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THE CRITICAL GREEDY SERVER ON THE INTEGERS
IS RECURRENT

By James R. Cruise and Andrew R. Wade

Heriot-Watt University and Durham University

Each site of Z hosts a queue with arrival rate λ. A single server,
starting at the origin, serves its current queue at rate µ until that
queue is empty, and then moves to the longest neighbouring queue.
In the critical case λ = µ, we show that the server returns to every
site infinitely often. We also give a sharp iterated logarithm result
for the server’s position. Important ingredients in the proofs are that
the times between successive queues being emptied exhibit doubly
exponential growth, and that the probability that the server changes
its direction is asymptotically equal to 1/4.

1. Introduction and main results. The following continuous-time stochas-
tic model was introduced by Kurkova and Menshikov [13]. Each site of the one-
dimensional integer lattice Z is associated with a queue. Each queue has an inde-
pendent Poisson arrival stream of rate λ ∈ (0,∞). The system has a single server,
which starts at the origin at time 0. The server serves the queue at its current site
exhaustively at rate µ ∈ (0,∞). If the queue at the current site is empty at time
t ≥ 0, the server moves to one of the two neighbouring sites using a greedy policy: it
chooses to move to the site with the longest queue (measured at time t), randomly
breaking any tie. The server moves (deterministically) at unit speed, and so arrives
at the new site at time t + 1, at which time it starts to serve the new queue. Of
interest is the asymptotic behaviour of S(t), the location of the server at time t ≥ 0.

There are 3 cases. The least interesting is when λ > µ and any queue under
service is transient, so each time that the server starts serving a non-empty queue,
there is a (uniformly) positive probability that the server remains at the site for all
time. Thus with probability 1, the server changes site only finitely many times, so
S(t) converges almost surely (a.s.) See Theorem 1.1 of [13].

The main object of study in [13] is the case λ < µ. Theorem 1.2 of [13] shows
that in this case the server changes its direction only finitely many times, so that
the server eventually moves from site to site in a single direction, and S(t) → ±∞
a.s. The intuition behind this result is as follows. Any queue under service is now
recurrent, so becomes emptied in finite time. Consider the server’s first visit to site
x > 0 at time t (say). At time t, with very high probability, the queue at x− 1 will
be essentially empty, while the queues at x and x+ 1 will have lengths concentrated
about λt. It takes time about ct for the server to empty the queue at site x, where c
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is a positive constant depending on λ and µ, and in this time there will be about λct
new arrivals at the queues at sites x− 1 and x+ 1. So by the time the queue at site
x is emptied, the queue lengths at sites x− 1 and x+ 1 are about λct and (λ+ λc)t
respectively. The fluctuations are of order t1/2, and so with very high probability,
the server will choose to go to site x+ 1 next.

In the present paper, we study the critical case λ = µ, which was left open in [13].
The analysis of this case seems somewhat more delicate. Again, any queue under
service is recurrent. But now an attempt to follow the idea of the argument sketched
in the previous case reveals a new issue. Once again, upon the server’s first arrival
at site x, the queues at x and x+1 will have lengths about λt while the queue at site
x − 1 will be essentially empty. But now the queue at site x is critically recurrent,
and so typically takes time of order t2 to empty. In this time, the fluctuations in the
new arrivals at sites x−1 and x+1 are of order t, i.e., on the same scale as the initial
difference in queue lengths. So it seems likely that the server will change direction
many times; an understanding of the details of this behaviour seems necessary to
obtain the asymptotic behaviour of the server.

In the case λ = µ, Menshikov and Kurkova [13] proved that

(1.1) lim sup
t→∞

|S(t)| = +∞, a.s.,

showing that the server does not get stuck. Our main result is that the server is
recurrent, in the sense that it returns to every site infinitely many times:

Theorem 1.1. Suppose that λ = µ ∈ (0,∞). Then, a.s., for every x ∈ R, the
set {t ≥ 0 : S(t) = x} is unbounded.

We also establish the following result on the growth rate of S(t).

Theorem 1.2. Suppose that λ = µ ∈ (0,∞). Then, a.s.,

lim sup
t→∞

S(t)√
log log t log log log log t

=

√
6

log 2
, and

lim inf
t→∞

S(t)√
log log t log log log log t

= −
√

6

log 2
.

The rest of this paper is devoted to the proofs of Theorems 1.1 and 1.2. We give
a concrete construction of the process, via a discrete-time process that is the basic
object of study in this paper, in Section 2. In Section 2 we also describe the main
steps in the proof and give the outline of the rest of the paper.

The greedy server on Z is a variant of the greedy server problem introduced in [5]
and surveyed in [17], in which a server greedily moves from job to job arriving
randomly in some space, such as on a line or a circle; see also [9]. Also related
is the so-called greedy walk problem [2]. These models have received significant
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attention over several decades, in part because the dynamics of the server possess
features of both self-interacting processes and processes in random environments,
which remain very active topics of current research, and because the problems they
pose are challenging. A number of open problems remain: see e.g. [17, 2].

A continuum analogue of our problem on Z is the greedy walk on R, for which
it was recently shown that the server escapes to infinity [10], in contrast to our
Theorem 1.1.

2. Discrete-time process and paper outline. For the remainder of the pa-
per we fix λ = µ ∈ (0,∞). We write Z+ := {0, 1, 2, . . .} and N := {1, 2, 3, . . .}.

We will study the continuous-time process described in Section 1 via a discrete-
time process obtained by observing the full process at the nth time at which the
server empties a queue. Consider a Markov process Ψn = (Qn, Xn, Tn), n ∈ Z+,
where Qn = (Qn(x))x∈Z ∈ (Z+ ∪ {∗})Z, Xn ∈ Z, and Tn ∈ R+. If Qn(x) ∈ Z+,
that is the number of customers at queue x ∈ Z; if Qn(x) = ∗ then this indicates
that the queue at x ∈ Z has yet to be inspected by the server. The coordinate Xn

represents the location of the server when a queue is emptied for an nth time, and
Tn represents the total time that has elapsed (i.e. the sum of all the services times
plus the travel times up to this point).

Set Q0(x) := 0 for |x| ≤ 3 and Q0(x) := ∗ for |x| ≥ 4; set X0 := 0 and T0 :=
0. We describe the law of this process by its Markovian transitions. The random
ingredients that go into this description are as follows. Let ξ1, ξ2, . . . be i.i.d. with
P(ξ1 = +1) = P(ξ1 = −1) = 1/2 (these will be the tie-breaking variables).

We write P (κ) to denote a Poisson random variable with mean κ ∈ R+; for
a random variable W on R+ we write P (W ) to denote a random variable that,
conditional on W , has a Poisson distribution with mean W .

Let (Zt, t ∈ R+) denote an M/M/1 queue with arrival rate λ and service rate µ,
with Z0 = k ∈ Z+ initial customers; let ζ(k) denote a random variable distributed
as inf{t ≥ 0 : Zt = 0}, the time to empty for the queue. Similarly, conditional on
a random variable W ∈ Z+, ζ(W ) is distributed as the time to empty the queue
started from Z0 = W .

Given (Qn, Xn, Tn) for n ∈ Z+, generate (Qn+1, Xn+1, Tn+1) as follows.

• Define

ηn+1 :=

{
+1 if Qn(Xn + 1) > Qn(Xn − 1),

−1 if Qn(Xn − 1) > Qn(Xn + 1).

If Qn(Xn + 1) = Qn(Xn − 1), then take ηn+1 = ξn.
• Let Xn+1 = Xn + ηn+1.
• Let τn+1 be distributed as 1 plus ζ(Qn(Xn+1) + P (λ)).
• Let Tn+1 = Tn + τn+1.
• For every k ∈ Z\{Xn+1} such that Qn(k) 6= ∗, take Qn+1(k) to be distributed

as Qn(k) + P (λτn+1), independently for each k.
• If Qn(Xn+1+3ηn) = ∗ then let Qn+1(Xn+1+3ηn) be distributed as P (λTn+1).
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• Set Qn+1(Xn+1) = 0.

Note that Qn(Xn) = 0 for all n, and Tn =
∑n

k=1 τk. If an = min0≤j≤nXn and
bn = max0≤j≤nXn, then at time Tn all the queues in the interval [an, bn] have been
visited at least once, and, by construction, Qn(x) 6= ∗ for x ∈ [an− 3, bn + 3], so the
process tracks the queue lengths within distance 3 of the queues visited so far.

For n ∈ Z+, define the σ-algebra Fn := σ(Ψ0, ξ0,Ψ1, ξ1, . . . ,Ψn, ξn). For n ∈ N,
clearly both τn = Tn − Tn−1 and ηn = Xn − Xn−1 are Fn-measurable, but it is
important to observe that Xn+1 and ηn+1 are also Fn-measurable. Thus (Xn, ηn) is
Fn−1 measurable. Note that τn ≥ 1, a.s., so that Tn ≥ n, a.s.

Let Nt := max{n ∈ Z+ : Tn ≤ t} denote the number of times that a queue has
been emptied by time t. Since Tn → ∞ a.s., we have Nt < ∞ a.s. for all t ∈ R+;
indeed, Nt ≤ TNt ≤ t, a.s. Moreover, Nt is nondecreasing in t. Note TNt+1 > t. Thus
if Nt → N < ∞, we have TN+1 = ∞ which contradicts Tn < ∞ for all n; hence
Nt →∞ a.s. as t→∞.

Observe that XNt is the most recent queue that was emptied prior to time t, and
XNt+1 is the next queue to be emptied after time t. Also, TNt ≤ t is the time at
which the most recently emptied queue was emptied. It follows that we have the
representation

(2.1) S(t) =

{
XNt+1 if t− TNt ≥ 1,

XNt + (t− TNt)(XNt+1 −XNt) if t− TNt ≤ 1.

We end this section by outlining the main steps in the proofs of Theorems 1.1
and 1.2, and some of the underlying intuition. The first key ingredient is that τn
and Tn exhibit doubly exponential growth (see Propositions 4.1 and 4.2). This very
rapid growth in the time-scales suggests an effective memorylessness for the system:
the configuration of the discrete-time system more than one or two time-steps ago is
not important. This provides the intuition behind the second key ingredient, which
is establishing (in Proposition 5.1) that the turning probability converges:

(2.2) P(ηn+1 6= ηn | Fn−1)→
1

4
, a.s.

Some rough heuristics behind this result are as follows. Because of the double-
exponential growth, when the server arrives at a queue, the size of the new queue is
about the same as the neighbour ahead of it, whereas the queue behind is essentially
empty. In order for the server to backtrack, two conditions must be satisfied: the
difference between the sizes of the queues ahead and behind must (i) reach zero
before the current queue is emptied, and (ii) be negative when the current queue is
emptied. The probability of (i) is close to 1/2, and when (i) occurs the conditional
probability of (ii) equals 1/2, hence the 1/4.

The convergence of the turning probability at (2.2) means that the server’s motion
is asymptotically similar to the Gillis–Domb–Fisher correlated random walk [3]. In
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fact, more than convergence in (2.2) is necessary: we need a bound on the rate of con-
vergence with n. Fairly rough estimates are enough, due to the double-exponential
growth of the time-scales. The double-exponential growth is also the origin of the
iterated logarithm in Theorem 1.2; the precise value of the constant comes in part
from the value of (2.2). A technical device central to the proofs of both theorems is
the construction of a function f(Xn, ηn) of the process that is close to a martingale.

The outline of the rest of the paper is as follows. Section 3 collects some results
on the random variables ζ(k) that we will need in our analysis. Section 4 contains
the key estimates on the growth of τn and Tn. Section 5 contains the convergence
result for the turning probability. Section 6 contains the martingale construction
that allows us to complete the proofs of Theorems 1.1 and 1.2. Finally, Appendix A
collects a couple of auxiliary results used in the analysis.

3. The critically-loaded queue. Let (Zt, t ∈ R+) be a continuous-time sym-
metric simple random walk on Z with jump rate 2λ, i.e., for every x ∈ Z, for all
t ∈ R+,

P(Zt+h = x± 1 | Zt = x) = λh+ o(h),

as h → 0. Suppose that Z0 = k ∈ Z+ and let ζ(k) := inf{t ≥ 0 : Zt = 0}, the time
to reach 0 started from k. Note that up until ζ(k), Zt is distributed as the number
of customers in an M/M/1 queue with arrival rate and service rate both equal to
λ ∈ (0,∞); so ζ(k) is the time to empty such an M/M/1 queue, started from k ∈ Z+

initial customers, as described in Section 2.
First we collect several straightforward results about ζ(k) that we need in the

rest of the paper.

Lemma 3.1.

(a) For k ≥ ` ≥ 0, ζ(k) stochastically dominates ζ(`).
(b) For any α ∈ (0, 2) and c ∈ (0,∞) there exist ε > 0 and k1 ∈ N such that

P(ζ(k) ≤ ckα) ≤ exp{−kε}, for all k ≥ k1.

(c) For any β ∈ (2,∞) and c ∈ (0,∞) there exist ε > 0 and k2 ∈ N such that

P(ζ(k) ≥ ckβ) ≤ k−ε, for all k ≥ k2.

Before proving this lemma, we make some observations. Suppose Z0 = k ∈ Z+.
Then we can represent ζ(k) as

(3.1) ζ(k) = Y1 + · · ·+ Yk,

where
Yj = inf{t ≥ 0 : Zt = j − 1} − inf{t ≥ 0 : Zt = j}.
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Note that, by the strong Markov property and the spatial homogeneity of the random
walk, the Yj in (3.1) are i.i.d. copies of ζ(1).

It is well known that for k ∈ N, ζ(k) has density

fk(u) :=
k

u
Ik(2λu)e−2λu, for u > 0;

see for example Sections II.7 and XIV.6 of [8]. Here Ik is the modified Bessel function
of the first kind:

Ik(u) :=
∞∑
j=0

(u/2)2j+k

j!(j + k)!
.

In particular, the density of ζ(1) is

(3.2) f(u) := f1(u) =
1

u
I1(2λu)e−2λu =

1

2
√
πλ
u−3/2 +O(u−5/2),

as u→∞, using the asymptotic expressions of [20, p. 203]. Note that f(u) > 0 for
all u ∈ (0,∞). Let F (u) := P(ζ(1) ≤ u) and F̄ (u) := P(ζ(1) > u). Then, by (3.2),

(3.3) F̄ (u) =

∫ ∞
u

f(v)dv =
1√
πλ
u−1/2 +O(u−3/2),

as u→∞.

Proof of Lemma 3.1. For 0 ≤ ` ≤ k, the representation (3.1) gives ζ(k) ≥ ζ(`)
in the obvious coupling, so we get part (a).

For part (b), we use (3.1) and the fact that Yj ≥ 0 to write

P(ζ(k) ≤ r) ≤ P
(

max
1≤j≤k

Yj ≤ r
)

= P

 k⋂
j=1

{Yj ≤ r}


=
(

1− (πλ(1 + o(1))r)−1/2
)k
,

as r →∞, by (3.3). In particular, taking r = ckα with c, α > 0 gives

P(ζ(k) ≤ ckα) ≤
(

1− (πλc(1 + o(1))kα)−1/2
)k
,

as k →∞, so that

logP(ζ(k) ≤ ckα) ≤ k log
(

1− (πλc(1 + o(1))kα)−1/2
)
∼ −(πλc)−1/2k1−(α/2),

which gives part (b).
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For part (c), let p ∈ (1/β, 1/2). Note from (3.3) that the Yj appearing in (3.1)
have E(Y p

j ) ≤ C for some C <∞. Then by subadditivity of the function y 7→ yp we

have from (3.1) that E(ζ(k)p) ≤
∑k

j=1 E(Y p
j ) ≤ Ck. Hence, by Markov’s inequality,

P(ζ(k) ≥ ckβ) = P(ζ(k)p ≥ cpkβp) ≤ Cc−pk1−βp,

which, by choice of p, gives part (c).

Let Φ be the distribution function of the standard normal distribution, and let
Φ̄(u) := 1 − Φ(u) for u ∈ R. We say that S has a Lévy distribution with location
parameter 0 and scale parameter 1 (see [14, §1.1]) if S ∈ R+ has distribution function
given by

(3.4) FS(u) := P(S ≤ u) = 2Φ̄(u−1/2), for u > 0.

Note that the density fS(u) := F ′S(u) corresponding to (3.4) is

(3.5) fS(u) =
1√
2π
u−3/2e−u

−1/2, for u > 0.

Lemma 3.2. Let S be a random variable with the distribution given by (3.4).
There exists a constant C ∈ R+ such that, for all k ∈ N,

sup
u∈R+

∣∣P(k−2ζ(k) ≤ u)− FS(2λu)
∣∣ ≤ Ck−1.

Proof. For the purposes of this proof only, we take Z0 = 0. Let D := D(R+,R)
denote the space of functions from R+ → R that are right-continuous and have left
limits, endowed with the Skorokhod metric. Define for m ∈ N,

zm(t) := m−1/2Zmt, for t ≥ 0.

Then zm ∈ D for each m ∈ N. Let (b(t), t ∈ R+) denote standard Brownian motion
started at b0 = 0. The invariance principle for continuous-time random walks implies
that as m→∞, zm ⇒

√
2λb in the sense of weak convergence on D (one may apply

Theorem 7.1.4 of [7, pp. 339–340], for example).
For z ∈ D, let σ(z) := inf{t ≥ 0 : z(t) > 1}. For Brownian motion, we have that

σ(b) = inf{t ≥ 0 : b(t) = 1} a.s., and, for any ε > 0, sup0≤s≤σ(b)−ε b(s) < 1, a.s.
Thus the set of discontinuities of the mapping z 7→ σ(z) has measure zero under the
measure induced by Brownian motion (see Section 5.7.5 of [21]). So by the mapping

theorem (see e.g. Theorem 2.7 of [1]) we get σ((2λ)−1/2zm)
d−→ S := σ(b) (where

d−→ denotes convergence in distribution). Here

σ((2λ)−1/2zm) = inf{t ≥ 0 : Zmt >
√

2λm}

= m−1 inf{s ≥ 0 : Zs ≥ 1 + b
√

2λmc}
d
= m−1ζ(1 + b

√
2λmc),
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where
d
= denotes equality in distribution. Setting k = 1+b

√
2λmc ∈ N we have that

2λ/k2 = m−1 +O(m−3/2) so that, as k →∞,

(3.6)
2λ

k2
ζ(k)

d−→ S.

The reflection principle for Brownian motion (see e.g. [6, p. 372]) shows that

P(S > u) = 1− 2P(b(u) ≥ 1) = 2Φ(u−1/2)− 1,

so S has the distribution given by (3.4).
It remains to estimate the rate of convergence in (3.6). By (3.3) and Theorem 2.6.7

of [11], we have that ζ(1) is in the normal domain of attraction of a positive stable
law with index 1/2. Indeed, S is stable with index 1/2 since, by the scaling and
strong Markov properties of Brownian motion, for any m ∈ N,

S
d
= inf{t ≥ 0 : m−1b(m2t) = 1} = m−2 inf{t ≥ 0 : b(t) = m} d

= m−2(S1 + · · ·+Sm),

where the Sj are independent copies of S. Thus we can apply results on the rate of
convergence in the stable central limit theorem for the sum in (3.1). First note that,
by Taylor’s theorem,

Φ(u−1/2) = Φ(0) + Φ′(0)u−1/2 +
Φ′′(0)

2
u−1 +O(u−3/2)

=
1

2
+

1√
2π
u−1/2 +O(u−3/2),

as u→∞. Thus if F̄S(u) := 1− FS(u) we have from (3.4) that

(3.7) F̄S(2λu) = 2Φ((2λu)−1/2)− 1 =
1√
πλ
u−1/2 +O(u−3/2),

as u→∞. Combining (3.7) with (3.3) we have that

|F (u)− FS(2λu)| = O(u−3/2).

This condition enables one to verify standard ‘pseudomoments’ conditions for Berry–
Esseen bounds in stable limit theorems. Indeed, setting H(u) = F (u)−FS(2λu) and

µ` =

∫ ∞
0

u`dH(u), and ν` =

∫ ∞
0
|u|`|dH(u)|,

we have that ν1 < ∞ and µ0 = 0, so we may apply the results of [18] (which has
a statement but no proof), [15] (Corollary 1) or [4] (combine Theorem 3.11 of [4,
p. 66] with Lemma 2.5 of [4, p. 27]). This gives the result.
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4. Time-scale estimates. In this section we study the asymptotics of τn and
Tn. First we have a lower bound.

Proposition 4.1. For any α ∈ (1, 2), Tn ≥ τn ≥ eα
n

for all but finitely many
n, a.s.

We also have the following upper bound.

Proposition 4.2. For any β ∈ (2,∞), τn ≤ Tn ≤ eβ
n

for all but finitely many
n, a.s.

Remark. A rough calculation (cf. Lemma 5.2 below) suggests that we may have

lim
n→∞

log τn
2n

= γ, a.s.,

and the same for Tn. Here γ ∈ (0,∞) is a random variable with representation
γ =

∑∞
i=1 2−i log(λSi/2), where S1, S2, . . . are independent random variables with

distribution given by (3.4). To establish Theorems 1.1 and 1.2 however, the bounds
in Propositions 4.1 and 4.2 are sufficient (in fact, for Theorem 1.1, we need only the
lower bound).

We work towards the proof of Proposition 4.1. We start with a crude bound. Here
and elsewhere, ‘i.o.’ stands for ‘infinitely often’.

Lemma 4.3. We have τn ≥ n2 i.o., a.s.

Proof. We have from the description in Section 2 and Lemma 3.1(a) that
τn stochastically dominates ζ(Qn−1), where Qn−1 := Qn−1(Xn). Moreover, since
Xn 6= Xn−1, we have that the queue at Xn is not being served between times Tn−2
and Tn−1, and in that time accumulates a Poisson number of arrivals with mean
λτn−1 ≥ λ, since τn−1 ≥ 1 a.s. Hence Qn−1 stochastically dominates a Poisson
random variable with mean λ, independently of τn−1, τn−2, . . .. Hence (τn)n stochas-
tically dominates (Zn)n, where Z1, Z2, . . . are i.i.d. with

P(Z1 > r) = P(ζ(P (λ)) ≥ r) ≥ P(P (λ) ≥ 1)P(ζ(1) > r)

≥ (1− e−λ)(πλ(1 + o(1))r)−1/2,

as r → ∞, by (3.3). In particular,
∑

n≥1 P(Zn > n2) = ∞, and so Zn ≥ n2 i.o., by
the Borel–Cantelli lemma, and hence the same is true of τn.

The next result gives conditions under which an a.s. lower bound for τn that holds
infinitely often can be converted into a bound that holds all but finitely often.

Lemma 4.4. Let b1, b2, . . . ∈ (0,∞) and α ∈ (1, 2) be such that
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(i) limn→∞ bn =∞;
(ii) limn→∞(bn+1/b

α
n) = 0;

(iii)
∑∞

n=1 e−b
ε
n <∞ for every ε > 0.

Suppose that P(τn > bn i.o.) = 1. Then τn > bn for all but finitely many n, a.s.

Proof. We have from Lemma 3.1(a) that, given Fn, τn+1 stochastically domi-
nates ζ(Qn), where Qn := Qn(Xn+1). Thus

P(τn+1 ≤ bn+1, τn > bn) ≤ P(ζ(Qn) ≤ bn+1, τn > bn)

≤ P(ζ(Qn) ≤ bn+1, Qn ≥ λτn/2, τn > bn)

+ P(Qn ≤ λτn/2, τn > bn).

Moreover, given τn, Qn stochastically dominates P (λτn), so that

P(τn+1 ≤ bn+1, τn > bn) ≤ P(ζ(Qn) ≤ bn+1, Qn ≥ λbn/2)

+ P(P (λτn) ≤ λτn/2, τn > bn).

By another application of Lemma 3.1(a), we have

P(ζ(Qn) ≤ bn+1, Qn ≥ λbn/2) ≤ P(ζ(bλbn/2c) ≤ bn+1)

≤ P(ζ(bλbn/2c) ≤ bλbn/2cα),

for all n sufficiently large, since (i) and (ii) imply that bn+1 < bλbn/2cα for n large
enough. Hence, by Lemma 3.1(b) and the fact that bn →∞, for some ε > 0,

P(ζ(Qn) ≤ bn+1, Qn ≥ λbn/2) ≤ e−b
ε
n ,

for all n sufficiently large. On the other hand,

P(P (λτn) ≤ λτn/2, τn > bn) ≤ sup
s≥bn

P(P (λs) ≤ λs/2) ≤ e−δbn ,

for some δ > 0, by standard Poisson tail bounds (see e.g. [16, p. 17]). Combining
these estimates and using the fact that bn →∞, we get, for some ε > 0,

P(τn+1 ≤ bn+1, τn > bn) ≤ e−b
ε
n ,

for all n sufficiently large. Then by (iii) and the Borel–Cantelli lemma, we have
that {τn+1 ≤ bn+1, τn > bn} occurs only finitely often, a.s. In other words, for all n
sufficiently large we have τn > bn implies τn+1 > bn+1, and since τn > bn i.o., the
result follows.

We can now deduce the following lower bound, which, despite being far from best
possible, is an important step in proving Proposition 4.1.
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Corollary 4.5. Almost surely, for all but finitely many n, τn ≥ n2.

Proof. We take bn = n2 in Lemma 4.4 and apply Lemma 4.3.

The next result, showing that queues are rarely much shorter than we would
expect, will be used a couple of times.

Lemma 4.6. Almost surely, for all but finitely many n, Qn(Xn+1) > λτn− τ3/4n .

Proof. Let Qn := Qn(Xn+1). Let n ∈ N. Then, given Fn−1, Qn stochastically
dominates a Poisson random variable with mean λτn. Thus

P(Qn ≤ λτn − τ3/4n | Fn−1)
≤ P(P (λτn) ≤ λτn − τ3/4n , τn ≥ n | Fn−1) + P(τn ≤ n | Fn−1)
≤ sup

s≥n
P(P (λs) ≤ λs− s3/4) + P(τn ≤ n | Fn−1)

≤ e−n
ε

+ P(τn ≤ n | Fn−1),

for some ε > 0 and all n sufficiently large, by Poisson concentration (see e.g. [16,
p. 17]). In particular, since by Corollary 4.5, τn ≤ n only finitely often, a.s., Lévy’s
extension of the Borel–Cantelli lemma (see e.g. [12, Corollary 7.20]) implies that∑

n≥1 P(τn ≤ n | Fn−1) <∞, and hence∑
n≥1

P(Qn ≤ λτn − τ3/4n | Fn−1) <∞, a.s.,

which gives the result.

The next result gives the final ingredient in the proof of Proposition 4.1, and a
bound that we will use later.

Lemma 4.7. Let α ∈ (1, 2). Then for some ε > 0,

P(τn+1 ≤ ταn | Fn) ≤ e−n
ε
, for all but finitely many n, a.s.

In particular, a.s., τn+1 ≥ ταn for all but finitely many n, and τn/τn+1 → 0, a.s.

Proof. LetQn := Qn(Xn+1). Let α ∈ (1, 2). Given Fn, we have from Lemma 3.1(a)
that τn+1 stochastically dominates ζ(Qn). Hence

P(τn+1 ≤ ταn | Fn) ≤ P(Qn ≤ λτn/2 | Fn) + P(Qn > λτn/2, ζ(Qn) ≤ ταn | Fn).

Here by Lemma 3.1(a) once more, we have

P(Qn > λτn/2, ζ(Qn) ≤ ταn | Fn) ≤ P(ζ(bλτn/2c) ≤ ταn | Fn)

≤ exp{−bλτn/2cε},
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for some ε > 0 and all n sufficiently large, by Lemma 3.1(b). By Corollary 4.5 we
have τn ≥ n2 for all n sufficiently large, so since Qn and τn are Fn-measurable,

P(τn+1 ≤ ταn | Fn) ≤ 1{Qn ≤ λτn/2}+ e−n
ε
,

for all but finitely many n. It follows from Lemma 4.6 that the indicator here van-
ishes, a.s., for all but finitely many n. The probability bound in the lemma follows.

A consequence of the probability bound is∑
n≥1

P(τn+1 ≤ ταn | Fn) <∞, a.s.

Hence, by Lévy’s extension of the Borel–Cantelli lemma, τn+1 ≥ ταn for all but
finitely many n. Moreover, Corollary 4.5 shows that τn →∞ and hence, for all but
finitely many n, τn/τn+1 ≤ τ1−αn → 0.

We can now complete the proof of Proposition 4.1.

Proof of Proposition 4.1. Lemma 4.7 shows that there is some N1 with
P(N1 <∞) = 1 such that

(4.1) τn+1 ≥ ταn for all n ≥ N1.

Since (by Corollary 4.5) τn →∞, a.s., we have τN ≥ e for some a.s. finite N ≥ N1.

Then iterating (4.1) we have τN+k ≥ eα
k

for all k ≥ 0. Take α̃ ∈ (1, α). Then

τn ≥ eα
n−N

1{n ≥ N} ≥ eα̃
n
,

for all but finitely many n, giving the result.

Remark. A posteriori, armed with Proposition 4.1, one can greatly improve
the probability bound in Lemma 4.7; as stated, however, it is adequate for its use
later in the paper.

The next result shows that Tn/τn → 1, a.s., and will be useful in the next section
as well as in the proof of Proposition 4.2.

Lemma 4.8. Almost surely, for all but finitely many n, Tn/τn ≤ 1 + e−6n.

Proof. Let α ∈ (1, 2). We have from Lemma 4.7 and Proposition 4.1 that there
exists N with P(N <∞) = 1 such that τn+1 ≥ ταn and τn ≥ eα

n
for all n ≥ N . Set

K := 1 + max
1≤m≤N−1

N−1∏
k=m

τk
τk+1

.
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Then since 1 ≤ τk <∞, a.s., we have that K <∞, a.s. Now, for n > N ,

max
1≤m≤n−1

τm
τn

= max
1≤m≤n−1

n−1∏
k=m

τk
τk+1

≤ max
1≤m≤n−1

N−1∏
k=m

τk
τk+1

n−1∏
k=N

τk
τk+1

1{m ≤ N − 1}

+ max
1≤m≤n−1

n−1∏
k=m

τk
τk+1

1{m ≥ N}.

For k ≥ N we have that τk/τk+1 ≤ τ1−αk ≤ 1, so for any m ∈ {N, . . . , n− 1},

n−1∏
k=N

τk
τk+1

≤
n−1∏
k=m

τk
τk+1

≤ τn−1
τn

.

Hence, for n > N ,

max
1≤m≤n−1

τm
τn
≤ Kτn−1

τn
≤ Kτ1−αn−1 ≤ Ke−(α−1)α

n−1
.

It follows that, a.s.,

max
1≤m≤n−1

τm
τn
≤ Ke−8n ≤ e−7n,

for all but finitely many n. Now the result follows from the fact that

Tn
τn

= 1 +
n−1∑
m=1

τm
τn
≤ 1 + n max

1≤m≤n−1

τm
τn
.

This completes the proof.

We also need a complementary result to Lemma 4.6.

Lemma 4.9. Almost surely, for all but finitely many n,

Qn(Xn+1) < λ(1 + e−5n)τn.

Proof. At time Tn, the queue at Xn is emptied and the queues at Xn ± 1 are
inspected; let QL = Qn(Xn − 1) and QR = Qn(Xn + 1). Then Qn := Qn(Xn+1) =
max{QL, QR}. Suppose that the queue at Xn − 1 was most recently emptied at
some time TL < Tn, and that the queue at Xn + 1 was most recently emptied
at some time TR < Tn. After the time at which it was most recently emptied,
each queue has been inspected a finite number of times, and, because the queue
was not served at any point after it was last emptied, on each inspection it was
found to be no larger than the queue to which it was being compared. Each such
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inspection therefore (see Lemma A.2) stochastically reduces the queue length. Thus
immediately before the inspection at time Tn, we have that QL is stochastically
dominated by P (λ(Tn−TL)) and QR is stochastically dominated by P (λ(Tn−TR)).
It follows that Qn is stochastically dominated by the maximum of two P (λTn)
random variables. Thus

P(Qn ≥ λTn + T 3/4
n ) ≤ 2P(P (λTn) ≥ λTn + T 3/4

n ).

Now, since Tn ≥ n a.s., we get

P(P (λTn) ≥ λTn + T 3/4
n ) ≤ sup

s≥n
P(P (λs) ≥ λs+ s3/4) ≤ e−n

ε
,

for some ε > 0 and all n sufficiently large, by standard Poisson tail bounds (see

e.g. [16, p. 17]). Thus the Borel–Cantelli lemma implies that Qn ≤ λTn + T
3/4
n for

all but finitely many n, a.s. Lemma 4.8 shows that Tn ≤ (1 + e−6n)τn for all but
finitely many n, so

Qn ≤ λ(1 + e−6n)τn + 2τ3/4n .

Now, by Proposition 4.1, for all but finitely many n,

2τ3/4n = 2τn · τ−1/4n ≤ τn · e−7n ≤ λe−6nτn,

which gives the result.

Now we can complete the proof of Proposition 4.2.

Proof of Proposition 4.2. Let β > 2 and set Qn := Qn(Xn+1). Given Fn,
τn+1 is distributed as 1 + ζ(Qn + ν) where ν ∼ P (λ). Thus

P(τn+1 > T βn | Fn) = P(1 + ζ(Qn + ν) > T βn | Fn)

≤ P(ζ(2Qn) > T βn − 1, ν ≤ Qn | Fn) + P(ν > Qn | Fn).

We have by Markov’s inequality and Lemma 4.6 that

P(ν > Qn | Fn) ≤ λ

Qn
≤ 2

τn
≤ e−2n,

for all but finitely many n, a.s., by Proposition 4.1. On the other hand,

P(ζ(2Qn) > T βn − 1, ν ≤ Qn | Fn) ≤ P(ζ(2Qn) > T βn − 1, Qn ≤ 2λTn | Fn)

+ P(Qn > 2λTn | Fn)

≤ P(ζ(d4λTne) > T βn − 1 | Fn) + 1{Qn > 2λTn}
≤ T−εn ,
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for some ε > 0 and all but finitely many n, a.s., by Lemma 4.9, Lemma 3.1(c), and
the fact that Tn ≥ τn → ∞. Hence, since Tn ≥ τn, we have from Proposition 4.1
that a.s.,

P(τn+1 > T βn | Fn) ≤ e−n,

for all but finitely many n. It follows that τn+1 ≤ T βn for all but finitely many n,

a.s. Let β̃ > β. Then Lemma 4.8 shows that Tn+1 ≤ 2T βn ≤ T β̃n , for all n ≥ N with

P(N < ∞) = 1. It follows that Tn ≤ T β̃
n

N for all n. Since β̃ > 2 was arbitrary, the
result follows.

5. Turning probability. For n ∈ N define

(5.1) qn := P(ηn+1 6= ηn | Fn−1).

The main result of this section is the following.

Proposition 5.1. Let q := 1/4. Then there exists ε > 0 such that, a.s., for all
but finitely many n, |qn − q| ≤ e−n

ε
.

We work towards the proof of Proposition 5.1. We need the following result.

Lemma 5.2. Let S be a random variable with the distribution given by (3.4).
Then, a.s., for all but finitely many n,

sup
u∈[0,en]

∣∣∣∣P( τn
τ2n−1

≤ u
∣∣∣ Fn−1)− FS(2u/λ)

∣∣∣∣ ≤ e−2n.

Proof. We have from Lemma 3.1(a) that, given Fn−1, τn stochastically domi-
nates ζ(Qn−1), where Qn−1 := Qn−1(Xn). It follows that for u ∈ R+,

P(τn ≤ uτ2n−1 | Fn−1) ≤ P(ζ(Qn−1) ≤ uτ2n−1 | Fn−1)

≤ P(ζ(Qn−1) ≤ uτ2n−1, Qn−1 ≥ λτn−1 − τ
3/4
n−1 | Fn−1)

+ P(Qn−1 ≤ λτn−1 − τ3/4n−1 | Fn−1)

≤ P(ζ(bλτn−1 − τ3/4n−1c) ≤ uτ
2
n−1 | Fn−1),

for all but finitely many n, a.s., by Lemma 4.6. Write γn−1 := τn−1−λ−1τ3/4n−1. Then

P(ζ(bλγn−1c) ≤ uτ2n−1 | Fn−1)
≤ P(bλγn−1c−2ζ(bλγn−1c) ≤ u(λγn−1 − 1)−2τ2n−1 | Fn−1)
≤ FS(2uλ(λγn−1 − 1)−2τ2n−1) + Cγ−1n−1,

for some C < ∞ not depending on u or n, by Lemma 3.2. By Proposition 4.1 we
have γ−1n−1 ≤ e−3n for all but finitely many n, while

|(λγn−1 − 1)−2τ2n−1 − λ−2| ≤ Cτ
−1/4
n−1 ≤ e−4n,
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for all but finitely many n. Since the density of S in (3.5) is uniformly bounded,

FS(2uλ(λγn−1 − 1)−2τ2n−1) ≤ FS(2λ−1u) + Cue−4n,

for all u. Combining our estimates gives, a.s., for all but finitely many n,

(5.2) P(τn ≤ uτ2n−1 | Fn−1) ≤ FS(2λ−1u) + e−2n, for all u ∈ [0, en],

which is one half of the required result.
For the corresponding lower bound, we have that, given Fn−1, τn is distributed

as 1 + ζ(Qn−1 + ν) where ν ∼ P (λ). Then, by Lemma 3.1(a),

P(τn ≤ uτ2n−1 | Fn−1) ≥ P(1 + ζ(Qn−1 + benc) ≤ uτ2n−1, ν ≤ en | Fn−1)
≥ P(ζ(Qn−1 + benc) ≤ uτ2n−1 − 1 | Fn−1)− P(ν > en | Fn−1).

By Markov’s inequality, P(ν > en | Fn−1) ≤ λe−n. Let En = {Qn ≤ λ(1 + e−5n)τn}.
Then we have that

P(ζ(Qn−1 + benc) ≤ uτ2n−1 − 1, En−1 | Fn−1)
≥ P(ζ(bλ(1 + e−5(n−1))τn−1c+ benc) ≤ uτ2n−1 − 1 | Fn−1)− 1(Ec

n−1)

≥ P(ζ(bλ(1 + e−5(n−1))τn−1 + enc) ≤ uτ2n−1 − 1 | Fn−1),

for all but finitely many n, a.s., by Lemma 4.9. Set γn−1 = (1+e−5(n−1))τn−1+λ−1en.
Then

P(ζ(bλγn−1c) ≤ uτ2n−1 − 1 | Fn−1)
≥ P(bλγn−1c−2ζ(bλγn−1c) ≤ λ−2γ−2n−1(uτ

2
n−1 − 1) | Fn−1)

≥ FS(2λ−1γ−2n−1(uτ
2
n−1 − 1))− e−3n,

for all but finitely many n, a.s., by Lemma 3.2 and Proposition 4.1, since γn−1 ≥
τn−1. Proposition 4.1 also shows that γn−1 ≥ τn−1 > e2n and

1 ≥ γ−2n−1τ
2
n−1 ≥ 1− e−4n,

for all but finitely many n, a.s. Thus

FS(2λ−1γ−2n−1(uτ
2
n−1−1)) ≥ FS(2λ−1u−2λ−1ue−4n−2λ−1e−4n) ≥ FS(2λ−1u)−e−2n,

provided u ∈ [0, en], using the fact that the density of S given by (3.5) is uniformly
bounded. Combined with (5.2) this completes the proof.

The origin of the value 1/4 in Proposition 5.1 is the following fact.

Lemma 5.3. Let S be a random variable with the distribution given by (3.4),
and let Z be a standard normal random variable, independent of S. Then

P(Z
√
S > 1) =

1

4
.
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Proof. Recall that Φ denotes the distribution function of the standard normal
distribution, and that Φ̄(u) := 1− Φ(u). Observe that

p := P(Z > S−1/2) = E[P(Z > S−1/2 | S)] = E Φ̄(S−1/2).

Here Φ̄ : R→ (0, 1) is a strictly decreasing, continuous function with limx→−∞ Φ̄(x) =
1 and limx→+∞ Φ̄(x) = 0, so Φ̄ has a strictly decreasing inverse Φ̄−1 : (0, 1) → R,
which is positive on (0, 1/2) and negative on (1/2, 1), and

p =

∫ 1

0
P(Φ̄(S−1/2) ≥ u)du =

∫ 1/2

0
P(S ≥ (Φ̄−1(u))−2)du

=

∫ 1/2

0
F̄S((Φ̄−1(u))−2)du,(5.3)

where F̄S(u) := 1 − FS(u) for u ∈ R+. Now applying the formula in (3.4) we get
F̄S((Φ̄−1(u))−2) = 1− 2Φ̄(Φ̄−1(u)), so that

p =

∫ 1/2

0
(1− 2u)du =

1

4
,

as claimed.

Remark. As pointed out by the anonymous referee, a more elegant proof of

Lemma 5.3 goes by observing that Z−2
d
= S, so that, for Z1, Z2 independent standard

normal random variables, P(Z
√
S > 1) = P(Z1 > |Z2|), which is the probability

that a bivariate normal random variable lies in the quadrant {(z1, z2) : |z2| < z1}.
However, we present the argument via (5.3), since it will be used in the proof of
Proposition 5.1 below.

Now we can complete the proof of Proposition 5.1.

Proof of Proposition 5.1. Given Fn−1, we have that Qn−1(Xn−1) = 0 at
time Tn−1, and the server then heads to Xn = Xn−1 + ηn. At time Tn, after serving
the queue at Xn, the server inspects the queues at Xn ± 1.

First we obtain an upper bound on qn, the probability that the server changes
direction. We have

qn ≤ P(Qn(Xn − ηn) ≥ Qn(Xn + ηn) | Fn−1).

Note that Qn−1(Xn− ηn) = Qn−1(Xn−1) = 0, i.e., the queue at Xn− ηn was empty
at time Tn−1. Thus Qn(Xn − ηn) is Poisson with mean λ times τn = Tn − Tn−1. Set
νn := Qn(Xn − ηn).

The queue at Xn + ηn, which is neither Xn nor Xn−1 = Xn − ηn, was, prior to
time Tn, last inspected by the server no more recently than at time Tn−2 (when the
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server decided to move to Xn−1). Thus the number of customers at the queue at
time Tn is at least ν ′n + ν ′′n where

ν ′n := Qn(Xn + ηn)−Qn−1(Xn + ηn), and ν ′′n := Qn−1(Xn + ηn)−Qn−2(Xn + ηn);

note that these are well defined since |Xn−2 − (Xn + ηn)| ≤ 3. So we have

qn ≤ P(νn ≥ ν ′n + ν ′′n | Fn−1),

where νn ∼ P (λτn) and ν ′n ∼ P (λτn) are both Fn-measurable, and are conditionally
independent given τn, and ν ′′n ∼ P (λτn−1) is Fn−1-measurable. Define

Zn = (λτn)−1/2(νn − λτn);

Z ′n = (λτn)−1/2(ν ′n − λτn);

Z ′′n = (λτn−1)
−1/2(ν ′′n − λτn−1).

Then we get

qn ≤ P(Zn ≥ Z ′n + (τn−1/τn)1/2Z ′′n + λ1/2τ−1/2n τn−1 | Fn−1).

Hence, writing Wn := Zn − Z ′n, we have

qn ≤ P(Wn ≥ λ1/2τ−1/2n τn−1 − e−n | Fn−1)
+ P(|Z ′′n|(τn−1/τn)1/2 ≥ e−n | Fn−1),(5.4)

where, for p ∈ (0, 1/2),

P(|Z ′′n|(τn−1/τn)1/2 ≥ e−n | Fn−1) ≤ P(|Z ′′n| ≥ τ
p
n−1 | Fn−1)

+ P(τn ≤ τ1+2p
n−1 e2n | Fn−1).

Since Z ′′n is Fn−1-measurable, we have that P(|Z ′′n| ≥ τ
p
n−1 | Fn−1) = 1{|Z ′′n| ≥ τ

p
n−1}.

We show that this event occurs only finitely often. Set F+
n−2 := σ(Fn−2, τn−1); note

that ν ′′n (and hence Z ′′n) only depend on F+
n−2 via τn−1. We have that

P(|Z ′′n| ≥ τ
p
n−1 | F

+
n−2) ≤ P(|Z ′′n| ≥ τ

p
n−1, τn−1 ≥ n | F

+
n−2) + 1{τn−1 ≤ n}

≤ P(|Z ′′n| ≥ τ
p
n−1, τn−1 ≥ n | F

+
n−2),

for all but finitely many n, a.s., by Proposition 4.1. Now

P(|Z ′′n| ≥ τ
p
n−1, τn−1 ≥ n | F

+
n−2) = P(|ν ′′n − λτn−1| ≥ λ1/2τ

(1/2)+p
n−1 , τn−1 ≥ n | F+

n−2)

≤ sup
s≥n

P(|P (λs)− λs| ≥ λ1/2s(1/2)+p)

≤ e−n
ε
,
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for some ε > 0 and all n sufficiently large, by Poisson concentration (see e.g. [16,
p. 17]). So we conclude that

∑
n≥2 P(|Z ′′n| ≥ τpn−1 | F

+
n−2) < ∞, a.s., and, since

{|Z ′′n| ≥ τpn−1} ∈ F
+
n−1, Lévy’s extension of the Borel–Cantelli lemma implies that

|Z ′′n| < τpn−1 for all but finitely many n, a.s. On the other hand, we have from

Proposition 4.1 that a.s., for all but finitely many n, τ1+2p
n−1 e2n ≤ ταn−1, provided that

we choose α ∈ (1 + 2p, 2). Hence by Lemma 4.7 we have for some ε > 0, a.s.,

P(τn ≤ τ1+2p
n−1 e2n | Fn−1) ≤ P(τn ≤ ταn−1 | Fn−1) ≤ e−n

ε
,

for all n sufficiently large. Combining these estimates we get that for some ε > 0,
a.s., for all but finitely many n,

(5.5) P(|Z ′′n|(τn−1/τn)1/2 ≥ e−n | Fn−1) ≤ e−n
ε
.

Thus from (5.4) with (5.5) we see that, a.s., for all but finitely many n,

(5.6) qn ≤ P(Wn ≥ λ1/2τ−1/2n τn−1 − e−n | Fn−1) + e−n
ε
.

For u ∈ R write Gn(u) := P(Wn ≥ u | τn). Set Sn := τn/τ
2
n−1 and, as above, set

F+
n−1 := σ(Fn−1, τn). Then we have

P(Wn ≥ λ1/2S−1/2n − e−n | Fn−1) = E
(
P(Wn ≥ λ1/2S−1/2n − e−n | F+

n−1)
∣∣ Fn−1).

Since Wn depends on F+
n−1 only through τn, and Sn is F+

n−1-measurable, we have

P(Wn ≥ λ1/2S−1/2n − e−n | F+
n−1) = Gn(λ1/2S−1/2n − e−n).

Since Wn = (λτn)−1/2(νn − ν ′n) we have from Lemma A.1 and the fact that τn ≥ 1
that

Gn(u) ≤ Φ̄(u/
√

2) + Cτ−1/2n log(1 + τn), a.s.,

for all n and all u ∈ R. It follows that

P(Wn ≥ λ1/2S−1/2n − e−n | Fn−1) = E(Gn(λ1/2S−1/2n − e−n) | Fn−1)
≤ E(Φ̄(λ1/2S−1/2n /

√
2− e−n) | Fn−1)

+ C E(τ−1/2n log(1 + τn) | Fn−1),(5.7)

for all n sufficiently large. Here we have, since τn ≥ 1, for α ∈ (1, 2), a.s.,

E(τ−1/2n log(1 + τn) | Fn−1) ≤ P(τn ≤ ταn−1 | Fn−1) + τ
−α/3
n−1 ≤ e−n

ε
+ e−n,(5.8)

for all but finitely many n, by Lemma 4.7 and Proposition 4.1. Moreover, since the
standard normal density is uniformly bounded, we have that for some C < ∞ and
all u ∈ R, Φ̄(u− e−n) ≤ Φ̄(u) + Ce−n. Thus, for some ε > 0, a.s.,

(5.9) P(Wn ≥ λ1/2S−1/2n − e−n | Fn−1) ≤ E(Φ̄(λ1/2S−1/2n /
√

2) | Fn−1) + e−n
ε
,
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for all but finitely many n.
Similarly to (5.3), we have

E(Φ̄(λ1/2S−1/2n /
√

2) | Fn−1) =

∫ 1/2

0
P(Sn ≥ λ(Φ̄−1(u))−2/2 | Fn−1)du.

Set an := Φ̄((λ/2)1/2e−n/2); then an ∈ (0, 1/2) with an → 1/2, and λ(Φ̄−1(u))−2/2 ∈
[0, en] for u ∈ (0, an). Thus, by Lemma 5.2,

E(Φ̄(λ1/2S−1/2n /
√

2) | Fn−1) ≤
∫ an

0

(
F̄S((Φ̄−1(u))−2) + e−2n

)
du+

1

2
− an

≤ q + e−2n + Ce−n/2,(5.10)

by (5.3) and the fact that the standard normal density is uniformly bounded; here
q = 1/4 is the probability in (5.3) and Lemma 5.3. Combining (5.6), (5.9), and
(5.10) we obtain qn ≤ q + e−n

ε
for all but finitely many n, a.s.

Now we obtain a lower bound on qn. In addition to νn, ν
′
n, ν
′′
n defined above, also

define ν ′′′n := Qn−2(Xn + ηn). Then ν ′′′n is Fn−1-measurable. With Wn and Z ′′n as
defined above, we have

qn ≥ P(Qn(Xn − ηn) > Qn(Xn + ηn) | Fn−1)
= P(νn > ν ′n + ν ′′n + ν ′′′n | Fn−1)
= P(Wn > (τn−1/τn)1/2Z ′′n + λ1/2τ−1/2n τn−1 + λ−1/2τ−1/2n ν ′′′n | Fn−1)
≥ P(Wn > λ1/2τ−1/2n τn−1 + e−n + λ−1/2τ−1/2n ν ′′′n | Fn−1)
− P((τn−1/τn)1/2|Z ′′n| ≥ e−n | Fn−1).

Applying (5.5), we see that a.s., for all but finitely many n,

qn ≥ P(Wn > λ1/2τ−1/2n τn−1 + e−n + λ−1/2τ−1/2n ν ′′′n | Fn−1)− e−n
ε

≥ P(Wn > λ1/2τ−1/2n τn−1 + 2e−n | Fn−1)− P(λ−1/2τ−1/2n ν ′′′n ≥ e−n | Fn−1)− e−n
ε
.

Here we have that, a.s., for all but finitely many n,

P(λ−1/2τ−1/2n ν ′′′n ≥ e−n | Fn−1) ≤ P(ν ′′′n ≥ λ1/2τ
3/4
n−1e

−n | Fn−1) + P(τn ≤ τ3/2n−1 | Fn−1)

≤ 1{ν ′′′n ≥ λ1/2τ
3/4
n−1e

−n}+ e−n
ε
,

by Lemma 4.7. By Lemma 4.8 and Lemma 4.7 again, we have that a.s., for all

but finitely many n, Tn−2 ≤ 2τn−2 and τn−2 ≤ τ
2/3
n−1, so, by Proposition 4.1, since

τ
1/12
n−1 e−n →∞,

λ1/2τ
3/4
n−1e

−n = λ1/2τ
1/12
n−1 e−nτ

2/3
n−1 ≥ 2λTn−2.

Thus, a.s., for all but finitely many n,

(5.11) 1{ν ′′′n ≥ λ1/2τ
3/4
n−1e

−n} ≤ 1{ν ′′′n ≥ 2λTn−2}.
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The queue at Xn + ηn, which is neither Xn nor Xn−1 = Xn− ηn, was, prior to time
Tn, last inspected by the server no more recently than at time Tn−2, at which point
the server decided to move to Xn−1 (and not Xn + ηn). Thus ν ′′′n is stochastically
dominated by P (λTn−2), so

P(ν ′′′n ≥ 2λTn−2) ≤ P(P (λTn−2) ≥ 2λTn−2)

≤ sup
s≥n−2

P(P (λs) ≥ 2λs),

using the fact that Tn−2 ≥ n − 2, a.s. Then by standard Poisson tail bounds (see
e.g. [16, p. 17]) we have that this last quantity is bounded by e−δn for some δ > 0
and all n sufficiently large. Hence the Borel–Cantelli lemma shows that the indicator
random variable in (5.11) is a.s. equal to 0 for all but finitely many n. Thus, a.s.,
for all but finitely many n,

P(λ−1/2τ−1/2n ν ′′′n ≥ e−n | Fn−1) ≤ e−n
ε
.

It follows that, for some ε > 0, a.s., for all but finitely many n,

qn ≥ P(Wn > λ1/2τ−1/2n τn−1 + 2e−n | Fn−1)− e−n
ε
.

The estimation of the main term here proceeds in a similar way to in the upper
bound. Similarly to (5.7) and (5.8), we have that

P(Wn > λ1/2τ−1/2n τn−1 + 2e−n | Fn−1) ≥ E(Φ̄(λ1/2S−1/2n /
√

2 + 2e−n) | Fn−1)− e−n
ε

≥ E(Φ̄(λ1/2S−1/2n /
√

2) | Fn−1)− Ce−n − e−n
ε
.

Finally, similarly to (5.10), we have

E(Φ̄(λ1/2S−1/2n /
√

2) | Fn−1) ≥
∫ an

0
(F̄S((Φ̄−1(u))−2)− e−2n) ≥ q − e−2n − Ce−n/2,

and this gives qn ≥ q − e−n
ε
, as required.

6. Proofs of theorems. With q = 1/4 as appearing in Proposition 5.1, set
a := 1−2q

q = 2. To prove Theorem 1.1 we consider the function defined for x ∈ Z
and i ∈ {−1,+1} by

f(x, i) := x+ a1{i = 1}.

We consider Yn := f(Xn, ηn) for n ∈ N; recall that (Xn, ηn) is Fn−1-measurable.
Note that, for all n ∈ N, |Xn − Yn| ≤ a. The next result describes the increments of
Yn, and, in particular, shows that it is close to a martingale.

Lemma 6.1. Let qn be the Fn−1-measurable random variable defined in (5.1).

(a) We have that, for all n ∈ N,

(6.1) |Yn+1 − Yn| ≤ 3, a.s.
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(b) There is a sequence δn of non-negative Fn−1-adapted random variables such
that,

(6.2) |E(Yn+1 − Yn | Fn−1)| ≤ δn, a.s.,

for all n ≥ 1, and, for some ε > 0, δn ≤ e−n
ε

for all but finitely many n, a.s.
In particular,

∑
n≥1 δn <∞, a.s.

(c) We have

(6.3) E((Yn+1 − Yn)2 | Fn−1) = 1 + 8qn, a.s.

Proof. For x ∈ Z and i ∈ {−1,+1}, define

∆+(x, i) := f(x+ i, i)− f(x, i), and ∆−(x, i) := f(x− i,−i)− f(x, i).

Then since Xn+1 = Xn + ηn+1, we have that

(6.4) Yn+1 − Yn = ∆+(Xn, ηn)1{ηn+1 = ηn}+ ∆−(Xn, ηn)1{ηn+1 6= ηn}.

Note that ∆+(x, i) = i and

∆−(x, i) = −i+ a1{i = −1} − a1{i = 1} = −i− ai.

Thus from (6.4) we have |Yn+1−Yn| = 1+a1{ηn+1 6= ηn} ≤ 3, a.s., giving (6.1). For
qn the Fn−1-measurable random variable defined in (5.1), we have from (6.4) that

E(Yn+1 − Yn | Fn−1) = (1− qn)∆+(Xn, ηn) + qn∆−(Xn, ηn).

Since ∆±(x, i) are uniformly bounded, we have from Proposition 5.1 that there is
an Fn−1-adapted sequence εn with δn := |εn| ≤ e−n

ε
for all but finitely many n,

such that

(1− qn)∆+(x, i) + qn∆−(x, i) = (1− q)∆+(x, i) + q∆−(x, i) + εn.

Here we have that

(1− q)∆+(x, i) + q∆−(x, i) = (1− q)i+ q(−i− ai)
= (1− 2q)i− aqi = 0,

for all x and all i, by choice of a. This gives (6.2).
For the second moment, note that, by (6.4),

E((Yn+1 − Yn)2 | Fn−1) = (1− qn)(∆+(Xn, ηn))2 + qn(∆−(Xn, ηn))2.

Here (∆+(x, i))2 = 1 and (∆−(x, i))2 = (1 + a)2 = 9, and (6.3) follows.
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The proofs of our two main theorems will use the following martingale decompo-
sition. Set θn := E(Yn+1 − Yn | Fn−1) for n ∈ N. Note that, by (6.1), |θn| ≤ 3, a.s.
As in Doob’s decomposition, for n ≥ 1 let An :=

∑n−1
i=1 θi, and set Mn := Yn − An,

so that

E(Mn+1 −Mn | Fn−1) = E(Yn+1 − Yn | Fn−1)− (An+1 −An) = θn − θn = 0.

Thus Mn is an Fn−1-adapted martingale (n ≥ 1), and

(6.5) |Mn+1 −Mn| ≤ |Yn+1 − Yn|+ |θn| ≤ 6, a.s.

Note that |θn| ≤ δn, a.s., where
∑

n≥1 δn <∞, a.s., by Lemma 6.1(b).

Proof of Theorem 1.1. We have that Mn is a martingale with uniformly
bounded increments, by (6.5). Theorem 5.3.1 of [6] says that Mn either oscillates
(lim infn→∞Mn = −∞, lim supn→∞Mn = +∞), or converges (limn→∞Mn →
M∞ ∈ R). Suppose that Mn →M∞. Then

lim sup
n→∞

|Yn| ≤ |M∞|+ lim sup
n→∞

n−1∑
i=1

|θi| ≤ |M∞|+
∞∑
i=1

δi <∞, a.s.

But since |Yn| ≥ |Xn| − a, this contradicts Kurkova and Menshikov’s result (1.1),
which says that lim supn→∞ |Xn| = ∞, a.s. Thus we must have that Mn oscillates,
a.s. Then since supn≥1 |An| < ∞, it follows that Yn oscillates, and hence Xn oscil-
lates. Since Xn ∈ Z satisfies |Xn+1 − Xn| = 1, and it oscillates between −∞ and
+∞, we must have Xn = x i.o. for every x ∈ Z. Hence, a.s., for every x ∈ Z, the set
{t ≥ 0 : S(t) = x} is unbounded. The result extends to all x ∈ R by continuity of
the server’s trajectory.

Now we turn to the proof of Theorem 1.2. The next result is essentially an inver-
sion of Propositions 4.1 and 4.2.

Lemma 6.2. We have that

lim
t→∞

Nt

log log t
=

1

log 2
, a.s.

Proof. Let α ∈ (1, 2). Since Nt → ∞ a.s., we have from Proposition 4.1 that
a.s., for all t sufficiently large,

t ≥ TNt ≥ eα
Nt
.

It follows that log log t ≥ Nt logα for all t sufficiently large. Hence

lim sup
t→∞

Nt

log log t
≤ 1

logα
, a.s.
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Since α ∈ (1, 2) was arbitrary, we get

lim sup
t→∞

Nt

log log t
≤ 1

log 2
, a.s.

On the other hand, for β > 2 we have from Proposition 4.2 that a.s., for all t
sufficiently large,

t ≤ TNt+1 ≤ eβ
Nt+1

.

It follows that log log t ≤ (Nt + 1) log β for all t sufficiently large. Hence

lim inf
t→∞

Nt

log log t
≥ 1

log β
, a.s.

Since β > 2 was arbitrary, we get

lim inf
t→∞

Nt

log log t
≥ 1

log 2
, a.s.

Combined with the lim sup result, this gives the statement in the lemma.

Next we have an iterated logarithm law for Xn.

Lemma 6.3. We have that

lim sup
n→∞

±Xn√
6n log log n

= 1, a.s.

Proof. First note that

E((Mn+1 −Mn)2 | Fn−1) = E((Yn+1 − Yn − θn)2 | Fn−1)
= E((Yn+1 − Yn)2 | Fn−1)− θ2n,

where, by Lemma 6.1, |θn| ≤ δn a.s., and both δn and δ2n are a.s. summable. Thus
from (6.3) and Proposition 5.1 we have that

E((Mn+1 −Mn)2 | Fn−1) = 1 + 8q + εn, a.s.,

where ε :=
∑

n≥1 εn has |ε| <∞, a.s. Since q = 1/4, it follows that

(6.6) s2n :=
n∑
i=1

E((Mi+1 −Mi)
2 | Fi−1) = 3n+ ε+ o(1), a.s.

The conditions (6.5) and (6.6) show that Mn and −Mn each satisfy the martingale
law of the iterated logarithm [19], yielding

lim sup
n→∞

±Mn√
6n log logn

= 1, a.s.
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Since |Xn − Yn| ≤ a and |θn| ≤ δn, we have that

sup
n
|Mn −Xn| ≤ a+ sup

n
|Mn − Yn| ≤ a+

∞∑
n=1

δn <∞, a.s.

Thus the iterated logarithm law for Mn transfers to Xn.

Proof of Theorem 1.2. Since Nt →∞ as t→∞, Lemma 6.3 shows that

lim sup
t→∞

±XNt√
Nt log logNt

=
√

6, a.s.

Combining this with Lemma 6.2 gives

lim sup
t→∞

±XNt√
log log t log log log log t

=

√
6

log 2
, a.s.

We have from (2.1) and the fact that |Xn+1 −Xn| = 1 that

S(t) ≥ min{XNt , XNt+1} ≥ XNt − 1, and S(t) ≤ max{XNt , XNt+1} ≤ XNt + 1.

The result follows.

APPENDIX A: AUXILIARY LEMMAS

Recall that Φ denotes the distribution function of the standard normal distribu-
tion.

Lemma A.1. Let κ ≥ 0 and let ν ∼ P (κ) and ν ′ ∼ P (κ) be independent. Then
there exists C ∈ R+ such that, for all κ > 0,

sup
u∈R

∣∣∣P(κ−1/2(ν − ν ′) ≤ u)− Φ(u/
√

2)
∣∣∣ ≤ C(1 + κ)−1/2 log(2 + κ).

Proof. Let uκ := κ1/2 log κ. Then, by symmetry,

sup
u:|u|>uκ

∣∣∣P(κ−1/2(ν − ν ′) ≤ u)− Φ(u/
√

2)
∣∣∣ = sup

u:u>uκ

∣∣∣P(κ−1/2(ν − ν ′) > u)− Φ̄(u/
√

2)
∣∣∣

≤ P(κ−1/2(ν − ν ′) > uκ) + Φ̄(uκ/
√

2).

Here we have from standard Gaussian tail bounds (see e.g. Theorem 1.2.3 of [6])
that Φ̄(uκ/

√
2) = O(e−κ), say, while, since ν ′ ≥ 0,

P(κ−1/2(ν − ν ′) > uκ) ≤ P(ν > κ1/2uκ) = O(e−κ),

by Poisson large deviations bounds (see e.g. [16, p. 17]). The result in the lemma
will thus follow from the claim that there exists C ∈ R+ for which

(A.1) sup
u:|u|≤uκ

∣∣∣P(κ−1/2(ν − ν ′) ≤ u)− Φ(u/
√

2)
∣∣∣ ≤ Cκ−1/2 log κ,
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for all κ ≥ 2. It remains to prove (A.1).
By Poisson additivity, we can write

ν − ν ′ =
bκc∑
j=1

ξj + γ − γ′,

where γ, γ′, ξ1, ξ2, . . . are independent random variables, each ξj being the difference
of two independent P (1) random variables, and γ, γ′ being Poisson with mean κ−
bκc < 1. Let Sκ :=

∑bκc
j=1 ξj . Then E ξj = 0, E(ξ2j ) = 2, and E(|ξj |3) < ∞, so the

Berry–Esseen theorem (see e.g. Theorem 3.4.9 of [6, p. 137]) implies that

(A.2) sup
u∈R

∣∣∣P(bκc−1/2Sκ ≤ u)− Φ(u/
√

2)
∣∣∣ ≤ Cκ−1/2,

for all κ ≥ 1.
First we prove one half of (A.1). Since γ ≥ 0,

P(ν − ν ′ ≤ uκ1/2) ≤ P(Sκ − γ′ ≤ uκ1/2)
≤ P(Sκ ≤ uκ1/2 + r) + P(γ′ ≥ r),

for any r > 0. Here we have that

P(Sκ ≤ uκ1/2 + r) = P

(
bκc−1/2Sκ ≤

(
κ

bκc

)1/2

u+ bκc−1/2r

)
.

Note that, by Taylor’s theorem,(
κ

bκc

)1/2

≤
(
bκc+ 1

bκc

)1/2

≤ 1 + Cκ−1,

for some C ∈ R+ and all κ ≥ 1. Thus, by (A.2) and the fact that the standard
normal density is uniformly bounded,

P(Sκ ≤ uκ1/2 + r) ≤ Φ(u/
√

2) + Cκ−1|u|+ Cκ−1/2r + Cκ−1/2,

for all u and all κ ≥ 1. In particular, taking r = log κ we have

P(Sκ ≤ uκ1/2 + log κ) ≤ Φ(u/
√

2) + Cκ−1/2 log κ, for all u ∈ [−uκ, uκ],

where C < ∞ does not depend on u or κ. On the other hand, P(γ′ ≥ log κ) ≤
P(P (1) ≥ log κ) = O(κ−1) by Poisson large deviations bounds (see e.g. [16, p. 17]).
This establishes one half of (A.1).

For the other direction, we have that

P(ν − ν ′ ≤ uκ1/2) ≥ P(Sκ + γ ≤ uκ1/2)
≥ P(Sκ ≤ uκ1/2 − r)− P(γ ≥ r).
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Taking r = log κ we get P(γ ≥ log κ) = O(κ−1) and, similarly to above, we get

P(Sκ ≤ uκ1/2 − log κ) ≥ Φ(u/
√

2)− Cκ−1/2 log κ, for all u ∈ [−uκ, uκ],

completing the proof of (A.1).

Finally, we record the following elementary result.

Lemma A.2. Let X,Y be random variables. Then for any x ∈ R,

P(X > x | X ≤ Y ) ≤ P(X > x).

Proof. For x, y ∈ R we have

P(X ≤ x | X ≤ y) =
P(X ≤ min{x, y})

P(X ≤ y)
=

{
1 if x ≥ y,
P(X≤x)
P(X≤y) if x ≤ y.

In any case, we have P(X ≤ x | X ≤ y) ≥ P(X ≤ x), and the result follows.
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