as Cκκ (<χ )/Cκκ (<χ s), and the black
solid lines are the values for a selection of χ values (indicated in blue; the corresponding redshift values are indicated in red) in step of 100 h−1 Mpc (for
zsource = 1) and 50 h−1 Mpc (for zsource = 0.5). The colour-coded solid lines (roughly) in the vertical direction are curves with constant k values that contribute
to a given � at a given time z (or χ ), with k = �/r(χ ). The value of k for each of these curves can be found using the colour bar on the top, which runs from
black (k = 0.004 h Mpc−1) to red (k = 50 h Mpc−1). Note that each � in Cκκ (�) receives contributions from a limited range of k (which shifts to larger values
for decreasing zsource), and that most contributions are from low and middle redshifts.
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Figure 4. The relative enhancement of the non-linear matter power spec-
trum Pδδ in F5 relative to GR, as a function of k (the horizontal axis) and
redshift z(χ ) (equally spaced in χ with a �χ = 75 h−1 Mpc; colour-coded
according to the colour bar on the top).

In both cases, the plot is the fractional contribution (black solid
curves) from distances below a specific χ (indicated with the blue
numbers to the right of the right axis; in units of h−1 Mpc) against
�. On the top of each black solid curve, the red number indicates
the redshift of the corresponding χ . The colour-coded lines along
the vertical direction denote the values of k that contributes at the
given � (as shown in the horizontal axis) and χ (as represented by
the black solid curves); each of them corresponds to a fixed k with
the colour scheme as displayed in the colour bar on the top (run-
ning from black for k ∼ 0.004 h Mpc−1 to red for k = 50 h Mpc−1).
From Fig. 3, we see the well-known result that most contributions at
large (small) angular scales come from large (small) length scales;
it also indicates that most contributions come from middle and low
redshifts – for example, ∼90 per cent contributions in the case of
zsource = 1 (0.5) come from the redshift range z � 0.7 (z � 0.38).

Fig. 4 shows how the relative difference in the non-linear Pδδ of
F5 and GR evolves in time. We can see the known feature (e.g. Li
et al. 2013) that the F5 prediction agrees with GR on large scales
due to the finite ranges of the modified gravitational force, and the
enhancement of clustering on non-linear scales (k ≥ 0.1 h Mpc−1).
We show 33 curves corresponding to the 33 snapshots between z = 1
(black) and z = 0 (red), which give us a comprehensive picture of
not only the k but also the time dependencies of the enhancement.
For examples:

(i) At k ∼ 0.1 h Mpc−1, the relative enhancement of Pδδ for F5
is within 1 per cent−3 per cent between z = 1 and 0. According to
Fig. 3, this k mode is most relevant for � ∼ 100, which explains
the ∼2 per cent enhancement of Cκκ there (cf. Fig. 2, the zsource = 1
case – the same below).

(ii) At k ∼ 1 h Mpc−1, Pδδ in F5 is enhanced by 10 per cent−
18 per cent between z ∼ 0.7 and z = 0, leading to a ∼15 per cent of
Cκκ at � ∼ 1000.

(iii) Between k = 1 and a few h Mpc−1 is the transition regime
between one- and two-halo terms in the halo model, where the

enhancement in F5 Pδδ increases more slowly with k than at lower k
values. This is reflected as a slight flattening of �Cκκ/Cκκ at � just
above 1000 (Fig. 2).

(iv) At k ∼ 5 h Mpc−1, the relative enhancement of F5 Pδδ re-
mains nearly a constant at ∼20 per cent within z = 1 and 0, which
translates into a ∼20 per cent enhancement of F5 Cκκ at � ∼ 4000–
5000 (Fig. 2).

(v) At k > 5 h Mpc−1, there is another steep increase of the en-
hancement in F5 Pδδ with k, indicating that dark matter haloes (at
least the small ones which dominate in number) in F5 are more con-
centrated. This further increases �Cκκ/Cκκ above � ∼ 4000–5000.

(vi) At all �, �Cκκ/Cκκ is larger in the case of zsource = 0.5 than
for zsource = 1.0, because in the former case the result is dominated
by lower redshifts in the integration equation (20), at which the
enhancement of the non-linear matter power spectrum in F5 relative
to in GR is stronger.

The results here agree with those found in Tessore et al. (2015)
and Shirasaki et al. (2017), and so serve as a sanity check of the
simulations. Moreover, the decomposition of Fig. 3 provides a way
to qualitatively understand the behaviour of the convergence power
spectra based on knowledge about the scale and time dependen-
cies of the non-linear matter power spectra. It can also prove use-
ful when decomposing the degeneracies of MG with other physi-
cal effects that can modify Pδδ on intermediate and small scales,
such as active galactic nuclei feedback and massive neutrinos (see
Semboloni et al. 2011; Osato, Shirasaki & Yaoshida 2015; Mum-
mery et al. 2017, for some general examples) (and see also e.g.
Arnold, Puchwein & Springel 2014; Harnois-Deraps et al. 2015,
for some examples in the framework of MG).

3.2 Galaxy–galaxy weak lensing

Having looked at the behaviour of the lensing power spectra, now we
move to the theoretical predictions of galaxy–galaxy weak lensing.

3.2.1 The galaxy–matter cross-correlation

The correlation of shearing of source galaxies behind lens galaxies
is given by the tangential shear profile around the lenses, which in
turn is related to the excess surface density profile ��(rp). This
can be calculated by integrating ξ gm(r) along the los, and means
that information about ξ gm can be obtained by studying GGL. For
this reason in this subsubsection, we shall compare the theoretical
predictions of ξ gm by GR and F5.

We measure ξ gm directly by cross-correlating the mock galaxy
catalogues with the particle data from which they (and the corre-
sponding halo catalogues) are constructed. This is done by a modi-
fied version of the publicly available CUTE_BOX code (Alonso 2012).
We have not downsampled the dark matter particles, and for a
galaxy number of Ng ∼ 3 × 105 and dark matter particle number
Np = 10243 the code generally finishes for a snapshot in a few
hours using 12 threads. For the autocorrelation function of matter,
ξmm, the cost is prohibitive without downsampling particles, and
we instead calculate it by directly transforming the matter power
spectra Pδδ (see below).

In order to estimate the uncertainties caused by the larger scale
environment, we use the internal jackknife resampling method with
N3

JK resamples by dividing the simulation box into N3
JK sub-boxes of

equal volume. For each resample, we discard the galaxies in one of
the sub-boxes, but still include matter from that sub-box when cross-
correlating with galaxies in other sub-boxes. The cross-correlation
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Figure 5. Top left panel: the galaxy–matter cross-correlation function ξgm(r), as a function of the separation r of the galaxy–particle pair, for the 29 of HOD
galaxy catalogues constructed using the GR Lbox = 900h−1 Mpc simulation. The colours of the curves indicate the redshift z (see the colour bar on the top). To
clarify, we have shown r2ξgm(r) and have not plotted the curves for F5. Bottom left panel: the relative differences between the F5 and GR predictions of ξ rm

for the 29 HOD catalogues, using the same colour scheme. The grey shaded region marks the 1σ error from the 125 Jackknife resamples. Right-hand panels:
the same but for the simulation with Lbox = 450 h−1 Mpc.

function of the ith jackknife resample, ξ (i)
gm, is estimated as

1 + ξ (i)
gm(r, r + �r) ≡ N

(ī)
DD(r, r + �r)

NpN
(ī)
g �V /V

= N
(ī)
DD(r, r + �r)

npN
(ī)
g �V

, (31)

where V is the whole volume of the simulation box, �V is the volume
of the radius bin [r, r + �r], Np the total number of dark matter
particles in the simulation volume, np = Np/V, and N (ī)

g the number

of galaxies and N
(ī)
DD(r, r + �r) the number of galaxy–particle pairs

in radius bin [r, r + �r] when the ith jackknife sub-box is excluded.
Note that we only discard the galaxies (and not the dark matter
particles) in the ith jackknife sub-box when counting the pairs. We
use NJK = 5 in this work. Note that the jackknife error estimates do
not include shape noises of source galaxies and the noises due to
finite number of sources. Also, by directly integrating the galaxy–
matter cross-correlation function ξ gm, we essentially perform the
integration along all possible lines of sight and so the statistical error
is smaller than that obtained using a sample of the same volume and
number density of lens objects in real observations, where one has
only a single los for each object. For a more detailed analysis of
errors using mock lensing data, see Shirasaki et al. (2016).

Fig. 5 presents the galaxy–matter cross-correlation functions
measured from the Lbox = 900 (left) and 450 h−1 Mpc (right) simu-
lations, and for each case we show, in the top panel, the GR results
for all 29 snapshots of HOD catalogues (the coloured solid curves,
with the colours denoting the redshifts according to the colour bar).
In the lower panels, we show the relative differences between F5
and GR using the same redshift–colour scheme, and the grey shaded
region marks the 1σ Jackknife error. Notice that to improve visi-
bility, we have plotted r2ξ gm(r) instead of ξ gm(r) itself in the top
panels. The results from the two boxes agree with each other well.

The GR curves in Fig. 5 show a scatter of up to ∼10 per cent,
which is because the different HOD catalogues do not correspond
to the same set of tracers of the density field. To see this more
explicitly, let us remark that the galaxy number density in our HOD
catalogues peaks at z ∼ 0.16, and as we go to higher redshifts it first
decreases until z ∼ 0.27, when it begins to increase, and then from
z ∼ 0.33 it starts to decrease again. The same trend can be seen in
the ξ gm curves of Fig. 5, namely the curves become higher from
z ∼ 0.16 (red) to 0.27 (green), then lower between z ∼ 0.27 and 0.33
(blue), and then higher again until z ∼ 0.43 (black). The trend is the
same from both boxes. Physically, according to our HOD model, a
lower galaxy number density indicates that only the more massive
haloes are populated with galaxies, and these haloes have stronger
correlations with matter around and inside. The behaviour is hence
not surprising: when we consider the cross-correlation between the
matter density field and its tracers, the choice of the latter is critical
(we will revisit this point later).

What is more interesting is the relative difference between F5
and GR, which is shown in the lower panels of Fig. 5. There we
see that the two models agree with each other (within the Jackknife
error) at r > 10 h−1 Mpc, that F5 ξ gm starts to get enhanced – with a
modest enhancement factor of 3 per cent–5 per cent – relative to the
GR result at r < 10 h−1 Mpc, and finally near the transition scale
between one- and two-halo terms (r ∼ 1–2 h−1 Mpc) the enhance-
ment factor increases to ∼10 per cent. The stronger enhancement
in the regime where the one-halo term dominates is related to the
more concentrated matter distribution in F5 compared to GR. Note
that the model difference, unlike the cross-correlation function ξ gm

itself, is less dependent on redshift and therefore less sensitive to
the choice of tracers. This is also as expected, because the selec-
tion of tracers in our HOD modelling affects both models in a
similar way.
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Figure 6. Top left panel: the excess surface density profiles as functions of the projected separation rp, measure from the Lbox = 900 h−1 Mpc GR (black
solid line) and F5 (red solid line) simulations, assuming a stack around all galaxies in the 29 snapshots of HOD galaxies. The dotted and dashed lines – with
the same colour – are the results of using the 14 high-redshift (0.30 � z � 0.43) and 15 low-redshift (0.16 � z � 0.29) HOD catalogues, and they are barely
visible in the plot. Bottom left panel: the relative difference between F5 and GR, using the same line styles and colours (now the difference between the high-z
and low-z galaxy samples is clearer but still very small). The grey shaded region shows the square root of the diagonal elements of the Jackknife covariance
matrix, and the error bars are the square root of the diagonal elements of the analytical covariance matrix assuming the HSC survey. Right-hand panels: the same
but for the simulation with Lbox = 450 h−1 Mpc.

3.2.2 The excess surface density profiles

The averaged excess surface density profile, ��(rp), is calculated
by directly integrating the galaxy–mass cross-correlation functions,
following the prescription of equation (25).

To calculate this, we first use cubic spline to interpolate the

ξgm(r =
√

r2
p + z2) measured from the simulations on to a grid in

(log(rp), z), where rp is the projected separation and z is the los coor-
dinate (with z = 0 at the position of the galaxy),4 and then perform
the integrations using direction summation. We have chosen a fine
interpolation grid, as well as a large enough zmax for the los inte-
gration, so that the percentage error for the numerical integrations
is within ∼0.1 per cent. For the Lbox = 900 h−1 Mpc (450 h−1 Mpc)
simulations, this allows us to have ��(rp) up to rp = 30 h−1 Mpc
(15 h−1 Mpc), with zmax = 90 h−1 Mpc (∼65 h−1 Mpc).

The left-hand (right-hand) panel of Fig. 6 shows the results of
��(rp) from the Lbox = 900(450) h−1 Mpc simulation. A compar-
ison of the upper panels indicates that the 900 h−1 Mpc box starts
to lose resolution at rp ∼ 1 h−1 Mpc, but the relative difference be-
tween F5 and GR agrees down to rp ∼ 0.5 h−1 Mpc. In both cases,
we have split the lens galaxies into two separate redshift ranges
(a high-z bin with 0.30 � z � 0.43 and a low-z bin with 0.16 �
z � 0.29), but the results – dotted and dashed lines, respectively
– display barely any difference from using the whole lens galaxy
sample, suggesting that the conclusion does not depend sensitively

4 This is a slight abuse of notation, but it should be clear, given the context,
where z means the los coordinate or redshift.

on redshift or the source number density, at least in the redshift
range covered in this study.

The stacked excess surface density profiles in F5 and GR differ
most significantly at rp � 2 h−1 Mpc, which reflects the bigger
difference in the one-halo term of the matter–galaxy correlation
function as shown in Fig. 5. The model difference between F5 and
GR has a distinct dependence on rp from that of ξ gm(r), which is
∼5 per cent–10 per cent at 1 � rp � 10 h−1 Mpc, because ��(rp)
depends on the average ξ gm from R = 0 to rp, where R is the projected
distance from the lens. Although this means that one can see a strong
signal up to larger values of rp, it also implies that uncertainties that
affect the prediction of the one-halo term in ξ gm, such as baryonic
physics, can have an impact on �� to larger rp, something which
we should bear in mind when considering observational constraints.

The 10 per cent–15 per cent relative difference in �� at rp �
1 h−1 Mpc between the two models is roughly the same as the dif-
ference in Cκκ at � � 2000, but smaller than the difference in Cκκ

at larger � (see Fig. 2), and therefore we are interested in whether
there is any difference in the signal-to-noise ratio (S/N) of these two
probes. The S/N quantifies the distinguishability of the two models
and is defined as

(S/N)2 ≡ [dF5(xi) − dGR(xi)]
T C−1(xi, xj)

[
dF5(xj) − dGR(xj)

]
,

(32)

in which xi is the data in the ith bin (x = Rp for GGL and x = � for
lensing convergence), and C is the covariance matrix.

To estimate the S/N values, we consider three fiducial surveys
with roughly the DES, HSC, and LSST specifications, as summarized
in Table 3. We expect that Euclid will have a similar performance
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Table 3. The three hypothetical lensing surveys used to estimate the statistic
error for galaxy–galaxy weak lensing and the convergence power spectrum.
ngal is the source galaxy number density (the sources are assumed to be at
zsource = 1.0 in all cases), and σ int the intrinsic ellipticity of sources. For
GGL, we have assumed the lens galaxies are at zlens = 0.30.

Hypothetic survey ngal (arcmin−2) σ int Survey area (deg2)

DES 3 0.35 5000
HSC 30 0.35 1400
LSST 50 0.35 20 000

as LSST (see e.g. Cautun et al. 2017, for some relevant S/N analysis
but for void lensing using Euclid and LSST). For simplicity, let us
assume that there are overlapping spectroscopic surveys which can
provide galaxy catalogues with a number density at least as high as
the ones used in our lensing galaxies, between 0.16 � z � 0.43. As
shown above, the model difference in ��(rp) is insensitive the lens
redshift, so we assume a single lens redshift zlens = 0.3 and a single
source redshift zsource = 1 in the simplified study. The covariance
matrix C is calculated based on a halo model prescription following
Jeong, Komatsu & Jain (2009), which accounts for contributions
from cosmic variance, the Poisson noise of lensing galaxies and the
shape noise of source galaxies, and it adopts single source and lens
redshifts as was mentioned above. The GR HOD and cosmological
parameters for the snapshot at z ∼ 0.3 are used to generate C.
We also adopt the halo-model approach developed in Sato et al.
(2009) to estimate the covariance matrix for Cκκ . In this matrix, we
properly include the non-Gaussian term induced by convergence
tri-spectrum and halo sample variance.

Fig. 7 shows the S/N based on our analysis which takes into
account statistical uncertainties only, for the GGL (left-hand panel)

and Cκκ (right-hand panel). The black, blue, and red curves are,
respectively, for HSC, DES, and LSST-like surveys. In the case of GGL,
we show S/N as a function of the minimum rp used in the calculation,
while for the case of Cκκ the S/N is displayed as a function of the
maximum � included in the analysis. These are because using a
smaller (larger) cut-off in rp (�) means more data are included in the
model test, which can increase the S/N; but on the other hand, by
doing these we are moving to smaller scales, where we would need
to worry about other theoretical uncertainties such as the impact of
baryons. Eventually, a comprise between these two considerations
will have to be made; but for this study we are mainly interested in
how the S/N values vary with the rp and � cuts.

From Fig. 7, we can see that LSST, being a stage-4 experiment,
has significantly more power to distinguish the two models, thanks
to its larger sky coverage and higher source galaxy number density;
this is true for both GGL and Cκκ . HSC and DES, both of which are
stage-3 experiments, show similar performances. When comparing
the two probes, we find that Cκκ gives larger S/N values for all three
surveys – this is not surprising as both can be symbolically written
as 〈AB〉 where A, B are two statistics of the underlying density field
and 〈·〉 denotes ensemble average. For Cκκ , A = B = κ , while for
GGL we have A = κ and B = δng, where δng is the galaxy number
density fluctuation, the model difference in which has been greatly
reduced by the tuning of HOD parameters. Therefore, we expect
the model difference in GGL to be smaller than that in Cκκ .

3.2.3 Effect of tracers

Because the galaxy–matter cross-correlation quantifies the distribu-
tion of matter around galaxies, the choice of galaxies is important,
which is why we made effort to tune the HOD parameters in the F5

Figure 7. Left-hand panel: the S/N, defined in equation (32), from GGL as a function of Rp,cut, which is the minimum projected radius Rp used in the
calculation. Rp,max = 25 h−1 Mpc here and the model differences are calculated using the results from the Lbox = 450 h−1 Mpc simulations. The black, blue,
and red curves are the results by using the covariance matrices for the assumed HSC, DES, and LSST surveys, respectively. Right-hand panel: the S/N from the
lensing convergence power spectrum as a function of the maximum � (�cut) used in the analysis, with �min = 200. The colours of the curves are the same for
the left-hand panel.
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Figure 8. Top panel: ξgm for different choices of tracers to cross-correlate
with matter. The black solid curve is the cross-correlation between HOD
galaxies and dark matter both from the GR Lbox = 900 h−1 Mpc simulation,
while the other curves are cross-correlations of dark matter from the F5
simulation with a variety of choices of tracers – HOD galaxies form the F5
simulation (blue dotted), HOD galaxies for GR (cyan dashed), dark matter
haloes for F5 (green dot–dashed), haloes for GR (red dot-dot-dot–dashed)
and central HOD galaxies for F5 (orange long dashed). In the cases of
haloes being the tracers, the haloes are ranked from high to low mass and
the first n̄g,GRL3

box, where n̄g,GR is the averaged HOD galaxy number density
from the GR simulation at z = 0.16, are used. Bottom panel: the relative
differences between the other cases and the ξgm for GR galaxies and dark
matter, with the same line styles and colours as in the top panel. The yellow
shaded region shows the 68 per cent scatter of the 125 Jackknife resamples
around the mean, for the cross-correlation between galaxies and dark matter
in GR.

case to match the 3D galaxy two-point correlation function ξ gg (and
the galaxy number density) in the two models. To gain a feeling of
the effect of choosing different tracers of the matter field, we have,
for the snapshot at z = 0.165 of the Lbox = 900 h−1 Mpc simulation,
tested how ξ gm changes by using other tracers. The result is shown
in Fig. 8 (see the figure caption for a more detailed description of
the different curves). There are several interesting features in this
figure.

First of all, we see that at small separations ξ gm is indeed very
sensitive to the choice of tracers, as expected. The difference caused
by this is substantially larger than that between F5 and GR as we
have show above. Evidently, for the one-halo term of ξ gm, changing
the tracer is equivalent to placing the tracer to a different location in
its host halo, or even outside the halo, which can impact the matter
distribution around. This sensitivity is reduced at large separations,
at which the effect of slightly relocating the tracer is smaller.

Second, for the two cases of cross-correlating dark matter distri-
bution from the F5 simulation with haloes (green dot–dashed and
red dot-dot-dot–dashed), the lowest points in the curve shift to-

5 We only use one snapshot because, as we have seen above, the model
difference between F5 and GR shows little redshift evolution in the redshift
range considered in this paper.

wards smaller separations, and ξ gm is overall lower than the cross-
correlations by using HOD galaxies. Using haloes as tracers is sim-
ilar to using only the central galaxies, and misses the contribution
from satellite–matter cross-correlation, which may have caused this
feature. To check this, we show the result of cross-correlating the
dark matter field with only the central HOD galaxies, in the case of
F5, as the orange long dashed curve in Fig. 8. The behaviour is very
similar to the cross-correlation with haloes, and the slight difference
is because the two tracer classes do not correspond to exactly the
same halo population, since central galaxies are populated in haloes
in a random way.

Third, for the two cases in which we cross-correlate the dark mat-
ter field from the F5 simulation with tracers from the GR simulation
(cyan dashed and red dot-dot-dot–dashed), ξ gm decreases towards
very small separations (r � 0.3 h−1 Mpc), and this is because GR
tracers usually do not coincide with the highest density peaks in the
dark matter field of the F5 simulation so that the highest values of
ξ gm appear to be away from the GR tracers themselves.

All in all, the test highlights the importance of using carefully
constructed mock galaxy catalogues when we compare the predic-
tions of GGL in different models. As an example, the 3D real-space
two-point correlation functions and the projected 2D correlation
functions in our GR and F5 HOD catalogues agree with each other
within 2 per cent–3 per cent in the range of separations considered
here, but such agreements are in a statistical, rather than an object-
by-object, sense. When cross-correlated with the same (F5) matter
field, the ξ gm results by using F5 and GR galaxies are indeed differ-
ent (cf. blue dotted and cyan dashed curves in Fig. 8), in particular
at small separations. This indicates that high-resolution simulations
enable to accurately resolve the internal structures of haloes and
to allow realistic galaxy mocks to be constructed, are necessary in
order to make GGL more useful for distinguishing f(R) gravity and
GR.

3.3 Galaxy bias

Finally, we compare the galaxy biases in GR and f(R) gravity. We
are interested in this comparison this for two reasons.

First, in standard �CDM, the linear bias factor, defined as

blin(r) = ξgm(r)

ξmm(r)
= ξgg(r)

ξgm(r)
=

√
ξgg(r)

ξmm(r)
, (33)

is scale-independent on large scales. On the other hand, it is known
that f(R) gravity, and in general chameleon models, predict a scale-
dependent linear growth rate of matter density perturbations, which
may result in scale-dependent blin, because we have tuned the HOD
parameters to match ξ gg(r) in the two models, while their ξmm(r)
can have a scale-dependent difference. We want to check whether,
at least for F5, such a scale dependence of blin is significant enough
to make it of interest in observations.

Secondly, assuming that the linear bias factor blin gives a correct
quantification of galaxy bias at some given scale r, the galaxy–
matter cross-correlation coefficient Rgm, defined as

Rgm(r) ≡ ξgm(r)/
√

ξgg(r)ξmm(r), (34)

is equal to 1. This offers an opportunity to derive the matter corre-
lation function ξmm from observational determinations of ξ gg and
ξ gm. We want to see whether the minimum length-scale Rmin above
which this can be performed without worrying about the non-linear
effects in galaxy bias is significantly different in GR and in F5.
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Figure 9. Left-hand panel: the bunch of curves on the top of the panel show the linear galaxy bias defined in three ways – blin ≡ ξgm/ξmm (solid),
blin ≡ √

ξgg/ξmm (dashed), and blin ≡ ξgg/ξgm (dotted) – from the GR Lbox = 900 h−1 Mpc simulation. The redshifts of the curves are given in the legend,
using the same colour scheme and order (from top to bottom) as the curves themselves. The dashed lines at around 1.0 are the galaxy–matter correlation
coefficient defined as Rgm ≡ ξgm/

√
ξggξmm for the same redshifts. Right-hand panel: the same as the left-hand panel, but for F5.

Fig. 9 shows the results of our tests to answer these questions.
The top bunch of curves in each panel (left for GR and right for
F5) show the linear bias factors calculated in different ways (the
different line styles) at a selection of redshifts (shown by different
colours; see the legend for more details). We see that the different
ways of calculating blin agree well with each other, and that blin

remains roughly constant down to r ∼ 4 h−1 Mpc, in agreement
with previous results (e.g. Yoo et al. 2006). This holds true for all
redshifts and both models – the latter is perhaps not surprising given
that ξ gg has been tuned to match in GR and F5, while ξ gm in these
models differ by at most a few per cent above r ∼ 4 h−1 Mpc, so
that any scale dependence of blin should be very weak. Note that blin

is larger at higher redshifts, since the number densities of galaxies
are lower for those redshifts and so we are looking at more biased
tracers of the underlying matter field.

The results of Rgm are shown as dashed lines near the bottom of
the left-hand (right-hand) panel for GR (F5), for the same redshifts
and using the same colour scheme. We can see that for r down to
1–2 h−1 Mpc Rgm is equal to unity to a good accuracy, and there is no
significant difference between the different redshifts or between GR
and F5. This suggests that the reconstruction of ξmm from ξ gg and
ξ gm can be done with the same reliability whether the underlying
model is GR or F5 – this is even with the consideration that blin,F5

may vary by a few per cent (in theory) from vary large scales to
r ∼ 4 h−1 Mpc.

4 SU M M A RY A N D D I S C U S S I O N

We have studied the possibility of using galaxy–galaxy weak lensing
to distinguish between the standard �CDM paradigm and a lead
alternative, chameleon f(R) gravity. The parameter for the latter is
chosen so that the model is not yet firmly ruled out by cosmological
data. The study can also lead to a more quantitative assessment of to
what accuracy deviations – in the way as prescribed by chameleon

type theories – from GR on cosmological scales can be constrained
by future GGL observations. To this end, we have decided to make
accurate theoretical predictions for a representative MG model, by
the means of fully non-linear N-body simulations.

We take a step further by carefully making appropriate galaxy
catalogues in order to predict the GGL signals for both �CDM
and f(R) gravity. The reason is this: while the f(R) model studied
here has a stronger gravitational interaction than in GR, and thus
would predict more dark matter haloes and an enhanced large-
scale clustering, the lack of a reliable predictive model for galaxy–
halo connection means that we cannot rule out it on the basis of
its predicted galaxy clustering using some approximate method.
Hence, we follow a more pragmatic approach, by assuming that
both models produce an acceptable galaxy clustering (as required
by observations), and focusing only on the resulting lensing effect.
In practice, this is achieved by adopting the HOD prescription of
galaxy–halo connection, and tuning the HOD parameters in the f(R)
model to match the galaxy clustering in its �CDM counterpart. We
have checked explicitly, e.g. in Fig. 8, that the choice of tracers (the
galaxy catalogues) has a non-negligible effect on the resulting GGL
signal.

Before looking at GGL, we have first inspected the weak lensing
convergence power spectrum in the selected f(R) model. This has
been studied before, but here we focus on the connection to the
matter power spectrum and its time evolution. Fig. 3 is a useful
plot to understand how much contribution the convergence power
spectrum has received from the matter clustering at different scales
and epochs. We have checked that the behaviour of the former can
be qualitatively explained using the latter.

Compared to the convergence and matter power spectra, which
quantify the autocorrelation of the matter density field, we find that
the cross-correlation between galaxies and matter, ξ gm(r), shows
a ∼50 per cent smaller difference between the two model studied,
because the galaxy clustering in these models has been tuned to
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agree well with each other. This is further verified by an analysis of
the S/N, which quantifies the distinguishability of the models when
statistical-only errors are used, for three imaging surveys similar,
respectively, to the DES, HSC, and LSST specifications, with synergy
data from a spectroscopic survey that can at least match the BOSS
LOWZ galaxy number density at 0.16 � z � 0.43. We find that
the S/N is smaller than 2–3 for DES and HSC, if we exclude GGL
data within 2–3 h−1 Mpc, while for the LSST-like survey we have
S/N ∼ 10. The S/N is 2–4 times higher if the cosmic shear power
spectrum, with a conservative cut at �min = 1000–2000, is used
for constraints. In the redshift range covered in this study, we do
not find any strong dependence of the model difference in GGL on
the lens redshift – indeed, Fig. 6 shows that the low-z and high-z
samples give almost identical results.

Note that in the above forecast, we have included only statis-
tical and not systematic uncertainties. Although the cosmic shear
power spectrum can have a higher S/N than GGL for distinguish-
ing f(R) gravity, it still remains useful and complementary to con-
sider GGL. Current two-point correlation analysis of cosmic shear
is subject to observational systematics induced by imperfect mea-
surement of distant galaxies. The multiplicative bias is one of the
most important systematics in cosmic shear analysis and can make
the amplitude of lensing power spectrum uncertain (e.g. Huterer
et al. 2006). In recent cosmological analyses, the impact has been
controlled by image simulations (e.g. Hildebrandt et al. 2017) or
appropriate parametrization (e.g. DES Collaboration 2017). On the
other hand, GGL analysis can separate the multiplicative bias and
lensing effects from observed signal if one can use single-source
population and multiple foreground objects at different redshifts
(Oguri & Takada 2011). We also note that the intrinsic alignments
of galaxy ellipticities, which are a significant source of systematic
errors for cosmic shear measurements (e.g. Hirata & Seljak 2004),
are not important for GGL with single-source population. This is
because the stacked lensing is linear in shear, and does not include
any correlation between the shapes of different galaxies.

We have investigated galaxy bias in the �CDM and f(R) models.
It is well known that f(R) gravity models have scale-dependent linear
growth rate, that goes back to the �CDM prediction on large scales.
Fig. 4 is an example of this scale dependence, although it shows
the non-linear growth of matter density perturbations. Hence, we
expect the linear galaxy bias to be different in these two models.
However, from Fig. 9, we do not find a clear difference: the different
values at the different redshifts are more likely due to the different
corresponding galaxy number densities, as we know that the more
luminous galaxies (for which ng is smaller) are more strongly biased
tracers of the dark matter field. The F5 galaxy bias, at a given
redshift, only shows a rather weak scale dependence and is slightly
smaller than the GR value, the latter being because ξ gg is tuned to
agree in the two models while ξmm is larger in f(R) gravity. On the
other hand, we find that, as in GR, the galaxy–mass cross-correlation
coefficient Rgm remains at 1.0 down to ∼3 h−1 Mpc, suggesting that
one can infer ξmm from measurements of galaxy auto correlation
and GGL at scales larger than ∼3 h−1 Mpc.

As a first study of GGL in f(R) gravity, this work can be further
improved in several ways, all of which require more (and more
advanced) simulations than used here.

First, as shown in Fig. 5, the galaxy–mass cross-correlation ξ gm

(and therefore GGL) depends sensitively on the number density
of lenses. Our galaxy catalogues are made to mimic the BOSS
LOWZ sample, with a number density of order 10−4( h−1 Mpc)−3,
and this number will be further increased with ongoing and future
galaxy surveys. It remains interesting to see how effectively the

increased lens number density can help improve the S/N, given that
many of the newly added galaxies will be fainter. In order to check
this, we will need simulations with higher resolutions to populate
fainter galaxies, and such simulations may also enable mock galaxy
catalogues constructed using other techniques such as SHAM and
SAM, to understand the impact of different methods of galaxy–halo
connection.

In relation to the above point, one might wonder if the differences
in the GGL signals of F5 and GR are actually due to the fact that,
even after the tuning of HOD parameters, F5 catalogues generally
still have more (up to 4 per cent as shown in Fig. 1) galaxies than
in GR. To check this possibility, we have used a set of five inde-
pendent realizations (with different initial conditions) of GR and
F5 simulations (Lbox = 1024 h−1 Mpc and Np = 10243) to make
HOD catalogues using the same method as prescribed in this paper,
and studied their respective GGL signals. In these catalogues, F5
have 0.8 per cent–2.4 per cent (<4 per cent) more galaxies than GR.
We do not find any correlation between how many more galaxies
F5 has than GR and how much the GGL signal in F5 is stronger
than in GR, and we find the same enhancement of GGL in F5 as
in this paper. Therefore, we conclude that the slight difference of
the HOD galaxy numbers in our F5 and GR galaxy catalogues does
not have a strong impact in the use of GGL to constrain F5. This is
as expected, because the enhancement of matter clustering around
galaxies is a physical consequence of MG.

Second, the simulations used here are for a choice of particular
cosmological parameters (WMAP9). It is important to understand
whether other choice of cosmological parameters can have a signif-
icant impact on the model difference in GGL. It is also important
to check if there is a degeneracy between MG and cosmology, e.g.
whether the effect of f(R) gravity can be mimicked by a different
value of σ 8 or �m, as such a degeneracy can downgrade the potential
of using GGL to constraint chameleon f(R) models. For example, it
was shown (Yoo et al. 2006) that the GGL signal ��(rp) ∝ �α

mσ
β
8 ,

with α, β depending weakly on rp, and therefore it is possible that
the rp-dependence of �(��)/��GR is not completely degenerate
with the effects of varying �m and σ 8, allowing these different
parameters to be constrained simultaneously using GGL alone, or
possible synergies of GGL with other probes. This will require
simulations with different cosmologies.

Third, in the forecast above, we have deliberately not used signals
on smaller scales (Rr � 2–3 h−1 Mpc and � > 1000–2000), not just
for resolution consideration, but also to be conservative as on those
scales the theoretical predictions might be significantly affected by
poorly understood baryonic physics (which is not included in the
simulations used in this work). The modified gravitational force can
change the halo density profiles, which is reflected in the GGL sig-
nals. However, to reliably include this in the model test, we have to
fully understand how baryonic processes affect the (re)distribution
of matter inside dark matter haloes for f(R) gravity, and for this
hydrodynamical simulations with suitably adjusted subgrid physics
are essential. This is an almost entirely unexplored regime to date.
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