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SUPPLEMENTAL INFORMATION 34 

Thermal maturity of Gordondale, Red Deer, and Poker Chip Shale members in the Fernie 35 

Formation 36 

It is imperative to account for the thermal maturity of the rock as Hg can be volatilized 37 

during burial diagenesis. For our section we can compare the outcrop section (East Tributary) to 38 

the drill cores (1-35-62-20W5 and 6-32-78-5W6). The East Tributary section has higher Hg 39 

contents when compared to the drill cores (Main Text, SI Data). These elevated Hg contents are 40 

most likely not due to differences in thermal maturity, as the outcrop section (exposed in western 41 

Alberta Rocky Mountains) experienced much higher temperatures than the drill cores (Reidiger et 42 

al., 1990; Reidiger, 1993, 2002; Kondla et al., 2017). Thus, the proximal to distal variation in Hg 43 

and Hg/TOC data is most likely due to other factors not related to the burial histories of these 44 

successions. 45 

 46 

Standard and sample reproducibility  47 

 In the table below, we report international mercury standards used to calibrate the data at 48 

Florida A&M University that were all run at least four times. 49 

Table S2. Error analysis 50 

Standard Hg Contents 

(mg/kg) 

Number 

of 

Analyses 

2-sigma 

Standard 

Deviation (± 

mg/kg) 

Accepted 

value 

(mg/kg) 

SRM Spinach 

1570a 

0.0286 7 0.003 0.0297 

SRM Mussel 

2976 

0.0620 7 0.005 0.061 

TORT-2 

SRM 

0.2829 4 0.008 0.27 

BCR-60 

Aquatic Plant 

0.3244 4 0.012 0.34 

 51 
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 Additionally, we replicated 14 of our geological samples at least two times, and the average 52 

2-sigma standard deviation of these replicate analyses is ± 0.005 ppm (5 ppb), with a rage of 0.000 53 

to 0.018 ppm (0 to 18 ppb). Thus, we cannot attribute the Hg or Hg/TOC anomalies in samples 54 

that we have presented here as a result of analytical error with the Hg analyses. 55 

 56 

Carbon, sulfur, and mercury relationships in the Posidonia Shale  57 

Marlstone 58 

 The low TOC contents in the Marlstone unit, except for the two organic-rich intervals, 59 

causes the observed Hg/TOC anomalies. These low-TOC samples are displayed in Figure 4 in the 60 

main text, but in a different color than the rest of the organic-rich intervals. 61 

Oil Shale and Bituminous Shale  62 

The one-point Hg and Hg/TOC increase in the T-OAE interval intriguing because it may 63 

represent an increase in volcanic activity. The Hg content of this sample, however, is most likely 64 

controlled by another factor, pyrite contents. This sample is associated with very high pyrite 65 

contents (pyrite sulfur = 5.7 wt. %; Them et al., 2018), which is much higher than the rest of the 66 

samples (see SI Fig. 1). Furthermore, the relationship between pyrite sulfur and mercury 67 

concentrations (R2 = 0.78) from this study location is higher than that of total organic carbon 68 

(TOC) and mercury relationship (R2 = 0.49). If this sample with high pyrite sulfur wt. % is removed 69 

from these plots, TOC:Hg values are more closely related (R2 = 0.80) than S-pyrite:Hg (R2 = 0.67). 70 

This suggests that in the South German Basin, the one-point increase in Hg contents is most likely 71 

controlled by increased S-pyrite content of the sample. The stronger relationship between TOC 72 

and Hg in the rest of the samples suggests that overall Hg content of the South German Basin is 73 

controlled by organic matter production and preservation. Regardless, based on these relationships 74 
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alone it is not possible to determine the dominant phase the Hg is hosted in the rest of these 75 

samples. 76 

 77 

Mercury relationships in Pleistocene Mediterranean marine sediments 78 

Mercury data generated Mediterranean Sea Pleistocene sediments (ODP Hole 974C; Gehrke 79 

et al., 2009) show variable Hg and Hg/TOC values (SI Fig. 2). These Hg contents are on the order 80 

of some ancient sedimentary Hg enrichments linked to massive volcanism. However, the Hg 81 

enrichments at this location are all driven by redox changes and low TOC values (Gehrke et al., 82 

2009), not volcanism. 83 

 84 

Ancient mercury anomalies linked to large-scale volcanism 85 

 Numerous studies have applied the Hg proxy to Phanerozoic extinctions and oceanic 86 

anoxic events (OAEs) associated with documented or hypothesized LIP emplacements and have 87 

noted contemporaneous [Hg] and/or Hg/TOC anomalies (see Table S1). These records include 88 

the Late Devonian Frasnian-Famennian (unnamed volcanic LIP; Racki et al., 2018), Late 89 

Ordovician (unnamed volcanic LIP; Jones et al., 2017; Gong et al., 2017), late Permian to early 90 

Triassic (Siberian Traps; Sanei et al., 2012; Grasby et al., 2013, 2016, 2017), end-Triassic 91 

(Central Atlantic Magmatic Province; Thibodeau et al., 2016; Percival et al., 2017), 92 

Pliensbachian-Toarcian (Karoo-Ferrar LIP; Percival et al., 2015, 2016; Fantasia et al., 2018; c.f., 93 

this study), and end-Cretaceous (Deccan Traps; Font et al., 2016, 2018; Sial et al., 2013, 2014, 94 

2016) mass extinctions. Additionally, the Hg proxy has also been applied to intervals that contain 95 

less severe biological events: the Valanginian Weissert OAE (Paraná-Etendeka LIP; Charbonnier 96 

et al., 2017), the Hauterivian and Barremian episodes (Ontang Jova LIP; Charbonnier et al., 97 
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2018), the Aptian/Albian OAE 1a (Ontang Jova LIP; Charbonnier and Föllmi, 2017), and Mid-98 

Cenomanian Event and OAE 2 (Madagascan, Ontong-Java, Caribbean, and/or High Arctic LIPs; 99 

Scaife et al., 2017). 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 

 108 
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 110 
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 112 

 113 
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 116 
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 118 

 119 

 120 
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 121 

Figure S1. Relationship(s) between Hg and TOC and S-pyrite at Dotternhausen Quarry, 122 

Germany. The upper left figure suggests that TOC and Hg are slightly correlated (R2 = 0.49), 123 

but the upper right figure suggests that this correlation is stronger (R2 = 0.80) when the sample 124 

with high pyrite contents (in red) is removed. The lower left figure suggests that pyrite and Hg 125 

are strongly correlated to one another stronger (R2 = 0.78), but this relationship is slightly 126 

weaker (R2 = 0.67) when the sample with high pyrite contents (in red) is removed. The 127 
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regression of this relationship, however, is close to approximating the actual sulfur content of 128 

this sample.  Therefore, the one sample from this section with an anomalous Hg and Hg/TOC 129 

value during the N-CIE interval (Fig. 4 in main text) is probably controlled by high pyrite 130 

contents. 131 

 132 
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 151 

Figure S2. Mercury geochemistry from mid-Pleistocene sediments (ODP Hole 947C) 152 

(Gehrke et al., 2009). Black circles represent samples with TOC > 1% (e.g., sapropels) and 153 

red circles represent samples with TOC < 1 % (e.g., normal background sedimentation). The 154 

Hg/TOC increases associated with the red circles at this site would be interpreted as evidence 155 

for increased volcanism if observed in the deep geologic past. Instead, the Hg/TOC anomalies 156 

are driven by low TOC values, and these samples were interpreted as being deposited in an 157 

oxidizing water column (Gehrke et al., 2009). The samples with elevated Hg contents (i.e., 158 

sapropels) were interpreted as being deposited in a reducing/anoxic water column (Gehrke et 159 

al., 2009). Therefore, constraining local redox conditions from a study site is paramount when 160 

interpreting Hg geochemical records. 161 

 162 

 163 

 164 

 165 
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Table S2. Ancient Phanerozoic time intervals with reported Hg anomalies. 166 

Age Reference(s) 

Paleocene/Eocene boundary Jones et al. (in review) 

Cretaceous/Paleogene boundary* Sial et al. (2013, 2014, 2016); 

Silva et al. (2013); Font et al. 

(2016, 2018); Percival et al. 

(2018) 

Cenomanian/Turonian boundary† 

and other Cenomanian events 

Scaife et al. (2017); Percival et al. 

(2018) 

Aptian/Albian boundary† Charbonnier and Föllmi (2017) 

Early Cretaceous (Hauterivian 

through early Aptian) 

Charbonnier et al. (2018) 

Valanginian/Hauterivian 

boundary† 

Charbonnier et al. (2017) 

Pliensbachian/Toarcian boundary 

and early Toarcian*† 

Percival et al. (2015, 2016); 

Fantasia et al. (2018); this study 

Triassic/Jurassic boundary* Thibodeau et al. (2016); Percival 

et al. (2017) 

Permian/Triassic boundary and 

early Triassic* 

Sanei et al. (2012); Grasby et al. 

(2013, 2016, 2017) 

Frasnian/Famennian boundary 

(Late Devonian)* 

Racki et al. (2018) 

Ordovician/Silurian boundary* Jones et al. (2017); Gong et al. 

(2017) 

Middle/Late Ordovician Liu et al. (2018) 

*Mass extinction 167 

† Oceanic anoxic event 168 

 169 
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