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Full Multiple Spawning is a formally exact method to describe the excited-state dynamics 

of molecular systems beyond the Born-Oppenheimer approximation. However, it has 

been limited until now to the description of radiationless transitions taking place between 

electronic states with the same spin multiplicity. This Communication presents a 

generalization of the Full and Ab Initio Multiple Spawning methods to both internal 

conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events 

(triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. 

The results of two numerical applications, a model system and the deactivation of 

thioformaldehyde, validate the presented formalism and its implementation. 
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I. Introduction 

 

Nonadiabatic molecular dynamics – coupled electron-nuclear dynamics beyond the Born-

Oppenheimer approximation – is a key technique for investigating photochemical and photophysical 

processes of molecules. However, most of the nonadiabatic methods commonly employed focus only on 

internal conversion (IC), i.e., electronic state transitions that conserve spin multiplicity. They often 

neglect intersystem crossing (ISC) events which couple electronic states with differing spin multiplicity, 

due to relativistic spin-orbit coupling (SOC).1 Far from being a curiosity, ISC plays an important role in 

the deactivation process of organic molecules2-4 and metal complexes5 that are used in energy-related 

devices.6-7  

Apart from grid-based exact quantum dynamics for low dimensional problems,8 few nonadiabatic 

dynamics methods have been extended to include SOC effects and, therefore, to describe ISC.9 As one 

example, the Multiconfiguration Time-Dependent Hartree (MCTDH) technique has been used to 

understand the role of intersystem crossing in benzene photophysics.10 Trajectory surface hopping 

(TSH), which approximates the dynamics of a nuclear wavepacket by a swarm of independent classical 

trajectories, has also been modified to incorporate SOC effects.11-15 Freedom in the choice of different 

spin representations11-14, 16 or hopping schemes17 has resulted in a plethora of TSH algorithms, which 

are, however, prone to shortcomings of the independent trajectory approximation.18-19 In particular, the 

spin-diabatic representation for including SOC in TSH has been questioned due to a lack of rotational 

invariance for electronic population dynamics.13 It can further lead to problematic results whenever 

sublevels are grouped in single multiplet states.13, 16 

An ideal method for describing both IC and ISC processes would be (i) derivable from first 

principles, (ii) able to treat medium to large molecular systems, (iii) compatible with on-the-fly 

calculations of electronic quantities, and (iv) able to adequately describe coherence and decoherence 

effects during nonadiabatic events. Full Multiple Spawning (FMS),20-21 or its ab initio version AIMS,22-

23 fulfills all of the previously listed requirements, combing the computational efficiency of a trajectory-

based methods with quantum dynamics that is in principle exact (in the limit of a large enough basis 

set).  

In short, FMS represents a nuclear wavefunction by a swarm of coupled frozen Gaussian functions 

following classical trajectories.22-24 The number of trajectory basis functions used to describe the nuclear 

wavepacket is adapted during the dynamics – through so-called “spawning” events – to accurately 

describe wavepacket bifurcation in nonadiabatic regions. In the limit of a complete basis set and exact 
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evaluation of all the requisite matrix elements, FMS constitutes a formally exact solution of the time-

dependent Schrödinger equation. In the following, we show how FMS and AIMS can be extended to the 

description of both IC and ISC processes and present the resulting Generalized FMS and AIMS (GFMS 

and GAIMS) methods and their implementation. 

II. Theory 

The original derivation of the FMS method begins with the standard molecular Hamiltonian,22 

defined as the sum of the nuclear kinetic energy operator and the electronic Hamiltonian, 

 Ĥmol (r,R) = T̂N + Ĥel (r,R) = T̂N + T̂e + V̂ee(r)+ V̂eN (r,R)+ V̂NN (R)   (1) 

where T̂e  is the electronic kinetic energy operator and V̂ee(r) , V̂eN (r,R) , and V̂NN (R)  are the electron-

electron, electron-nucleus, and nucleus-nucleus potential energy operators, respectively. The collective 

variables for electronic and nuclear positions are denoted by r  and R , respectively. The Hamiltonian in 

Eq.(1) is non-relativistic and therefore neglects all terms related to both nuclear and electronic spin.   

Including SOC effects in the framework of the time-dependent Schrödinger equation necessitates the 

derivation and approximation of new extended electronic Hamiltonians from the Dirac-Coulomb-Breit 

equation.25 The Breit-Pauli Hamiltonian is commonly employed and its most important parts26 comprise 

the non-relativistic Hamiltonian of Eq.(1), a scalar relativistic part containing the mass-velocity and 

Darwin terms, and a spin-orbit coupling Hamiltonian.25, 27 We note that scalar relativistic effects, when 

important, are often accounted for in quantum chemistry by using effective core potentials.28 

Incorporating the SOC Hamiltonian in the electronic Hamiltonian,27, 29-31 we obtain a molecular 

Hamiltonian accounting for the electronic spin s ,  

 Ĥ (x,R) = T̂N + Ĥel (r,R)+ ĤSOC (x,R)   (2) 

with x = (r, s) . Inserting Eq.(2) into the time-dependent Schrödinger equation leads to the starting 

equation for our extension of FMS including SOC: 

 i ∂Ψ(x,R,t)
∂t

= Ĥ (x,R)Ψ(x,R,t)   (3) 

The following derivation will use electronic states obtained from a spin-free electronic Hamiltonian as a 

basis, i.e., each electronic state is an eigenstate of both the total spin operator Ŝ2  and the spin projection 

operator Ŝz .13 The time-dependent molecular wavefunction is represented by a Born-Huang expansion32 

in the aforementioned spin-diabatic electronic basis,  



Curchod, et al. – GAIMS – Page 4 

 

 Ψ(x,R,t) = ΩJ
MSJ

MSJ =−SJ

SJ

∑
J
∑ (R,t)ΦJ

MSJ (x;R)   (4)   

where ΦJ
MSJ (x;R) = J,MSJ  is the electronic wavefunction for the Jth state with spin multiplicity 

(2SJ +1)  and spin-projection eigenvalue MSJ
. While the formalism is completely general, we focus our 

attention on singlet (S=0) and triplet (S=1) electronic states, the latter having MS values of -1, 0, or +1. 

The FMS ansatz20-21 for the nuclear wavefunction becomes 

 ΩJ
MSJ (R,t) = Ck '

J ,MSJ

k '=1

NJ ,MSJ
(t )

∑ (t)χ k '
J ,MSJ (R;Rk '

J ,MSJ (t),Pk '
J ,MSJ (t),γ k '

J ,MSJ (t),α k '
J ,MSJ )   (5) 

which expresses the nuclear wavefunction for the electronic state J,MSJ  as a linear combination of 

multidimensional frozen Gaussians χ k '
J ,MSJ  and corresponding complex coefficients Ck '

J ,MSJ (t) . Each term 

of the linear combination is called a trajectory basis function (TBF). The time-dependent position 

Rk '
J ,MSJ (t)  and momentum Pk '

J ,MSJ (t)  centers for each frozen Gaussian are propagated using classical 

Hamilton's equations, while the nuclear phase γ k '
J ,MSJ (t)  is time-evolved semiclassically.22 We note here 

that the time-dependent parameters in the Gaussian functions could be time-evolved in different ways, 

leading to techniques for nonadiabatic dynamics like the direct dynamics variational multi-

configurational Gaussian33 (DD-vMCG) or the multiconfiguration-Ehrenfest approach34 (MCE), for 

example. 

Inserting Eqs. (5) and (4) in Eq.(3) leads to a set of equations of motion for the complex amplitudes 

in Eq.(5). After left-projection by χ k
I ,MSIΦ I

MSI , we obtain 

 
 

dCI ,MSI (t)
dt

= −i S−1( )II ,MSI MSI H II ,MSI MSI − i !SII ,MSI MSI⎡⎣ ⎤⎦C
I ,MSI (t)+ H IJ ,MSI MSJCJ ,MSJ (t)

MSJ =−SJ

SJ

∑
J
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  (6) 

where bold symbols indicate vectors or matrices in the basis of Gaussian functions. The overlap matrices 

are defined by Sk , ′k
IJ ,MSI MSJ = χ k

I ,MSI χ ′k
J ,MSJ

R
δ IJδMSI MSJ

and 
 
!Sk , ′k
IJ ,MSI MSJ = χ k

I ,MSI
∂
∂t

χ ′k
J ,MSJ

R

δ IJδMSI MSJ
. A 

general Hamiltonian matrix element in Eq. (6) has the form 
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Hkk '
IJ ,MSI MSJ = χ k

I ,MSI T̂nuc χ k '
J ,MSJ

R
δ IJδ MSI MSJ

+ χ k
I ,MSI EI

el χ k '
J ,MSJ

R
δ IJδ MSI MSJ

− χ k
I ,MSI d IJ

MSI MSJ( )
ρ

1
mρ

∂
∂Rρ

χ k '
J ,MSJ

R
δ MSI MSJ

ρ=1

3N

∑ − 1
2mρ

χ k
I ,MSI DIJ

MSI MSJ( )
ρ
χ k '
J ,MSJ

R
δ MSI MSJ

ρ=1

3N

∑

+ χ k
I ,MSI Φ I

MSI ĤSOC ΦJ
MSJ

x
χ k '
J ,MSJ

R
.

 (7) 

 

The first two terms couple TBFs evolving on the same electronic state with the same sublevel (Fig. 1a, 

dotted arrows). The third and fourth terms in Eq.(7) couple TBFs evolving on different electronic states 

but having the same S and MS values (Fig. 1a, dashed arrows). These terms depend on the first-order 

nonadiabatic coupling vectors d IJ
MSI MSJ  and second-order nonadiabatic coupling DIJ

MSI MSJ , where the latter 

is usually neglected in nonadiabatic molecular dynamics.22 The novelty of GFMS resides in the last term 

of Eq.(7) which allows for amplitude transfer between electronic states with different spin multiplicity, 

according to the rules of SOC (Fig. 1a, continuous arrows), and fully preserves rotational invariance. In 

addition, this last term can also couple TBFs evolving on states that have the same spin multiplicity S, 

but only if the conditions SI = SJ > 0  and ΔMS = 0,±1  are fulfilled. It is important to note that any 

definition1 of the operator ĤSOC can be used in Eq.(7).  

 
Figure 1. a) General representation of the coupling pattern between TBFs in GFMS for a case with two singlet and two 
triplet states. The Gaussian shape symbolizes the different TBFs (black=singlet, blue=triplet), where a continuous line is used 
for MS=0 states, while dashed and dotted lines represent MS=-1 and MS=1 for triplet states. These TBFs evolve along a 
classical trajectory represented by the filled circle. Intrastate (dotted arrow) and nonadiabatic (dashed arrows) couplings are 
present between TBFs evolving in electronic states with the same spin multiplicity (as in the standard FMS method), while 
GFMS introduces an important number of additional couplings due to SOC (plain arrows). Note that a more detailed 
representation of the couplings requires the use of separate arrows for each possible coupling between sublevels (not shown). 
b) Schematic representation of the GFMS method. A TBF is initiated in Sm at time t=0 (gray) and will at later time spawn 
TBFs both in Tn (blue) and in S0 (black).  
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A key feature of the FMS method is that it uses an adaptive basis set to ensure an accurate description of 

nonadiabatic processes. The number of TBFs describing the nuclear wavefunction in state I ,MSI , 

NI ,MSI
(t) , will indeed change in time as a result of spawning events. In short, a TBF entering a region of 

strong nonadiabaticity – detected using an effective coupling – can under certain conditions spawn a 

new TBF on the coupled electronic state (Fig. 1b). Upon spawning, the size of the matrices in Eq. (6) is 

extended and the resulting coupled propagation of the expanded set of TBFs allows for an exchange of 

nuclear amplitude between electronic states. For detailed discussions about the spawning algorithm 

between same-spin states, the reader is referred to previous work.22, 24, 35 In GFMS, the spawning 

algorithm needs to be extended to allow for spawning between spin-orbit coupled states. Based on an 

already proposed effective coupling between diabatic states,22 we suggest to measure the effective SOC 

strength between state I and state J at the position of TBF k as:  

 Λ IJ
eff Rk( ) =

Φ I
MSI Rk( ) ĤSOC ΦJ

MSJ Rk( )
x

2

MSJ =−SJ

SJ

∑
MSI =−SI

SI

∑
⎛

⎝
⎜

⎞

⎠
⎟

1/2

EJ
el Rk( )− EI

el Rk( ) .   (8) 

 

This rotationally-invariant spawning measure indicates the overall coupling between the sublevels of 

state I and those of state J. If Λ IJ
eff Rk( )  is higher than a certain threshold value, the spawning mode is 

triggered and a new TBF will be created in each sublevel of the electronic state J (see Fig. 1b).36  

Ab Initio Multiple Spawning22-24 uses FMS nuclear dynamics combined with ab initio electronic 

structure calculations, allowing for an on-the-fly solution of the molecular time-dependent Schrödinger 

equation. Two approximations simplify the application of FMS to molecules, namely the saddle point 

and the independent first generation (IFG) approximations. The (zeroth-order) saddle-point 

approximation is used to compute the integrals over nuclear degrees of freedom that appear in the 

Hamiltonian matrix.22 Extending the saddle-point approximation to the calculation of SOC matrix 

elements in Eq.(7) is straightforward: 

 χ k
I ,MSI Φ I

MSI ĤSOC ΦJ
MSJ

x
χ k '
J ,MSJ

R
= χ k

I ,MSI HSOC ,IJ
MSI MSJ χ k '

J ,MSJ

R
≈ HSOC ,IJ

MSI MSJ Rkk '
(c)( ) χ k

I ,MSI χ k '
J ,MSJ

R
  (9) 

where Rkk '
(c)  is the centroid position between TBFs k and k’. It is important to realize that the quality of 

the saddle-point approximation is expected to be especially good for SOC matrix elements, as they are 
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usually slowly varying with respect to the nuclear position. The IFG approximation proposes that the 

initial TBFs, whose initial positions and momenta are usually sampled from a Wigner distribution, are 

run independently, i.e. the interactions between initial TBFs are neglected. Each initial TBF however 

remains fully coupled with any child TBFs it will generate in the course of the nonadiabatic dynamics. 

For more information on these approximations, the interested reader is referred to different reviews on 

AIMS.9, 22, 37-38 

To summarize, GFMS is a generalization to the in principle exact method FMS for the description of 

both IC and ISC processes. The GAIMS technique, which is amenable to molecules, is obtained by 

applying the IFG and saddle-point approximations to GFMS. 

III. Test applications 

The proposed AIMS extension to SOC is first tested on a model system recently proposed by Persico 

and coworkers.13 The model comprises a singlet (S1) and a triplet state (T1), which cross at x=10 bohr 

and both have a dissociative character (continuous curves in Fig. 2a-c). All SOC matrix elements 

between the singlet and the triplet sublevels change sign at a given position, xs, that can therefore be 

used as a parameter to tune the strength of intersystem crossing processes. For example, xs=10 bohr 

leads to weak coupling between the electronic states, as the SOC is small around the point of crossing 

between the singlet and the triplet state (Fig. 2a). In contrast, when the sign change of the SOC takes 

place away from the states crossing point, e.g. xs=8 bohr, the intersystem crossing is strong as HSOC ,S1T1
00   

and HSOC ,S1T1
01 = HSOC ,S1T1

0−1  are equal to 219.5 and 155.2 cm-1, respectively, at the point of crossing (Fig. 

2c). Therefore, varying xs allows testing GAIMS for different SOC strength conditions.  

The GAIMS dynamics is based on 200 initial conditions, sampled from the Wigner distribution of 

the initial Gaussian wavefunction, as defined in Ref. 13 (its corresponding probability density is 

represented in Fig. 2a). As mentioned in the previous section, GAIMS uses both the IFG and the saddle-

point approximation, meaning that perfect agreement with an exact solution is not expected. It is 

however only within these two approximations that GAIMS can be routinely applied to molecular 

systems, and the goal in the following is to validate the general accuracy of GAIMS with respect to 

exact calculations. GAIMS reproduces the exact results, obtained by solving the TDSE,13 both 

qualitatively and quantitatively, within a maximum deviation of 7%, for three different cases of SOC 

coupling strength (right panel of Fig. 2). Furthermore, Fig. 2 shows the results for uncorrected spin-

diabatic TSH dynamics,13 with the three sublevels of the triplet state grouped into a single TSH 
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amplitude. In this approximated formalism, TSH does not capture sign changes for the SOC and is 

unable to qualitatively describe ISC events, whenever the sign change occurs as the two states come 

close in energy. To fix this problem, a phase factor that forces a sign change in the effective SOC at the 

crossing point xs can be added, leading to an excellent agreement with the exact result.13 However, this 

simple fix is limited to model systems, since it requires a priori knowledge of xs. Moreover, the 

contracted spin-diabatic approach to TSH is difficult to generalize for a larger number of electronic 

states.13 In contrast, such problems do not exist in the GAIMS method, and its results for this one-

dimensional system highlight the accuracy of the IFG and the saddle-point approximations. Importantly, 

this model system also validates the naive spawning criterion (Eq.(8)) used to spawn TBFs in a state 

with different spin multiplicity. All the runs leading to the results presented in Fig. 2 indeed underwent 

only one spawning event. This behavior contrasts with that of the spin-diabatic TSH dynamics, where a 

large number of hops between states are observed.13 As discussed in detail in the AIMS literature,22, 35 

improving the spawning criterion would surely result in an even better match with the exact result. We 

intend to investigate potential improvements in the spawning criteria for ISC in future research.  

 
Figure 2. GAIMS applied to a one-dimensional model system with one singlet and one triplet state. a-c): Description of the 
model system – potential energy curves (black and gray lines), SOC matrix elements (dashed lines), for the case a) xs=10  
bohr, b) xs=9.5 bohr, and c) xs=8 bohr. d-f): Population in the singlet state for the three corresponding xs values. GAIMS 
(blue) is compared with an exact solution of the time-dependent Schrödinger equation (red) and TSH in a spin-diabatic 
representation with no phase factor (gray), taken from Ref. 13. 
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Having shown that GAIMS provides an accurate description of ISCs for different SOC strengths, we 

now move to an example of its real raison d’être, namely the study of ISC processes in molecular 

systems. We choose for this purpose the nonadiabatic dynamics of thioformaldehyde, H2CS, in its first 

singlet excited state. The first excited electronic state (S1) of H2CS has nπ∗ character in the Franck-

Condon region and its 0-0 transition energy has been experimentally determined at 2.033 eV.39 Two 

triplet states lie close to S1: T1(nπ∗) and T2(ππ∗). When the excited-state dynamics of H2CS is initiated 

in S1, we therefore expect to observe a direct application of the El-Sayed rules40 – S1(nπ∗) should be 

more strongly coupled to T2(ππ∗) via SOC than to T1(nπ∗) as a result of the change in orbital type. We 

performed GAIMS dynamics considering the first four electronic states of H2CS (S0, S1, T1, and T2), 

using SA(4)-CASSCF(4/3)/6-31G* in Molpro41 for 20 Wigner-sampled initial conditions. This level of 

theory places S1 at 2.26 eV above the ground state in the Franck-Condon region. We present here the 

first 200 fs of dynamics in S1 and will mostly comment on the GAIMS algorithm. This application is 

intended to provide a molecular test system for GAIMS dynamics and does not seek to obtain a 

complete and quantitatively accurate physical picture of the nonradiative relaxation of H2CS (which 

might require larger basis sets and dynamic electron correlation). 

The small yet sizable population of T2 shortly after the beginning of the excited-state dynamics 

confirms the El-Sayed rule (Fig. 3), while T1 appears to be only weakly populated in the same time 

window. This immediate, yet weak, population of triplet states upon photoexcitation in S1 has also been 

observed for the parent molecule acetone,42 although the population transfer is even weaker in this latter 

case. The total number of TBFs in the different electronic states grows quickly during the dynamics 

(orange line in Fig. 3), reaching a total value of 326 TBFs, among which 306 evolve in triplet states. 

From an initial TBF evolving in S1, GAIMS rapidly starts to spawn TBFs in both T2 and T1, even though 

a sizable amount of population is eventually only transferred to T2. To further analyze the dynamics, we 

present in Fig. 3 (upper panel) a depiction of the C=S bond length and electronic population for each of 

the TBFs. This representation highlights the growing number of TBFs in T1 (red) and T2 (blue) over the 

course of the simulation and depicts the different dynamics they experience, evolving in electronic states 

of differing electronic character. Hence, the dynamics of TBFs in T1 is closer to those in S1 – both 

exhibiting an nπ∗ character – while the ππ∗ character of TBFs evolving in T2 is consistent with the 

longer average C=S bond length. As noted before, population transfer between singlet and triplet TBFs 

due to SOC is limited in the timescale of this simulation and the projection is mostly dominated by the 

TBFs evolving in S1. 
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Figure 3. GAIMS dynamics of thioformaldehyde after photoexcitation to S1. Upper panel: C=S bond length for all TBFs 
produced during GAIMS dynamics. The width of each line is proportional to the population carried by the TBF. TBFs are 
associated with the S1 (light gray), T1 (red), or T2 (blue) electronic state. Lower panel: population of the two triplet states 
during GAIMS dynamics, averaged over 20 initial conditions (light area indicates the standard error). The total number of 
TBFs is given in orange. 
 

IV. Conclusion 

In this Communication, we presented a generalization of the Full and Ab Initio Multiple Spawning 

methods to the description of internal conversion and intersystem crossing processes, both treated on an 

equal footing. The derivation of GFMS and GAIMS uses a spin-diabatic formalism and the 

implementation of GAIMS has been validated both with a model system and with a molecular 

application, the nonadiabatic dynamics of thioformaldehyde. This work will be followed by an extensive 

study of the interplay between the TBFs and the development of improved rules for ISC-triggered 

spawning that will minimize the number of unpopulated TBFs on triplet states. GAIMS opens the door 

for complete simulation of deactivation pathways in molecules and, when combined with GPU-

accelerated electronic structure codes43-46, will be used to study the competition between internal 

conversion and intersystem crossing in both organic molecules and organometallic complexes.  
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