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ABSTRACT
We study a resistive tearing instability developing in a system evolving through the combined
effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We
explore first the exponential growth of the instability in the linear case and we find the fastest
growing mode, the corresponding eigenvalues and dispersion relation. The instability growth
rate scales as γ ∝ B2/3σ−1/3, where B is the magnetic field and σ the electrical conductivity.
We confirm the development of the tearing resistive instability in the fully non-linear case, in
a plane-parallel configuration where the magnetic field polarity reverses, through simulations
of systems initiating in Hall equilibrium with some superimposed perturbation. Following
a transient phase, during which there is some minor rearrangement of the magnetic field,
the perturbation grows exponentially. Once the instability is fully developed, the magnetic
field forms the characteristic islands and X-type reconnection points, where Ohmic decay is
enhanced. We discuss the implications of this instability for the local magnetic field evolution
in neutron stars’ crusts, proposing that it can contribute to heating near the surface of the star,
as suggested by models of magnetar post-burst cooling. In particular, we find that a current
sheet a few metres thick, covering as little as 1 per cent of the total surface, can provide 1042 erg
in thermal energy within a few days. We briefly discuss applications of this instability in other
systems where the Hall effect operates such as protoplanetary discs and space plasmas.
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1 IN T RO D U C T I O N

A plethora of observations of strongly magnetized neutron stars
(Olausen & Kaspi 2014) has revealed that their temperatures are
higher than what conventional cooling of a hot proto-neutron star
suggests. A solution to this puzzle is that the extra thermal energy
needed for these systems is provided by the Ohmic decay of their
magnetic energy reservoir (Pons & Geppert 2007). However, given
the high conductivity of a neutron star crust, the rate of Ohmic
decay is expected to be slow and the conversion of magnetic energy
to heat inefficient. This has led to the idea that the Hall effect may
be able to accelerate magnetic field decay, as the Hall time-scale
is inversely proportional to the intensity of the magnetic field. This
acceleration can only be done in an indirect way, as the Hall effect
conserves magnetic field energy.

Several paths have been proposed in this direction. Goldreich
& Reisenegger (1992) suggested that the Hall effect may lead to
the formation of smaller scale structure through cascades, which
have reduced Ohmic decay times, a result that has been followed up
by numerical studies exploring Hall-induced turbulence (Biskamp,
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Schwarz & Drake 1996; Wareing & Hollerbach 2009, 2010). An-
other possibility is the development of instability of a state previ-
ously being in Hall equilibrium leading to smaller structure forma-
tion (Rheinhardt & Geppert 2002; Rheinhardt, Konenkov & Geppert
2004; Pons & Geppert 2010). Recent work of Wood, Hollerbach &
Lyutikov (2014) found a family of exact solutions for the density-
shear instability in electron magnetohydrodynamics (MHD), re-
quiring a covarying magnetic field and electron number density, a
result that was studied numerically in detail by Gourgouliatos et al.
(2015). Apart from instabilities and cascades, secular Hall evolu-
tion has been explored: Vainshtein, Chitre & Olinto (2000) studied
the effect of the sharp drop of electron number in the crust, finding
that the magnetic field evolution is described by a Burgers’ type
equation, leading to the formation of shocks in the form of current
sheets decaying on a Hall time-scale rather than the slower Ohmic,
and applied to the evolution of a toroidal field in an axially symmet-
ric system by Reisenegger et al. (2007). Once the poloidal field is
included (Hollerbach & Rüdiger 2002, 2004), the formation of cur-
rent sheets is followed by an oscillatory behaviour. The consensus
of axially symmetric crustal simulations, exploring a broad range of
initial conditions (Pons, Miralles & Geppert 2009; Kojima & Kisaka
2012; Viganò, Pons & Miralles 2012; Gourgouliatos & Cumming
2014b), has concluded that the Hall effect drastically changes the
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structure of the magnetic field, whereas later, Hall evolution satu-
rates (Gourgouliatos & Cumming 2014a).

An intrinsic drawback of global neutron star simulations is the
fact that they under-resolve current sheets. Current sheets form both
in the uniform electron density case (Wareing & Hollerbach 2010)
and even more efficiently in the presence of an electron density
gradient (Vainshtein et al. 2000; Viganò et al. 2012). Furthermore,
they are likely to appear near the surface of the crust, as the avail-
able electric charges decrease dramatically from the solid crust to
the plasma magnetosphere. In the latter case, a usual assumption
made in simulations is that the external magnetic field is a vacuum
potential field which leads to boundary effects by matching the two
configurations (Wood et al. 2014).

In their seminal paper, Furth, Killeen & Rosenbluth (1963) stud-
ied finite-resistivity instabilities of a sheet pinch finding the so-
called tearing instability “a long-wave ‘tearing’ mode, correspond-
ing to a breakup of the layer along the current flow lines”. Linear
analysis of the MHD system yields an exponential growth rate
γT ∼ τ

−3/5
O τ

−2/5
A , where τO and τA are the resistive and Alfvèn

times, respectively, while in the non-linear phase the growth be-
comes algebraic (Rutherford 1973). Several applications of the
tearing instability have been considered in astrophysical contexts.
Rosenbluth & Chang (1967) studied resistive instabilities in mag-
netospheric tails. Priest (1985) presented various applications of the
tearing instability in relation to current sheets developing in solar
and space plasmas. The tearing instability is considered to be an
efficient mechanism for powering solar flares and accelerating par-
ticles therein (Sturrock 1966; Somov & Verneta 1989; Aschwanden
2002). Recent numerical simulations by Landi et al. (2015) and Del
Zanna et al. (2016) in general astrophysical contexts have demon-
strated the development of the tearing instability in the limit of very
high conductivity for appropriately thin current layers. Other appli-
cations have focused on pulsar magnetospheres, where numerical
simulations agree on the presence of current sheets, either confined
to the equatorial plane as is the case in axially symmetric sys-
tems (Contopoulos, Kazanas & Fendt 1999; Komissarov 2006) or
with more complicated geometries for the case of inclined systems
(Spitkovsky 2006; Kalapotharakos & Contopoulos 2009). In-depth
study of the current sheets of pulsar magnetospheres by Uzdensky
& Spitkovsky (2014) showed that they are susceptible to the tear-
ing mode instability leading to the formation of plasmoids with the
eventual emission of high-energy radiation and non-thermal parti-
cles (Sironi & Spitkovsky 2014). The tearing instability has also
been studied in the context of relativistic MHD considering ap-
plications to magnetar flares and jets through explosive reconnec-
tion (Komissarov, Barkov & Lyutikov 2007; Barkov & Komissarov
2016; Elenbaas et al. 2016).

Motivated by the omnipresence of the tearing instability in cur-
rent sheets and their formation in neutron star crusts through the
Hall effect, we study its development and impact. We explore the
evolution of the magnetic field in a configuration where the tan-
gential component changes direction by 180◦ within a thin layer,
allowing for some finite resistivity, in the inertialess electron-MHD
formulation. We show, through linear and non-linear calculations,
that the tearing mode instability naturally appears and enhances the
decay of the magnetic field.

We note that the term Hall evolution (or drift) has the meaning of
electron MHD when used to describe the evolution of the magnetic
field in the crust of neutron stars. There, only electrons are allowed to
move through a solid crystal lattice consisting of positively charged
ions (Jones 1988). In principle, Hall evolution can accommodate
for the motion of more than one charged species whereas electron

MHD refers to systems where only electrons move, making the
latter a special case of the former. In this paper, the term Hall-MHD
is used in the limit of electron MHD.

The plan of the paper is as follows. In Section 2, we formulate the
equations of electron MHD. We solve these equations in the linear
and non-linear regime in Section 3. We discuss the properties of the
instability and compare it with the conventional tearing instability
in Section 4. We discuss the application of the tearing instability
in neutron stars and other astrophysical systems in Section 5. We
conclude in Section 6.

2 E L E C T RO N - M H D F O R M U L AT I O N
I N NEUTRO N STA R C RU STS

The crust is the outer layer of the neutron star with thickness of
about 1 km. The density at the base is 1014 and 109 g cm−3 at
the surface. It can be approximated to good accuracy by a highly
conducting ion Coulomb lattice with electrons having the free-
dom to move. Following the derivation of Goldreich & Reisenegger
(1992), the crustal electric current must be carried by free electrons:
j = −neeve, where j is the current density, ne the electron num-
ber density, e the electron charge and ve the electron veloc-
ity. Then, from Ampère’s law j = (c/4π)∇ × B, where c is the
speed of light and B the magnetic induction, and using Ohm’s
law j = σ (E + (ve × B) /c), where E is the electric field and σ

the electric conductivity, we substitute into Faraday’s law, yielding

∂B
∂t

= −∇ ×
(

c

4πene
(∇ × B) × B + c2

4πσ
∇ × B

)
. (1)

The first term on the right-hand side of the above equation describes
the evolution under the Hall effect and the second one Ohmic dis-
sipation. Conceptually, the Hall effect can be thought of as the
advection of the magnetic flux by the electron fluid.

Contrary to usual MHD, this equation does not assume that mass
is displaced, as the crustal ions hold fixed positions in space, while
the moving electrons are to good approximation inertialess. The
Lorentz forces are balanced by the elasticity of the crust. The only
physical quantity involved in the description of the system is the
magnetic induction B, while for instance in normal MHD one needs
to solve for the plasma velocity through the momentum equation.

It follows, from the first term on the right-hand side of equa-
tion (1), that a state for which the following condition is satisfied,

∇ ×
(

c

4πene
(∇ × B) × B

)
= 0, (2)

corresponds to a Hall equilibrium, and will not evolve in the limit of
zero resistivity (Cumming, Arras & Zweibel 2004; Gourgouliatos
et al. 2013; Fujisawa & Kisaka 2014). In the realistic case of non-
zero resistivity, however, the system will start evolving and may be
pushed out of Hall equilibrium (Marchant et al. 2014).

3 TEARI NG I NSTABI LI TY

3.1 Linear theory

Let us assume a background magnetic field with components along
the y and z directions depending only on x, and a constant electron
number density (ne) and electric conductivity (σ ):

Bb = By(x) ŷ + Bz(x) ẑ. (3)

This magnetic field corresponds to a Hall equilibrium satis-
fying equation (2). Consider some perturbation b(x, z, y, t) =
exp

(
γ t + ikyy + ikzz

)
(bx(x)x̂ + by(x) ŷ + bz(x) ẑ); by Gauss’s
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law it is ∇ · b = 0, thus bz = ik−1
z b′

x − kyk
−1
z by , where prime de-

notes derivative with respect to x. Thus, the perturbation becomes

b = exp
(
γ t + ikyy + ikzz

)[
bx(x)x̂ + by(x) ŷ

+ (
ik−1

z b′
x − kyk

−1
z by

)
ẑ
]
. (4)

Substituting into equation (1) and keeping only the linear terms in
b, we obtain the following equations:

γ bx + c

4πene

[
k2

zBzby − ikzB
′
ybx

+ ky

(
i
{
B ′

zbx − Bzb
′
x − kyk

−1
z Byb

′
x

}

+ {
kzBy + k2

yk
−1
z By + kyBz

}
by

)]

+ c2

4πσ

[(
k2

y + k2
z

)
bx − b′′

x

] = 0, (5)

γ by + c

4πene

[
− k2

zBzbx − B ′′
z bx + Bzb

′′
x

+ ky

(
i
{

kyk
−1
z

(
Byby

)′
+ (

Bzby

)′ } − kzBybx

+ k−1
z

(
Byb

′
x

)′
)]

+ c2

4πσ

[(
k2

y + k2
z

)
by − b′′

y

] = 0. (6)

We first explore numerically the eigenvalue problem. To model the
structure of a current sheet, we have chosen the following profile
for the background field:

By = By,0sech

(
x

x0

)
,

Bz = Bz,0 tanh

(
x

x0

)
, (7)

assuming x0 > 0 and Bz,0 > 0. The field becomes uniform along
the z direction for |x| � x0. A choice of amplitudes By,0 = ±Bz,0

corresponds to a Bloch wall (Bloch 1932): a magnetic field that
changes direction from the −z to the +z keeping its magnitude con-
stant, within a layer of thickness scaling with x0 centred at x = 0.
This case has been of particular interest in MHD simulations as it
is a force-free magnetic field (Low 1973), making it an appropri-
ate choice for studies of resistive instabilities. However, this is an
unnecessary constraint for electron-MHD studies as any choice of
By,0 amplitude is a Hall equilibrium since equation (2) is identically
satisfied.

The configuration extends from −xb to xb. We impose vacuum
boundary conditions at x boundaries, demanding that no currents
exist outside the domain. We ensure that x0 is sufficiently smaller
than xb for the results to be physically meaningful, and the back-
ground field Bb is essentially uniform and current-free close to the
boundaries. Demanding vacuum boundary conditions ∇ × b = 0
for these equations at |x| > xb, we obtain the following equations:
b′

x ± k2
z (k2

y + k2
z )−1/2bx + ikyby = 0 and ikyb

′
x − (k2

y + k2
z )by = 0.

We consider an appropriate system of units so that xb = 1,
cBz,0/(4πene) = 1, where the growth rate is measured in units of
inverse Hall times τH = 4πenex

2
b/(cBz,0), with the characteristic

Ohmic time-scale being τO = 4πσx2
b/c

2. We define the Hall
parameter RH = σBz,0/(cene), the ratio of the Ohmic time-scale

Table 1. Summary of the linear stability calculation for the runs with Bz,0

= 1, By,0 = 0 and ky = 0. The first column is the name of the run, the second
the thickness of the reversal area x0, the third the value of By,0, the fourth the
Hall parameter RH, the fifth the wavenumber at which the maximum growth
rate occurs and the sixth the maximum value of the growth rate.

Name x0 By,0 RH kz γ

Z05-1 0.5 0 100 0.781 0.218
Z05-2 0.5 0 200 0.741 0.189
Z05-4 0.5 0 400 0.694 0.156
Z05-6 0.5 0 600 0.663 0.138
Z05-10 0.5 0 1000 0.623 0.117
Z05-15 0.5 0 1500 0.589 0.102
Z05-20 0.5 0 2000 0.567 0.0925

Z02-1 0.2 0 100 1.894 1.525
Z02-2 0.2 0 200 1.785 1.315
Z02-4 0.2 0 400 1.652 1.095
Z02-6 0.2 0 600 1.565 0.973
Z02-10 0.2 0 1000 1.456 0.830
Z02-15 0.2 0 1500 1.372 0.728
Z02-20 0.2 0 2000 1.319 0.661

Z01-1 0.1 0 100 3.757 6.150
Z01-2 0.1 0 200 3.530 5.306
Z01-4 0.1 0 400 3.255 4.426
Z01-6 0.1 0 600 3.086 3.937
Z01-10 0.1 0 1000 2.866 3.368
Z01-15 0.1 0 1500 2.692 2.959
Z01-20 0.1 0 2000 2.564 2.693

Table 2. Summary of the linear stability calculation for the runs with Bz,0

= 1, By,0 = 1 and ky = 0. The columns are as in Table 1.

Name x0 By,0 RH kz γ

Y05-1 0.5 1 100 0.884 0.178
Y05-2 0.5 1 200 0.851 0.158
Y05-4 0.5 1 400 0.810 0.132
Y05-6 0.5 1 600 0.784 0.117
Y05-10 0.5 1 1000 0.752 0.0988
Y05-15 0.5 1 1500 0.728 0.0856
Y05-20 0.5 1 2000 0.711 0.0770

Y02-1 0.2 1 100 2.067 1.352
Y02-2 0.2 1 200 1.958 1.194
Y02-4 0.2 1 400 1.825 1.008
Y02-6 0.2 1 600 1.735 0.901
Y02-10 0.2 1 1000 1.628 0.773
Y02-15 0.2 1 1500 1.539 0.680
Y02-20 0.2 1 2000 1.476 0.619

Y01-1 0.1 1 100 4.110 5.433
Y01-2 0.1 1 200 3.893 4.800
Y01-4 0.1 1 400 3.617 4.061
Y01-6 0.1 1 600 3.440 3.632
Y01-10 0.1 1 1000 3.209 3.123
Y01-15 0.1 1 1500 3.022 2.751
Y01-20 0.1 1 2000 2.902 2.507

over the Hall time-scale. Larger RH correspond to systems
where the Hall effect dominates. In the systems we studied, we
have set Bz,0 = 1, combining it with By,0 = 0 and By,0 = 1.
We have varied the thickness of the current sheet from x0 = 0.1 to
0.5, and the Hall parameter from RH = 100 to 2000, by changing
the conductivity, see Tables 1 and 2 for the range of parameters
used. Then we solve the linear problem to determine the fastest
growing eigenmodes of bx and by and the corresponding
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Figure 1. Contour plot of the real part of the eigenvalues for a range of
wavenumbers (kz, ky), using the Z02-4 profile. We find that the maximum
eigenvalue occurs for ky = 0.

Figure 2. Contour plot of the real part of the eigenvalues for a range of
wavenumbers (kz, ky), using the Y02-4 profile. We find that the maximum
eigenvalue occurs for ky = 0.

eigenvalues. We do so by discretizing the system of ordinary dif-
ferential equations (5) and (6) and constructing the relevant matrix,
whose eigenvalues allow us to determine γ and the eigenmodes. We
have implemented this using a finite difference and a spectral cal-
culation finding identical results. We used up to a 1000 Chebyshev
polynomial expansion in the highest RH and thinner x0 simulated for
convergence, see chapter 7 of Boyd (2001). The results were tested
against the finite difference calculation to ensure their validity.

Studying the plane-parallel perturbations with ky = 0, we find that
both the eigenvalues and eigenfunctions for By,0 = 0 are real, while if
By,0 	= 0, the eigenvalues are still real but the eigenfunctions become
complex indicative of phase shifting in z. Allowing the instability
to have ky 	= 0 leads to complex eigenvalues and slower growing
eigenmodes for the same background field and RH, see Figs 1 and 2.
Hereafter, we will focus on the ky = 0 case.

Figure 3. Maximum growth rate of the tearing instability, normalized to its
value at RH = 2000, versus RH. The red crosses correspond to models Z05-1
up to Z05-20, the red stars to Z02-1 up to Z02-20, the red circles to Z01-1
up to Z01-20, the green crosses correspond to models Y05-1 up to Y05-20,
the green stars to Y02-1 up to Y02-20 and the green circles to Y01-1 up to
Y01-20. The growth rate scales asymptotically with R

−1/3
H .

Figure 4. The wavenumber at which the maximum growth rate occurs,
normalized to its value at RH = 2000, versus RH. There is an asymptotic
scaling with the Hall parameter kz ∝ R−0.15

H dependence. The symbols are
the same as in Fig. 3.

The maximum growth rate of the instability scales as γ ∝ R
−1/3
H ,

see Fig. 3. The wavenumbers at which the maximum growth rate
occurs are plotted in Fig. 4, and scale as R−0.15

H . These scaling laws
hold for narrow current sheets and high enough Hall parameters.
Thus, the corresponding minimum growth time-scale for the tearing
instability becomes τI = γ −1 ∝ τ

2/3
H τ

1/3
O and in terms of the physi-

cal quantities appearing γ ∝ B
2/3
z,0 σ−1/3, assuming that the thickness

of the reversal area remains unchanged. This quasi-stationarity as-
sumption holds as long as τ I 
 τO which corresponds to R

2/3
H � 1.

The maximum growth rate and the corresponding wavenumber
are higher for thinner current sheets, with the growth rate scal-
ing approximately as x−2

0 and the wavenumber as x−1
0 . Thus, the

growth time of the tearing instability τ I in the linear regime can be
summarized in the following expression:

τI = τH(10x0/xb)2(RH/100)1/3

γZ01−1
, (8)
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Figure 5. The growth rate versus the wavenumber for Z02-4 (red) and
Y02-4 (green), see Tables 1 and 2. Both of them have x0 = 0.2 and RH =
400, whereas the Z02-4 has By,0 = 0 and the Y02-4 has By,0 = 1. The case
with By,0 = 1 has a smaller growth rate and the maximum is pushed towards
higher wavenumbers.

Figure 6. The eigenfunctions bx and by for the fastest growing mode for
the case Z01-10.

where γ Z01-1 is the dimensionless growth rate of a system with
RH = 100 and x0 = 0.1xb; note that τ I is measured in natural units
and is not rescaled.

The inclusion of By has a mild stabilizing effect, reducing the
growth rate for a given wavenumber and pushing the maximum
growth rate to a higher wavenumber, as shown in Fig. 5 where the
dispersion relation is plotted. The eigenfunctions bx and by for the
fastest growing mode with parameters x0 = 0.1 and RH = 1000
are plotted in Fig. 6, showing that the fastest growing eigenmode
consists of oppositely directing by components on either side of the
current sheet and a bx component with a local minimum at x = 0.

3.2 Non-linear evolution

Following the rapid exponential growth of the instability and once
the perturbing field becomes comparable to the background one, the
instability evolves non-linearly. Furthermore, the background field
evolves as well, given the dissipation in the current sheet. Given
these limitations that cannot be assessed by the linear model, we
explore the full non-linear evolution of the plane-parallel problem.
We integrate numerically the full non-linear equation (1) using a
second-order Runge–Kutta scheme for the temporal evolution and

a second-order finite difference scheme for the spatial derivatives.
We assumed vacuum boundary conditions in x and periodicity in z.
The computational domain extends to ±1 in x and to ±2 in z. The
resolution used for the majority of the runs was 200 × 400 points in
x and z, and was tested against higher resolution for some particular
cases with good agreement.

We explore a variety of magnetic field configurations. As initial
condition, we used the background field given in equation (7) super-
imposed with a small perturbation in the y component, containing
up to 2 × 10−5 of the total energy, so that it would trigger any
instability. We used configurations of current sheet initial thickness
x0 = 0.1 and 0.2 combining with Hall parameters RH = 200 and
400, corresponding to Z01-2, Z01-4, Z02-2, Z02-4, Y01-2, Y01-4,
Y02-2 and Y02-4 (Tables 1 and 2). According to the linear calcu-
lation, the wavelength of the fastest growing mode corresponding
to these backgrounds is smaller than the domain’s extent in z. In all
runs, except when the Y02-2 initial condition was used, we noticed
a growth of the perturbation and the formation of the island pattern
of the tearing mode. In what follows, we will discuss in detail the
results of runs with initial conditions Z01-2 and Z01-4 which en-
capsulate the basic behaviour of the tearing instability. The Ohmic
decay of the background field did not allow enough time for the
growth of the instability in the case of Y02-2.

We plot three snapshots of the magnetic field structure in Fig. 7,
at times t = 0 (left), t = τH (middle) and t = 2τH (right), for
the run with initial conditions Z01-4 and some weak perturbation.
We find that the strength of the perturbing magnetic field rises
from an initial value of 0.02B0 to 0.18B0. While the instability is
growing, the background field changes as well; in particular, the
current sheet becomes wider and consequently this has an effect on
the growth rates and wavenumbers of the dominant eigenmodes.
Thus, the tearing instability is shifted towards longer wavelengths
as the wavenumber scales inversely with x0. There is also some drift
of the newly formed islands along the z direction which is caused
by the mixing of modes with different wavelengths and different
growth rates. Eventually, once the instability has fully developed,
it forms the characteristic long-living reconnection islands, see the
right-hand panel of Fig. 7.

To probe the instability, we used the amount of energy in the x
and y components of the magnetic field where we plot the results
of two runs with RH = 200 and 400, and x0 = 0.1 (initial condi-
tions Z01-2, Z01-4), see Fig. 8. Following a short initial transition
where energy is dissipated from the perturbation, presumably due to
damping of modes with negative growth rates (t < 0.2τH), we find
that the amount of energy in the x and y components rises almost
exponentially. This phase lasts until t = 2 for the RH = 400 run, and
corresponds to a growth rate for the energy γ E = 6.8 implying an
approximate growth rate for the amplitude of the perturbation field
γ I ≈ γ E/2 = 3.4. This figure is smaller compared to 4.426 found in
the linear analysis, as expected, since the former takes into account
the energy in the various other modes which grow at slower rates,
while the latter gives the growth rate of the fastest mode only. The
growth of the energy of the run where the Z01-2 initial condition
was used saturates earlier and at a lower energy. At very early times
(0.2 < t < 0.4τH), the instability at RH = 200 grows marginally
faster than the RH = 400 due to γ Z01-4 < γ Z01-2; however, this lasts
for a very short time as the background field decays swiftly and
widens the magnetic field reversal area. For instance, in a run with
RH = 200 and x0 = 0.1, it takes ∼3τH for the reversal area to double
its size if left to decay Ohmically. This means that the growth rate
will drop by a factor of 4 and the wavenumber of the fastest growing
mode will be multiplied by a factor of 2. With respect to the energy
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Figure 7. The magnetic field for the run using the initial conditions Z01-4 with a superimposed small perturbation in by, at time t = 0 (left), τH (middle)
and 2τH (right), the black lines correspond to the Bx and Bz components of the field, and the By component is shown in colour. The magnetic field forms the
characteristic islands in the location of the current sheet. As the system evolves and the current sheet decays, the system adopts longer wavelength modes.

Figure 8. The ratio of magnetic energy in the x and y components over
the total magnetic energy for two runs with initial conditions that of Z01-2
(red) Z01-4 (green) and a perturbing field containing 2 × 10−5 of the total
energy. The time is expressed in units of τH.

decay, the inclusion of the instability leads to a faster rate compared
to a system evolving solely under Ohmic dissipation with the Hall
term switched off, a result that is more prominent in the case of
RH = 400, see Fig. 9.

4 D ISCUSSION

Following the description of the linear and non-linear evolution, we
conclude that this instability is a resistive tearing mode as it fulfils
the criteria set by Furth et al. (1963). First, it is a resistive instability
with a clear dependence on the value of the resistivity, secondly it
appears along the current sheet by breaking up the field lines and
thirdly it is a long-wavelength instability. We remark though that
the physical mechanism between the tearing instability in electron-
MHD and the usual MHD evolution is different. In electron MHD,
a sole equation for the evolution of the system needs to be solved,
equation (1), whereas in MHD the momentum equation needs to
be accounted for, as well. Thus, while in the usual MHD case,
the development of the instability results from a sequence of events

Figure 9. The difference of magnetic energy at time t, Et from the initial
magnetic energy E0, for the runs shown in Fig. 8, solid green and red lines.
The same quantity for runs evolving only under the Ohmic dissipation. The
decay for the system evolving only under Ohmic dissipation is slower, and
the difference is more profound for the higher RH.

involving magnetic pressure and tension and plasma pressure, in the
electron MHD such a description is irrelevant, as the Lorentz force
is balanced by the ion lattice and the entire evolution is determined
by the magnetic induction equation alone.

In the Hall-MHD case, the key quantity is the electron fluid
velocity advecting the magnetic flux. The electron fluid velocity
is uniquely determined by the magnetic field structure through the
relation

ve = − c

4πene
∇ × B. (9)

The instability develops through the steps shown in Fig. 10. The by

component is supported by a current corresponding to the motion
of the electron fluid on the plane of the figure with velocity ve,
denoted by blue arrows shown edge-on. Note that since the current
is carried by electrons, its flow is antiparallel to the ve; hereafter,
we are going to refer to the electron motion to avoid confusion from
the oppositely directing current. Considering the x component of
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Figure 10. Schematic depiction of the instability. We assume a background
field directed to +z on the upper half and to the −z on the lower half. The
by component of the perturbation is shown in colour contours with red used
to point inwards and blue outwards (also denoted with � and ⊗ in black).
The blue arrows show the electron velocity related to the by components,
and the ⊗ blue arrows the electron velocity perpendicular to the plane of the
figure. The electron velocity is higher at the X point compared to the O point
leading to positive feedback and growth of the by component. Please refer
to the text in Section 4 for a detailed description of the instability process.

the electron flow near the O and X points, we find that it pushes the
field lines away from the O point and compresses them towards
the X points, whereas, in the z direction and along the current
sheet, the electron velocity is from the X point towards the O point.
Thanks to resistivity, the field lines reconnect at the X point; these
newly reconnected field lines shrink around the O point, where they,
again due to resistivity, vanish. The compression of the field lines
around the X point and the dilution around the O point enhance
and suppress the electron flow that runs normal to the plane of
the figure, respectively (blue arrow shown tail on). This velocity
difference deforms the field lines so that by is enhanced, closing
the positive feedback loop. This is in agreement with the fact that
the instability growth rate depends on both the Hall and the Ohmic
time-scales. The Hall time-scale controls the rate at which the field
lines move, while the Ohmic time-scales set the rate at which the
field lines reconnect and essentially control the supply of magnetic
field lines that will move from the X point towards the O point.

The results of our linear analysis show that the growth rate of
the instability is proportional to R

−1/3
H as opposed to R

−1/5
H sug-

gested in the analytical approach of Wood et al. (2014), while the
corresponding wavenumber is proportional to R−0.15

H as opposed to
R

−1/5
H suggested there. We find that as long as the boundaries of our

calculations are twice as wide compared to the size of field reversal
area, their effect on the instability is minimal. These discrepancies
are related to the inevitable simplifications made in order to obtain
an analytical expression for this instability and the different profiles
of the background magnetic field employed not containing a current
sheet.

Regarding the full non-linear calculations, we find that the insta-
bility has a considerable effect on the magnetic field decay once RH

is large enough. This is caused by the rapid growth of the initial
perturbation and the slow decay of the background state. In the ex-
amples simulated, we find that for a choice of RH = 400, the decay
rate is clearly enhanced once the instability is close to its saturation
point, with milder effect for a choice of RH = 200. Thus, the role of
the instability becomes more evident for higher RH.

Similar to the variants of the MHD tearing instability, the growth
time-scale of the electron MHD tearing instability has a mixed de-
pendence on the Hall and the Ohmic time-scales. In the usual MHD
tearing instability, the growth rate of the tearing instability scales
with τ

−3/5
O τ

−2/5
A , where τO is the resistive and τA the Alfvèn time-

scale, respectively (Furth et al. 1963). In relativistic magnetically
dominated plasmas, the growth rate is the geometric mean of the

Alfvèn time-scale and the resistive time-scale (Komissarov et al.
2007). These differences in the growth rates and consequently on
the wavenumbers reflect the different physical mechanism outlined
above.

The tearing instability in electron MHD shares some common
properties with the Hall-drift-induced magnetic instability which
was studied in the linear approximation with uniform (Rheinhardt
& Geppert 2002) and non-uniform (Rheinhardt et al. 2004) back-
ground density, and by Pons & Geppert (2010) in the non-linear
regime. Both instabilities require some non-zero resistivity to oper-
ate, as the maximum growth rate of the Hall-drift instability scales
as B

q
0 , q < 1, where B0 is the magnitude of the magnetic field; thus,

for negligible resistivity, the growth rate becomes zero in physical
units. Furthermore, both of them are long-wavelength instabilities,
having positive eigenvalues for 0 < k < kc, where kc is some cut-off
wavenumber. They differ on that the Hall-drift instability does not
require the presence of a current sheet, even though strong currents
are involved, whereas the current sheet is a key element for the
development of the tearing instability. Finally, we notice a simi-
larity on the late evolution where the non-linear effects have taken
over: in both instabilities, the system tends to adopt the longest
wavelength permitted by the computational domain leading and the
overall dissipation is faster (Pons & Geppert 2010).

The role of the Hall effect in the development of the tearing insta-
bility has been studied by numerous authors, primarily motivated
by experimental results (e.g. Bodin & Newton 1963). Studies of the
effect of Hall current on tearing mode in rotating reverse plasmas of
cylindrical geometry have shown that Hall currents combined with
rotation of the fluid can suppress tearing modes (Kappraff, Gross-
mann & Kress 1981; Finn, Manheimer & Antonsen 1983; Mirin
et al. 1986). Our approach is different from these ones in two basic
aspects. First, we consider the evolution under only electron MHD,
neglecting other terms arising from Lorentz forces, plasma pressure
and inertia, assuming that they are balanced by the elastic forces of
the ion lattice, whereas in these works the Hall effect is included
as an add-on to normal MHD evolution. Secondly, the geometry
of the system is different assuming a rotating cylinder whereas we
study a planar system. Our results are in agreement with those of
Fruchtman & Strauss (1993), who showed that the Hall effect can
actually lead to a tearing mode in an appropriate planar geometry.

5 N E U T RO N S TA R C RU S T H E AT I N G
A N D O U T BU R S T S

Models of global magnetic evolution have shown that a usual out-
come of Hall evolution is the development of current sheets (Vain-
shtein et al. 2000; Hollerbach & Rüdiger 2002, 2004; Reisenegger
et al. 2007; Geppert & Viganò 2014; Wood & Hollerbach 2015;
Gourgouliatos, Wood & Hollerbach 2016). Such current sheets are
more prominent on the natural boundaries of the crust–core inter-
face (Lander 2013; Beloborodov & Li 2016) and neutron star sur-
face (Thompson & Duncan 2001; Lyubarsky, Eichler & Thompson
2002), providing potential sites for the tearing instability.

As shown in the non-linear calculation, a high Hall parameter
and a thin layer containing the current sheet are essential for the
development of the instability. We can make an estimate of the rel-
ative physical parameters using realistic crust models of (Potekhin
& Yakovlev 1996; Potekhin 1999; Cumming et al. 2004), where the
electron number density at the base of the crust is ∼2.5 × 1036 cm−3

and the electric conductivity 3.6 × 1024 s−1, while we assume that
the electron number density at the surface is 2.5 × 1033 cm−3

and conductivity 3.6 × 1022 s−1. Note that the solid surface may
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extend to lower densities; however, at these lower densities, the
magnetic stresses will be comparable to the breaking stresses of
the crust and the assumption of electron MHD does not hold any
more (Gourgouliatos & Cumming 2015; Lander 2016). Using the
values mentioned above, the Hall parameter at the base of the crust
is RH, b = 100B15 and on the surface RH, s = 1000B15, where B15 is
the magnetic field in units of 1015 G. The Hall time-scale at the base
of the crust is τH,b = 1.5 × 105B−1

15 yr, while on the surface it is
τH,s = 1.5 × 102B−1

15 yr, where we have assumed a length-scale for
the magnetic field ∼1 km. Finally, we need to get a realistic estimate
of the thickness of the current sheet. Numerical simulations place
it close to their resolution limit (Hollerbach & Rüdiger 2002; Pons
& Geppert 2007; Viganò et al. 2012); thus, in physical dimensions,
this is ∼3 m (for a resolution of 346 radial grid points of a ∼1 km
crust; Viganò et al. 2012). Therefore, using these approximations
for the quantities appearing in expression (8), the growth rate of the
instability near the surface (τ s) and the base of the crust (τ b) of the
neutron star is

τs ≈ 18 d x2
3B

−2/3
15 , τb ≈ 23 yr x2

3B
−2/3
15 , (10)

where x3 is the thickness of the current sheet in units of 3 m. Note
that the Ohmic decay time-scale for a layer of the same thickness
close to the surface of a neutron star will be approximately 1.5 yr.
Assuming that the current sheet covers a fraction f of the surface
of the star, whose radius is set to 10 km, the energy that will be
contained in this layer will be

EI = 1.5 × 1044 ergB2
15x3f . (11)

While thinner layers would lead to a faster growing instability, the
instability layer cannot become infinitesimally thin. The release
of heat will increase the resistivity of the crust, lower the Hall
parameter and eventually dilute the current sheet.

Release of such amounts of energy in shallow depths has been
theorized in order to explain the bursting behaviour of magnetar out-
bursts. J1822.3−1606, a low-magnetic-field magnetar (5 × 1013 G),
requires 1042 erg of thermal energy to be deposited between 6 ×
108 and 6 × 1010 g cm−3 (Rea et al. 2012), or slightly deeper
down to 1011 g cm−3 (Scholz et al. 2012; Scholz, Kaspi & Cum-
ming 2014) to power its bursts and subsequent cooling. Modelling
of SGR 0418+5729 has also suggested that a somewhat smaller
amount of thermal energy (1041 erg) in similar depth is needed to
power its bursts (Rea et al. 2013). In a different magnetar, CXOU
J164710.2−455216, whose magnetic field is relatively weak (<7
× 1013 G), an energy deposition of ∼4 × 1044 erg at shallow depths
is required to power its bursting events (An et al. 2013), which
could be associated with a much larger part of the crust through
a longer wavelength, or alternatively an extremely high magnetic
field reaching 1016 G is needed. Finally, in 1E 1048.1−5937, a
similar sequence of bursting events has been reported (Archibald
et al. 2015) where thermal emission was enhanced in a timeframe
of 102–103 d. The energies required by these models can be fulfilled
by a current sheet covering as little as 1 per cent of the magnetar
surface. We remark that the time-scales here are longer than the
instantaneous deposition of thermal energy used in cooling models
(Pons & Rea 2012); however, for thin current sheets, the genera-
tion of Ohmic heat can be as short as few days and will not have
a major impact on the post-burst cooling of the magnetar. Another
possibility is that this instability operates in conjunction or triggers
other types of instabilities suggested to operate in the outer curst,
such as the thermoresistive instability (Price et al. 2012) or the
thermoplastic instability (Beloborodov & Levin 2014; Li, Levin &
Beloborodov 2016), with the major effect of the tearing mode being

on the reduction of the time-scales and an increase on the energy
efficiency.

Regarding the deeper part of the crust, solutions matching the
crustal field to the superconducting core have found that thin
current layers naturally form (Henriksson & Wasserman 2013; Lan-
der 2014), and assuming similar parameters for the thickness of the
layer and the strength of the field, the resulting time-scale exceeds
∼20 yr and cannot be associated with any bursting events. Never-
theless, it may contribute to faster magnetic field decay, affecting
the global evolution and quiescent thermal radiation. This effect
may be complementary to other processes that have been proposed
to operate in the crust–core interface, such as a highly dissipative
layer (Pons, Viganò & Rea 2013) and enhance the importance of
Hall decay proposed by Dall’Osso, Granot & Piran (2012).

6 C O N C L U S I O N S

In this work, we have shown that the tearing mode instability op-
erates under the Hall effect and resistivity in the electron-MHD
description. The appearance of the instability is similar to the usual
MHD case, developing the characteristic reconnection islands, even
though the mechanism is physically different, as the usual concepts
of magnetic pressure and tension do not apply in this context. We
find that the tearing instability facilitates a faster magnetic field de-
cay, which is more evident for high Hall parameters, without leading
to any significant amplification of the strength of the local magnetic
field. Considering its role in neutron star magnetic field evolution,
we have found that it is more likely to occur just below the surface of
strongly magnetized neutron stars or close to the crust–core bound-
ary. In the first case, the energetics of the instability are consistent
with the amount of heat needed for a magnetar burst, which is likely
to originate close to the surface, while the associated magnetic field
strengths are sufficient to deform the crust. In the latter case, it may
provide an extra channel for magnetic field decay and contribute to
the quiescent emission.

We note that the tearing instability discussed here may be relevant
to other systems where evolution under the Hall effect and electron
MHD is important. Namely, the Hall effect is known to operate in
protoplanetary discs (Balbus & Terquem 2001). Lesur, Kunz & Fro-
mang (2014) showed that the inclusion of ambipolar diffusion and
Ohmic decay leads to the formation of magnetic zones and recently,
Béthune, Lesur & Ferreira (2016) showed that the magnetic field
reverses direction within a narrow layer (cf. fig. 7 of Béthune et al.
2016). We speculate that these reversal regions may be appropriate
sites for the development of the tearing instability with implications
for the overall evolution of these protoplanetary discs.

Observations of the magnetotail have provided evidence of re-
connection activity in the region (Nagai et al. 2001; Runov et al.
2003; Snekvik et al. 2009) and the release of plasmoids due to the
Hall effect (Liu et al. 2013). While the system near the magneto-
tail is more complicated than the simple electron-MHD evolution
described here, the basic principles described here may be still in op-
eration and enhance the reconnection and the subsequent plasmoid
formation.
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