1	Characterization of kerogenous films and taphonomic
2	modes of the Sirius Passet Lagerstätte, Greenland
3	Timothy P. Topper ¹ , Francesco Greco ^{2,3} , Axel Hofmann ³ , Andrew Beeby ⁴ , and
4	David A.T. Harper ¹
5	¹ Palaeoecosystems Group, Department of Earth Sciences, Durham University, Durham
6	DH1 3LE, UK
7	² Department of Biological, Geological and Environmental Sciences, University of
8	Bologna, 40126 Bologna, Italy
9	³ Department of Geology, University of Johannesburg, Auckland Park 2006, South Africa
10	⁴ Department of Chemistry, Durham University, Durham, DH1 3LE, UK
11	ABSTRACT
12	The Sirius Passet Lagerstätte (northern Greenland) is an exceptionally well-
13	preserved early Cambrian faunal community containing a diverse array of stem-group
14	euarthropods, lobopodians, worms, sponges, and the iconic Halkieria. Material collected
15	in situ during recent expeditions has yielded a range of fossil specimens that are
16	preserved as two-dimensional, reflective films. Here we document in detail, for the first
17	time from the Sirius Passet, compressed, kerogenous fossil films characteristic of Burgess
18	Shale-type (BST) preservation. The carbon structure and the taphonomic mode
19	associated with these films were investigated using Raman spectroscopy. Our analysis
20	confirms that these reflective films are kerogenous, showing a higher D1 (disordered)
21	band and G (graphite) band intensity and area, indicating a greater concentration of
22	disordered carbon compared to the surrounding matrix. The spectral characteristics of the

23	fossils denote moderately ordered kerogenous matter, indicating that the transitional
24	Buen Formation that hosts the Sirius Passet was thermally altered at a peak temperature
25	of 409 \pm 50 °C. Phyllosilicate minerals are associated with the films, but they are not
26	anatomical or taxon-specific, suggesting that the higher thermal maturation of the
27	kerogen in the Sirius Passet produced a uniform distribution of minerals. This is unlike
28	the kerogenous films in the Burgess Shale Lagerstätte (British Columbia, Canada) that
29	have been metamorphosed at a lower temperature of 335 \pm 50 $^{\circ}C$ and typically show an
30	anatomically specific phyllosilicate distribution. Preservation as kerogenous films,
31	however, is not continuous, and the presence of other taphonomic modes not indicative of
32	BST preservation suggests that the Sirius Passet represents a unique and complex deposit.
33	INTRODUCTION
34	The extraordinary snapshot of communities preserved in Konservat-Lagerstätten
35	has significantly influenced our understanding of the early evolution of animal life in the
36	Cambrian Period. Taphonomic investigations have identified several preservational
37	modes in Lagerstätten (Briggs, 2003). In the Cambrian, the most celebrated deposits are
38	those that exhibit Burgess Shale-type (BST) preservation (Gaines, 2014), defined as the
39	exceptional preservation of non-mineralizing organisms as two-dimensional
40	carbonaceous compressions (Butterfield, 1995). This preservational style occurs in fine-
41	grained marine sediments and is characteristic of a number of early Paleozoic (Gaines,
42	2014) and Proterozoic deposits (Anderson et al., 2011). Despite nearly three decades of
43	intensive research into the topic, the taphonomic processes that led to BST preservation is
44	still a matter of debate. Several hypotheses have been proposed, ranging from the simple
45	absence of bioturbation and dysoxic or anoxic conditions, to the role of clays in inhibiting

46	autolytic decay, early aluminosilicate diagenesis, pyrite mineralization involving sulfate-
47	and iron-reducing bacteria, Fe ²⁺ ions adsorbing on organic tissues to delay degradation,
48	and the sealing of sediments by pervasive carbonate cements (see the review by Gaines,
49	2014). However, the presence of clay minerals (or rather their greenschist facies
50	metamorphic equivalents, such as illite and chlorite) is likely a result of
51	diagenesis/metamorphism (Powell, 2003; Butterfield et al., 2007; Page et al. 2008), and
52	the association of iron-bearing minerals in unweathered fossil material may be too
53	sporadic to have been considered a key factor in BST preservation (Gaines, 2014),
54	although resulting from related processes and microbial decomposition (Berner, 1984;
55	Schiffbauer et al., 2014).
56	The Sirius Passet in Greenland, is one of the most important and potentially the
57	oldest Cambrian Lagerstätten (Budd, 2011). The majority of documented fossils from
58	Sirius Passet were collected as talus material, and preservation is variable (Peel and
59	Ineson, 2011). Trilobites are preserved as complete molds showing a veneer of authigenic
60	silica (Strang et al., 2016a), whereas other less-mineralized taxa are preserved in slight
61	relief, replicated by silica and clay minerals, with some specimens displaying three-
62	dimensional phosphatized digestive tracts, and a single taxon (Campanamuta mantonae
63	Budd, 2011) preserving three-dimensional muscle fibers (Budd, 2011; Peel, 2016).
64	Remains of organic matter, on the other hand, were thought to have been lost, if
65	originally present at all, as a result of the relatively high grade of metamorphism
66	(greenschist facies) that the Sirius Passet has experienced (Budd, 2011). Some fossils
67	however, collected both in situ and as talus during more recent expeditions (2009 and
68	2011), are seemingly preserved as thin, reflective films and resemble, at least

69	superficially, fossil films seen in BST deposits (Vinther et al., 2011). The composition
70	and mode of preservation of these films though have been given no attention. Based on
71	14 specimens, we have employed Raman spectroscopy and scanning electron microscopy
72	with energy dispersive spectroscopy (SEM-EDS) elemental mapping to investigate the
73	composition and the taphonomic modes of fossils from the Sirius Passet Lagerstätte
74	preserved as two-dimensional reflective films. Raman spectra from three Burgess Shale
75	(British Columbia, Canada) specimens (all from the Walcott Quarry Member) were also
76	analyzed for comparison.
77	RESULTS
78	In hand specimen, organisms preserved as films from the Sirius Passet are
79	notoriously difficult to recognize, and are best observed underwater with high-angle
80	reflected white light, where they appear as reflective films and stand out conspicuously
81	from the non-reflective sedimentary matrix (Fig. 1). Unlike the Burgess Shale
82	(Butterfield et al., 2007), there appears to be no further distinction of individual
83	morphological features in terms of reflectivity; rather, entire fossils are uniformly
84	reflective and polarized light appears to have little or no effect. The majority of fossil
85	films are covered to a varying degree by iron oxide and oxyhydroxide coatings (Fig. 1).
86	Raman analysis demonstrates that there was a degree of homogeneity across the
87	host rock and the 14 Sirius Passet fossil specimens, with all spectra exhibiting a strong
88	carbon signal (with the exception of some point spectra directed at the iron oxide and
89	oxyhydroxide coatings). The majority of point spectra also exhibit vibrational modes at
90	200 cm^{-1} and 464 cm^{-1} attributed to quartz, and a vibrational mode at 262 cm^{-1} attributed
91	to muscovite, suggesting that all fossils analyzed were closely associated with

92	phyllosilicates. The vibrations of quartz and muscovite, however, were not fossil-specific
93	and appear to be consistently present across both the fossil films and the surrounding
94	matrix. Iron oxides are commonly observed here in association with kerogenous fossil
95	films (Fig. 1). The mineralogy of the iron coatings is variable. The coatings contained a
96	range of vibrational modes, although all were indicative of iron oxides and/or
97	oxyhydroxides. For example, the coating on Isoxys (Fig. 1I) exhibits diagnostic
98	vibrational modes at 220 cm ⁻¹ , 296 cm ⁻¹ , 410 cm ⁻¹ and 610 cm ⁻¹ indicating hematite (α -
99	Fe ₂ O ₃) while the veneer on <i>Siriocaris</i> (Fig. 1E) exhibits hematite in part, but also
100	vibrations at 299 cm ⁻¹ and 385 cm ⁻¹ diagnostic of goethite (α -FeOOH). The pervasive
101	presence of iron oxides and/or oxyhydroxides most likely reflects modern oxidative
102	weathering of the samples.
103	After baseline correction and deconvolution, carbonaceous material (CM) from
104	the fossil films can be resolved into five bands, D1, G, D2, D3 and D4 (D-disordered,
105	G—graphite; Figs. 2A–2C). All Raman spectra from the fossil films display D3 and D4
106	bands and have a well-developed D1 band that is typically more intense (mean intensity
107	ratio of D and G bands, I_{D1}/I_G , of 1.07) than the G band, and with a larger area (mean
108	A_{D1}/A_G ratio of 1.26) than the G band. The mean $R_2 [A_{D1}/(A_{D1}+A_{D2}+A_G)]$ ratio of the
109	reflective films is 0.527 ± 0.0106 (Table DR1 in the GSA Data Repository ¹). The CM in
110	the sedimentary matrix can also be deconvoluted into five bands; however, the D3 band,
111	which in amorphous CM emerges with increased disorder, is not identifiable in some
112	matrix spectra (Table DR1). The D1 band is generally equal to the G band in intensity
113	(mean I_{D1}/I_G ratio of 1.00); however, the D1 band generally exhibits a larger area (mean
114	A_{D1}/A_G ratio of 1.18). The mean R_2 ratio of the reflective films is 0.513 \pm 0.015. In

115	sample DH074, where acquisition times and accumulations of spectra were kept constant,
116	the CM in the fossil films displayed a higher mean D1 and G band intensity and area
117	compared with the CM in the sedimentary matrix (Figs. 2D and 2E). Statistical tests show
118	that there is a significant difference in the intensity and area of the D1 and G bands in the
119	fossil films and the sedimentary matrix (both Mann-Whitney tests with a p value <0.05).
120	Using Equation 2 in the Data Repository [$T = -445^* \text{ R}_2 + 641 (\pm 50 \text{ °C})$; Beysaac et al.,
121	2002], the peak thermal paleotemperature calculated for the Sirius Passet deposit is 409 \pm
122	50 °C. The kerogen in the Burgess Shale is less ordered than the Sirius Passet, with a
123	higher mean R_2 ratio of 0.686 \pm 0.012, a higher mean I_{D1}/I_G ratio of 1.52, and a greater
124	mean A_{D1}/A_G ratio of 3.20, all indicative of less-ordered material (Sforna et al., 2014).
125	The peak thermal paleotemperature calculated for the Walcott Quarry Member of the
126	Burgess Shale Lagerstätte is 335 ± 50 °C (see the Data Repository).
127	Raman spectra results were supported by elemental mapping analyses of taxa
128	using energy-dispersive X-ray spectroscopy (see the Data Repository). In many of the
129	analyzed specimens, carbon of the fossil films is indistinguishable from the matrix, which
130	is perhaps not surprising given the host rock also contains CM. Indeed, many elements
131	(e.g., Si, Al, K) in the fossils were also indistinguishable from the surrounding matrix,
132	supporting the relative uniform mineralogy suggested by Raman spectra. Some
133	specimens, for example Isoxys (Fig. 1I; Fig. DR4A), and an element from an undescribed
134	priapulid (Fig. 1H; Fig. DR4B), do show subtle elevated levels of carbon (Fig. DR4) in
135	comparison to the surrounding matrix. Some films also show an increase in silica as well
136	as carbon, although this is not so obvious for all specimens (Fig. DR4). Elemental
137	mapping of a coating on a specimen of Siriocaris and Isoxys (Fig. DR4) shows elevated

138 levels of iron and sulfur that most likely indicate the presence of pyrite or secondary

139 jarosite, now largely altered to Fe-bearing oxides.

140 **DISCUSSION**

141 The preservation of fossils as carbonaceous remains in Cambrian Lagerstätten has 142 been of considerable interest since organic remains were first liberated from the Burgess 143 Shale nearly 30 years ago (Butterfield, 1990). Mechanisms that delay the degradation or 144 destruction of organisms are viewed as one of the most important taphonomic factors that 145 lead to the exquisite preservation seen in Lagerstätten (Gaines, 2014). However, perhaps 146 of equal importance yet less frequently explored, is the subsequent metamorphic history 147 and peak thermal paleotemperatures experienced by Lagerstätten. Organic matter is 148 structurally susceptible to heating during burial and metamorphism, and an increase in 149 temperature results in the irreversible maturation of organic matter into kerogens and 150 eventually graphite in a process that potentially impairs the morphology of organic 151 remains (Beyssac et al., 2002; Schopf et al., 2005; Schiffbauer et al., 2012). It has been 152 suggested that the Sirius Passet experienced a metamorphic grade high enough to 153 eradicate all signs of carbonaceous remains (Budd, 2011), but this has not been 154 previously tested. Our results indicate that there is CM in the Sirius Passet and that the 155 primary mode of preservation of these films was as carbonaceous compressions. The 156 large majority of spectra acquired display a well-developed D1 band (full width at half maximum [FWHM] $< 70 \text{ cm}^{-1}$) that is slightly more intense than the G band. These 157 158 spectral characteristics are indicative of moderately ordered CM (Sforna et al., 2014) 159 bearing a metamorphic signature corresponding to a peak temperature of ~ 400 °C. The

160	low RD3 and RD4 ratios (0.015 and 0.02, respectively) calculated from the deposit are
161	also consistent with a relatively high peak temperature (Sforna et al., 2014, Fig. DR3).
162	This carbonaceous signal is not necessarily diagnostic for the organic material in
163	the fossil films, as the surrounding sedimentary matrix also contains CM. Although the
164	spectra from the matrix generally show lower values of I_{D1}/I_G , A_{D1}/A_G , and R_2 , overall
165	the structure and crystallinity of the CM in the matrix and fossil films is very similar
166	(Figs. DR1 and DR2). This is not surprising, given that the structural order of CM at this
167	metamorphic grade is predominantly controlled by temperature (Beyssac et al., 2002) and
168	that the carbon in the fossil films and the sedimentary matrix underwent the same thermal
169	alteration. However, in spite of this overall degree of structural homogeneity, some
170	features of the collected spectra can give an indication concerning a differential
171	abundance of CM between the fossil films and the surrounding matrix. The Sirius Passet
172	fossil films consistently show a greater D1 and G band intensity and area in relation to
173	the surrounding sedimentary matrix (Figs. 2D and 2E), suggesting a greater concentration
174	of CM within the fossil.
175	The Sirius Passet has been considered to lie within the spectrum of BST
176	preservation (Budd, 2011), although the lack of previously documented kerogenous
177	remains and the presence of muscle fibers preserved in three dimensions has resulted in
178	Gaines (2014) tentatively excluding the deposit from known BST deposits, awaiting
179	further study. The presence of two-dimensional kerogenous films in the Sirius Passet
180	does satisfy the umbrella definition of BST preservation (Butterfield, 1995), but there are
181	distinct taphonomic differences. For example, the vast majority of Burgess Shale fossils

182 preserve no significant third dimension, indicating a complete loss of cellular tissues

183	(Butterfield et al., 2007). This contrasts sharply with the Sirius Passet where, to date, the
184	majority of documented organisms are preserved in three dimensions (Budd, 2011).
185	Fossils of the Burgess Shale also show tissue-specific variation in the elemental
186	composition of phyllosilicate templates (Orr et al., 1998; Page et al., 2008). This
187	anatomically specific phyllosilicate distribution was interpreted as reflecting differences
188	in maturation pathways between morphologically specific kerogen types (Butterfield et
189	al., 2007; Page et al., 2008). The reflective kerogenous films analyzed here from the
190	Sirius Passet, on the other hand, show no specific tissue-related mineral variation and are
191	instead homogenous (Fig. 1). The distribution of phyllosilicates and CM in fossils of the
192	Burgess Shale creates a contrast that assists with the differentiation of morphological
193	features within the fossil organism. In the case of the Sirius Passet, exposure to
194	temperatures of ~400 $^{\circ}$ C could have led to complete overprinting of kerogen maturation
195	pathways; such that phyllosilicate minerals that arose during early diagenesis in an
196	anatomically specific fashion were homogenized during progressive metamorphism
197	producing a uniform phyllosilicate distribution and carbonaceous film, impeding the
198	discrimination of specific anatomical features. Muscovite is consistently associated with
199	carbonaceous films (also present in the host rock) in the Sirius Passet and it is a typical
200	end-member mineral in a trend where clay minerals are progressively replaced by chlorite
201	and eventually by the more thermally stable muscovite (Powell, 2003; Butterfield et al.,
202	2007). As such, relative to the Burgess Shale, the reflective films in the Sirius Passet
203	provide an example of organisms preserved as carbonaceous films that have been
204	exposed to progressively higher temperatures during metamorphism.

205	Preservation as kerogenous films, however, is discontinuous and the presence of
206	different preservational modes in the Sirius Passet presumably, to some degree, reflects
207	differences in the general composition of the organisms' original tissues and/or their
208	variable susceptibility to decay. For example, the silica death mask has only been
209	identified in trilobites (Strang et al., 2016a), phosphatization may be restricted to
210	digestive tracts (Peel, 2016; Strang et al., 2016b), replication by silica and phyllosilicate
211	minerals with slight topographic relief appears to be predominantly observed in large
212	euarthropods and lobopods (e.g., Budd, 2011), three-dimensional muscle fibers have only
213	been documented from a single taxon (Budd, 2011), and kerogenization has only been
214	observed in particular faunal elements (e.g., no large euarthropods have been observed
215	preserved as reflective films; Fig. 1). The presence of compressed kerogenized films and
216	phosphatized digestive tracts is similar to other BST deposits (Gaines, 2014). However,
217	the combination of these films and the presence of organisms preserved in three
218	dimensions exhibiting silica veneers and muscle fibers are unique to Cambrian
219	Lagerstätten. Three-dimensional muscles, for example, have only been described from
220	specimens of Myoscolex from the Emu Bay Shale in South Australia, where they are
221	preserved by phosphate (Paterson et al. 2016). It is possible that the muscle fibers in
222	Campanamuta were also primarily preserved by phosphate and secondarily replaced by
223	silica during diagenesis. This is also evident in the gut of Campanamuta, where
224	phosphate and silica are in close association (Strang et al., 2016b), with the former
225	possibly representing residual material. Yet, the taphonomic processes operating in the
226	Emu Bay Shale are not considered to be BST, as kerogenized fossil films are yet to be
227	documented (Paterson et al., 2016). Thin sheets of phyllosilicate minerals have also been

mentioned as potentially replacing organic matter in euarthropod taxa (Budd, 2011),
although this remains to be documented in detail. The topographic relief of the fossils and
their close association with abundant trace fossils (Peel and Ineson, 2011) is also unlike
typical BST deposits. This combination of preservational styles, displaying similarities to
BST and non-BST deposits, highlights the complex set of taphonomic modes present in
the Sirius Passet.

234 CONCLUSIONS

235 Reflective films in the Sirius Passet Lagerstätte are preserved as kerogenous 236 compressions. They display spectral characteristics that are indicative of moderately 237 ordered kerogenous matter that was heated to a peak temperature of 409 ± 50 °C. The 238 carbon in the Burgess Shale Lagerstätte is less ordered and was thermally matured at a 239 lower peak temperature of 335 ± 50 °C. Phyllosilicate minerals are associated with the 240 films, but are not taxon- or anatomically specific, suggesting that the higher thermal 241 maturation of the kerogen in the Sirius Passet produced a uniform distribution of minerals. While the preservation of organisms as kerogenous films is reminiscent of BST 242 243 preservation, the Sirius Passet exhibits a range of taphonomic modes, including silica 244 veneers, large organisms with slight topographic relief, and three-dimensional muscle 245 fibers that are not typical of BST preservation.

246 ACKNOWLEDGMENTS

This research was supported by a Marie Curie COFUND action grant to Topper
(Durham University, UK). We thank Carl Alwmark (Uppsala University, Sweden) for
SEM assistance and Arden Bashforth (University of Copenhagen, Denmark) for

assistance in perusing the collections at the Natural History Museum of Denmark, a visit

- that was funded by Synthesys Project DK-TAF-5432. Harper acknowledges a fellowship
- 252 from the Leverhulme Trust and support from the Wenner Gren Foundation (Sweden).
- 253 The 2009 and 2011 field campaigns were funded by the Agouron Institute, the Carlsberg
- Foundation, and Geocenter Denmark. We appreciate the constructive comments made by
- 255 Bob Gaines, James Schiffbauer, an anonymous reviewer, and editor James Schmitt.

256 **REFERENCES CITED**

- Anderson, E.P., Schiffbauer, J.D., and Xiao, S., 2011, Taphonomic study of Ediacaran
- 258 organic-walled fossils confirms the importance of clay minerals and pyrite in
- Burgess Shale–type preservation: Geology, v. 39, p. 643–646,
- 260 https://doi.org/10.1130/G31969.1.
- 261 Berner, R.A., 1984, Sedimentary pyrite formation: an update: Geochimica et
- 262 Cosmochimica Acta, v. 48, p. 605–615, https://doi.org/10.1016/0016-
- 263 7037(84)90089-9.
- 264 Beyssac, O., Goffé, B., Chopin, C., and Rouzaud, J.-N., 2002, Raman spectra of
- 265 carbonaceous material in metasediments: A new geothermometer: Journal of
- 266 Metamorphic Geology, v. 20, p. 859–871, https://doi.org/10.1046/j.1525-
- 267 1314.2002.00408.x.
- 268 Briggs, D.E.G., 2003, The role of decay and mineralization in the preservation of soft-
- bodied fossils: Annual Review of Earth and Planetary Sciences, v. 31, p. 275–301,
- 270 https://doi.org/10.1146/annurev.earth.31.100901.144746.
- 271 Budd, G.E., 2011, Campanamuta mantonae gen. et. sp. nov., an exceptionally preserved
- arthropod from the Sirius Passet Fauna (Buen Formation, lower Cambrian, North

- 273 Greenland): Journal of Systematic Palaeontology, v. 9, p. 217–260,
- 274 https://doi.org/10.1080/14772019.2010.492644.
- 275 Butterfield, N.J., 1990, Organic preservation of non-mineralizing organisms and the
- taphonomy of the Burgess Shale: Paleobiology, v. 16, p. 272–286,
- 277 https://doi.org/10.1017/S0094837300009994.
- 278 Butterfield, N.J., 1995, Secular distribution of Burgess Shale-type preservation: Lethaia,
- v. 28, p. 1–13, https://doi.org/10.1111/j.1502-3931.1995.tb01587.x.
- 280 Butterfield, N.J., Balthasar, U., and Wilson, L.A., 2007, Fossil diagenesis in the Burgess
- 281 Shale: Palaeontology, v. 50, p. 537–543, https://doi.org/10.1111/j.1475-
- 282 4983.2007.00656.x.
- 283 Gaines, R.R., 2014, Burgess Shale-type preservation and its distribution in space and
- time *in* Laflamme, M., et al., eds., Reading and Writing of the Fossil Record:
- 285 Preservational Pathways to Exceptional Fossilization: Paleontological Society
- 286 Papers, v. 20, p. 123–146.
- 287 Marshall, A.O., Wehrbein, R.L., Lieberman, B.S., and Marshall, C.P., 2012, Raman
- 288 spectroscopic investigations of Burgess Shale–type preservation: A new way
- 289 forward: Palaios, v. 27, p. 288–292, https://doi.org/10.2110/palo.2011.p11-041r.
- 290 Orr, P.J., Briggs, D.E.G., and Kearns, S.L., 1998, Cambrian Burgess Shale animals
- replicated in clay minerals: Science, v. 281, p. 1173–1175,
- 292 https://doi.org/10.1126/science.281.5380.1173.
- 293 Page, A., Gabbott, S.E., Wilby, P.R., and Zalasiewicz, J.A., 2008, Ubiquitous Burgess
- 294 Shale–style "clay templates" in low-grade metamorphic mudrocks: Geology, v. 36,
- 295 p. 855–858, https://doi.org/10.1130/G24991A.1.

- 296 Paterson, J.R., García-Bellido, D.C., Jago, J.B., Gehling, J.G., Lee, M.S., and
- 297 Edgecombe, G.D., 2016, The Emu Bay Shale Konservat-Lagerstätte: A view of
- 298 Cambrian life from East Gondwana: Journal of the Geological Society, v. 173, p. 1–
- 299 11, https://doi.org/10.1144/jgs2015-083.
- 300 Peel, J.S., 2016, Mineralized gutfills from the Sirius Passet Lagerstätte (Cambrian Series
- 301 2) of North Greenland: GFF, v. 139, p. 1–9,
- 302 https://doi.org/10.1080/11035897.2016.1260051.
- 303 Peel, J.S., and Ineson, J.R., 2011, The extent of the Sirius Passet Lagerstätte (early
- 304 Cambrian) of North Greenland: Bulletin of Geosciences, v. 86, p. 535–543,
- 305 https://doi.org/10.3140/bull.geosci.1269.
- 306 Powell, W., 2003, Greenschist-facies metamorphism of the Burgess Shale and its
- 307 implications for models of fossil formation and preservation: Canadian Journal of

308 Earth Sciences, v. 40, p. 13–25, https://doi.org/10.1139/e02-103.

- 309 Schiffbauer, J.D., Xiao, S., Cai, Y., Wallace, A.F., Hua, H., Hunter, J., Xu, H., Peng, Y.,
- and Kaufman, A., 2014, A unifying model for Neoproterozoic-Palaeozoic
- 311 exceptional fossil preservation through pyritization and carbonaceous impression:
- 312 Nature Communications, v. 5, p. 5754, https://doi.org/10.1038/ncomms6754.
- 313 Schiffbauer, J.D., Wallace, A.F., Hunter, J.L., Kowalewski, M., Bodnar, R.J., and Xiao,
- 314 S., 2012, Thermally induced structural and chemical alteration of organic-walled
- 315 microfossils: An experimental approach to understanding fossil preservation in
- 316 metasediments: Geobiology, v. 10, p. 402–423, https://doi.org/10.1111/j.1472-
- 317 4669.2012.00332.x.

- 318 Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Czaja, A.D., and Wdowiak, T.J., 2005,
- Raman imagery: A new approach to assess the geochemical maturity and biogenicity
- 320 of permineralized Precambrian fossils: Astrobiology, v. 5, p. 333–371,
- 321 https://doi.org/10.1089/ast.2005.5.333.
- 322 Sforna, M.C., Van Zuilen, M.A., and Philippot, P., 2014, Structural characterization by
- 323 Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex
- 324 chert, Western Australia: Geochimica et Cosmochimica Acta, v. 124, p. 18–33,
- 325 https://doi.org/10.1016/j.gca.2013.09.031.
- 326 Strang, K.M., Armstrong, H.A., Harper, D.A.T., and Trabucho-Alexandre, J.P., 2016a,
- 327 The Sirius Passet Lagerstätte: Silica death masking opens the window on the earliest
- 328 matground community of the Cambrian explosion: Lethaia, v. 49, p. 631–643,
- 329 https://doi.org/10.1111/let.12174.
- 330 Strang, K.M., Armstrong, H.A., and Harper, D.A.T., 2016b, Minerals in the gut: Scoping
- a Cambrian digestive system: Royal Society Open Science, v. 3, p. 160420,
- 332 https://doi.org/10.1098/rsos.160420.
- 333 Vinther, J., Eibye-Jacobsen, D., and Harper, D.A.T., 2011, An Early Cambrian stem
- polychaete with pygidial cirri: Biology Letters, v. 7, p. 929–932,
- 335 https://doi.org/10.1098/rsbl.2011.0592.

FIGURE CAPTIONS

- 337 Figure 1. Kerogenous films (reflective light gray areas) of soft-bodied organisms from
- 338 the Sirius Passet Lagerstätte (northern Greenland). A: Aaveqaspis inesoni,
- 339 Geological Museum, University of Copenhagen specimen MGUH32026. B: Overview of
- 340 specimens preserved as reflective films of kerogenous remains, including MGUH32027.

341	C: indeterminate organism, MGUH32028. D: <i>Pauloterminus spinodorsali</i> , MGUH32029
342	(scale bar 500 µm). E: Siriocaris trollae, MGUH32030. F: Isoxys volucris, MGUH32031.
343	G: Pygocirrus butyricampum?, MGUH32032. H: Undescribed priapulid?, MGUH32033.
344	I: Isoxys volucris, MGUH32034. All specimens were photographed under water and all
345	scale bars are 1 cm unless otherwise stated. Boxes in E, H, and I show location of
346	scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) maps
347	(Fig. DR1 [see footnote 1]). Light-brown patches are Fe-oxyhydroxide coatings.
348	
349	Figure 2. Comparison of Raman spectra from the Sirius Passet (northern Greenland)
350	(A,B,D,E) and Burgess Shale (British Columbia, Canada) lagerstätten (C). A: Mean
351	decomposition of the Raman spectrum of disordered carbonaceous matter of the fossil
352	films. B: Mean decomposition of the Raman spectrum of disordered carbonaceous matter
353	of the sedimentary matrix. C: Mean decomposition of the Raman spectrum of disordered
354	carbonaceous matter of sample WQ971082 from the Walcott Quarry Member. D: Box
355	plot showing the intensity of the D1 (disordered) and G (graphite) bands from the fossil
356	films (red) and matrix (blue). E: Box plot showing the area of the D1 and G bands from
357	the fossil films (red) and matrix (blue). Bars in all box plots indicate 95% confidence
358	intervals. Y-axis for D and E correspond to the number of vibrational events counted by
359	the CCD (charge-coupled device) camera.
360	
361	¹ GSA Data Repository item 2018xxx, xxxxxxx, is available online at
362	http://www.geosociety.org/datarepository/2018/ or on request from

363 editing@geosociety.org.