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Using an approach based upon a set of auxiliary many-electron wavefunctions we present a rigorous
derivation of spin-orbit coupling (SOC) within the framework of linear-response time-dependent
density functional theory (LR-TDDFT). Our method is based on a perturbative correction of the non-
relativistic collinear TDDFT equations using a Breit-Pauli spin-orbit Hamiltonian. The derivation,
which is performed within both the Casida and Sternheimer formulations of LR-TDDFT, is valid for
any basis set. The requirement of spin noncollinearity for the treatment of spin-flip transitions is also
discussed and a possible alternative solution for the description of these transitions in the collinear
case is also proposed. Our results are validated by computing the SOC matrix elements between
singlet and triplet states of two molecules, formaldehyde and acetone. In both cases, we find excellent
agreement with benchmark calculations performed with a high level correlated wavefunction method.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870010]

I. INTRODUCTION

The relativistic equivalent of the time-dependent
Schrödinger equation involves the solution of the Dirac equa-
tion and its many-electron extensions. Relativistic quantum
chemistry is an active area of research and there have been
several recent reviews on the subject.1–3 Even though gener-
ally small, relativistic corrections can have an important in-
fluence on the energy levels, orbital shapes, and geometries of
molecules.4

An alternative to fully relativistic calculations is to add
relativistic corrections to the standard, non-relativistic elec-
tronic structure theories. The best known corrections are the
mass-velocity, Darwin, and spin-orbit coupling (SOC) terms.
The first two are usually called scalar relativistic effects be-
cause they do not involve vector operators. On the other hand,
spin-orbit coupling acts on both angular momentum and spin,
leading to its defining characteristic of mixing orbital and
spin degrees of freedom, thus allowing electronic states of
different multiplicities to couple. Consequently, SOCs have
a wide range of important effects in chemistry and physics,
such as fine-structure and band splitting in molecules, semi-
conductors, and metals, molecular magnetism, spin transport
in spintronics and magnetoelectronics, spin quantum dots, and
qubits dynamics. In particular, SOC can also be very im-
portant for photochemistry because it turns spin-forbidden
processes, such as intersystem crossing and phosphorescence
into weakly allowed transitions.

In this respect, SOCs are also particularly important
for molecular dynamics because they allow for intersystem
crossings (ISC) between electronic states of different spin
multiplicity. The description of these processes requires the

a)Electronic mail: ivano.tavernelli@epfl.ch

evaluation of SOC matrix elements between different elec-
tronic states, and thus involves the use of excited states
methods such as configuration interaction singles (CIS)
or linear-response time-dependent density functional theory
(LR-TDDFT). In particular, the use of Kohn-Sham DFT5 and
TDDFT6 approaches is particularly well suited for the calcu-
lation of SOC in large molecular systems where a good bal-
ance between numerical efficiency and accuracy is required.

Within DFT/LR-TDDFT two main routes for the calcu-
lation of relativistic spin-orbit effects can be explored, which
differ in the way the density functionalization of the rela-
tivistic Schrödinger equations is performed. When the Dirac
equations are directly worked into the Kohn-Sham formal-
ism one obtains the single-particle equations of relativistic
DFT (KS-RDFT), which have the form of the Dirac equation
with a current-dependent one-particle four-potential v

μ
s (r).7, 8

This approach is the starting point for approximations, such
as the quasi-relativistic “Zeroth Order Regular Approxima-
tion” (ZORA) Hamiltonian as implemented within the Am-
sterdam Density Functional (ADF) program.9 In this case,
a two-component calculation is performed, and all relativis-
tic effects are included variationally to the one-component
non-relativistic calculation. As a consequence, relativistic
corrections also affect the electronic density and the wave-
function, instead of just the energy as in the case of the
perturbative treatment. However, such two-component calcu-
lations are very computationally demanding and for this rea-
son approximate solutions to these equations have also been
proposed.10

Alternatively, one can compute the SOC perturbatively
starting from the one-component matrix element of the Breit-
Pauli Hamiltonian in its many-body formulation, and perform
the density functionalization of the first-order relativistic cor-
rections to the non-relativistic energies. The major challenge
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of this approach within TDDFT is that the matrix elements of
the SOC Hamiltonian are not a simple functional of the elec-
tronic density (by virtue of their definition involving many-
electron wavefunctions). To overcome this difficulty, we
apply a method based on the so-called “auxiliary” set of
many-electron wavefunctions (named AMEW) derived from
LR-TDDFT quantities, which enables the calculation of in
principle exact LR-TDDFT matrix elements of any given one-
body operator.11–13 This formalism has already been success-
fully applied to the calculation of nonadiabatic coupling vec-
tors (NACVs).11, 13, 14

In this work, we present a derivation of SOC matrix ele-
ments within the AMEW formalism in context of LR-TDDFT
and describe its implementation into the CPMD program.15

A similar approach to calculate SOCs in molecules based on
Casida’s16 “singly excited configurations” has already been
proposed by Chiodo and Russo17 and recently by Subotnik
and co-workers,18 but these were done in an ad hoc fashion,
following the analogies with wavefunction theory techniques
such as CIS. Here, we base our implementation on the rigor-
ous results presented in Refs. 11, 13, and 14, and investigate
the use of conventional collinear DFT functionals and their
functional derivatives in the calculation of collinear and non-
collinear (spin-flip) coupling terms. Our formalism can also
be easily extended, using the development in Ref. 14, to the
calculation of SOC between pairs of excited states, which is
of paramount importance for the evaluation of ISC events in
nonadiabatic molecular dynamics calculations. In addition, in
this paper we derive the working equation for the calcula-
tion of the SOC matrix elements within the so-called Casida16

and Sternheimer19, 20 formulations of LR-TDDFT, which can
be applied to localized as well as plane wave basis set
calculations.

Finally, we would like to stress that the implementa-
tion of this efficient method for the evaluation of the SOC
in any DFT/LR-TDDFT-based molecular dynamics package
(together with the calculation of NACVs11–13) will allow the
“on-the-fly” calculation of both kinds of nonradiative en-
ergy transfer phenomena—internal conversion and intersys-
tem crossing—for large systems (isolated and in condensed
phase) at a good level of accuracy. Similar studies based
on different electronic structure approaches have already ap-
peared in the literature.21, 22

II. THEORY

The relativistic corrections to the conventional Kohn-
Sham DFT equations were originally derived by Rajagopal
and Callaway from quantum electrodynamics.23 In the non-
collinear case the exchange and correlation functional can be
given as a functional of the electron density ρ and of the spin
magnetization density24

m(r) = μB

∑
i,ν1,ν2

ψ
†
i (r, ν1)σ̄ν1,ν2ψi(r, ν2), (1)

where ν i ∈ {α, β}, μB = ¯q/2m is the Bohr magneton,
ψi(r, ν1) is an element of the two-component KS-spinors

ψ i(r) =
(

ψi(r, α)
ψi(r, β)

)
, (2)

whose spin-axes are not necessarily aligned along the main
spin quantization axis (z-axis). σ̄ = (σ1, σ2, σ3) is the vector
of Pauli matrices.25, 26

In the collinear local spin density approximation
(LSDA),27 each electronic spin is oriented along a fixed quan-
tization axis (z-axis) and the spinors can therefore be written
in the spin-up (α) and spin-down (β) forms

ψ i,α(r) =
(

ψi(r, α)
0

)
, ψ i,β(r) =

(
0

ψi(r, β)

)
(3)

or in the direct product space spanned by the Hilbert space
of the KS-orbitals, HKS and the two-dimensional spin space
HSpin, as

ψ i,α(r) = ψi(r) ⊗
(

1
0

)
, ψ i,β(r) = ψi(r) ⊗

(
0
1

)
. (4)

The spin magnetization then becomes

mz(r) = μB

⎡
⎣ Nα∑

i

|ψi,α(r)|2 −
Nβ∑
i

|ψi,β(r)|2
⎤
⎦ , (5)

where Nα and Nβ are the number of occupied α and β

KS orbitals, respectively, and mx(r) = my(r) = 0. A time-
dependent spin DFT for the corresponding dynamic spin sus-
ceptibility was derived by Vosko and co-workers.28

In this work, we do not derive a relativistic version of
the LR-TDDFT equations, which would include the SOC
terms explicitly in the reference relativistic ground state KS
Hamiltonian. Instead, starting from nonrelativistic KS-DFT
and (standard) collinear LR-TDDFT equations we compute,
perturbatively, the relativistic effects associated with the SOC
Hamiltonian in the Breit-Pauli approximation, Ĥ SO

BP . This is
achieved by a density functionalization of the matrix ele-
ments of Ĥ SO

BP using a LR-TDDFT-based reconstruction of
the many-electron wavefunctions of the ground and excited
states according to the formalism derived in Refs. 11–13. Our
approach is general and can be applied to any type of approx-
imate SOC Hamiltonian in the perturbative approach, includ-
ing the two-component ZORA Hamiltonian.9

A noncollinear formulation of TDDFT was developed by
Shao et al.,29 and Wang and Ziegler30, 31 for two-component
spinors (see also the book of Ullrich32). Unlike conventional
(collinear) LR-TDDFT, noncollinear TDDFT can describe
electronic transitions that involve spin-flips. These are of im-
portance when evaluating SOC between states with different
spin quantum number MS as in the case of a singlet to triplet
transition between states 1√

2
(|αβ〉 − |βα〉) (MS = 0) and |αα〉

(MS = 1), for a two-electron system. Despite recent progress
in this field, very little has been done concerning the applica-
tion of noncollinear TDDFT to molecular systems beyond the
local-density approximation (LDA) of the DFT functional and
the TDDFT kernel. Here, we only consider the collinear form
of LR-TDDFT, from which we can derive without further ap-
proximations the SOC terms between singlet and triplet states
that share the same Ms value (i.e., those excitations that can
be reached from the ground state without spin-flip). The ap-
proximate extension of this theory to the spin-flip case will be
presented and discussed in Sec. II A.
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In full, the Breit-Pauli SOC operator is composed of two
parts: a one-electron term (which involves spin-same-orbit
coupling only) and a two-electron term (which involves spin-
same-orbit and spin-other-orbit coupling). Briefly, the one-
electron term describes the interaction between the magnetic
spin moment, μS

el = −gSμB S/¯, of an electron with the mag-
netic moment, μL

el = −gμB L/¯, induced by its orbiting in
the nuclear electrostatic field (where μB is the Bohr magne-
ton, and gS and g are dimensionless factors). Analogously,
when the coupling occurs in the electric field generated by
another electron we obtain the two-electron (spin-same-orbit)
coupling term. Finally, the two-electron spin-other-orbit terms
arise from the interaction of the spin magnetic moment of
one electron with the orbital magnetic moment of a second
one, and vice versa. These two terms provide screening of
the one-electron term similarly to the contributions of the
nuclear-electron attraction and electron-electron repulsion in-
teractions in the Born-Oppenheimer (BO) Hamiltonian (see
Appendix A). Importantly, while for a full quantitative de-
scription of the SOC matrix elements, both the one and two
matrix elements are required, the one electron contributions
increase much faster with nuclear charge2 than the two elec-
tron terms and therefore for many cases, as used here, the one-
electron term is dominant.

The one-electron term of the Breit-Pauli Hamiltonian is
expressed as

Ĥ SO
1el = α2

2

⎡
⎣ Nγ∑

γ=1

N∑
i=1

Zγ

1

r̂3
iγ

(l̂iγ · ŝi)

⎤
⎦ (6)

and it can be evaluated in a formally exact way within LR-
TDDFT using the AMEW method introduced in Refs. 13 and
33. In Eq. (6) α = e2

4πε0¯c
is the fine structure constant, the first

sum runs over all nuclei and the second one over all electrons,
Zγ is the charge of nucleus γ , riγ is the distance between nu-
cleus γ and electron i, l̂iγ is the angular momentum of elec-
tron i with respect to nucleus γ , and ŝi is the spin operator of
electron i with components si = (¯/2)σ i (i = x, y, z). We will
use atomic units throughout, i.e., α = c−1 and ¯ = 1.

A. The LR-TDDFT equations

1. Casida’s formalism

In the adiabatic approximation,16, 34 the LR-TDDFT
equations can be formulated in the well known Casida’s form

�FI = ω2
I FI (7)

with

� = (A − B)1/2(A + B)(A − B)1/2 (8)

and

Aiaξ,jbτ = δξ,τ δi,j δa,b(εbτ − εjτ ) + Kiaξ,jbτ , (9)

Biaξ,jbτ = Kiaξ,bjτ , (10)

Kiaξ,jbτ

=
∫∫

d3rd3r′ϕ∗
iξ (r)ϕaξ (r)

1

|r − r′|ϕjτ (r′)ϕ∗
bτ (r′)

+
∫∫

d3rd3r′ϕ∗
iξ (r)ϕaξ (r)

δ2Exc

δρξ (r)δρτ (r′)
ϕjτ (r′)ϕ∗

bτ (r′).

(11)

In Eq. (8), ωI are the excitation energies and FI the corre-
sponding eigenvectors.35 Here and in what follows, we use
indices i, j, and k for occupied KS orbitals; indices a, b, and c
for virtual KS orbitals; p, q, r for general KS orbitals; and ξ

and τ for the spin indices. The ϕpξ (r) are KS orbitals associ-
ated to the KS energies εpξ and the total spin density is given
by ρξ (r) = ∑

i |ϕiξ (r)|2. Notice that Eqs. (9)–(11) are written
for a general case in which spin-polarization may be present,
even though we will only work with closed-shell molecules
which means that ρα(r) = ρβ(r).

Recently, in a series of papers11–13 we demonstrated how
the eigenvectors FI of Eq. (7) can be used to construct a many-
electron wavefunction ansatz |�I〉 for electronic state I named
AMEW

|�I 〉 =
N∑
i

∞∑
a

∑
ξ={α,β}

cI
iaξ â

†
aξ âiξ |�0〉 , (12)

where |�0〉 is the Slater determinant (SD) of all occupied KS
orbitals, â

†
aξ and âiξ are the KS creation and annihilation op-

erators, respectively, and cI
iaξ = ((εaξ − εiξ )/ωI )1/2F I

iaξ . The
quantities F I

iaξ are the components of the eigenvector FI of
Casida’s equation associated to the excitation energy ωI. The
sum over a has to be truncated in practice when a finite num-
ber of virtual orbitals is used in the calculation. Equation (12)
describes the AMEW as a linear combination of singly ex-
cited SDs. It is important to stress the fact that this is not the
actual many-electron wavefunction of state I, however it has
been shown that |�I〉 in Eq. (12) provides the exact matrix el-
ements of one-electron operator Ô computed for the ground
state and any excited state, 〈�0|Ô|�I 〉.13 It has also been
shown that matrix elements of Ô between pairs of excited
states I and J, 〈�I |Ô|�J 〉 can be calculated approximately
using the AMEW.14

2. The Sternheimer formalism

An alternative approach to Casida’s equations is the
Sternheimer formalism for DFT/LR-TDDFT.19, 20, 36–38 In this
case only ground-state (occupied) KS orbitals are used {ϕkξ }
together with their corresponding linear-response perturbed
orbitals {φkξ }. The advantage of this formalism is that it
requires only N occupied and N LR orbitals (while in the
Casida’s approach it is not always obvious how many virtual
orbitals should be included a priori in the calculation).

The Sternheimer approach is based on the first-order
time-dependent perturbative expansion of the unperturbed KS
orbitals

ϕ′
kξ (r, t) = ϕkξ (r) + λφkξ (r, t) , (13)
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where λ is a small coupling parameter that is only used to
keep track of the order of the perturbation in the derivation
of the Sternheimer equations. Then the time-dependent per-
turbed density can be written as

ρ(r, t) =
N∑
i

∑
ξ

|ϕiξ (r)|2

+ λ

N∑
i

∑
ξ

[
φ∗

iξ (r, t)ϕiξ (r) + ϕ∗
iξ (r)φiξ (r, t)

]

= ρ(0)(r) + λρ(1)(r, t). (14)

Inserting Eq. (14) into the TD-KS equations and equating the
coefficients with equal powers of λ we obtain a set of cou-
pled equations for φkξ (r, t) and ϕkξ (r), with the orthogonality
condition 〈ϕi|φj〉 = 0, ∀i, j and ∀t. Assuming the adiabatic ap-
proximation and considering a harmonic perturbation of the
type δV (r, t) = δV (r)eiωt , we finally arrive at the following
set of equations for the LR KS orbitals φI

k (r, t),

[εk − ωI − HKS]φI
k (r, ω) = Q[δV (r)+δV SCF (ω)]ϕk(r, ω),

(15)

in the frequency domain, where Q = 1 − ∑N
i=1 |ϕi〉〈ϕi | in

Eq. (15) is the projector onto the subspace of virtual KS or-
bitals, and I labels the different solutions (that correspond to
the different excited states). By expanding both the GS KS
orbitals and the LR orbitals in a finite basis set, Eq. (15) can
be recast into an eigenvalue problem (in the adiabatic approx-
imation) similar to Casida’s equations.20

In this formalism, the AMEW expansion becomes14

|�I 〉 =
N∑
i

∑
ξ

(
r̂ I
iξ

)†
âiξ |�0〉 , (16)

where (r̂ I
iξ )† is the creation operator for the LR orbitals,

which can be expressed as (r̂ I
iξ )† = ∑N

a cI
iaξ â

†
aξ , and therefore

φI
iξ (r) = ∑

a cI
iaξϕaξ (r) with cI

iaξ = 〈ϕaξ |φiξ 〉, using the con-
vention that i, j, . . . label occupied, a, b, . . . virtual, and p, q,
r, . . . general KS orbitals.

B. Computation of SOC using the AMEW

1. Multiplicity of the LR-TDDFT solutions

As shown in Appendix B and in Ref. 16, the solution
to the collinear case of Casida’s equations for closed shell
molecules and corresponding AMEWs can be associated to
spin-adapted configurations (eigenvectors of the S2 operator)
with MS = 0 and triplet configurations.

This result can be easily extended to the general case
of an N-electron system; when cI

iaα = cI
iaβ the corresponding

AMEW describes a singlet, while if cI
iaα = −cI

iaβ the AMEW
represents a triplet state with MS = 0 (see Appendix B).

In the Sternheimer representation, the excited state sin-
glet and triplet AMEW will be given by

|S0
I 〉 =

N∑
i

∑
ξ

(
r̂

SI

iξ

)†
âiξ |�0〉 (17)

and

∣∣T 0
I

〉 =
N∑
i

(
r̂

TI

iα

)†
âiα|�0〉 − (

r̂
TI

iβ

)†
âiβ |�0〉, (18)

respectively. In the definition of the states, the upper in-
dex gives the values of Ms, while the lower one labels the
state number. In Eqs. (17) and (18), the creation operators
(r̂SI

iξ )† and (r̂TI

iξ )† refer to the creation of LR-KS orbitals for
the singlet and triplet calculations, respectively. In general,
these two sets of LR orbitals are different. The spin of a
given orbital is then assigned by multiplying it with the cor-
rect spin function to obtain the corresponding spin-orbital
as in Eq. (4), i.e., ϕT

i (r) = ϕT
i (r)α(s) and ϕ̄T

i (r) = ϕT
i (r)β(s)

(spin-restricted formalism is assumed).

2. The “spin-flip” solution

In conventional (collinear) LR-TDDFT, only the
MS = 0 component of each triplet state can be obtained, as
MS = −1 or MS = +1 states require spin-flip excitations to be
taken into account. This means that only excitations that con-
serve the projection of spin angular momentum are allowed.
A rigorous description of the spin-flip configuration would
require the noncollinear LR-TDDFT formalism introduced
by Ziegler and co-workers in which electrons are described
by spinor wavefunctions with different spin orientations.30, 31

However, in this work we explore a simpler solution
which uses the linear-response orbitals (or coefficients in the
case of Casida’s formalism) obtained from a non-spin-flip
triplet state calculation to build the other two triplet config-
urations. In other words, we represent the triplets MS = 1 and
MS = −1 by

∣∣T +1
I

〉 =
N∑
i

(
r̂

TI

iα

)†
âiβ |�0〉 (19)

and

∣∣T −1
I

〉 =
N∑
i

(
r̂

TI

iβ

)†
âiα|�0〉 , (20)

respectively. This approach is clearly approximate, however
we will leave it without a more formal justification. In Sec. IV
we shall show the level of accuracy of this simple procedure
by means of an application.

3. Evaluation of the SOC matrix elements

We now outline our strategy for the computation of the
SOC matrix elements between a singlet and a triplet ex-
cited state 〈S0

I |Ĥ SO
1el |T MS

J 〉. As an example, for a system made
of four electrons the matrix element 〈S0

I |Ĥ SO
1el |T 0

J 〉 will be
given by the sum of 16 matrix elements involving differ-
ent AMEW and the ground state SD, while in the case of
〈S0

I |Ĥ SO
1el |T −1,+1

J 〉 this number will reduce to eight.

a. Casida approach. In this case we have an orthonormal
basis of occupied and virtual KS orbitals, and therefore the
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Slater-Condon rules39 can be used to compute all of the nec-
essary matrix elements involving AMEWs as in Eq. (12).

Within this framework the SOC matrix elements become

〈�S |Ĥ SO
1el |�T 〉 =

∑
ijξ

∑
abξ ′

(
cS
iaξ

)∗
cT
jbξ ′ 〈�0|

(
âS

iξ

)†
âS

aξ Ĥ
SO

× (
âT

bξ ′
)†

âT
jξ ′ |�0〉, (21)

where i, j run from 1 to N, a, b from 1 to (in principle) ∞,
and ξ , ξ ′ ∈ {α, β}. As shown in Ref. 14, this type of matrix
elements can be evaluated using reconstructed AMEWs.

b. Sternheimer approach. In the Sternheimer formalism
the set of linear response orbitals for the singlet state {ϕS

r (r)}
are not orthogonal to those of the triplet states {ϕT

r (r)} and
therefore, in contrast to the Casida’s formalism, we cannot
use the Slater-Condon rules for calculating matrix elements
of SDs. Instead, we require the more general Löwdin’s rule,40

〈�S |
N∑

i=1

h̄SO(i)|�T 〉

= (DSSDT T )−1/2
N∑
i,j

〈
ψS

i

∣∣h̄SO
∣∣ψT

j

〉
DST

(
ψS

i , ψT
j

)
, (22)

where ψS
i (r) are the orbitals that generate |�S〉 and ψT

j (r)
those generating |�T〉, DST is the determinant of matrix SST

containing the overlaps between all of the spin-orbitals,

SST =

⎛
⎜⎜⎜⎜⎝

〈
ψS

1 |ψT
1

〉 〈
ψS

1

∣∣ψT
2

〉 · · · 〈
ψS

1

∣∣ψT
N

〉
〈
ψS

2

∣∣ψT
1

〉 〈
ψS

2

∣∣ψT
2

〉 · · · 〈
ψS

2

∣∣ψT
N

〉
...

...
. . .

...〈
ψS

N |ψT
1

〉 〈
ψS

N

∣∣ψT
2

〉 · · · 〈
ψS

N

∣∣ψT
N

〉

⎞
⎟⎟⎟⎟⎠, (23)

and DST (ψS
i , ψT

j ) is the cofactor of element [i, j] (i.e.,
(−1)i+j times the determinant obtained by removing the ith
row and jth column of SST). Notice that in our case DSS

= DTT = 1. In Eq. (22), h̄SO refers to the 3 dimensional
vector α2

2 [
∑Nγ

γ=1

∑N
i=1 Zγ (1/r3

iγ )liγ ] (see Eq. (6)). More de-
tailed information on the evaluation of Eq. (22) is given in
Appendix C.

The computation of the two-electron term within the aux-
iliary many-electron wavefunction approach to LR-TDDFT
will require further theoretical investigation, which is clearly
beyond the scope of this work. However, this term is in gen-
eral of opposite sign compared to the one-electron contribu-
tion and its effect is commonly accounted for through a rescal-
ing of the atomic number Z of each element to a (smaller)
effective value Zeff.41 The one-electron term is especially
dominant for heavier atoms because it scales as ∼Z2.2

III. NUMERICAL IMPLEMENTATION

In the discussion about Eq. (6) we showed that for the
evaluation of the one-electron SOC matrix elements we only
need to compute one-electron integrals of the form

〈ψr |(r̂iγ × p̂i)/|riγ |3|ψs〉 · 〈ξr |ŝ|ξs〉 , (24)

where ψ i represents a generic KS or LR-KS orbital, {r̂i , p̂i}
are the electron position and momentum, riγ = ri − Rγ , Rγ

is a nuclear position, and ξ r, ξ s ∈ {α, β}. The spin part of this
matrix element is easy to compute. If we choose our quanti-
zation axis to be z, then the one-electron spin operator si is a
vector of Pauli matrices σ i, which act on the spin states |α〉
= (1 0)T and |β〉 = (0 1)T.

The calculation of the first factor in Eq. (24) is numer-
ically more involved since it requires the evaluation of in-
tegrals of the form 〈ψ1| r̂y p̂z

r3
γ i

|ψ2〉 = ∫
d3r ψ1(r) r̂y

r3
γ i

∂
∂z

ψ2(r),

which exhibit a very sharp divergence at ri = Rγ . A real-
space implementation of these matrix elements is possible,
however their numerical evaluation is very inefficient (at least
in a plane wave code) because it requires a very large plane
wave cutoff or, equivalently, a very small real-space grid, as
shown in Fig. 3.

A more efficient solution is to evaluate this integral in the
Fourier space of the electron orbitals and density. In fact, it is
simple to prove that for any (non-singular) function A(r) with
Fourier transform Ã(r) the following transformation holds:42

f (R) =
∫

r − R
|r − R|3 × A(r) d3r

FT−→ f̃ (G) = −4πi
G
G2

× Ã(G). (25)

Finally, the quantity f (R) can be calculated at the po-
sition of the nucleus γ using the relation f (R = Rγ )
= ∑

G f̃ (G)e−iGRγ .

IV. APPLICATIONS: VALIDATION AND TESTS

In order to validate our method and its implementation
within the CPMD code,15 we have selected two small organic
molecules, namely, formaldehyde and acetone for which we
compute SOC matrix elements for the excited states 1(n, π∗),
3(n, π∗), and 3(π , π∗) (see Figs. 1 and 2). According to
El-Sayed’s rule43 any spin angular momentum change must

FIG. 1. Active space orbitals used in the CASSCF calculation for formalde-
hyde. From the right (top): HOMO−2, HOMO−1, HOMO; (bottom):
LUMO, LUMO+1, LUMO+2. The corresponding DFT orbitals are undis-
tinguishable from the CASSCF ones.
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FIG. 2. Active space orbitals used in the CASSCF calculation for acetone.
From the right (top): HOMO−2, HOMO−1, HOMO; (bottom): LUMO,
LUMO+1, LUMO+2. The corresponding DFT orbitals are undistinguish-
able from the CASSCF ones.

be accompanied by a change in the orbital angular momen-
tum, so that total angular momentum is conserved. Conse-
quently, by considering the coupling between these states
we obtain one strong (1(n, π∗) to 3(π , π∗)) and one weak
(1(n, π∗) to 3(n, π∗)) SOC matrix elements, proving a strin-
gent validation of the approach. Our results obtained using
Eqs. (17), (18), and (22) are compared with those computed
with the quantum chemistry program GAMESS44 using the
Spin-Orbit Multi-Configuration Quasi-Degenerate Perturba-
tion Theory method for the one-electron SOC operator.45 This
reference gives a high level of accuracy since it includes both
static and dynamic correlation.

Table I summarizes the results obtained with our imple-
mentation using both a real-space (RS) and a reciprocal-space
(GS) integration schemes for the matrix elements in Eq. (25),
together with the GAMESS reference results.

For comparison, we also computed the two-electron
contribution for formaldehyde at SO-GMCQDPT2 level
of theory using GAMESS.44 We obtained a value of
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FIG. 3. Graph showing absolute value of
〈
1(n,π∗)

∣∣Ĥ SO
1el

∣∣3(π,π∗)0

〉
for formalde-

hyde versus plane-wave cutoff in Rydberg. Squares and diamonds represent
the results obtained using the real-space and g-space integrator, respectively.
The total energy of the system (circles) is also plotted as a function of the
cutoff value (right-hand side axis).

−34.232 cm−1 for the two-electron term that corresponds to
a full SOC of 56.853 cm−1.

For comparison, we also computed the full SOC us-
ing the ZORA Hamiltonian as implemented in the Amster-
dam Density Functional program46 and obtained a value of
57.390 cm−1.

As discussed above, SOC integrals of the form given in
Eq. (25) can be evaluated either in real space or in recipro-
cal space. However, due to divergencies at the positions of
the nuclei, the calculation in real space requires a real space
grid with an ultra-fine mesh, which corresponds to a very
large plane wave cutoff value (>500 Ry). On the other hand,
as shown in Fig. 3 the calculation of the SOCs converges
smoothly in reciprocal space, and, for the systems studied in
this work, a plane wave cutoff between 90 and 100 Ry is suffi-
cient for achieving convergence; a value which is only slightly
larger than the one required to converge the energy.

TABLE I. Absolute values of SOCs for formaldehyde and acetone computed for two pairs of weakly and strongly coupled states. All quantities are in units
of cm−1. The total SOC coupling (last column) is given by the squared root of the sum of the squared components. The LR-TDDFT/PBE (see Sec. VI) are
performed with the CPMD software using plane wave cutoff of 70 Ry (l) and 300 Ry (h). 〈1(S)||3(T )0〉 stands for 〈1(S)|Ĥ SO

1el
|3(T )n〉, with n ∈ {−1, 0, 1}.

Transitions |〈1(n,π∗)||3(π,π∗)0〉| |〈1(n,π∗)||3(π,π∗)+1〉| |〈1(n,π∗)||3(π,π∗)−1〉| Total

Formaldehyde (strong coupling)
SO-GMCQDPT2 91.0845 0.0065 0.0065 91.0845
LR-TDDFT/PBE (l) 92.9600 0.0001 0.0141 92.9737
LR-TDDFT/PBE (h) 101.6651 0.0069 0.0069 101.6651

Acetone (strong coupling)
SO-GMCQDPT2 90.9543 0.0118 0.0118 90.9543
LR-TDDFT/PBE (l) 85.4613 0.0047 0.0048 85.4189
LR-TDDFT/PBE (h) 97.5095 0.0044 0.0044 97.5095
Transitions |〈1(n,π∗)||3(n,π∗)0〉| |〈1(n,π∗)||3(n,π∗)+1〉| |〈1(n,π∗)||3(n,π∗)−1〉| Total

Formaldehyde (weak coupling)
SO-GMCQDPT2 0.0000 0.0001 0.0001 0.0001
LR-TDDFT/PBE (l) 0.0011 0.0006 0.0022 0.0031

Acetone (weak coupling)
SO-GMCQDPT2 0.0000 0.0023 0.0023 0.0032
LR-TDDFT/PBE (l) 0.0086 0.0001 0.0001 0.0086
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A. Validation of the “spin-flip” calculations

To test the accuracy of the SOC calculation for spin-
flip configurations using standard collinear LR-TDDFT, we
have designed the following numerical experiment. For sym-
metry reasons, when the principal axis of the formaldehyde
molecule is oriented along the z-axis, only the SOC matrix el-
ement between the states |S0

I 〉 and |T 0
J 〉 is non-zero (also in the

strong coupling case). This transition does not require a spin-
flip and therefore we expect our method to be in best agree-
ment with the benchmark results. However, by performing a
90◦ anticlockwise rotation of the Cartesian reference system
around the y-axis (which corresponds to the mapping x → z′,
y → y′, z → −x′), while keeping the molecule fixed in space
(passive rotation), we achieved a rotation of the spin quan-
tization axis from the z to the −x direction. Introducing the
corresponding rotation matrix

Uπ/2
y = exp

(
−i

σ̄ · n̂(π/2)

2

)
=

(
cos(π/4) sin(π/4)

− sin(π/4) cos(π/4)

)
,

(26)

we get σ ′
y = U

π/2
y · σy · (Uπ/2

y )−1, where n̂ = (0, 1, 0) and
σ̄ = (σ1, σ2, σ3).

The same SOC matrix elements should also arise from a
numerical calculation in which it is the molecule that is ro-
tated (in the opposite sense) while keeping the Cartesian axis
still (active rotation). However, it is important to note that in
this case the spin-flip contributions will result from the direct
evaluation of the terms in Eqs. (19) and (20) and not from
simple geometrical arguments as when the passive rotation
was applied. From a comparison of the two results, the geo-
metrical (passive rotation) and the numerical (active rotation),
we can assess the quality of the spin-flip calculation using the
standard collinear LR-TDDFT approach. The values reported
in Table II show the surprisingly good agreement between the
two approaches, also when compared with the reference SO-
GMCQDPT2 results.

We can therefore conclude that, at least for the case of
simple molecular system, the collinear LR-TDDFT formal-
ism provides very good results for SOC matrix elements be-
tween states with different MS values connected by spin-
flip transitions. However, if this agreement also holds in the
case of more complex compounds, especially those contain-
ing heavier elements is not predictable and will require further
investigations.
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FIG. 4. Left: One-dimensional cut of the KS-HOMO orbital along a line
passing through the Oxygen atom of formaldehyde and perpendicular to the
C=O bond. Right: One-dimensional cut along the same line for the quan-
tities fxy (solid lines) and fyx (dashed lines) in Eq. (25) for fxy (r ′; RO )

= ψ∗
H (r′) (r ′

x−Rx )py

|R−r′ |3 ψH−1(r′). The curves obtained from PP-calculation at

100 Ry (red) is in very good agreement with the all-electron calculations at
1800 Ry (black).

B. Validation of the PP calculation

In this section, we discuss the implications of the use of
pseudopotentials (PP) for the calculation of SOCs. In elec-
tronic structure calculations with plane waves, it is a common
practice to divide electrons into core (with large binding
energy) and valence (with low-binding energy). The ad-
vantage of this separation is that the core electrons can be
“frozen” in their atomic configuration while only valence
and virtual orbitals are used to describe the chemical modi-
fications, including electronic excitations. In this work, we
make use of norm-conserving PP generated according to
the Martins-Troullier scheme,47 with the possibility to include
scalar-relativistic corrections. As shown in Fig. 4 for the case
of the valence orbitals of formaldehyde, these types of PPs
reproduce very accurately the KS orbitals of the valence
electrons even in the region close to the nuclei. Therefore,
when considering SOC matrix elements between singlet
and triplet transitions involving valence KS orbitals (like in
the case of the (n, π∗) and (π , π∗) transitions in formalde-
hyde and acetone) we obtained quite accurate values using
the Breit-Pauli Hamiltonian of Eq. (6), without empirical

TABLE II. Absolute values of SOCs for formaldehyde computed for a pair of strongly coupled singlet to triplet transitions. All quantities are in units of cm−1

(Abbreviations are defined in Table I). The LR-TDDFT/PBE results obtained geometrically through a (passive) rotation of the Cartesian axes are labelled by
“-GE,” while the ones obtained using the approximated spin-flip approach are labelled with “-SF.” ((l) and (h) have the same meaning as in Table I.)

Transition |〈1(n,π∗)||3(π,π∗)0〉| |〈1(n,π∗)||3(π,π∗)+1〉| |〈1(n,π∗)||3(π,π∗)−1〉| Total

Formaldehyde (strong coupling)
SO-GMCQDPT2 0.0000 64.4066 64.4066 91.0847
LR-TDDFT/PBE-SF (l) 0.1188 65.5312 65.5312 92.6752
LR-TDDFT/PBE-SF (h) 0.0113 71.8519 71.8519 101.6139
LR-TDDFT/PBE-GE (l) 0.0057 65.5660 65.5660 92.7243
LR-TDDFT/PBE-GE (h) 0.0111 72.1055 72.1055 101.9726
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reparameterization of the effective nuclear charges.48

Figure 4 shows cuts along a line perpendicular to the C=O
bond of formaldehyde and passing through the Oxygen
atom for the KS-HOMO orbital (left-hand side) and the
functions fxy(r ′; R = RO) = ψ∗

H (r′) (r ′
x−Rx )py

|R−r′ |3 ψH−1(r′) and

fyx(r ′; RO). The agreement between the all-electron (black
lines) and the PP (red lines) is very good especially in the
region of the atomic location (at distance equal to zero), at
which position the SOC integrals are evaluated (left-hand
side of Eq. (25)). The SOC interaction between core and
valence electrons can also be taken into account using a sum
of Coulomb and exchange-type operators.49

Finally, there may be situations in which SOC matrix el-
ements involving pseudo-orbitals of the core become impor-
tant. In this case, since their amplitude in the proximity of the
nuclei are “artificially” small, the errors in the evaluation of
the matrix elements of the Breit-Pauli Hamiltonian can be-
come very large. To overcome these difficulties not only in-
plane wave but also in localized basis set calculations, several
model spin-orbit coupling operators were developed.50–52 A
discussion on these approximate schemes is however beyond
the scope of this article.

V. DISCUSSION AND CONCLUSIONS

In this article, we have described a rigorous derivation
of spin-orbit coupling matrix elements within LR-TDDFT.
Our approach is based on the Breit-Pauli Hamiltonian as a
perturbation to a standard, non-relativistic, LR-TDDFT cal-
culation of the excitation energies and corresponding KS or-
bital transitions. The Tamm-Dancoff approximation was as-
sumed throughout the derivation (and in the calculations)
even if its extension to the full LR-TDDFT framework is
straightforward. The SOC matrix elements are evaluated us-
ing the AMEWs introduced in Refs. 13 and 33, which have
already been applied in the calculation of Tully’s surface
hopping couplings, and nonadiabatic coupling vectors. We
presented an implementation of the numerical calculation of
the SOCs in both Casida’s16 and Sternheimer’s19 formula-
tion of LR-TDDFT within the framework of pseudopotential-
based calculations with a plane wave basis set. However, the
same working equations can be also applied in the case of
all-electron calculations using localized basis sets.

Our derivation is based on the collinear formulation of
DFT and LR-TDDFT, which by construction does not allow
for transitions involving spin-flip. To overcome this, a deriva-
tion of the SOC matrix elements in the noncollinear formal-
ism of LR-TDDFT is required, but this is beyond the scope
of the present work. However, we have shown that using the
same linear response orbitals computed for a S0

I → T 0
J tran-

sition it is possible to obtain accurate SOC values also for
the “missing transitions” (S0

I → T −1
J and S0

I → T 1
J ), using

collinear LR-TDDFT and standard (GGA) functionals and
corresponding adiabatic TDDFT kernels. The quality of these
calculations was assessed using geometrical arguments that
allow us to obtain exact values for SOC matrix elements in-
volving spin-flip transitions starting from those allowed in
collinear LR-TDDFT. The agreement of our results, also in

comparison with SO-GMCQDPT2 benchmark calculations,
is in general very good, especially if we consider the fact that
we are computing SOC of organic molecules which are of the
order of 0.01 eV.

We have implemented the calculation of the SOC matrix
elements in the pseudopotential plane wave code CPMD15

using the Sternheimer representation of LR-TDDFT. How-
ever, a full description of the implementation in the so-called
Casida formalism is also presented and further discussed in
Appendices B and C. We found out that a good accuracy is
achieved using a reciprocal space integration of the 1/r3 term
of the Breit-Pauli Hamiltonian. In this case, we could obtain
converged results for values of the plane wave cutoff that is
just slightly larger than the one used in standard calculations
using MT-type of PPs (80–90 Ry compared to 70 Ry for sys-
tems containing second row elements). We also noticed that,
when the transitions taking part in the SOC calculation only
involve (energetically) high-lying KS orbitals, the quality of
their expansion in the PW basis set close to the position of
the nuclei is very good, which reflects into accurate values
of the corresponding SOCs. This was also confirmed by an
all electron calculation with CPMD performed at a cutoff of
1800 Ry.

In conclusion, we have shown a rigorous derivation of the
SOC matrix elements within the framework of LR-TDDFT,
both in Casida’s and Sternheimer’s formulations. These
calculations can be easily optimized for plane wave as well
as localized basis sets and provide accurate SOC values with
a negligible additional computational overhead compared to
standard LR-TDDFT energy calculations. This can be applied
to study a wide range of interesting phenomena, such as
molecular magnetism, spin transport, and spin quantum dots
dynamics for quantum computing. Regarding our particular
interests, we now have the capability to extend nonadiabatic
on-the-fly trajectory based approaches such as Tully’s trajec-
tory surface hopping (TSH)53–55 and nonadiabatic Bohmian
Dynamics56–58 to the dynamical study of intersystem crossing
within LR-TDDFT, which are key to understanding many
important photochemical and photophysical processes.

VI. COMPUTATIONAL DETAILS

All the DFT/LR-TDDFT calculations were performed
with the CPMD software package15 using Martins-Trouiller
type pseudopontials47, 59 and within the Tamm-Dancoff
approximation.60, 61 The Perdew-Burke-Ernzerhof (PBE) ex-
change correlation functional62 was used in all DFT cal-
culations. The value of the plane-wave energy cutoff is
specified for each separate calculation. The box sizes used
were 12 × 8 × 12 a.u. for formaldehyde and 12 × 12
× 12 a.u for acetone.

The benchmark wavefunction-theory calculations were
performed with the quantum chemistry program GAMESS44

using a cc-pVDZ basis set.63 We began by performing a com-
plete active space self-consistent field (CASSCF) calculation
starting from orbitals obtained in a RHF calculation. The ac-
tive space for the CASSCF was a (6/6) active space with
three occupied orbitals and three virtual orbitals (see Figures 1
and 2). This active space was chosen to give an accurate
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description of the relevant electronic transitions of the car-
bonyl group (namely n → π∗, π → π∗, and σ → π∗). We
first performed a state-averaged CASSCF starting from the
CASSCF results with all weights chosen to be equal (average
over 5 states for acetone and 7 states for formaldehyde). In a
second step all weights associated to the non relevant states:
1(σ , π∗), 3(n, π∗), and the ground-state, are minimized. In
the case of formaldehyde, the final weight of the ground state
was set to zero and those of the (σ , π∗) states became 8.8%
of the value of all other relevant states. In the case of acetone
the final weights for both the ground-state and the (σ , π∗)
states are set to zero. Subsequently, the state-averaged multi-
configurational wavenfunctions were used to perform a gen-
eralized multi-configurational quasi-degenerate second order
perturbation theory calculation (G-MCQDPT2)64 in order to
account for “dynamic electronic correlation.” Finally, these
results are used to obtain the values of the one-body spin-orbit
coupling matrix elements of the Breit-Pauli Hamiltonian; the
last two calculations were performed in a single run thanks to
the GAMESS’ SO-MCQDPT65 program, although SOC was
not included in the perturbing Hamiltonian.
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APPENDIX A: THE BREIT-PAULI SO HAMILTONIAN

The full Breit-Pauli SO Hamiltonian is composed by
three terms

Ĥ SO
BP = α

2

[∑
i

(
−∇i

(∑
γ

Zγ

r̂iγ

)
× p̂i

)
· ŝi

+
∑

i

∑
j �=i

(
∇i

(
1

r̂ij

)
× p̂i

)
· ŝi

+ 2
∑

i

∑
j �=i

(
∇j

(
1

r̂ij

)
× p̂j

)
· ŝi

]
.

The first term is the one-electron spin-same-orbit term (same
index for the p̂i and ŝi operators). The other two are
two-electron contributions (based on the Coulomb repulsion
between a pair of electrons in position ri and rj): a spin-same-
orbit term and a spin-other-orbit term.

APPENDIX B: AMEW FOR SINGLET
AND TRIPLET STATES

Consider Casida’s equation �FI = ωI FI . We can write
the matrix � in block-matrix form by arranging its elements
according to their spin index,(

�αα �αβ

�βα �ββ

)
, (B1)

and in the case of a closed shell molecule this matrix be-
comes even simpler because the ground state density is not
spin-polarized, thus �αβ = �βα and �αα = �ββ .

Starting from

� =
(

�αα �αβ

�αβ �αα

)
(B2)

and applying the unitary transformation U = ( 11 11
11 −11

)
,

U †�U =
(

�αα + �αβ 0
0 �αα − �αβ

)
, (B3)

we get a block diagonal matrix, and therefore we can solve
the sub-problems separately,

(�αα + �αβ)fS = ω2
SfS (B4)

and

(�αα − �αβ)fT = ω2
T fT , (B5)

and use their solutions to find the eigenvectors of U†�U,
which are

FS =
(

fS

0

)
and FT =

(
0
fT

)
. (B6)

Using U to get the solutions the original problem, we finally
get

UFS =
(

fS

fS

)
and UFT =

(
fT

−fT

)
, (B7)

which shows how the solutions of Casida’s equations indeed
display the pattern that makes the AMEW be either a singlet
or a triplet. The same result also holds within the Sternheimer
formulation of LR-TDDFT.

APPENDIX C: EVALUATING SOC MATRIX ELEMENTS
WITH AMEWs

From Eq. (22), we observe that for each matrix element
evaluated for SD we will need to compute N × N one-electron
matrix elements. If we consider a four-electron system with
ground state wavefunction |�0〉 = |1 1̄ 2 2̄〉, this means a to-
tal 4 × 4 × 16 one-electron matrix elements for 〈S0

1 |Ĥ SO
1el |T 0

1 〉
and 4 × 4 × 8 for 〈S0

1 |Ĥ SO
1el |T −1,+1

1 〉. Fortunately, since the
linear-response orbitals are orthogonal to the ground state KS
orbitals, it is possible to simplify this task by deriving new
rules to compute these matrix elements. Let us first look at
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〈S0
1 |Ĥ SO

1el |T 0
1 〉. In our four-electron system, we have

〈ψS |Ĥ SO |ψT 〉

=
(1)〈

φS
1 1̄ 2 2̄

∣∣Ĥ SO
∣∣φT

1 1̄ 2 2̄
〉 + (2)〈

φS
1 1̄ 2 2̄

∣∣Ĥ SO
∣∣1 φ̄T

1 2 2̄
〉

+
(3)〈

φS
1 1̄ 2 2̄

∣∣Ĥ SO
∣∣1 1̄ φT

2 2̄
〉 + (4)〈

φS
1 1̄ 2 2̄

∣∣Ĥ SO
∣∣1 1̄ 2 φ̄T

2

〉
+

(5)〈
1 φ̄S

1 2 2̄
∣∣Ĥ SO

∣∣φT
1 1̄ 2 2̄

〉 + (6)〈
1 φ̄S

1 2 2̄
∣∣Ĥ SO

∣∣1 φ̄T
1 2 2̄

〉
+

(7)〈
1 φ̄S

1 2 2̄
∣∣Ĥ SO

∣∣1 1̄ φT
2 2̄

〉 + (8)〈
1 φ̄S

1 2 2̄
∣∣Ĥ SO

∣∣1 1̄ 2 φ̄T
2

〉
+

(9)〈
1 1̄ φS

2 2̄
∣∣Ĥ SO

∣∣φT
1 1̄ 2 2̄

〉 + (10)〈
1 1̄ φS

2 2̄
∣∣Ĥ SO

∣∣1 φ̄T
1 2 2̄

〉
+

(11)〈
1 1̄ φS

2 2̄
∣∣Ĥ SO

∣∣1 1̄ φT
2 2̄

〉 + (12)〈
1 1̄ φS

2 2̄
∣∣Ĥ SO

∣∣1 1̄ 2 φ̄T
2

〉
+

(13)〈
1 1̄ 2 φ̄S

2

∣∣Ĥ SO
∣∣φT

1 1̄ 2 2̄
〉 + (14)〈

1 1̄ 2 φ̄S
2

∣∣Ĥ SO
∣∣1 φ̄T

1 2 2̄
〉

+
(15)〈

1 1̄ 2 φ̄S
2

∣∣Ĥ SO
∣∣1 1̄ φT

2 2̄
〉 + (16)〈

1 1̄ 2 φ̄S
2

∣∣Ĥ SO
∣∣1 1̄ 2 φ̄T

2

〉
.

(C1)

Only eight out of these sixteen matrix elements will be non-
zero and we are able to distinguish two cases in which this
happens. The first one is when the two SDs in the matrix el-
ement are created by the same excitation. This happens with
matrix elements (1), (6), (11), and (16) in Eq. (C1). Let us see
what happens when we apply Eq. (22) to matrix elements (1).
The overlap matrix (Eq. (23)) will be

SST =

⎛
⎜⎜⎝

〈
φS

1

∣∣φT
1

〉
0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠. (C2)

Notice that only four of the possible cofactors will give non-
zero contributions, namely, those defined by the elements
along the diagonal. These will give

(−1)2+2

∣∣∣∣∣∣∣∣

〈
φS

1

∣∣φT
1

〉
� 0 0

� � � �
0 � 1 0
0 � 0 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈
φS

1

∣∣φT
1

〉
0 0

0 1 0
0 0 1

∣∣∣∣∣∣
= 〈

φS
1

∣∣φT
1

〉
, (C3)

or

(−1)1+1

∣∣∣∣∣∣∣∣
� � � �
� 1 0 0
� 0 1 0
� 0 0 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1, (C4)

and therefore, using the rule given in Eq. (22), the matrix ele-
ment (1) will become

(1) = 〈
φS

1

∣∣ĥSO
∣∣φT

1

〉 + 〈
1̄
∣∣ĥSO

∣∣ 1̄
〉〈
φS

1

∣∣φT
1

〉
+ 〈

2
∣∣ĥSO

∣∣ 2
〉〈
φS

1

∣∣φT
1

〉 + 〈
2̄
∣∣ĥSO

∣∣ 2̄
〉〈
φS

1

∣∣φT
1

〉
.

The square symbols represent the matrix elements of the rows
and columns that are stricken out in the calculation of the de-
terminants. The other case in which a matrix element between

SDs will be non-zero is when the determinants are created by
different excitations (excitations from different occupied KS
orbitals), and the linear-response orbitals have the same spin.
This happens with matrix elements (3), (8), (9), and (14) in
Eq. (C1). Let us take a closer look at how to apply Eq. (22)
to the matrix element (3). First of all, the overlap matrix
becomes

SST =

⎛
⎜⎜⎝

0 0
〈
φS

1

∣∣φT
2

〉
0

0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠, (C5)

from which we can clearly see that only one cofactor will be
non-zero, namely

(−1)(1+3)

⎛
⎜⎜⎝

� 0
〈
φS

1

∣∣φT
2

〉
0

� 1 0 0
� � � �
� 0 0 1

⎞
⎟⎟⎠ =

∣∣∣∣∣∣
0

〈
φS

1

∣∣φT
2

〉
0

1 0 0
0 0 1

∣∣∣∣∣∣

= −
∣∣∣∣∣∣
〈
φS

1

∣∣φT
2

〉
0 0

0 1 0
0 0 1

∣∣∣∣∣∣ = −〈
φS

1

∣∣φT
2

〉
, (C6)

from which we finally get

(3) = −〈
1
∣∣ĥSO

∣∣ 2
〉〈
φT

2

∣∣φT
2

〉
. (C7)

Matrix elements (2), (4), (5), (7), (10), (12), (13), and (15)
will all be zero.

Concerning the triplets
∣∣T +1

1

〉
and

∣∣T −1
1

〉
, only eight ma-

trix elements will have to be computed. As an example, we
compute〈

S0
0

∣∣Ĥ SO
∣∣T −1

〉
=

(1)〈
φS

1 1̄ 2 2̄
∣∣Ĥ SO

∣∣1̄ φ̄T
1 2 2̄

〉 + (2)〈
φS

1 1̄ 2 2̄
∣∣Ĥ SO

∣∣1 1̄ 2̄ φ̄T
2

〉
+

(3)〈
1 φ̄S

1 2 2̄
∣∣Ĥ SO

∣∣1̄ φ̄T
1 2 2̄

〉 + (4)〈
1 φ̄S

1 2 2̄
∣∣Ĥ SO

∣∣1 1̄ 2̄ φ̄T
2

〉
+

(5)〈
1 1̄ φS

2 2̄
∣∣Ĥ SO

∣∣1̄ φ̄T
1 2 2̄

〉 + (6)〈
1 1̄ φS

2 2̄
∣∣Ĥ SO

∣∣1 1̄ 2̄ φ̄T
2

〉
+

(7)〈
1 1̄ 2 φ̄S

2

∣∣Ĥ SO
∣∣1̄ φ̄T

1 2 2̄
〉 + (8)〈

1 1̄ 2 φ̄S
2

∣∣Ĥ SO
∣∣1 1̄ 2̄ φ̄T

2

〉
.

(C8)

Thus, there will be three cases in which the matrix elements
are non vanishing. The first will occur when the two SDs are
created by the same excitation but have different spins, as is
the case of matrix element (1), for which we have

SST =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠. (C9)

This matrix has a row and a column of zeros. Therefore, the
only non-zero cofactor that can be generated is the one ob-
tained by striking out the first line and the first column

(−1)1+1

∣∣∣∣∣∣∣∣
� � � �
� 1 0 0
� 0 1 0
� 0 0 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1, (C10)
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which leads to the result

(1) = 〈
φS

1

∣∣ĥSO
∣∣φ̄1

T 〉
. (C11)

This case will also apply to matrix element (6),

(6) = (−1)3+3

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
〈
φS

2

∣∣ĥSO
∣∣φ̄2

T 〉 = 〈
φS

2

∣∣ĥSO
∣∣φ̄2

T 〉
.

(C12)
For the matrix elements (3) and (8) we have linear response
orbitals that have been created by the same excitation and
have the same spin. Therefore,

(3) = 〈
1
∣∣ĥSO

∣∣1̄〉
(−1)1+2

∣∣∣∣∣∣
〈
φS

1

∣∣φT
1

〉
0 0

0 1 0
0 0 1

∣∣∣∣∣∣
= −〈

1
∣∣ĥSO

∣∣1̄〉〈
φS

1

∣∣φT
1

〉
(C13)

and

(8) = 〈
1
∣∣ĥSO

∣∣1̄〉
(−1)1+2

∣∣∣∣∣∣
〈
φS

1

∣∣φT
1

〉
0 0

0 1 0
0 0 1

∣∣∣∣∣∣
= −〈

1
∣∣ĥSO

∣∣1̄〉〈
φS

1

∣∣φT
1

〉
. (C14)

Finally, when the SDs are created by different excitations but
the linear-response orbitals have the same spin, as in the cases
of (4) and (7), we have

(4) = 〈
1
∣∣ĥSO

∣∣1̄〉
(−1)1+2

∣∣∣∣∣∣
〈
φS

1

∣∣φT
1

〉
0 0

0 1 0
0 0 1

∣∣∣∣∣∣
= −〈

1
∣∣ĥSO

∣∣1̄〉〈
φS

1

∣∣φT
1

〉
(C15)

and

(7) = 〈
1
∣∣ĥSO

∣∣1̄〉
(−1)1+2

∣∣∣∣∣∣
〈
φS

1

∣∣φT
1

〉
0 0

0 1 0
0 0 1

∣∣∣∣∣∣
= −〈

1
∣∣ĥSO

∣∣1̄〉〈
φS

1

∣∣φT
1

〉
. (C16)

Noticing that the matrix elements (2) and (5) are zero, we get
to the final result,〈

S0
0

∣∣Ĥ SO
∣∣T −1

〉
= − 〈

1
∣∣ĥSO

∣∣1̄〉〈
φS

1

∣∣φT
1

〉 − 〈
2
∣∣ĥSO

∣∣2̄〉〈
φS

2

∣∣φT
2

〉
− 〈

1
∣∣ĥSO

∣∣2̄〉〈
φS

2

∣∣φT
1

〉 − 〈
2
∣∣ĥSO

∣∣1̄〉〈
φS

1

∣∣φT
2

〉
+ 〈

φS
1

∣∣ĥSO
∣∣φ̄T

1

〉 + 〈
φS

2

∣∣ĥSO
∣∣φ̄T

2

〉
+ 0 + 0. (C17)

The same type of analysis can be applied to
〈
S0

0

∣∣Ĥ SO
∣∣T +1

〉
, to

give 〈
S0

0

∣∣Ĥ SO
∣∣T +1

〉
= − 〈

1̄
∣∣ĥSO

∣∣1〉〈
φS

1

∣∣φT
1

〉 − 〈
2̄
∣∣ĥSO

∣∣2〉〈
φS

2

∣∣φT
2

〉
− 〈

1̄
∣∣ĥSO

∣∣2〉〈
φS

2

∣∣φT
1

〉 − 〈
2̄
∣∣ĥSO

∣∣1〉〈
φS

1

∣∣φT
2

〉
+ 〈

φ̄S
1

∣∣ĥSO
∣∣φT

1

〉 + 〈
φ̄S

2

∣∣ĥSO
∣∣φT

2

〉
+ 0 + 0. (C18)
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