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9 Abstract

10 Constraining Antarctic ice sheet evolution provides a way to validate numerical ice sheet models 

11 that aid predictions of sea-level rise. In this paper we collate cosmogenic exposure ages from 

12 exposed nunataks in Antarctica that have been used, or have the potential to be used, to 

13 constrain rates of thinning of the Antarctic Ice Sheets since the Last Glacial Maximum. We 

14 undertake quality control of the data and adopt a Bayesian approach to outlier detection. Past 

15 thinning rates are modelled by Monte Carlo linear regression analysis. We present thinning rates 

16 from 23 sites across Antarctica. The resulting data set is the first Antarctic-wide collation of past 

17 ice sheet thinning rates and provides an empirical starting point for future model-data 

18 comparisons. Palaeo-thinning rates are spatially variable with high rates appearing to correlate to 

19 areas of contemporary rapid changes. On centennial timescales past thinning rates are 

20 comparable to modern day observations implying that modern day thinning has the potential to 

21 persist for centuries in numerous parts of Antarctica. The onset of abrupt thinning from all sites 

22 post-dates Meltwater Pulse 1A suggesting that its source region(s) are distal to areas where 

23 exposure age constraints on ice surface geometry exist. 
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36 1. Introduction 

37 Anthropogenic climate change is driving changes in the Antarctic Ice Sheets (AISs) which will be 

38 the largest contributors to future sea-level rise (IPCC, 2013). Present day measurements indicate 

39 that Antarctica is losing mass (Shepherd et al., 2012) and the rate of mass loss is increasing 

40 (Rignot et al., 2011; Velicogna et al., 2014; Harig and Simons, 2015; Shepherd et al., 2018). Most 

41 observed mass loss occurs as rapid changes to the major ice streams that drain the AISs 

42 (Shepherd et al., 2001; Pritchard et al., 2009; Flament et al., 2012; Joughin et al., 2014; Rignot et 

43 al., 2014; Scheuchl et al., 2016; Konrad et al., 2018). Modern observations can directly constrain 

44 the timing and rates of ice mass changes in Antarctica (Miles et al., 2013; Rignot et al., 2014; 

45 Konrad et al., 2018) and help identify the mechanisms that drive mass loss (De Angelis and 

46 Skvarca, 2003; Pritchard et al., 2012). However, they are limited to the last ~60 years for which 

47 satellite and direct observations exist, preventing modern rates being placed in a longer-term 

48 context. Palaeo-data can contextualise modern-day observations and provide a longer temporal 

49 record of the behaviour of the AISs (e.g. Bentley, 2010; Balco, 2011; Stokes et al., 2015). 

50 In recent years surface exposure dating (SED) using in situ terrestrial cosmogenic nuclides has 

51 contributed greatly to an improved understanding of the evolution of the AISs since the Last 

52 Glacial Maximum (LGM) (e.g. Ackert et al., 1999; Stone et al., 2003; Bentley et al., 2006; 

53 Mackintosh et al., 2007; Johnson et al., 2014; Balco et al., 2016). Given the general scarcity of 

54 ice-free areas and the fact that much of the ice sheet margin is marine based, studies that use 

55 SED to constrain the former lateral extent of ice are rare (cf. Joy et al., 2017). A more common 

56 approach involves dating erratic cobbles – glacially-transported rocks that have been deposited 

57 on nunataks as the ice sheet thinned – to constrain vertical changes in the AISs from the LGM to 

58 the present day: the so-called ‘dipstick approach’ (e.g. Ackert et al., 1999; Stone et al., 2003).

59 As an ice sheet thins, and assuming no prior exposure, cosmogenic exposure ages of erratic 

60 cobbles deposited on nunataks will get progressively younger as elevation decreases. This 

61 principle allows the past surface geometry of the ice sheet to be constrained by: 1) providing 

62 minimum constraints on the extent and timing of the maximum ice sheet surface elevation where 

63 a sample is from below said maximum, and 2) directly constraining past ice surface elevation 

64 (and timing) where the sample is from a setting that delimits the former ice sheet surface. 

65 Similarly, where samples are from progressively lower altitudes they provide an opportunity to 

66 constrain surface elevation change through time (Figure 1). Over relatively short time-scales (e.g. 

67 ~102 – 105 years) this ice surface elevation broadly defines ice thickness, given knowledge of bed 

68 elevation. An increasing number of studies have presented SED ages from vertical transects and 

69 some have used these data to reconstruct past rates of thinning. Thinning histories have been 

70 linearly extrapolated from cosmogenic exposure ages (e.g. Johnson et al., 2008; Bentley et al., 

71 2010) and modelled using Monte Carlo (MC) linear regression analysis (e.g. Johnson et al., 2014; 

72 Jones et al., 2015; Hein et al., 2016).  



73 Reconstructed thinning rates are important because they: 1) offer a dataset that can be used to 

74 assess the output of numerical ice sheet models, and 2) inform on processes that influence 

75 deglacial behaviour but are not currently operating or operate on timescales beyond the 

76 observational record. In this paper we present a dataset of reconstructed thinning rates, 

77 calculated from a collation of cosmogenic exposure ages from Antarctica that will be used in a 

78 future model-data comparison exercise. We use a consistent approach to quality control and 

79 calculation of thinning rates to allow direct comparison between the reconstructed rates. Our 

80 compilation of palaeo-thinning rates is compared to contemporary changes in the ice sheet to 

81 inform on potential drivers of past thinning. Finally, our approach allows us to place temporal 

82 constraints on thinning and we compare these to global sea-level change since the LGM. 

83

84 2. The utility of thinning rates for model-data comparison

85 Geological observations can be used to test the hindcasting abilities of numerical ice sheet 

86 models and improve future estimates of sea-level rise (Tarasov et al., 2012; Whitehouse et al., 

87 2012; Briggs and Tarasov, 2013; Lecavalier et al., 2014; Stokes et al., 2015). Traditionally, 

88 workers have compared ice sheet model outputs to point measurements that constrain ice sheet 

89 configuration at some time in the past (e.g. Briggs et al. 2014; Ely et al., in review). Undertaking 

90 such model-data comparisons requires a quantification of uncertainties associated with both ice 

91 sheet models and geological data (cf. Briggs and Tarasov, 2013). Models use simplifications of 

92 real-world physical processes to reconstruct ice sheet configuration and evolution in time. A 

93 modelled deglaciation chronology is the product of boundary conditions (e.g. basal sliding, bed 

94 topography, climate-ocean forcing, grid-resolution) imposed on that particular experiment; by 

95 adjusting parameters, model ensembles can explore the parameter space and quantify (to some 

96 degree) uncertainties on modelled deglaciation chronologies (Tarasov and Peltier, 2004; Briggs 

97 et al., 2014). Similarly geological data have uncertainties in both measurement and interpretation. 

98 These can be quantified through appropriate data reduction and laboratory procedures (e.g. 

99 Rood et al., 2013; Corbett et al., 2016) or through expert judgement (e.g. Hughes et al., 2016). 

100 However, geological processes introduce an implicit and often unquantifiable level of uncertainty. 

101 This can stem from i) factors that could affect the measured property prior to sampling, which 

102 workers have little control over, and ii) the strength of the geological association between the 

103 material that is being dated and the event of interest. This ‘geological uncertainty’ (cf. Small et al., 

104 2017) requires that geochronological data undergo some form of quality control before further use 

105 (Blockley et al., 2008; Graf, 2009; Small et al., 2017).  

106 In continental-scale model-data comparisons the spatial distribution and contiguity of geological 

107 data is fundamentally different to ice sheet model output (Ely et al., in review). Ice sheet models 

108 produce spatially and temporally continuous outputs for the model domain, albeit at a defined 

109 spatial (grid cell) and temporal (time-step) resolution. Conversely geological data usually 



110 represent point measurements in space and time that, providing the data point is accurate, 

111 constrain ice sheet configuration (e.g. ice free vs. ice covered). The disparity in scale requires 

112 point data constraints be assumed to represent the configuration of the ice sheet for the entirety 

113 of the grid cell to which the data have been assigned. This may be unrealistic when many 

114 ‘dipstick’ measurements occur in regions of complex topography, rather than a smooth ice sheet 

115 surface. One approach to bridge this gap is to spatio-temporally interpolate geological data. For 

116 lateral ice sheet margins this can be done by creating isochrones of ice margin positions (Clark et 

117 al., 2012; Bentley et al., 2014; Hughes et al., 2016) or through a Bayesian approach to modelling 

118 geochronological data that produces deglacial ages and age uncertainties along a reconstructed 

119 flowline (Chiverrell et al., 2013; Small et al., 2018). For changes in ice sheet surface elevation, 

120 vertical transects of geochronological data provide constraints on timing and rates of ice sheet 

121 thinning. 

122 The potential to compare ice sheet model output to rates of change, specifically thinning rates in 

123 this case, has advantages over individual measurements. Firstly, where a rate is reconstructed 

124 using single nuclide SED, the derived rate will be broadly insensitive to systematic uncertainties 

125 which should affect all samples within a transect proportionally. Additionally, in Antarctica scaling 

126 uncertainties relating to solar modulation are minimal, however, care should be taken when 

127 comparing rates that are integrated over different timescales (e.g. mid-Holocene vs. post-LGM 

128 period) as these may be biased by temporal averaging of the datasets that underlie the scaling 

129 model. That said, (dis)agreement between a reconstructed rate and modelled rates (n.b. not the 

130 precise timing of thinning) remains a robust comparison even in the event of future refinements in 

131 the dating technique. This is important where models simulate retreat at different times to 

132 geological data, sometimes due to uncertainties in forcing data such as climate input. In the case 

133 of point measurements, if the age changes by a given amount the data-model agreement/misfit 

134 will also change by a correlated amount. Specifically, this may change the absolute agreement 

135 such that model output(s) that were previously conformable with observations are now 

136 incompatible. Another advantage is that a thinning rate can be reasoned on glaciological grounds 

137 to be representative of ice sheet change on scales similar to, and greater than, the grid resolution 

138 commonly used in modelling experiments of ice sheet evolution since the LGM (Mackintosh et al., 

139 2011; Golledge et al., 2012; DeConto and Pollard, 2016).For example, longitudinal stress-

140 coupling allows perturbations that increase mass flux through the grounding line, such as thinning 

141 and/or disintegration of buttressing ice shelves, to result in rapid propagation of dynamic thinning 

142 inland at distances of >100 km (Pritchard et al., 2009; Wingham et al., 2009; Reese et al., 2018). 

143 Despite these advantages the use of thinning rates for model-data comparison requires that the 

144 derived rate be a robust approximation of the past rate of change. This requires 1) Identification 

145 and removal of data points whose apparent exposure age does not accurately reflect the true age 

146 of deglaciation at a given altitude, and 2) A means of calculating a thinning rate that accounts for 

147 reported uncertainties in the remaining data set. 



148

149 3. Methods

150 We surveyed the online ICE-D Antarctica database (http://antarctica.ice-d.org/: census date: 

151 November 2017) and extracted previously published data (10Be and 26Al) from sites where 

152 exposure ages are < 25 ka and span a suitable altitudinal extent (>50 m) or were inferred by the 

153 original authors to constrain thinning (Figure 2; supplemental Table S1). We consider this 

154 appropriate as the AISs are likely to have been at, or very near to, their maximum extent at 25 ka 

155 (Clark et al., 2009; Bentley et al., 2014). The input file(s) for all sites are included in the 

156 Supplemental Data Table S2. We re-calculated the ages using the input data contained within 

157 ICE-D using v3 of the CRONUS-Earth online calculators (https://hess.ess.washington.edu/). All 

158 ages were calculated assuming zero erosion. Densities (2.20 - 2.94 g cm-3) are taken from the 

159 original publications as per the ICE-D database. We present ages calculated using the Lal-Sato-

160 Dunai nuclide-specific (LSDn) scaling scheme (Lifton et al., 2014). Given that subsequent 

161 analyses utilise the external uncertainties and 2σ internal uncertainties our results are insensitive 

162 to choice of scaling scheme or density value. 

163 As a first-order quality control criterion we excluded ages with discordant (i.e. the apparent 

164 exposure ages do not overlap within their respective uncertainties) 26Al/10Be ages as this 

165 suggests a complex exposure history. Ages from samples currently emerging from ice or located 

166 on present day blue ice moraines were not used to reconstruct thinning rates as the relationship 

167 between these exposure ages and the thinning represented by ages from clasts deposited on the 

168 flanks of nunataks is not clear (cf. Hein et al., 2016). These ages were however used to constrain 

169 the minimum age of cessation of thinning where possible (i.e. Marble Hills and Patriot Hills). We 

170 acknowledge that this approach may lead to exclusion of a small amount of potentially useful 

171 data but consider it appropriate given the broad scale of our study and the future implementation 

172 of the derived dataset. 

173 We did not attempt to reconstruct thinning rates from sites with fewer than four exposure ages as 

174 a low number of samples reduces confidence in the subsequent identification of outliers. To 

175 maximise the data available we combined data-sets where exposure ages were inferred to 

176 constrain thinning but quantified rates had not previously been reported. One issue that arises 

177 from combining sites that extend for several km in an along-flow direction is that distal samples 

178 that were exposed simultaneously can occur at different altitudes (Spector et al., 2017). Three of 

179 our combined sites (Figure 2, Table 1; Sites 11 - 13) had elevations normalised with respect to 

180 the modern ice surface, and an elevation projection (cf. Spector et al., 2017) was not required. 

181 The other combined site (Figure 2, Table 1; Site 22) has no current glacier from which to extract a 

182 gradient, hence we assumed a low gradient of 0.01 for the elevation projection. Projection 

183 introduces a degree of altitudinal uncertainty, however, given the limited amount of data to which 

184 this approach was applied, and the fact that the results are to be used as a first order comparison 

http://antarctica.ice-d.org/
https://hess.ess.washington.edu/


185 to model output, we consider this acceptable. In one case (Mackintosh et al., 2007) the relatively 

186 large distances between individual sites (>10 km) meant we could not confidently project altitudes 

187 and thus did not include these data in further analyses. To calculate thinning rates for all other 

188 sites we used normalised elevations where these were reported and raw elevations above sea 

189 level where they were unreported. In total we present 25 thinning rates from 23 sites (Figure 2, 

190 Tables 1 and 3).  The regressed exposure ages and elevations are included in supplemental 

191 Table S3.

192

193 3.1 Bayesian Outlier detection

194 Older and higher samples should be exposed by ice surface lowering before the lower samples. 

195 This age-elevation relationship can be used to reduce the uncertainties of exposure ages (Jones 

196 et al., 2015) but such an approach also allows outliers to be identified using OxCal v4.3 (Bronk 

197 Ramsey, 2017; https://c14.arch.ox.ac.uk/oxcal/OxCal.html). The independent age measurements 

198 were arranged into a relative order of exposure; the prior model (Buck et al., 1996; Bronk 

199 Ramsey, 2008, 2009a), and assigned an initial probability (prior probability) of being an outlier in 

200 time (t-type outlier cf. Bronk Ramsey, 2009b). The outlier model calculates a subsequent 

201 probability (posterior probability) for a given measurement being an outlier. In practice the prior 

202 model contains a series of independent age probability distributions (SED ages) that are often 

203 overlapping. Bayesian age modelling in OxCal v4.3 uses Markov Chain Monte Carlo sampling to 

204 assess the conformability of the age measurements and produce a model output of refined age 

205 distributions. Where the refined age distribution of a given sample does not overlap with its un-

206 modelled initial age distribution the posterior probability of the sample being an outlier will 

207 increase (Figure 3). We assigned each age measurement a low prior probability of being an 

208 outlier of 0.05 (i.e. 1 in 20). OxCal produces a model agreement index (A) with 60 being the 

209 commonly-adopted threshold value (Bronk Ramsey, 2008). If A > 60 then samples with an outlier 

210 posterior probability >0.5 (i.e. more likely to be an outlier than not (Bronk Ramsey, 2009b)) were 

211 excluded from further analysis. If A < 60 then the model was re-run iteratively, increasing the prior 

212 probabilities (i.e. down-weighting) of samples whose posterior > prior, until an acceptable A index 

213 value was obtained (Figure 4). 

214 We used the “general” outlier definition within the Sequence model of OxCal (Bronk Ramsey, 

215 2009a), which uses a student’s t-distribution to define how outliers are distributed, and a 

216 timescale of 100-104 years (i.e. a sample may be an outlier by a few years or by many thousands 

217 of years). The Sequence model only requires samples to be in a stratigraphic order and it uses a 

218 uniform prior (Bronk Ramsey, 2009a). This essentially assumes a linear interpolation between 

219 dates akin to a linear sedimentation rate within a sedimentary sequence. The relatively large 

220 uncertainties associated with exposure ages preclude identification of variable thinning rates 

221 between individual samples. Where there is some constraint on the timing of maximum ice 

https://c14.arch.ox.ac.uk/oxcal/OxCal.html


222 surface elevation, such as samples from a high lateral moraine or above a weathering limit, we 

223 imposed a Boundary between those samples and the samples that are inferred to constrain 

224 thinning to account for any potential abrupt shift in the rate of change. In some cases, where 

225 there was a significant temporal gap between vertically adjacent samples, a Boundary was 

226 required to obtain a conformable model. Bayesian outlier detection was undertaken on 10Be ages 

227 only. Given that the 26Al/10Be nuclide pair cannot discriminate short (i.e. 103 – 104 years) periods 

228 of complex exposure on the timescales we are interested in we do not think it is appropriate to 

229 weight our Bayesian outlier detection to the limited number of samples where paired 26Al/10Be 

230 analyses are available. In total only 43 26Al analyses pass our age screening criteria thus we do 

231 not consider that our results would be sensitive to their inclusion. All model outputs are included 

232 in supplemental data.

233

234 3.2 Monte Carlo Linear Regression

235 MC linear regression analysis was undertaken using a MATLAB® model (Jones et al., 2015; 

236 Jones et al., in review) that is based on the general approach of Johnson et al. (2014). Thinning 

237 rates are generated from 5000 iterations through randomly sampled points using 2σ internal 

238 uncertainties. Regressions that produce a reverse slope are excluded as implausible. The model 

239 outputs the 68% and 95% ranges of thinning rates, the ‘best-fit’ thinning rate, the median thinning 

240 rate, and a histogram of modelled rates. Thinning rates were calculated using 10Be exposure 

241 ages that produced a conformable Bayesian sequence and were not flagged as outliers (see 

242 Section 3.1). Where vertical transects were punctuated by boundaries we estimated thinning 

243 rates based on the longest continuous sequence of exposure ages between individual 

244 boundaries. For consistency we calculated thinning rates from 10Be exposure ages only. 

245 Examples of the model output are shown in Figure 5 and all model outputs are included in 

246 supplemental data.

247

248 4. Results

249 All transects yielded Bayesian sequences with acceptable A indices after exclusion (or suitable 

250 down-weighting) of samples flagged as being potential outliers (Table 2). In general the number 

251 of samples excluded represents a small proportion of the total compilation and in all but one case 

252 (Thomas Hills) the number of excluded samples is <50%. Bayesian outlier analysis identifies 

253 outliers on the basis that their posterior age probabilities are not conformable within a continuous 

254 sequence representing progressive thinning. It does not differentiate between samples that are 

255 “too old” and samples that are “too young”., Assessing the relative likelihood of processes that act 

256 to make an age “too young” or “too old” is best carried out by the field workers. As we compiled 

257 previously published datasets we cannot make that appraisal. Considering this fact, and to retain 



258 objectiveness and reproducibility, we did not manually re-introduce ‘young’ erratics flagged as 

259 outliers into the MC analysis that produced the thinning rates presented in Table 3. In total 6 

260 samples from 5 transects were excluded as being ‘too young’ (Table 6).

261 The modelled thinning rates obtained by the MC approach outlined here are summarised in 

262 Figure 6 and Table 3. Thinning rates range from 0.01 – 6.41 m yr-1 (1σ; 68%) and 0.02 – 37.72 m 

263 yr-1 (2σ; 95%) with best fit thinning rates ranging from 0.02 – 1.67 m yr-1 and median rates ranging 

264 from 0.02 – 1.57 m yr-1. For ease of discussion we quote the ‘best-fit’ rate when outlining rates 

265 from individual sites as this metric best illustrates contrasts in rate. At two sites, Pourquoi-Pas 

266 Island and Thomas Hills, the ‘best-fit’ regression produced a negative slope and is not reported. 

267 For these sites we instead use the median rate while acknowledging that the exposure age data 

268 implies a potentially much higher rate of thinning. 

269 The results from transects that have previously been used by other authors to calculate thinning 

270 rates are somewhat comparable to these previously published rates (Table 4) with notable 

271 exceptions of Mount Moses (Figure 2, Site 10; Johnson et al., 2014), Low Ridge (Site 5; Jones et 

272 al., 2015), and the Marble Hills (Site 14; Hein et al., 2016). For Mount Moses and Low Ridge this 

273 is because the samples are in age stratigraphic order and, as per our protocol, thinning rates 

274 were calculated from all samples. The original studies identified a change in thinning rate, and 

275 calculated their rate from the uppermost samples that defined the period of more rapid thinning. 

276 For comparison we also calculated thinning based on these upper samples and obtained a 

277 similar rate (Table 4). These values are included in Table 3 as alternative thinning rates from 

278 Mount Moses and Low Ridge. Given the close agreement between the higher rates and those 

279 from neighbouring sites - Maish Nunatak (Figure 2, Site 9), and Mount Suess/Gondola Ridge 

280 (Site 3) - we use the rapid thinning rates in further discussions. For the Marble Hills (Site 14) our 

281 best-fit rate is somewhat lower (0.08 m yr-1) than the rate quoted by Hein et al. (2016) (0.21 m yr-

282 1). This is because we combined all samples from the Marble Hills (Bentley et al., 2010; Hein et 

283 al., 2016) and, on the basis of our approach to outlier detection and removal, our rate is 

284 calculated from a different sub-set of these samples compared with the rate of Hein et al. (2016). 

285 When we used only the same samples we obtained a similar rate of 0.28 m yr-1.

286 Both Bayesian and MC analyses provide estimates of the timing of thinning onset and cessation 

287 (Table 5). As the thinning rates discussed in this paper are derived from the MC analysis the 

288 discussion regarding timings of thinning focuses on the MC derived estimates. It is important to 

289 note that the estimates of thinning onset/cessation are maximum and minimum constraints 

290 respectively. As identified by previous studies (e.g. Bentley et al., 2017; Johnson et al., 2014; 

291 Jones et al., 2015; Hein et al., 2016) widespread thinning occurs during the Holocene at 

292 numerous locations throughout East and West Antarctica. The earliest onset of thinning at c. 12 

293 ka occurs in the Ross Sea region of the Transantarctic Mountains (Mount Hope (Figure 2, Site 1) 

294 and Mount Rigby/Karo (Site 2); Spector et al., 2017). At the other sites thinning onset is focussed 



295 in the early to mid-Holocene. The latest inferred onset of thinning occurs at c. 3 ka at Mount Rea 

296 (Figure 2, Site 16); Stone et al., 2003), although early Holocene thinning onset is also recorded at 

297 nearby sites; Mount Darling (Site 17) and Mount Valkenburg (Site 18; Stone et al., 2003). The 

298 transect locations, reconstructed rates and modelled onset/cessations are combined and 

299 included as supplementary Table S4.

300

301 5. Discussion

302 5.1 Considerations when using MC analysis to model thinning rates

303 Bayesian outlier analysis identifies outliers on the basis that their posterior age probabilities are 

304 not conformable within a continuous sequence representing progressive thinning. It does not 

305 differentiate between samples that are “too old” and samples that are “too young”. In total 6 

306 samples from 5 transects were excluded as being ‘too young’. (Table 6). The specific effect of 

307 manually inserting these ‘outliers’ depends on their location within the vertical transect and the 

308 number of other samples considered in the regression analysis. A linear regression line intersects 

309 with the mean of the predictor and response variables. Consequently, if a predictor value (i.e. 

310 elevation) is far from the mean then an extreme response value (i.e. young age due to transient 

311 shielding) will lead to a larger change in the regression slope (Figure 7; cf. Altman and 

312 Kryzywinski, 2016). The best fit thinning rate, defined by the regression slope, is thus most 

313 sensitive to extreme ages at the top and bottom of the vertical transect. In contrast, samples with 

314 extreme ages located near the mean of the elevation distribution have lower influence on the 

315 regression slope. 

316 This sensitivity to a sample’s elevation has some important implications. If a sample is 

317 conformable but is not an accurate exposure age due to undetected geological uncertainty it will 

318 influence the estimated thinning rates. For example, a small amount of inheritance within samples 

319 at the upper and lower limits of an elevation transect can act to reduce and increase the best-fit 

320 thinning rates respectively. In general transects with smaller numbers of samples, particularly 

321 where these are unevenly distributed in space and/or define monotonic thinning, are likely to be 

322 most sensitive to the effects of undetected geological uncertainty. This is well illustrated at 

323 Thomas Hills ( Figure 2, Site 12) where the samples are clustered towards the upper and lower 

324 ends of the transect and the modelled thinning rates – 1.57 m yr-1 (median); 0.36–37.72 m yr-1 

325 (95% range) – are the highest and most widely distributed in our compilation. It is notable that 

326 these rates are significantly higher than those from nearby sites (Williams Hills (Figure2, Site 11), 

327 Mount Harper/Bragg (Site 13)). This may reflect site specific conditions, such as a particularly 

328 extreme windscoop or local flow re-organisation, or alternatively the Thomas Hills data set may 

329 be influenced by geological uncertainty. Specifically, if inheritance was prevalent in the lower-

330 most samples, but to an extent that did not make samples unconformable, then this geological 

331 uncertainty would be undetected by our analysis. Ideally, multiple samples from similar elevations 



332 would allow outliers to be identified using statistical approaches (e.g. Balco, 2011; Jones et al., in 

333 review; Rinterknecht et al., 2006). However, there are numerous reasons why this may not be 

334 possible including adequate resources, lithology, sample availability, and restricted time on the 

335 ground.

336 Linear regression implicitly averages the rate of change over the period of observation and as 

337 such precludes identification of variations in the rate of thinning. For many sequences the scatter 

338 of exposure ages and their inherent uncertainties (even after identification and removal of 

339 outliers) may make identification of such variations in thinning rate exceedingly difficult. However 

340 for more coherent sequences of exposure ages, particularly those that span longer timeframes 

341 (e.g. Spector et al., 2017), there may be useful information regarding the timing of changes in 

342 thinning rate if they can be identified. Johnson et al. (2014) used a two-segment, piecewise 

343 regression for the Mount Moses data-set to define a change in the thinning rate implied by a 

344 distinct break in slope in a simple linear interpolation between the exposure ages. This approach 

345 relies on such a break of slope being identifiable, which may not always be the case. A potential 

346 alternative approach to account for temporal changes in thinning rate is to use a time-dependent 

347 statistical model in a similar way to approaches employed in reconstructing rates of sea-level 

348 change (e.g. Cahill et al., 2015; Kemp et al., 2017; Khan et al., 2015). Examining residual plots 

349 from a simple linear regression is one potential means to identify transects where time variable 

350 rates may be appropriate. Subsequently, a spline-based model could allow continuous and 

351 dynamic evolution of thinning rate changes to be estimated (Jones et al., in review). 

352

353 5.2 Discussion of reconstructed palaeo-thinning rates

354 5.2.1 Comparison to modern thinning rates

355 Modern rates of ice surface changes in Antarctica are primarily quantified through satellite 

356 observations, specifically satellite altimetry (c.f. Shepherd et al., 2018) and whilst some areas are 

357 thinning, the rates are highly variable, with some parts of Antarctica showing little change or even 

358 thickening (Pritchard et al., 2009; McMillan et al., 2014). Additionally, the spatial scale over which 

359 rates are quantified is also variable with some rates being presented as basin averages while 

360 others are more limited in space (e.g. thinning rates close to a grounding line). We compiled a 

361 number of published thinning rates for comparison to the reconstructed palaeo-rates. This is not 

362 an exhaustive compilation of modern rates but is intended to show the range of reported rates 

363 from satellite observations.

364 Overall, the modelled palaeo-thinning rates are generally lower than modern thinning rates 

365 measured by satellite altimetry although notably there is some overlap in the ranges (Figure 8 

366 and Table S1). Specifically, the overlap occurs in those palaeo-observations that correspond to 

367 centennial observation intervals which have a similar range to modern (annual to decadal) rates. 



368 Palaeo-rates that are derived from exposure ages that span longer (>103 years) observation 

369 intervals are lower. There are a couple of potential explanations for this pattern. Modern 

370 observations demonstrate that thinning is focused in the central portions of ice streams (e.g. 

371 Shepherd et al., 2001; Wingham et al., 2009). In the case of Pine Island Glacier, the rates of 

372 thinning within the main trunk of the ice stream and the average for the entire drainage basin 

373 differ by an order of magnitude (>2m yr-1 vs 0.11 m yr-1; Wingham et al., 2009). This difference is 

374 driven by lower rates of thinning in areas of slow flow (Wingham et al., 2009). These areas 

375 correspond to areas of ice overlying topographic/bedrock highs between faster flowing ice 

376 corridors. The fast flowing areas generally correspond to deeper subglacial troughs where ice 

377 flow is accelerated by basal sliding and lateral drag is minimal (Stenoien and Bentley, 2000; 

378 Shepherd et al., 2001). The SED data used to reconstruct palaeo-thinning rates are, by 

379 necessity, collected from topographic bedrock highs as these form the exposed rock areas 

380 required for applying the technique, potentially explaining the general lower thinning rates 

381 reconstructed in the past.

382 Another potential explanation relates to the disparity in temporal sampling resolution between 

383 modern observations and palaeo-data. Modern observations span the last couple of decades with 

384 thinning rates often calculated from a few years of data so, on geological timescales, these 

385 represent point measurements. Conversely, palaeo-rates are reconstructed from data that span 

386 100’s to 1000’s of years and these rates represent a time-averaging of thinning rates that likely 

387 varied to be both faster and slower than the long-term average. It is implicit that high rates of 

388 dynamic thinning cannot be maintained at any location over long (103) timescales and are 

389 relatively short-lived events, an inference reflected by the fact that the highest paleo-rates 

390 correspond to sites where the data span a relatively shorter period of time (Figure 8). As dynamic 

391 thinning progresses the spatial pattern changes (cf. Shepherd et al., 2001; Wingham et al., 2009). 

392 A given location will experience different flow regimes as the drainage basin evolves through time 

393 due to retreat/stabilisation of the grounding line, ice divide migration etc. This may be a potential 

394 explanation for any sites where variable rates of thinning can potentially be identified and 

395 quantified. A thinning rate reconstructed from a given location not only represents an average 

396 through time but also a quasi-spatial average. That is, over long timescales a thinning rate will be 

397 more reflective of the basin average than of the higher measurements of thinning within the main 

398 glacier trunk. The lower rates reconstructed in the past may therefore, at least partially, reflect an 

399 averaging effect.

400 The overlap of modern and palaeo-rates suggests that modern rates of thinning may be 

401 consistent with those that occurred during the Holocene in various parts of Antarctica. 

402 Importantly, the overlap at centennial timescales implies that dynamic thinning, once initiated, can 

403 be sustained for hundreds of years. This implication was previously highlighted by Johnson et al., 

404 (2014) for the Pine Island Glacier catchment (Figure 2, Sites 9 and 10) but it may be speculated 



405 that the potential for centennial scale thinning and associated grounding line retreat may be 

406 pervasive across Antarctica. 

407

408 5.2.2 Spatial and temporal patterns of thinning rates and potential implications

409 Sites with the highest inferred palaeo-thinning rates are located in the Amundsen Sea sector of 

410 West Antarctica (Maish Nunatak and Mount Moses) and the Antarctic Peninsula (Pourquoi-Pas 

411 Island; Figure 9). These are both locations where modern observations record rapid changes in 

412 ice surface geometries. In the Amundsen Sea sector satellite observations record contemporary 

413 thinning rates of 1 - >4 m yr-1 within the trunk of Pine Island Glacier (e.g. Wingham et al., 2009; 

414 Park et al., 2013) with comparable rates from nearby Thwaites Glacier (Shepherd et al., 2002; 

415 Pritchard et al., 2009). In the Antarctic Peninsula thinning of outlet glaciers has been observed in 

416 connection with the thinning and breakup of buttressing ice shelves with rates ranging from c.1.5 

417 - 3 m yr-1 (Wouters et al., 2015; Friedl et al., 2018) to >10 m yr-1 (Rignot et al., 2004; Scambos et 

418 al., 2004).

419 In the Amundsen Sea the primary driver of ice shelf thinning is inferred to be oceanic with 

420 increased influx of warm Circumpolar Deep Water (CDW) at depths exceeding 300 m driving 

421 increased melting in the sub-ice shelf cavity (Rignot and Jacobs, 2002; Jenkins et al., 2010; 

422 Jacobs et al., 2011). This process has been cited as the driver of contemporary thinning across a 

423 wide swathe of the West Antarctic margin (Pritchard et al., 2012). In the Antarctic Peninsula rising 

424 air temperatures have been correlated with the breakup of fringing ice shelves (Vaughan and 

425 Doake, 1996) but other studies have invoked oceanic forcing as the primary driver of melting (e.g. 

426 Wouters et al., 2015). Although a contribution from atmospheric forcing is likely, the widespread 

427 extent of contemporary thinning, even in areas where atmospheric forcing is insignificant, points 

428 to the ocean as a primary driver of the observed changes. Under this assumption the correlation 

429 in the locations of the high modelled palaeo-thinning rates and the highest observed modern 

430 rates is notable and suggests that a common oceanic forcing could have been prevalent during 

431 deglaciation (cf. Smith et al., 2007; Hillenbrand et al., 2017) although the influence of trough 

432 geometry is also likely to play a key role in determining the absolute magnitude of thinning 

433 (Jamieson et al., 2014; Jones et al., 2015). That said, for rapid thinning to occur requires an initial 

434 driver before the positive feedback influences of reverse bed slopes and/or deep troughs are fully 

435 engaged. Notably, Pourquoi-Pas Island (Figure 2, Site 11), where thinning may have been rapid 

436 – as implied by the negative slope of the best-fit regression – is located on the western margin of 

437 the Antarctic Peninsula which is thought to be particularly sensitive to changes in the Antarctic 

438 Circumpolar Current and associated influxes of CDW (Bentley et al., 2009). Additionally, there is 

439 evidence of southward penetration of warm CDW waters during the early-mid Holocene from 

440 sediment cores in Palmer Deep (Leventer et al., 2002) and Pine Island Bay (Hillenbrand et al., 

441 2017). This presence of warm water coincides broadly with the modelled timing of thinning 



442 around Pine Island Glacier at 8.5–7.5 ka (cf. Johnson et al., 2014). Given the indications that 

443 CDW was present in the Amundsen and Bellingshausen Seas during the earliest Holocene 

444 (Hillenbrand et al., 2017; Peck et al., 2015) it can be speculated that the rapid thinning at 

445 Pourquoi-Pas Island was potentially related to grounding line retreat and/or a decrease in 

446 buttressing from fringing ice shelves at c.11.6 ka. This timing is broadly co-incident with marine 

447 foraminiferal records and radiocarbon ages that constrain initial outer shelf deglaciation of the 

448 Marguerite Bay Ice Stream at c.13 ka, with retreat of grounded ice from the inner portion of 

449 Marguerite Bay more proximal to Pourquoi-Pas Island by c.9.5 ka (Heroy and Anderson, 2007; 

450 Kilfeather et al., 2011).

451 The two sites on the eastern Antarctic Peninsula have lower modelled thinning rates than PQP on 

452 the western Antarctic Peninsula. While we cannot completely exclude the possibility that these 

453 differences reflect effects of sampling resolution the sites span a comparable altitudinal range 

454 and do not exhibit any evidence for a significant step change in thinning rate. Consequently, while 

455 acknowledging that the data points are limited, we suggest that the difference in modelled 

456 thinning rates represents a real difference between the eastern and western Antarctic Peninsula. 

457 This may reflect a reduced influence of CDW on the eastern side of the Antarctic Peninsula (cf. 

458 Hodgson et al., 2006; Bentley et al., 2009) leading the ice shelves in this area to be more resilient 

459 and preserving their buttressing effect. Additionally, there is a difference in the timing of thinning 

460 onset between the western and eastern Antarctic Peninsula sites. This is consistent with previous 

461 suggestions of earlier deglaciation on the west side compared with the east (Evans et al., 2005; 

462 Ó Cofaigh et al., 2005; Hodgson et al., 2006; Bentley et al., 2009). However, given the limited 

463 amount of data, these observations remain speculative and further studies on early Holocene 

464 glacier evolution in the Antarctic Peninsula are required to further elucidate the controls on 

465 deglaciation.

466 Broadly, palaeo-thinning rates in the interior parts of the Weddell and Ross Sea sectors are lower 

467 than the rates observed at sites more proximal to the ocean (with the notable exception of the 

468 Thomas Hills – discussed in section 5.1). This is evident in the Ross Sea sector where rates 

469 decrease as latitude increases.  Modern observations demonstrate that dynamic thinning occurs 

470 at higher rates closer to the grounding line. For example on Pine Island Glacier thinning rates, as 

471 measured by in situ GPS, decrease from 3.65 m yr-1 at a distance of 55 km from the grounding 

472 line to 1.05 m yr-1 at 171 km from the grounding line (Scott et al., 2009). The interior 

473 Weddell/Ross Sea sites where palaeo-thinning is recorded would have been located further from 

474 the grounding line as it retreated following the LGM (cf. Bentley et al., 2014) and were likely less 

475 susceptible to rapid thinning. Additionally, these inner sites have likely retained the buttressing of 

476 the Ronne-Filchner and Ross Ice Shelves throughout much, if not all, of the Holocene. 

477 At all sites thinning is focused in the Holocene (cf. Hein et al., 2016; Spector et al., 2017). In the 

478 Ross Sea sector there is a complex temporal and spatial pattern of thinning onset. The earliest 



479 modelled onset occurs at sites 1 and 2, (Beardmore and Shackleton Glaciers; cf. Spector et al., 

480 2017) where thinning begins at c. 12 ka. Further to the south, sites 6-8 evidence thinning onset 

481 after 10 ka. Earlier thinning onset at more northerly sites could be inferred to reflect a general 

482 North–South migration of the grounding line (cf. Conway et al., 1999; Ackert, 2008) with 

483 concomitant reduction in buttressing stresses first affecting more northerly sites. However, this 

484 simple scenario does not account for the later onset of thinning at c. 7 ka at Mackay Glacier (cf. 

485 Jones et al., 2015). Recent studies have proposed a more complex model of Ross Sea Basin 

486 deglaciation that accounts for bathymetry and incorporates early deglaciation of the central Ross 

487 Sea Basin and an early Holocene readvance of East Antarctic outlet glaciers (Halberstadt et al., 

488 2016; Lee et al., 2017). It may be that the later thinning of Mackay Glacier relates to retreat from 

489 this readvance rather than early Holocene deglaciation of the central Ross Sea. The complexity 

490 in the temporal pattern of thinning is also observed at sites 16-19 (Figure 10; Stone et al., 2003), 

491 where thinning begins at different times between 9 ka and 3 ka within a relatively restricted 

492 geographical area. Within the Weddell Sea sector the onset of thinning ranges from 9.4 – 7.4 ka 

493 in the Ellsworth Mountains (Figure 10, sites 14 and 15; Bentley et al., 2010; Hein et al., 2016) and 

494 8.7 – 5.8 ka in the Pensacola Mountains (Figure 10, sites 11-13; Balco et al., 2016; Bentley et al., 

495 2017). Importantly, the geological data do not directly evidence a single common forcing for 

496 thinning as they record thinning occurring in different places at different times. Instead the data 

497 highlight a complex response of the AISs to external forcing factors. This response was likely 

498 influenced by internal feedbacks, such as trough geometry, resulting in temporal variability in 

499 thinning onset during deglaciation. 

500 Despite this complexity the overall timing of thinning does allow some inferences to be drawn 

501 regarding Antarctica’s contribution to sea-level rise during the last deglaciation. Firstly, as noted 

502 above, all sites evidence thinning commencing from the early Holocene onwards (Figure 11).   

503 Antarctica has been proposed as a major contributor to Meltwater Pulse 1A (MWP-1A) (Clark et 

504 al., 2002; Weber et al., 2014), a eustatic sea-level rise of >10 m dated to 14.7-14.3 ka 

505 (Deshcamps et al., 2012). No thinning rate sites have MC estimates of thinning onset that overlap 

506 with the timing of MWP-1A (Figure 11), with thinning focused in the Holocene at all sites (cf. Hein 

507 et al., 2016; Spector et al., 2017). While acknowledging that the MC estimates of thinning onset 

508 are minimum ages it may be expected that, if thinning was ongoing at these sites during MWP-

509 1A, then at least some of the thinning onset ages would overlap or pre-date this time. Notably, at 

510 sites with constraints on maximum ice elevation (e.g. weathering limit or moraine) such as those 

511 in the Ellsworth Mountains (Bentley et al., 2010; Hein at al., 2016), Prince Charles Mountains 

512 (White et al., 2011), and the Transantarctic Mountains (Todd et al., 2010; Jones et al., 2015), 

513 thinning onsets, as constrained by the Bayesian boundary ages, also significantly post-date 

514 MWP-1A. It is important to emphasise that the current absence of evidence is not evidence of 

515 absence and an Antarctic contribution to MWP-1A could be sourced from areas of Antarctica 

516 without suitable SED data (e.g. most of East Antarctica, or the central Ross Sea/Weddell Sea 



517 embayments). However the evidence presented here accords with recent studies that have not 

518 identified the potential Antarctic sources of MWP-1A from terrestrial studies using SED (Bentley 

519 et al., 2014; Spector et al., 2017).

520 Finally, some data-constrained models have Antarctica’s contribution to deglacial sea-level rise 

521 continuing into the Holocene (Mackintosh et al., 2011; Argus et al., 2014; Briggs et al., 2014). Our 

522 compilation, while including some of the said data constraints, also includes newly available data 

523 not used in those models. All available SED sites with constraints on Antarctic thinning since the 

524 LGM currently suggest that the majority of mass loss from these sectors occurred during the 

525 Holocene, with widespread thinning occurring in the mid-Holocene (Figure 11). This timing of 

526 mass loss is also consistent with estimates of the timing of Antarctic deglaciation derived from 

527 far-field eustatic sea-level records (Mauz et al., 2015). 

528  

529

530 6. Conclusions

531 We have compiled exposure ages from a total of 23 sites around Antarctica that constrain, or 

532 have the potential to constrain, past ice sheet thinning. By taking a consistent approach to quality 

533 control and modelling of past thinning rates we present an internally consistent data set for use in 

534 a forthcoming model-data comparison exercise. This is the first compilation of palaeo-thinning 

535 rates in Antarctica and provides an opportunity to compare the modelled rates to contemporary 

536 patterns and magnitudes of thinning. 

537 Thinning rates, as determined by MC linear regression analysis, are sensitive to the distribution of 

538 exposure ages, both in time and space. Consequently, sampling strategies can be designed to 

539 account for this with accurate constraints from the top and bottom of a transect being the most 

540 important for use in linear regression analysis. MC analysis can produce both ranges and single 

541 values (best fit, median) for past thinning rates. These values can be sensitive to, and are 

542 influenced by, the distribution of exposure ages within transects. Consequently, there remains a 

543 need to use some degree of subjective judgement, both in deciding which metric to use in model-

544 data comparisons, and in interrogating the data in the cases of disagreement.

545 When constrained over centennial timescales past rates of thinning are comparable to modern 

546 rates. This implies that modern thinning has the potential to be sustained for some time into the 

547 future. Palaeo-thinning rates are lower than modern observations when constrained on millennial 

548 timescales. This difference is potentially due to the locations of sampling sites within ice drainage 

549 basins and/or averaging effects when the periods of time over which past thinning rates are 

550 reconstructed are orders of magnitude greater than the length of modern observations. Notably 

551 the highest palaeo-rates of thinning occur in regions that are characterised by high rates of 

552 contemporary thinning, namely the Amundsen Sea and Antarctic Peninsula regions, suggesting 



553 that similar mechanisms to those that drive modern thinning may have operated in the past. Both 

554 the MC analysis and Bayesian outlier detection produce age estimates for the onset of past 

555 thinning. Although these constraints are usually minimum ages for thinning onset they all post-

556 date MWP-1A, and no transect has thinning occurring during MWP-1A (as constrained by the 

557 exposure ages). This suggests that any Antarctic contribution to this event may have been 

558 sourced from regions of the continent away from SED sites constraining thinning.

559
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901 Figure Captions

902 Figure 1. Schematic diagram illustrating how samples from vertical transects can constrain past 

903 ice sheet surface elevation and thinning. The left hand panels illustrate exposure ages from a 

904 vertical transect and the evolution of the ice sheet surface from the LGM (t0) to present. The right 

905 hand panels illustrate the concomitant evolution of a sample’s 10Be inventory under the scenarios. 

906 (A) The LGM ice sheet surface overtopped the uppermost sample which provides only a 

907 minimum constrain on ice sheet surface elevation. (B) The LGM ice sheet surface is below the 

908 uppermost surface and a sample (Sample B) from a lateral moraine constrains the timing and 

909 surface elevation of the LGM. In both scenarios thinning is constrained by samples with 

910 progressively lower concentrations of 10Be, which would yield progressively younger exposure 

911 ages. In scenario B the uppermost sample becomes saturated with 10Be.

912

913 Figure 2. Location map of Antarctica showing place names mentioned in the text and locations of 

914 transects where exposure ages are used to constrain past thinning rates. These are numbered as 

915 per Table 1. PIG = Pine Island Glacier, ThG = Thwaites Glacier, LG = Lambert Glacier, AmIS = 

916 Amery Ice Shelf, FIS = Filchner Ice Shelf, PIB = Pine Island bay, MB = Marguerite Bay. Base 

917 map is from Quantarctica GIS package compiled by the Norwegian Polar Institute 

918 (http://www.quantarctica.org/). 

919

920 Figure 3. Bayesian age model output from OxCal 4.3 (Bronk Ramsey, 2017) for a simple 

921 sequence of exposure ages from a vertical transect (Sample 1 being the uppermost sample). The 

922 measured age distributions are shown in light grey with refined age distributions in darker grey. In 

923 this example Sample 4 was flagged as an outlier. The Bayesian model produces a refined age 

924 estimate for all samples, however for our purposes these were not considered in the Monte Carlo 

925 analysis. The black bars represent 68% and 95% confidence intervals. The modelled age 

926 distributions for the boundaries (“top” and “bottom”) provide minimum and maximum constraints 

927 on thinning onset and cessation respectively.

928

929 Figure 4. Flow chart of the approach taken to detect outliers using OxCal 4.3. See text for further 

930 description.

931

932 Figure 5. Example output from the Monte Carlo linear regression analysis. Transects from; A) 

933 Mount Hope (Spector et al., 2017), and B) Maish Nunatak (Johnson et al., 2014) with resulting 

934 distribution of modelled thinning rates (C: Mount Hope, D: Maish Nunatak) at 68% (dashed 

935 vertical lines) and 95% (dotted vertical lines). Note the x-axis is logarithmic. Note that the Maish 



936 transect has a skewed distribution with a wider range of modelled thinning rates and a distinctly 

937 different median rate (red vertical line) vs. the ‘best-fit’ rate (blue vertical line).

938

939 Figure 6. Box and whisker plot summarising the modelled palaeo-thinning rates presented here. 

940 The box represents the 68% range, the whiskers represent the 95% range. The median thinning 

941 rate from the Monte Carlo analysis is shown with the target symbol, the ‘best fit’ thinning rate 

942 based on a linear regression through the mean values of the exposure ages is shown with the red 

943 diamond. Transect ID numbers are as per Table 3. Note that the y-axis is logarithmic.

944

945 Figure 7. The effect of extreme values on the gradient of a linear regression. (A) A hypothetical 

946 data-set of exposure ages showing a clear age-elevation trend. (B) The same data-set but with a 

947 younger exposure age from the middle elevation of the transect. (C) The same data-set as A but 

948 with a younger age from the bottom elevation of the transect. Note that the difference in ‘best fit’ 

949 thinning rates is greater for the second scenario.

950

951 Figure 8. Scatter plot of modern thinning rates (blue triangles) and palaeo thinning rates (red 

952 triangles) against the length of observations in years. For the palaeo-rates the duration of thinning 

953 is taken from the midpoints of the 95% modelled age distributions from the Monte Carlo linear 

954 regression analysis. Note that the axes are logarithmic. Triangles labelled a and b  are the 

955 thinning rates from Mount Moses and Low Ridge respectively as calculated using all exposure 

956 ages from each site  (cf. Johnson et al., 2014; Jones et al., 2015). 

957

958 Figure 9. Palaeo-rates of thinning (circles) are shown against modern thinning rates (Pritchard et 

959 al., 2009) and present day ocean temperatures at 500 m depth (Locarnini et al., 2013; data from 

960 Quantarctica GIS package). Base map is from Quantarctica GIS package compiled by the 

961 Norwegian Polar Institute (http://www.quantarctica.org/). 

962

963 Figure 10. Spatial distribution of the onset of thinning as inferred from the midpoint of the 95% 

964 modelled onset from the Monte Carlo linear regression analysis. Base map is from Quantarctica 

965 GIS package. 

966

967 Figure 11. Monte Carlo modelled age ranges (95%) for onset of thinning plotted alongside ice 

968 volume equivalent global sea-level changes (dark blue line: Lambeck et al., 2014) and a 

969 modelled Antarctic contribution to sea-level change (dark red line: Briggs et al., 2014). The timing 

http://www.quantarctica.org/


970 of meltwater pulse 1A (MWP-1A) is shown with the blue shading (Deschamps et al., 2012). 

971 Transects are numbered as per Table 1.



972 Table 1. Location information of sites from which thinning rates are presented. ID numbers are 

973 used in subsequent figures. Elevation range is difference in altitude of uppermost and lowermost 

974 samples.

Site Reference(s) ID 
No.

Latitude 
(DD)

Longitude 
(DD)

Elevation range 
(m)

Mount Hope Spector et al., 2017 1 -83.51 171.40 719

Mount Rigby/Karo Spector et al., 2017 2 -85.52 -154.52 727

Mount 
Suess/Gondola 
Upper

Jones et al., 2015 3 -77.04 161.64 208

Gondola (mid-lower) Jones et al., 2015 4 -77.00 161.76 61

Low Ridge Jones et al., 2015 5 -76.99 162.28 202

Reedy Glacier 
(Quartz Hills) Todd et al., 2010 6 -85.90 -132.57 160

Reedy Glacier (Pip's 
Peak) Todd et al., 2010 7 -85.43 -135.90 151

Reedy Glacier 
(Cohen’s Nunatak) Todd et al., 2010 8 -85.40 -136.20 104

Maish Nunatak Johnson et al., 2014 9 -74.59 -99.45 99

Mount Moses Johnson et al., 2014 10 -74.55 -99.20 141

Williams Hills Balco et al., 2016; Bentley et al., 2017 11 -83.68 -58.81 413

Thomas Hills Balco et al., 2016; Bentley et al., 2017 12 -84.38 -65.52 291

Mount Harper/Bragg Bentley et al., 2017 13 -84.07 -57.06 236

Marble Hills Bentley et al., 2010; Hein et al., 2016 14 -80.26 -82.13 485

Patriot Hills Bentley et al., 2010; Hein et al., 2016 15 -80.33 -81.49 247

Mount Rea Stone et al., 2003 16 -77.07 -145.57 572

Mount Darling Stone et al., 2003 17 -77.27 -143.33 227

Mount Valkenburg Stone et al., 2003 18 -77.31 -142.11 75

Fosdick Mountains Stone et al., 2003 19 -76.54 -144.50 225

Mount Stinear White et al., 2011 20 -73.04 66.42 323

Porquoi-Pas Island Bentley et al., 2011 21 -67.59 -67.26 266

James Ross Island Johnson et al., 2011; Glasser et al., 2014 22 -63.80 -57.83 198

Sjorden-Boydell Balco et al., 2013 23 -64.23 -59.02 319

975

976



977 Table 2. Summary of total number of samples, final OxCal Bayesian agreement index (A) and 

978 total number of outliers excluded from each site.

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

Site
No. of samples

Final Bayesian 

Aoverall

Outliers excluded

Mount Hope 28 62.5 4

Mount Rigby/Karo 21 124.1 0

Mount Suess/Gondola Upper 16 103.9 0

Gondola (mid-lower) 12 78 0

Low Ridge 10 123 1

Reedy Glacier (Quartz Hills) 25 64.6 10

Reedy Glacier (Pip's Peak) 7 108.7 0

Reedy Glacier (Cohen’s Nunatak) 5 104.8 0

Maish Nunatak 6 158.4 1

Mount Moses 6 62.9 0

Williams Hills 17 70.3 5

Thomas Hills 15 79.9 9

Mount Harper/Bragg 12 81 5

Marble Hills 28 81.1 12

Patriot Hills 11 119.5 3

Mount Rea 15 93.2 2

Mount Darling 5 103.3 0

Mount Valkenburg 4 103.8 0

Fosdick Mountains 5 107.7 0

Mount Stinear 12 90.3 2

Porquoi-Pas Island 6 132.8 1

James Ross Island 7 74.2 2

Sjorden-Boydell 9 121 0



998 Table 3. Summary of thinning rates presented from each site derived from Monte Carlo linear regression analysis. ‘Best-fit’ rates are not 

999 presented for two sites (Thomas Hills and Pourquoi-Pas Island) as at these sites the best fit linear regression gave a negative slope and is thus 

1000 rejected as physically implausible.

1001

Site ID No.
Min thinning rate 

(68%) m yr-1

Max thinning rate 
(68%) m yr-1

Min Thinning rate 
(95%) m yr-1

Max Thinning rate 
(95%) m yr-1

Best fit thinning 
rate m yr-1 Median rate

Mount Hope 1 0.14 0.20 0.13 0.24 0.17 0.17
Mount Rigby/Karo 2 0.06 0.07 0.06 0.08 0.06 0.06
Mount Suess/Gondola Upper 3 0.12 0.32 0.09 1.20 0.17 0.17
Gondola Mid-lower 4 0.07 0.49 0.04 3.16 0.57 0.15
Low Ridge (all) 5 0.03 0.03 0.02 0.04 0.03 0.03
Low Ridge (subset n=5) 5a 0.12 0.65 0.08 3.62 0.39 0.23
Reedy Glacier (Quartz Hills) 6 0.01 0.03 0.01 0.06 0.02 0.02
Reedy Glacier (Pip's Peak) 7 0.23 0.99 0.17 5.39 0.43 0.38
Reedy Glacier (Cohen’s Nunatak) 8 0.01 0.02 0.01 0.03 0.02 0.02
Maish Nunatak 9 0.19 1.24 0.12 7.09 1.16 0.38
Mount Moses (all) 10 0.06 0.12 0.05 0.21 0.08 0.08
Mount Moses (subset n= 3) 10a 0.24 1.52 0.15 10.19 1.67 0.49
Williams Hills 11 0.09 0.12 0.08 0.14 0.10 0.10
Thomas Hills 12 0.62 6.41 0.36 37.72 N/A 1.57
Mount Harper/Bragg 13 0.06 0.12 0.04 0.25 0.08 0.08
Marble Hills 14 0.06 0.09 0.06 0.12 0.08 0.08
Patriot Hills 15 0.05 0.08 0.04 0.11 0.06 0.06
Mount Rea 16 0.27 0.50 0.22 0.84 0.35 0.35
Mount Darling 17 0.04 0.05 0.04 0.05 0.04 0.04
Mount Valkenburg 18 0.02 0.03 0.02 0.03 0.02 0.02
Fosdick Mountains 19 0.08 0.09 0.08 0.09 0.09 0.09
Mount Stinear 20 0.20 1.19 0.13 6.86 0.76 0.38
Porquoi-Pas Island 21 0.25 1.81 0.16 12.35 N/A 0.53
James Ross Island 22 0.05 0.16 0.04 0.73 0.08 0.09
Sjorden-Boydell 23 0.08 0.09 0.07 0.10 0.08 0.08



1002 Table 4. Comparison of thinning rates presented here and rates presented in original studies.

1003

Reference Site Metric
Published 

rates (m yr-1)
This study (m 

yr-1) Notes

Hein et al., 2016 Marble Hills mean ± 1 s.d 0.21 ± 0.03 0.08 (median) 0.28 m yr-1 with samples 
used by Hein

Hein et al., 2016 Patriot Hills mean ± 1 s.d 0.07 ± 0.01 0.06 (median) -

Johnson et al., 
2014 Mount Moses 95% range 0.08 - 5.90 0.05 - 0.21

0.15 - 10.45 m yr-1 (95%) 
when using three upper 
samples (cf. Johnson et 
al., 2014)

Johnson et al., 
2014 Mount Moses best fit 1.67 0.08

1.67 m yr-1 (best fit) 
when using three upper 
samples

Johnson et al., 
2014 Maish Nunatak 95% range 0.13 - 5.50 0.12 - 7.09 -

Johnson et al., 
2014 Maish Nunatak best fit 1.12 1.16 -

Jones et al., 
2015

Mount 
Suess/Gondola 

upper
95% range 0.33 - 0.80 0.09 - 1.07 -

Jones et al., 
2015 Low Ridge 95% range 0.08 - 3.59 0.02 - 0.04

0.08 - 3.62 (95%) when 
using upper 5 samples (cf. 
Jones et al., 2015)



1004 Table 5. Modelled timings for the onset and end of thinning as derived from Monte Carlo (MC) linear regression analysis and OxCal ‘Boundary’ 

1005 command within Sequence model.

1006

MC 95% Onset MC 95% End Bayesian Onset 95% Bayesian End 95%
Site ID No. Mid-range +/- Mid-range +/- Mid-range +/- Mid-range +/-
Mount Hope 1 12200 900 7600 700 12400 1200 7200 800
Mount Rigby/Karo 2 12200 1200 -100 1000 11500 1700 100 100
Mount Suess/Gondola Upper 3 6800 700 5400 800 7100 1000 4900 1300
Gondola Mid-lower 4 7000 600 6300 600 6900 600 6100 800
Low Ridge (all) 5 7600 1100 -200 1100 6900 1100 200 200
Low Ridge (subset n=5) 5a 6600 500 6000 500 6900 1100 5200 1500
Reedy Glacier (Quartz Hills) 6 10000 1200 6800 1400 10300 1400 6600 100
Reedy Glacier (Pip's Peak) 7 7400 300 7000 300 10300 3200 300 300
Reedy Glacier (Cohen’s Nunatak) 8 8600 2000 1400 1700 10300 3800 900 900
Maish Nunatak 9 7200 300 6800 400 7400 700 6700 700
Mount Moses (all) 10 7400 700 5400 700 8600 1000 5300 1300
Mount Moses (subset n= 3) 10a 7100 200 6900 200 8600 1000 7200 800
Williams Hills 11 8800 600 4300 5100 7900 900 4700 600
Thomas Hills 12 6800 500 6500 500 6900 500 6600 500
Mount Harper/Bragg 13 5800 1300 2400 1700 7200 1600 1800 1100
Marble Hills 14 9400 1000 5300 800 10200 1600 4200 1400
Patriot Hills 15 7400 1100 3100 1000 7400 2500 3800 500
Mount Rea 16 3300 400 2200 400 4100 1000 1700 700
Mount Darling 17 9200 200 3400 300 12100 3900 2100 2100
Mount Valkenburg 18 6600 500 3100 500 10600 4800 1900 1900
Fosdick Mountains 19 5100 100 2200 100 6200 2000 1300 1300
Mount Stinear 20 11400 1200 10300 800 11300 1100 9900 1200
Porquoi-Pas Island 21 11100 800 10300 800 11300 1100 10200 1200
James Ross Island 22 9700 1900 6600 1800 9100 1400 7100 1900
Sjorden-Boydell 23 7600 400 3400 400 8100 1400 2500 1300



1007 Table 6. Alternate thinning rates from Monte Carlo analysis for sites where Bayesian outlier detection resulted in exclusion of ‘young’ erratics.

Site 
Total samples in 

profile
Young sample(s) 

excluded
Alternate 68% 
range (m yr-1)

Alternate 95% 
range (m yr-1)

Alt. best fit 
(m yr-1)

Alt. median 
(m yr-1)

Low Ridge 10 CC93 0.03-0.19 0.02-0.90 0.19 0.16
Williams Hills 17 WIL-4 0.09-0.15 0.08-0.21 0.12 0.12
Mount Harper/Bragg 12 HAR-3 0.05-0.11 0.04-0.25 0.07 0.07
Marble Hills 28 MH12-16 0.08-0.15 0.06-0.25 0.10 0.10
Patriot Hills 11 PH12-28 0.06-0.14 0.05-0.34 0.09 0.09
James Ross Island 7 JOH-04 0.06-0.26 0.04-1.36 0.12 0.10
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Site 1 – Mount Hope: A) Regressions, B) Histogram. 
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Site 2 – Mount Rigby/Karo 
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Site 3 – Mount Suess - Gondola Upper 
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Site 4 – Gondola Mid-Lower 
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Site 5 – Low Ridge (all samples) 

A) B) 

 

 

 

 

 

 

 

 

 

Site 5a – Low Ridge (subset n=5) 
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Site 6 – Reedy Glacier (Quartz Hills) 
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Site 7 – Reedy Glacier (Pip’s Peak) 
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Site 8 – Reedy Glacier (Cohen’s Peak) 

A) B) 

 

 

 

 

 

 

 

  



Site 9 – Mount Maish 
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Site 10 – Mount Moses (all samples) 

A) B) 

 

 

 

 

 

 

 

 

 

Site 10a – Mount Moses (subset n=3) 
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Site 11 – Williams Hills 
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Site 12 – Thomas Hills 
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Site 13 – Mount Harper/Bragg 
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Site 14 – Marble Hills 
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Site 15 – Patriot Hills 
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Site 16 – Mount Rea 
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Site 17 – Mount Darling 
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Site 18 – Mount Valkenburg 
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Site 19 – Fosdick Mountains 
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Site 20 – Mount Stinear 
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Site 21 – Pourquoi-Pas Island 
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Site 22 – James Ross Island 
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Site 23 – Sjorden-Boydell Fjord 
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