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Full multiple spawning is a formally exact method to describe the excited-state dynamics of molecular
systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to
the description of radiationless transitions taking place between electronic states with the same
spin multiplicity. This Communication presents a generalization of the full and ab initio multiple
spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and inter-
system crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic
representation. The results of two numerical applications, a model system and the deactivation of
thioformaldehyde, validate the presented formalism and its implementation. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4943571]

I. INTRODUCTION

Nonadiabatic molecular dynamics—coupled electron-
nuclear dynamics beyond the Born-Oppenheimer approxima-
tion—is a key technique for investigating photochemical and
photophysical processes of molecules. However, most of the
nonadiabatic methods commonly employed focus only on
internal conversion (IC), i.e., electronic state transitions that
conserve spin multiplicity. They often neglect intersystem
crossing (ISC) events which couple electronic states with
differing spin multiplicity due to relativistic spin-orbit
coupling (SOC).1 Far from being a curiosity, ISC plays
an important role in the deactivation process of organic
molecules2–4 and metal complexes5 that are used in energy-
related devices.6,7

Apart from grid-based exact quantum dynamics for low
dimensional problems,8 few nonadiabatic dynamics methods
have been extended to include SOC effects and, therefore,
to describe ISC.9 As one example, the Multiconfiguration
Time-Dependent Hartree (MCTDH) technique has been used
to understand the role of intersystem crossing in benzene
photophysics.10 Trajectory surface hopping (TSH), which
approximates the dynamics of a nuclear wavepacket by a
swarm of independent classical trajectories, has also been
modified to incorporate SOC effects.11–15 Freedom in the
choice of different spin representations11–14,16 or hopping
schemes17 has resulted in a plethora of TSH algorithms,
which are, however, prone to shortcomings of the independent
trajectory approximation.18,19 In particular, the spin-diabatic
representation for including SOC in TSH has been questioned
due to a lack of rotational invariance for electronic population
dynamics.13 It can further lead to problematic results whenever
sublevels are grouped in single multiplet states.13

a)E-mail: toddjmartinez@gmail.com

An ideal method for describing both IC and ISC processes
would be (i) derivable from first principles, (ii) able to treat
medium to large molecular systems, (iii) compatible with on-
the-fly calculations of electronic quantities, and (iv) able to
adequately describe coherence and decoherence effects during
nonadiabatic events. Full Multiple Spawning (FMS),20,21 or
its ab initio version AIMS,22,23 fulfills all of the previously
listed requirements, combing the computational efficiency of
trajectory-based methods with quantum dynamics that is in
principle exact (in the limit of a large enough basis set).

In short, FMS represents a nuclear wavefunction by
a swarm of coupled frozen Gaussian functions following
classical trajectories.22–24 The number of trajectory basis
functions used to describe the nuclear wavepacket is adapted
during the dynamics—through so-called “spawning” events—
to accurately describe wavepacket bifurcation in nonadiabatic
regions. In the limit of a complete basis set and exact
evaluation of all the requisite matrix elements, FMS constitutes
a formally exact solution of the time-dependent Schrödinger
equation (TDSE). In the following, we show how FMS
and AIMS can be extended to the description of both IC
and ISC processes and present the resulting Generalized
FMS and AIMS (GFMS and GAIMS) methods and their
implementation.

II. THEORY

The original derivation of the FMS method begins with
the standard molecular Hamiltonian,22 defined as the sum
of the nuclear kinetic energy operator and the electronic
Hamiltonian,

Ĥmol(r,R) = T̂N + Ĥel(r,R)
= T̂N + T̂e + V̂ee(r) + V̂eN(r,R) + V̂NN(R), (1)
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where T̂e is the electronic kinetic energy operator and V̂ee(r),
V̂eN(r,R), and V̂NN(R) are the electron-electron, electron-
nucleus, and nucleus-nucleus potential energy operators,
respectively. The collective variables for electronic and
nuclear positions are denoted by r and R, respectively.
The Hamiltonian in Eq. (1) is non-relativistic and therefore
neglects all terms related to both nuclear and electronic spin.

Including SOC effects in the framework of the time-
dependent Schrödinger equation necessitates the derivation
and approximation of new extended electronic Hamiltonians
from the Dirac-Coulomb-Breit equation.25 The Breit-Pauli
Hamiltonian is commonly employed and its most important
parts26 comprise the non-relativistic Hamiltonian of Eq. (1),
a scalar relativistic part containing the mass-velocity and
Darwin terms, and a spin-orbit coupling Hamiltonian.25,27

We note that scalar relativistic effects, when important, are
often accounted for in quantum chemistry by using effective
core potentials.28 Incorporating the SOC Hamiltonian in
the electronic Hamiltonian,27,29–31 we obtain a molecular
Hamiltonian accounting for the electronic spin s,

Ĥ(x,R) = T̂N + Ĥel(r,R) + ĤSOC(x,R) (2)

with x = (r,s). Inserting Eq. (2) into the time-dependent
Schrödinger equation leads to the starting equation for our
extension of FMS including SOC,

i
∂Ψ(x,R, t)

∂t
= Ĥ(x,R)Ψ(x,R, t). (3)

The following derivation will use electronic states obtained
from a spin-free electronic Hamiltonian as a basis, i.e., each
electronic state is an eigenstate of both the total spin operator
Ŝ2 and the spin projection operator Ŝz.13 The time-dependent
molecular wavefunction is represented by a Born-Huang
expansion32 in the aforementioned spin-diabatic electronic
basis,

Ψ(x,R, t) =

J

SJ
MSJ

=−SJ

Ω
MSJ
J (R, t)ΦMSJ

J (x; R), (4)

where Φ
MSJ
J (x; R) = �

J,MSJ

�
is the electronic wavefunction

for the Jth state with spin multiplicity (2SJ + 1) and spin-
projection eigenvalue MSJ. While the formalism is completely
general, we focus our attention on singlet (S = 0) and triplet

(S = 1) electronic states, the latter having MS values of −1,
0, or +1. The FMS ansatz20,21 for the nuclear wavefunction
becomes

Ω
MSJ
J (R, t) =

NJ,MSJ
(t)

k′=1

C
J,MSJ
k′ (t)χJ,MSJ

k′

(
R; R

J,MSJ
k′ (t),

P
J,MSJ
k′ (t), γ̄J,MSJ

k′ (t),αJ,MSJ
k′

)
, (5)

which expresses the nuclear wavefunction for the electronic
state

�
J,MSJ

�
as a linear combination of multidimensional

frozen Gaussians χ
J,MSJ
k′ and corresponding complex

coefficients C
J,MSJ
k′ (t). Each term of the linear combination

is called a trajectory basis function (TBF). The time-
dependent position R

J,MSJ
k′ (t) and momentum P

J,MSJ
k′ (t)

centers for each frozen Gaussian are propagated using
classical Hamilton’s equations, while the nuclear phase
γ̄
J,MSJ
k′ (t) is time-evolved semiclassically.22 We note here

that the time-dependent parameters in the Gaussian functions
could be time-evolved in different ways, leading to
techniques for nonadiabatic dynamics like the direct dynamics
variational multi-configurational Gaussian33 (DD-vMCG)
or the multiconfiguration-Ehrenfest (MCE) approach,34 for
example.

Inserting Eqs. (5) and (4) in Eq. (3) leads to a set of
equations of motion for the complex amplitudes in Eq. (5).
After left-projection by


χ
I,MSI
k

Φ
MSI
I

����, we obtain

dCI,MSI(t)
dt

= −i
�
S−1�I I,MSI

MSI





HI I,MSI

MSI

− iṠI I,MSI
MSI


CI,MSI(t)

+

J

SJ
MSJ

=−SJ

HI J,MSI
MSJCJ,MSJ(t)



, (6)

where bold symbols indicate vectors or matrices in the
basis of Gaussian functions. The overlap matrices are
defined by S

I J,MSI
MSJ

k,k′ =


χ
I,MSI
k

���χ
J,MSJ
k′


R
δI JδMSI

MSJ
and

Ṡ
I J,MSI

MSJ
k,k′ =


χ
I,MSI
k

����
∂
∂t

����χ
J,MSJ
k′


R
δI JδMSI

MSJ
. A general

Hamiltonian matrix element in Eq. (6) has the form

H
I J,MSI

MSJ
kk′ =


χ
I,MSI
k

���� T̂N

����χ
J,MSJ
k′


R
δI JδMSI

MSJ
+


χ
I,MSI
k

���� E
el
I

����χ
J,MSJ
k′


R
δI JδMSI

MSJ

−
3N
ρ=1


χ
I,MSI
k

����

(
d
MSI

MSJ
I J

)
ρ

1
mρ

∂

∂Rρ

����χ
J,MSJ
k′


R
δMSI

MSJ
−

3N
ρ=1

1
2mρ


χ
I,MSI
k

����

(
D

MSI
MSJ

I J

)
ρ

����χ
J,MSJ
k′


R
δMSI

MSJ

+


χ
I,MSI
k

����


Φ

MSI
I

���� ĤSOC

����Φ
MSJ
J


x

����χ
J,MSJ
k′


R
. (7)

The first two terms, as well as the electronic diagonal
contributions from the fourth term, couple TBFs evolving
on the same electronic state with the same sublevel (Fig. 1(a),
dotted arrows). Eel

I is the electronic energy for state I, and
mρ is the mass corresponding to nuclear degree of freedom ρ.

The third and fourth terms in Eq. (7) couple TBFs evolving on
different electronic states but having the same S and MS values
(Fig. 1(a), dashed arrows). These terms depend on the first-

order nonadiabatic coupling vectors d
MSI

MSJ
I J and second-
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FIG. 1. (a) General representation of the coupling pattern between TBFs in GFMS for a case with two singlet and two triplet states. The Gaussian shape
symbolizes the different TBFs (black= singlet, blue= triplet), where a continuous line is used for MS = 0 states, while dashed and dotted lines represent
MS =−1 and MS = 1 for triplet states. These TBFs evolve along a classical trajectory represented by the filled circle. Intrastate (dotted arrow) and nonadiabatic
(dashed arrows) couplings are present between TBFs evolving in electronic states with the same spin multiplicity (as in the standard FMS method), while GFMS
introduces an important number of additional couplings due to SOC (plain arrows). Note that a more detailed representation of the couplings requires the use of
separate arrows for each possible coupling between sublevels (not shown). (b) Schematic representation of the GFMS method. A TBF is initiated in Sm at time
t = 0 (gray) and will at a later time spawn TBFs both in Tn (blue) and in S0 (black).

order nonadiabatic coupling D
MSI

MSJ
I J , where the latter is

usually neglected in nonadiabatic molecular dynamics.22 The
novelty of GFMS resides in the last term of Eq. (7) which
allows for amplitude transfer between electronic states with
different spin multiplicity, according to the rules of SOC
(Fig. 1(a), continuous arrows), and fully preserves rotational
invariance. In addition, this last term can also couple TBFs
evolving on states that have the same spin multiplicity S,
but only if the conditions SI = SJ > 0 and ∆MS = 0,±1 are
fulfilled. It is important to note that any definition1 of the
operator ĤSOC can be used in Eq. (7).

A key feature of the FMS method is that it uses
an adaptive basis set to ensure an accurate description of
nonadiabatic processes. The number of TBFs describing the
nuclear wavefunction in state

�
I,MSI

�
, NI,MSI

(t), will indeed

change in time as a result of spawning events. In short, a TBF
entering a region of strong nonadiabaticity—detected using
an effective coupling—can under certain conditions spawn a
new TBF on the coupled electronic state (Fig. 1(b)). Upon
spawning, the size of the matrices in Eq. (6) is extended
and the resulting coupled propagation of the expanded set of
TBFs allows for an exchange of nuclear amplitude between
electronic states. For detailed discussions about the spawning
algorithm between same-spin states, the reader is referred
to previous works.22,24,35 In GFMS, the spawning algorithm
needs to be extended to allow for spawning between spin-
orbit coupled states. Based on an already proposed effective
coupling between diabatic states,22 we suggest to measure
the effective SOC strength between state I and state J at the
position of TBF k as

Λ
e f f
I J (Rk) =

*
,

SI
MSI

=−SI

SJ
MSJ

=−SJ

����


Φ

MSI
I (Rk) ���ĤSOC

���Φ
MSJ
J (Rk)


x

����
2+
-

1/2

�
Eel
J (Rk) − Eel

I (Rk)� . (8)

This rotationally invariant spawning measure indicates the
overall coupling between the sublevels of state I and those of
state J. If Λe f f

I J (Rk) is higher than a certain threshold value,
the spawning mode is triggered and a new TBF will be created
in each sublevel of the electronic state J (see Fig. 1(b)).36

Ab initio multiple spawning22–24 uses FMS nuclear
dynamics combined with ab initio electronic structure calcu-
lations, allowing for an on-the-fly solution of the molecular
time-dependent Schrödinger equation. Two approximations
simplify the application of FMS to molecules, namely,
the saddle-point and the independent first generation (IFG)
approximations. The (zeroth-order) saddle-point approxima-
tion is used to compute the integrals over nuclear degrees of
freedom that appear in the Hamiltonian matrix.22 Extending

the saddle-point approximation to the calculation of SOC
matrix elements in Eq. (7) is straightforward,

χ
I,MSI
k

����


Φ

MSI
I

���� ĤSOC
����Φ

MSJ
J


x

����χ
J,MSJ
k′


R

=


χ
I,MSI
k

���� H
MSI

MSJ
SOC, I J

����χ
J,MSJ
k′


R

≈ H
MSI

MSJ
SOC, I J

(
R(c)

kk′

) 
χ
I,MSI
k

����χ
J,MSJ
k′


R
, (9)

where R(c)
kk′ is the centroid position between TBFs k and

k ′. It is important to realize that the quality of the saddle-
point approximation is expected to be especially good for
SOC matrix elements, as they are usually slowly varying
with respect to the nuclear position. The IFG approximation
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proposes that the initial TBFs, whose initial positions and
momenta are usually sampled from a Wigner distribution,
are run independently, i.e., the interactions between initial
TBFs are neglected. Each initial TBF however remains fully
coupled with any child TBFs it will generate in the course
of the nonadiabatic dynamics. For more information on these
approximations, the interested reader is referred to different
reviews on AIMS.9,22,37,38

To summarize, GFMS is a generalization to the in
principle exact method FMS for the description of both IC and
ISC processes. The GAIMS technique, which is amenable to
molecules, is obtained by applying the IFG and saddle-point
approximations to GFMS.

III. TEST APPLICATIONS

The proposed AIMS extension to SOC is first tested on a
model system recently proposed by Persico and co-workers.13

The model comprises a singlet (S1) and a triplet state (T1),
which cross at x = 10 bohrs and both have a dissociative
character (continuous curves in Figs. 2(a)-2(c)). All SOC
matrix elements between the singlet and the triplet sublevels
change sign at a given position, xs, that can therefore be used
as a parameter to tune the strength of intersystem crossing
processes. For example, xs = 10 bohrs leads to weak coupling
between the electronic states, as the SOC is small around
the point of crossing between the singlet and the triplet state
(Fig. 2(a)). In contrast, when the sign change of the SOC
takes place away from the states crossing point, e.g., xs = 8
bohrs, the intersystem crossing is strong as ���H

00
SOC,S1T1

��� and
���H

01
SOC,S1T1

��� =
���H

0−1
SOC,S1T1

��� are equal to 219.5 and 155.2 cm−1,
respectively, at the point of crossing (Fig. 2(c)). Therefore,

varying xs allows testing GAIMS for different SOC strength
conditions.

The GAIMS dynamics is based on 200 initial conditions,
sampled from the Wigner distribution of the initial Gaussian
wavefunction, as defined in Ref. 13 (its corresponding
probability density is represented in Fig. 2(a)). As mentioned
in Sec. II, GAIMS uses both the IFG and the saddle-point
approximation, meaning that perfect agreement with an exact
solution is not expected. It is however only within these
two approximations that GAIMS can be routinely applied
to molecular systems, and the goal in the following is to
validate the general accuracy of GAIMS with respect to exact
calculations. GAIMS reproduces the exact results, obtained
by solving the TDSE,13 both qualitatively and quantitatively,
within a maximum deviation of 7%, for three different cases of
SOC coupling strength (right panels of Fig. 2). Furthermore,
Fig. 2 shows the results for uncorrected spin-diabatic TSH
dynamics,13 with the three sublevels of the triplet state grouped
into a single TSH amplitude. In this approximated formalism,
TSH does not capture sign changes for the SOC and is
unable to qualitatively describe ISC events, whenever the sign
change occurs as the two states come close in energy. To fix
this problem, a phase factor that forces a sign change in the
effective SOC at the crossing point xs can be added, leading to
an excellent agreement with the exact result.13 However, this
simple fix is limited, since it requires a priori knowledge of
xs. Moreover, the contracted spin-diabatic approach to TSH
is difficult to generalize for a larger number of electronic
states.13 In contrast, such problems do not exist in the
GAIMS method, and its results for this one-dimensional
system highlight the accuracy of the IFG and the saddle-point
approximations. Importantly, this model system also validates
the naive spawning criterion (Eq. (8)) used to spawn TBFs in

FIG. 2. GAIMS applied to a one-dimensional model system with one singlet and one triplet state. ((a)-(c)) Description of the model system—potential energy
curves (black and gray lines), SOC matrix elements (dashed lines), for the case (a) xs = 10 bohrs, (b) xs = 9.5 bohrs, and (c) xs = 8 bohrs. ((d)-(f)) Population
in the singlet state for the three corresponding xs values. GAIMS (blue) is compared with an exact solution of the time-dependent Schrödinger equation (red)
and TSH in a spin-diabatic representation with no phase factor (gray), taken from Ref. 13.
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a state with different spin multiplicity. All the runs leading
to the results presented in Fig. 2 indeed underwent only
one spawning event. This behavior contrasts with that of the
spin-diabatic TSH dynamics, where a large number of hops
between states are observed.13 As discussed in detail in the
AIMS literature,22,35 improving the spawning criterion would
surely result in an even better match with the exact result. We
intend to investigate potential improvements in the spawning
criteria for ISC in future research.

Having shown that GAIMS provides an accurate
description of ISCs for different SOC strengths, we now move
to an example of its real raison d’être, namely, the study of ISC
processes in molecular systems. We choose for this purpose
the nonadiabatic dynamics of thioformaldehyde, H2CS, in its
first singlet excited state. The first excited electronic state (S1)
of H2CS has nπ∗ character in the Franck-Condon region and
its 0-0 transition energy has been experimentally determined
at 2.033 eV.39 Two triplet states lie close to S1: T1(nπ∗) and
T2(ππ∗). When the excited-state dynamics of H2CS is initiated
in S1, we therefore expect to observe a direct application of the
El-Sayed rules40—S1(nπ∗) should be more strongly coupled
to T2(ππ∗) via SOC than to T1(nπ∗) as a result of the change
in orbital type. We performed GAIMS dynamics considering
the first four electronic states of H2CS (S0, S1, T1, and
T2), using SA(4)-CASSCF(4/3)/6-31G* in Molpro41 for 20
Wigner-sampled initial conditions. This level of theory places
S1 at 2.26 eV above the ground state in the Franck-Condon
region. We present here the first 200 fs of dynamics in S1
and will mostly comment on the GAIMS algorithm. This
application is intended to provide a molecular test system for
GAIMS dynamics and does not seek to obtain a complete and
quantitatively accurate physical picture of the nonradiative
relaxation of H2CS (which might require larger basis sets and
dynamic electron correlation).

The small yet sizable population of T2 shortly after
the beginning of the excited-state dynamics confirms the
El-Sayed rule (Fig. 3), while T1 appears to be only weakly
populated in the same time window. This immediate, yet
weak, population of triplet states upon photoexcitation in S1
has also been observed for the parent molecule acetone,42

although the population transfer is even weaker in this latter
case. The total number of TBFs in the different electronic
states grows quickly during the dynamics (orange line in
Fig. 3), reaching a total value of 326 TBFs, among which
306 evolve in triplet states. From an initial TBF evolving
in S1, GAIMS rapidly starts to spawn TBFs in both T2 and
T1, even though a sizable amount of population is eventually
only transferred to T2. To further analyze the dynamics, we
present in Fig. 3 (upper panel) a depiction of the C==S
bond length and electronic population for each of the TBFs.
This representation highlights the growing number of TBFs
in T1 (red) and T2 (blue) over the course of the simulation
and depicts the different dynamics they experience, evolving
in electronic states of differing electronic character. Hence,
the dynamics of TBFs in T1 is closer to those in S1—both
exhibiting an nπ∗ character—while the ππ∗ character of TBFs
evolving in T2 is consistent with the longer average C==S bond
length. As noted before, population transfer between singlet
and triplet TBFs due to SOC is limited in the time scale of

FIG. 3. GAIMS dynamics of thioformaldehyde after photoexcitation to S1.
Upper panel: C==S bond length for all TBFs produced during GAIMS dy-
namics. The width of each line is proportional to the population carried
by the TBF. TBFs are associated with the S1 (light gray), T1 (red), or T2
(blue) electronic state. Lower panel: population of the two triplet states during
GAIMS dynamics averaged over 20 initial conditions (light area indicates the
standard error). The total number of TBFs is given in orange.

this simulation and the projection is mostly dominated by the
TBFs evolving in S1.

IV. CONCLUSION

In this Communication, we presented a generalization
of the full and ab initio multiple spawning methods to the
description of internal conversion and intersystem crossing
processes, both treated on an equal footing. The derivation
of GFMS and GAIMS uses a spin-diabatic formalism and
the implementation of GAIMS has been validated both
with a model system and with a molecular application, the
nonadiabatic dynamics of thioformaldehyde. This work will
be followed by an extensive study of the interplay between the
TBFs and the development of improved rules for ISC-triggered
spawning that will minimize the number of unpopulated
TBFs on triplet states. GAIMS opens the door for complete
simulation of deactivation pathways in molecules and,
when combined with GPU-accelerated electronic structure
codes,43–46 will be used to study the competition between
internal conversion and intersystem crossing in both organic
molecules and organometallic complexes.
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