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Abstract

We study the optimal design of mechanisms for the private provision of public goods

in a setting in which donors compete for a prize of commonly known value. We discuss

equilibrium bidding in mechanisms that promote both conditional cooperation and

competition (i.e. the lottery and the all-pay auction with the lowest-bid payment rule)

and rank their fund-raising performance vis-á-vis their standard (pay-your-own-bid)

counterparts. The theoretically optimal mechanism in this model is the lowest-price

all-pay auction – an auction in which the highest bidder wins the prize and all bidders

pay the lowest bid. The highest amount for the public good is generated in the unique,

symmetric, mixed-strategy equilibrium of this auction. In the laboratory, the theoret-

ically optimal mechanism generates the highest level of donations with three bidders

but not with two bidders.

JEL Classification: D44, D64

Keywords: Lowest-price all-pay auction and lottery, fund-raising mechanisms, experi-

ments
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“The safety net will be stretched thin in some places and eliminated entirely in

others. For the functions government no longer will be able to provide, we must

turn to neighbors, private charities, faith-based organizations, and other local pro-

grams. Our communities, more than ever, will be asked to step up.”

— Chris Gregoire, Washington state governor, December 15, 2010

1 Introduction

With the steady growth of the philanthropic market and the decline of government funding

for various areas of public life (e.g. arts, culture, public media, higher education, hospital

services, environmental protection, etc.), the design of mechanisms for the private financ-

ing of public goods has substantially gained in importance. Most of the “solutions” to the

public good under-provision problem rely on taxation and subsidy schemes to counterbal-

ance free-riding incentives (Clarke, 1971; Groves, 1973; Groves and Ledyard, 1977; Walker,

1981). These schemes are not suitable for charitable fund-raising due to their reliance on

coercive power; private organizations can use rewards but not punishment or coercion to

elicit contributions.

Mechanisms in which prizes are awarded to donors – such as auctions and lotteries –

have traditionally been employed to raise funds for charitable causes,1 and more recently

1Auctions and lotteries are an essential part of the annual events of large philanthropic organizations
such as the gala of the Robin Hood Foundation in New York City (Anderson, 2007), or the Winter Festival
of the Naples Children and Education Foundation (Sullivan, 2016). Smaller organizations also routinely use
incentive-based mechanisms on-line and on-site to raise funds. Among the most commonly used formats are
the silent and live winner-pay charity auctions (Carpenter, Holmes and Matthews, 2010b; Popkowski Leszczyc
and Rothkopf, 2010). In the past decade new consulting companies have emerged which offer assistance to
small charities with various aspects of the fund-raising process including the items to be sold, venue, logistics,
and mechanisms to be used. An example of such a consulting firm is the company Fundraising Auctions,
which provides consulting services in the United Kingdom and Ireland. It supplies charitable organizations
with the items to be auctioned, offers assistance with the logistics of the fund-raising event, provides advise
on the fund-raising mechanism to be used, and offers software systems for the implementation of interactive
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private organizations and government entities have begun experimenting with alternative

fund-raising designs by adopting novel allocation and payment rules. Within the class of

prize-based all-pay mechanisms, a variety of new designs have emerged, both static (e.g. low-

est and highest unique price auctions) and dynamic (e.g. penny auctions).2 Given the wide

range of mechanisms used in practice, a new literature has developed that seeks to under-

stand, both theoretically and experimentally, which mechanisms work best under different

equilibrium and informational assumptions.

In this paper we contribute to this literature by posing the questions of (a) how much

funds can be raised with award-based mechanisms, and (b) which method is best at raising

funds. We explore, theoretically and experimentally, how changes in the allocation and the

payment rule of the fundraising mechanism affect donations in a commonly studied complete

information framework.

The potential of prize-based mechanisms to alleviate free-rider problems in public good

provision has been illustrated by Morgan (2000) who compared lotteries with voluntary

contributions in a complete information setting. In the voluntary contribution mechanism,

when choosing their donations, contributors do not take into account that their individual

contributions confer a benefit to all other agents. The failure to internalize this positive

winner-pay online auctions (see fundraising-auctions.co.uk).

2In the lowest unique price auction, for example, bidders pay a fee to place a bid while the winner is
determined as the bidder with the lowest unmatched bid. Eichberger and Vinogradov (2015) present an
equilibrium analysis of this mechanism and comment that it been used by TV and radio broadcasters not
only as a marketing instrument but also to sell flats, houses and luxury cars. Some of these media companies,
e.g. “London Capial FM” operate such prize-based mechanisms to support charitable causes. The lowest
unique prize auction combines features of both an auction and a lottery as the highest contributor is not
necessarily the winner. Östling, Wang, Chou, and Camerer (2011) term it “the lowest unique positive
integer” and report that it has been used in Sweden by the government-owned gambling monopoly Svenska
Spiel. Penny auctions, also called bidding fee auctions, have also become quite popular. They are dynamic
formats in which a bidder pays a fee to incrementally increase the standing bid in an ascending price auction.
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externality leads to systematic under-provision of the public good relative to the social opti-

mum. A lottery, in which a prize is awarded to one of the contributors, creates an additional

negative externality because an increased contribution by one bettor (a larger number of

raffle tickets purchased) reduces the winning chances of the other bettors. Morgan (2000)

makes the point that this negative externality (partially) offsets the public good externality

and serves to narrow the gap between private benefits to donors and social benefits. As a re-

sult, in the lottery, equilibrium total contributions net of the prize are greater than the total

donations in the voluntary contribution mechanism. Morgan and Sefton (2000) test these

insights with laboratory experiments, confirming the superiority of lotteries over voluntary

contributions.

Building on these insights, the more recent theoretical literature has considered charitable

fundraising as a mechanism design problem in which the organizer can choose from a set

of mechanisms. Goeree, Maasland, Onderstal and Turner (2005) and Engers and McManus

(2007) derive optimal fund-raising mechanisms in the independent private value auction

model using tools from the optimal auction design literature. Among the most significant

theoretical insights of this literature is that all-pay mechanisms, such as a lottery and an

all-pay auction generate more revenue than the traditional winner-pay auctions when the

auction revenue is used to finance a public good. In an all-pay auction, topping a rival’s

winning bid does not eliminate their contribution to the public goods. It is therefore less

costly for bidders to increase their bids in all-pay auctions – a property leading to the revenue

superiority of all-pay auctions as fund-raising mechanisms. For the independent private

value model, Goeree et al. (2005) show that the lowest-bid all-pay auction, augmented by

an appropriately chosen entry fee and a reserve price, is an optimal mechanism. In this
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mechanism, the prize is awarded to the highest bidder and all bidders contribute an amount

specified by the lowest bid submitted.3

While to the best of our knowledge the lowest-bid all-pay auction has so far not been used

in practice, its performance has been analyzed in the laboratory. Carpenter, Holmes and

Matthews (2010a) allow for endogenous participation in an incomplete information setting

similar to the one analyzed in Goeree et al. (2005) and compare a variety of mechanisms.

Participation in the lowest-bid all-pay format is slightly higher than that in the own-bid

all-pay auction and slightly lower than that in the lottery with the differences being rather

small. Orzen (2008) compares bidding in the lowest-bid all-pay auction, the lottery, the vol-

untary contribution mechanism (without a prize), and the lowest common denominator4 in

a symmetric complete information model in which bidders compete for a prize of commonly

known value. He runs experiments with four participants all of whom have a given budget

and decide how much of it to contribute to the public good. In his setting the sum of the

marginal per capita return of contributions to the public good exceeds the marginal cost of

an individual contribution so that the efficient allocation can be attained with various mech-

anisms. In particular, all players donating their entire budget emerges a Nash equilibrium

not only in the lowest-bid all-pay auction but also in the lowest common denominator in

which no prize is allocated. Indeed, donating their entire budget is as a weakly dominant

strategy for players in both mechanisms. Orzen (2008) finds that subjects, in accordance

3For the case of two participating bidders, this mechanism is known as the “war of attrition” and its
equilibria have been previously studied in the contest theory literature (see e.g. Milgrom and Weber, 1985).
Goeree et al. (2005) show that this mechanism maximizes expected total contributions in the symmetric
independent private value model with n ¥ 2 bidders.

4The lowest common denominator employs the lowest-bid payment rule, but does not allocate a prize to
contributors.
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with theory, donate the highest amounts in these two mechanisms. In this setting, the ob-

served behavior in the experiment approximates Nash equilibrium as subjects increase their

contribution levels with experience.

In the present model, in contrast, we consider the alternative case in which the sum of

the marginal per capita return of contributors is not sufficient to cover the cost of public

good provision. In our setting we allow for the existence of bystanders: individuals who

benefit from the public good but are unable contribute. In this setting, as we will show,

no mechanism exists which implements the efficient allocation, and we study the revenue

generating properties of prize-based mechanisms with different allocation and payment rules.

While we focus on an environment in which the marginal per capita return is constant

(as in Goeree et al., 2005; Engers and McManus, 2007; Orzen, 2008; and Corazzini et al.,

2010) we allow the mechanism designer to choose from the set of all sealed bid voluntary

participation mechanisms. A mechanism in our model is generally defined by an allocation

rule specifying how the prize will be awarded and a payment rule specifying how donations

are determined as a function of the announced contribution levels. Participation in these

mechanisms is voluntary in the sense that bidders cannot be asked to pay more than their

bids and, thus, agents who bid zero do not contribute. In this setting the mechanism designer

solves the problem of combining the allocation and the payment rule in such a way as to

maximize the private benefit that donors receive from their contributions to the public good.

In our model there are n ¥ 2 donors with a budget B who decide how much to contribute

to a public good and how much to keep for private consumption. There are a total number

of N beneficiaries from the public good (including the donors) with a marginal per capita

return of α such that αN ¡ 1 ¡ αn. That is, we analyze a setting in which contributions
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are socially desirable, yet, the joint benefit of the public good to the donors – the individuals

who have a budget and can contribute – does not cover the cost of public good provision. The

analysis of optimal fund-raising mechanisms in this setting is important for several reasons.

First, such a setting is a common occurrence in practice, especially in charity fund-raising

where the proceeds go to the benefit of others. Second, the mechanism design question is

relevant from a theoretical standpoint because the free-riding problem cannot be resolved

with trivial mechanisms. Indeed, in the present theoretical setting, players would not donate

unless they are given the chance of winning a prize of a positive value.5 Third, as we will

show, when budgets are sufficiently large, mechanisms that produce the efficient outcome

do not exist, and we focus on mechanisms that generate contributions closest to the social

optimum. Finally, when the number of donors is small relative to the beneficiaries, and the

incentives for free-riding are particularly strong, we can test empirically to what extent, and

in which circumstances, prize-based mechanisms can solve the free-rider problem.

In our analysis we pay particular attention to six prize-based all-pay mechanisms which

are obtained by combining three allocation rules and two payment rules. We allocate the prize

by an auction, a lottery, or using a random assignment regardless of contribution amounts

(i.e. Tullock contests with contest parameters 8, 1 and 0), and we require bidders to pay

either their own bid or the lowest bid submitted. While the Nash equilibria of mechanisms

with the own-bid payment rule (the standard all-pay auction, the lottery and the voluntary

contribution mechanism) have been been analyzed in the literature, no results are available

5For αn ¡ 1 there are simple mechanisms that implement the first-best outcome even without a prize.
Asking all bidders to donate their entire budget B, and threatening not to provide the public good otherwise
is a mechanism that implements the first-best outcome. Using the “lowest common denominator” is another
way to implement the first-best outcome even without a prize (see Orzen, 2008).
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for equilibrium bidding in the lowest-bid auction and the lowest-bid lottery. Yet, these

mechanisms are interesting from a theoretical standpoint as they provide incentives both for

competition and for conditional cooperation. We analyze here the equilibria of these two

formats.

We show that the lowest-bid all-pay auction has a unique symmetric equilibrium which

is given in mixed strategies. We derive the cumulative distribution function of the equilib-

rium mixed strategy in a closed form and show that this mechanism generates the highest

expected revenue among all voluntary participation mechanisms. That is, the optimality re-

sult demonstrated by Goeree et al. (2005) for the incomplete information model carries over

to the complete information (common value) setting. Expected revenue in the lowest-bid

all-pay auction equals V {p1�αnq while the standard own-bid all-pay auction generates only

V {p1� αq, and the lottery generates the even lower amount of pn� 1qV {rnp1� αqs.6

The symmetric equilibrium in the lowest-bid lottery is also given in mixed strategies.

While we could not derive the equilibrium mixed strategy in a closed form, we obtained

a functional equation for its cumulative distribution function and showed that it has full

support over an interval with upper bound given by the bidders’ endowment. Further, we

demonstrate that in every equilibrium bidders donate their entire endowment with a positive

probability – a property that, as we show, holds also for the lowest-bid all-pay auction.

We further demonstrate that, when the budget is sufficiently low, the lowest-bid lottery

has a unique equilibrium in which bidders donate their entire budget. For this case we

6For the analysis of the all-pay auction see, e.g. Hillman and Samet (1987); the lottery has been analyzed
extensively in the contest literature, see e.g. Konrad (2009) for an overview of the recent literature. A
summary of these theoretical findings and a derivation of the symmetric mixed strategy equilibrium in the
own-bid all-pay auction with a budget constraint is provided in Orzen (2008).
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obtain further ranking results. In particular, the lowest-bid lottery generates higher revenue

than the standard lottery, but a lower revenue that the lowest-bid auction. Interestingly, the

ranking between the own-bid all-pay auction and the lowest-bid lottery is sensitive to the

benefit conferred by the public good and the number of bidders. For a sufficiently high level

of the marginal per capita return, and a sufficiently high number of bidders, the lowest-bid

lottery outperforms the own-bid all-pay auction.

The rest of the paper is organized as follows. In the next section we explain how our

study contributes to the existing literature on the fundraising performance of prize-based

mechanisms. In Section 3 we present our theoretical framework, analyze the equilibria

of the lowest-bid lottery and the lowest bid auction, and derive a revenue ranking of the

studied mechanisms. In Section 4 we present our experimental design and in Section 5 our

experimental results. In the final section we present a summary of our main results, point

to limitations of our study, and identify areas for future research.

2 Contribution to the literature

Most closely related to our study is the experiment by Orzen (2008) who finds that the mech-

anisms with the lowest-bid payment rule (the lowest-price auction and the lowest common

denominator in which no prize is awarded) generate higher revenues than the lottery and

the own-bid all-pay auction. Orzen (2008) attributes the success of the lowest-bid payment

rule to its ability to promote “conditional cooperation” and conjectures that such manipu-

lations of the incentive structure could substantially increase revenues for private charitable

initiatives.

We complement Orzen’s (2008) analysis by allowing for the existence of bystanders –
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individuals without a budget who cannot contribute to the public good, yet benefit from the

contributions of others. That is, we consider a setting in which the collective benefit of the

public good to the donors is lower than their cost. In this theoretical setting, positive contri-

butions to the public good can only be elicited through the use of prize-based mechanisms.

Such mechanisms indeed have the potential to generate revenue in excess of the value of the

prize.

We study the equilibria of the lowest-bid lottery and the lowest-bid auction and compare

their performance vis-á-vis the own-bid all-pay auction and the own-bid lottery with labora-

tory experiments. We use groups of N � 4 agents and vary the number of bidders who have

budgets and can contribute by considering treatments with n � 2 and n � 3 active bidders.7

We find that the relative performance of the lowest-bid all-pay auction critically depends on

the number of active donors. Among the six mechanisms, the theoretically optimal mech-

anism is superior in the laboratory with n � 3 active bidders but generates comparatively

low revenues with n � 2 donors. To gain insights into the behavioral forces behind these

results, we ran additional treatments of the lowest-bid all-pay auction in which we elicited

beliefs from participants about the bidding behavior of their fellow donors. In the case of

n � 2 active bidders subjects have lower expectations about the contribution level of their

fellow donors compared to the n � 3 case. This point to the limitation of the lowest-bid

payment rule as a way of promoting conditional cooperation, especially in cases in which

7The complete information model presents an experimental setting where only strategic uncertainty (un-
certainty regarding bidding behavior) is present and there is no uncertainty about payoffs or other aspects
of the environment. This helps us to draw inferences about impact of the allocation and payment rules on
bidding behavior. As Gneezy and Smorodinsky (2006) argue, examining behavior in a complete information
setting is an attempt to “differentiate between patterns of behavior induced by the mechanism itself and
patterns induced by the complexity that is usually found in a ‘real-world’ environment.” Our focus on the
complete information version of Goeree et al.’s (2005) framework allow us to take advantage of this approach
here.
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the donors benefit from the public good relatively little compared to their cost. Yet, in

a scenario in which the gap between public good benefit and cost is relatively small, the

lowest-bid payment rule outperforms all other mechanisms.

Our paper also relates to the literature on fund-raising with lotteries and all-pay auctions.

Lange, List and Price (2007) extend Morgan’s (2000) model to allow for risk aversion and

heterogeneity in the marginal per capita return of donors. They show that, when agents are

sufficiently risk averse or sufficiently heterogeneous in the way they value the public good,

multiple-prize lotteries are optimal. Their laboratory experiments provide further evidence

that both single-prize and multiple-prize lotteries generate more revenue than voluntary

contributions.

Corazzini, Faravelli and Stanca (2010) compare the fund-raising potential of the lottery,

the all-pay auction, and the voluntary contribution mechanism in a setting of incomplete

information regarding income levels. While the all-pay auction is the theoretically optimal

mechanism in this setting, they find that the lottery generates higher revenue in the labo-

ratory; both incentive-based mechanisms outperform the voluntary contribution mechanism

theoretically and empirically. In a more recent door-to-door experiment, Onderstal, Schram

and Soetevent (2013) also compare the own-bid all-pay auction with the lottery, and two

versions of a voluntary contribution mechanism. Controlling for various factors related to

the solicitor, they find that the auction generated the least revenue despite theoretically

being the superior mechanism.

Our results accord with the recent advancements in the contest literature which highlight

the reasons for the underperformance of the standard lottery and suggest various ways to

enhance competition in this format. Faravelli and Stanca (2012) argue that the smoothness of
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the payoff function associated with the randomness of the allocation prescribed by the lottery

is responsible for its underperformance relative to the deterministic contest (i.e. the own-bid

all-pay auction). They show that, by restricting the number of tickets sold, the decreasing

marginal utility in the lottery can be eliminated so that the lottery contest can produce

(almost) full dissipation.8 In accordance with this intuition, we show that switching from a

lottery to an auction would enhance revenue also under the lowest-bid payment rule. Other

ways to enhance revenue in the lottery, in particular when bettors have different valuations,

includes offering discounts on multiple tickets (Damianov, 2015) or setting individualized

prices for tickets sold to different contestants (Franke, Kanzow, Leininger and Schwartz,

2014; Franke and Leininger, 2014).

Another implication of our model is that revenue in the lottery can be enhanced not

only by switching to the auction allocation rule but also by switching to the lowest-bid

payment rule. Intuition for this latter result can be developed either by analyzing the

equilibrium structure or by exploring the incentives for bidders to increase their bids. As we

show, in the equilibria of both the own-bid and the lowest-bid auction, bidders randomize

continuously over an interval with a lower bound of zero. As zero bids belong to the mixed

strategy support in both auctions, the payment rule allows a straightforward calculation

of the symmetric equilibrium expected payoff of bidders. In particular, zero bids leads to

lower expected payoff in the lowest-bid all-pay auction because a zero bid eliminates not

only the chances for winning the prize, but also all contributions of the other bidders. As

we will argue, lower expected payoffs of bidders in our setting correspond to higher expected

8We would like to thank an anonymous reviewer for drawing our attention to this strand of the contest
literature.
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donations. Therefore, as we will show, the donations in the lowest-bid auction exceed the

ones in the own-bid all-pay auction.

3 Theoretical model and analysis

A number of n ¥ 2 participants in a fund-raising event decide how to divide their budget B

between contribution to a public good and personal consumption. The value of the public

good for each participant is a constant fraction α of total funds raised for the public good,

where α   1
n
. In this theoretical setting, using a voluntary contribution mechanism results

in zero donations because of free-riding incentives.9

3.1 Mechanisms

To alleviate the free-riding problem, a charitable organization awards a prize V to one of

the donors. The organization chooses the mechanism according to which the prize V will

be awarded, and we analyze the level of contributions that can be raised by different al-

location and payment rules. In the fund-raising mechanisms considered, each participant

i � 1, 2, . . . , n announces her willingness to contribute to the public good, xi. The mech-

anisms consist of an allocation rule Pipxi, x�iq which specifies the relationship between the

announced contribution levels of donors and their probabilities of winning the prize, and

a payment rule Cipxi, x�iq which specifies how the actual donations are determined based

9When α ¥ 1
n , the free-rider problem can easily be resolved with simple arrangements according to which

all contributors agree to donate a certain amount, and if at least one of them does not contribute, the public
good is not provided (see Bagnoli and Lipman, 1989; Bagnoli and McKee, 1991; Orzen, 2008). One notable
disadvantage of these mechanisms is that they do not generate donations when α   1

n . This case appears
to be quite relevant in the practice of fund-raising because the set of potential beneficiaries from the public
good is much larger than the original set of donors. In fact, the beneficiaries of charitable donations are
often outside the set of the contributors. We therefore focus on the case α   1

n , although the mechanisms
we explore solve the free-riding problem in the alternative case as well.
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on the announced contribution levels, where x�i � pxjqj�i. If donors are risk neutral and

participate in a mechanism with an allocation rule Pipxi, x�iq and a payment rule Cipxi, x�iq,

the expected payoff of donor i is given by

Πipxi, x�iq � rB � Cipxi, x�iq s � α �
°n
j�1Cjpxj, x�jq � Pipxi, x�iq � V.

The first term presents the payoff from private consumption. The second term captures the

benefit from the public good, and the third term defines the expected benefit from winning

the prize.

In our experiment we study the performance of the following six mechanisms constructed

by combining three allocation rules Pi and two payment rules Ci:

Pipxi, x�iq �

$''&
''%

1
n

(random [RND])

xi°n
j�1 xj

if
°n
j�1 xj ¡ 0 and 1

n
otherwise (lottery [LOT])

1
| argmaxj�1,...,n xj |

� 11ri P argmaxj�1,...,n xjs (auction [AUC])

and

Cipxi, x�iq �

#
xi (own-bid [OWN])

minj�1,...,n xj (lowest-bid [LOW])

Thus, the considered six mechanisms include two versions of the voluntary contribution

mechanism (OWN–RND and LOW–RND), the standard lottery and the lowest-bid lottery

(OWN–LOT and LOW–LOT) as well as the the standard all-pay auction and the lowest-bid

all-pay auction (OWN–AUC and LOW–AUC). Next we present the analysis of symmetric

equilibria.

3.2 Equilibrium analysis

We begin with a strategic equivalence argument which allows us to analyze all mechanisms

in a setting without a public good.
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Lemma 1 (Strategic equivalence). Mechanisms with the own-bid payment rule in a public

good setting are strategically equivalent to mechanisms in a setting without a public good in

which a prize of the amount V
1�α

is allocated. Mechanisms with the lowest-bid payment rule in

a public good setting are strategically equivalent to mechanisms in a setting without a public

good in which a prize of the amount V
1�αn

is allocated.

Proof. We show here that the claim holds for the lowest-bid payment rule. The proof

for the own-bid payment rule is analogous. The payoff of participant i in the lowest-bid

mechanisms is given by

ΠLOW
i pα, V qpxi, x�iq � B �minj xj � αn �minj xj � Pipxi, x�iq � V

� αn �B � p1� αnq � pB �minj xj � Pipxi, x�iq �
V

1�αn
q

� αn �B � p1� αnq � ΠLOW
i p0, V

1�αn
qpxi, x�iq,

which is an affine transformation of the setting without a public good and a prize of V
1�αn

.

As indicated previously, the voluntary contribution mechanisms generate expected revenue

of zero because bidders lack incentives to compete. Orzen (2008) derives the equilibria of

the own-bid all-pay auction and the lottery by taking into account the budget constraint.10

Orzen’s (2008) results can be summarized as follows.11

Proposition 1 (OWN–AUC and OWN–LOT (Orzen, 2008)). The own-bid auction

has a unique symmetric equilibrium. When B ¡ V
n p1�αq

the equilibrium is given in mixed

10While Orzen (2008) works directly with the original payoff functions, an alternative way to derive
the equilibria of the mechanisms with the own-bid payment rule is by using Lemma (1) to transform the
considered setting into an alternative one without a public good but with an inflated prize, and then invoking
results from the existing contest literature (e.g. Hillman and Samet 1987; Konrad 2009).

11While we consider the case α   1
n here, Orzen’s (2008) analysis applies for the current setting as well.
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strategies. Bidding zero belongs to the support of the mixed strategy distribution. Expected

revenue equals V
1�α

. When B ¤ V
n p1�αq

bidders donate their entire budget.

The lottery has a unique symmetric equilibrium given in pure strategies. When B ¡

n�1
n
� V
n p1�αq

bidders donate n�1
n
� V
n p1�αq

and expected revenue equals n�1
n
� V
p1�αq

. When B ¤

n�1
n
� V
n p1�αq

bidders donate their entire budget.

Next we consider the lowest-bid formats. Let bidder i play the pure strategy xi � x while all

other bidders play a mixed strategy given by the cumulative distribution function F. Further,

for notational convenience, let us denote the strategy space of bidder j by Sj � r0, Bs. The

expected payoff of bidder i in the lowest-bid lottery is given by

Ex�i
rΠLOW–LOT

i p0, V
1�αn

qpx, F qs �

B �

�» x
0

y dp1� p1� F pyqqn�1q � p1� F pxqqn�1 � x

�

�
V

1� αn
�

»
�

j�i
Sj

x

x�
°
j�i xj

dF px�iq (1)

where F px�iq � F px1q � � �F pxi�1q � F pxi�1q � � �F pxnq is the joint probability distribution of

the bids of all bidders except bidder i. The two terms in the squared brackets represent

the expected payment of bidder i from playing the pure strategy x. The first term is the

expected payment when at least one of the players bids below x, which equals to the lowest-

order statistic of all other bidders, conditional on this lowest-order statistic being below x.

The second term is the probability that all other players bid above x, multiplied by the

payment x. The last term in the above expression is the expected gain from winning the

prize (probability of winning multiplied by adjusted value of the prize).
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Similarly, the expected payoff of bidder i in the lowest-bid auction is given by

Ex�i
rΠLOW–AUC

i p0, V
1�αn

qpx, F qs �

B �

�» x
0

y dp1� p1� F pyqqn�1q � p1� F pxqqn�1 � x

�

�
V

1� αn
� F pxqn�1 (2)

We begin with the analysis of the lowest-bid lottery.

Proposition 2 (LOW–LOT). The lowest-bid lottery has a symmetric equilibrium.

(A) High budget constraint: B ¡ n�1
n
� V
n p1�αnq

. In a symmetric equilibrium players employ

mixed strategies. The cumulative distribution function F pxq satisfies the functional

equation

V

1� αn
�

»
�

j�i
Sj

°
j�i xj

px�
°
j�i xjq

2
dF px�iq � p1� F pxqqn�1 (3)

for all x in its support. F(x) has a full support on an interval rb, Bs where 0 ¤ b   B.

The equilibrium mixed strategy has a mass point at B, i.e. bidders contribute their

entire budget with a positive probability.

(B) Low budget constraint: B ¤ n�1
n
� V
n p1�αnq

. In the unique symmetric equilibrium bidders

contribute their entire budget.

Proof. See Appendix A.

While for Case (A) of the proposition we do not have sufficient information on the structure

of equilibrium in order to calculate the expected revenue, we know that the revenue is
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strictly less than nB.12 As we will see in the subsequent analysis, this information will

be sufficient to establish that the LOW–LOT generates less revenue than the LOW–AUC

format. For Case (B) the revenue equals nB which allows us to establish revenue ranking

of this mechanism vis-á-vis all other mechanisms. In the following proposition we describe

the symmetric equilibrium of the LOW–AUC format.

Proposition 3 (LOW–AUC). The lowest-bid auction has a unique symmetric equilibrium.

(A) High budget constraint: B ¡ V
n p1�αnq

. The equilibrium is given in mixed strategies.

Bidders randomize continuously on the interval r0, bs according to the cumulative dis-

tribution function F pxq and donate their entire budget with a probability of 1 � F pbq.

The function F pxq is determined by the unique solution to the differential equation

F 1pxq �
1� αn

V
�
p1� F pxqqn�1

pn� 1qF pxqn�2
(4)

with an initial condition F p0q � 0. The cutoff value b is determined by the unique

solution to the equation

V

1� αn
�
� 1� F pbqn

n p1� F pbqq
� F pbqn�1

�
� r1� F pbqsn�1pB � bq.

Expected revenue equals V
1�αn

.

(B) Low budget constraint: B ¤ V
n p1�αnq

. In the unique equilibrium bidders donate their

entire budget.

Proof. See Appendix A.

The differential equation presented in equation (4) can further be used to analyze the mixed

12The equilibrium probability distribution and expected revenue in this case can be calculated using
numerical methods.
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strategy distribution function. In Proposition 5 presented in Appendix A, we derive a closed

form solution for the inverse of the cumulative distribution function F pxq for any number of

bidders.

A notable implication of the equilibrium analysis is that expected revenue in the lowest-

bid all-pay auction increases in the number of active bidders n, while revenue in the own-bid

all-pay auction is independent of n. The increasing revenue is a consequence of the shill

bidding effect inherent to the lowest-bid payment rule: when the lowest bidder increases his

bid, he raises not only his own contribution, but also the contribution of the other bidders.

As demonstrated in Lemma 1, this effect is stronger when the number of active bidders is

greater. The differences in incentives created by the two payment rules can also be observed

by comparing the consequences of submitting a zero bid in the auction. While a zero bid

eliminates the contributions of the other bidders under the lowest-bid payment rule, it has

no effect under the own-bid rule. As zero belongs to the equilibrium mixed strategy support

under both payment rules, the expected revenue (E) in the two mechanisms is given by the

following equations:

V � α � n � ELOW–AUC � ELOW–AUC � 0 ô ELOW–AUC � V {p1� αnq

V � α � n � EOWN–AUC � EOWN–AUC � pn� 1q � EOWN–AUC ô EOWN–AUC � V {p1� αq

The left hand-side gives the payoff of a player under the equilibrium strategy while the

right hand-side represents the payoff of bidding zero. As in a symmetric mixed strategy

equilibrium these payoffs are the same, we obtain the expected revenue in the two formats

without the need to derive the exact form of their mixed strategy equilibria.

19



3.3 Expected revenue ranking

From the derived results it is straightforward to establish the following revenue ranking of

mechanisms: OWN–RND � LOW–RND   OWN–LOT ¤ OWN–AUC ¤ LOW–AUC with

the strict inequality applying for sufficiently high values of B. It remains to discuss where the

LOW–LOT format fits in this ranking. We first consider Case (B) specified by the inequality

B ¤ n�1
n
� V
n p1�αnq

. For this case the LOW–LOT mechanism strictly outperforms OWN–LOT

when B ¡ n�1
n
� V
n p1�αq

and generates the same revenue when B ¤ n�1
n
� V
n p1�αq

. Further for

V
n p1�αnq

¥ B ¡ n�1
n

� V
n p1�αnq

we can establish that the LOW–AUC format in which all

bidders donate B strictly outperforms the LOW–LOT format in which bidders play a mixed

strategy (see Proposition 2). Finally, we find that the LOW–LOT format can generate more

or less revenue than the OWN–AUC format depending on the parameter values.

Let us consider next the case B P
�
mintn�1

n
� V
p1�αnq

, V
1�α

u,maxtn�1
n
� V
p1�αnq

, V
1�α

u
�
. For this

case, the revenue in the LOW–LOT format is strictly greater than the revenue in the OWN–

AUC format when n�1
n
� V
p1�αnq

¡ V
1�α

ô α ¡ 1
n2�n�1

and strictly lower when n�1
n
� V
p1�αnq

 

V
1�α

ô α   1
n2�n�1

. An intuition for this finding can be gained by considering that, when

the public good has a greater marginal per capita return, the shill bidding effect associated

with the lowest-bid rule more than compensates for the lower level of competition associated

with the randomness in the allocation of the prize.

3.4 Optimality of the lowest-bid auction

In the previous section we established that the LOW–AUC is the best performing mechanisms

from the ones we study. Here we will show that from the class of voluntary participation

mechanisms, no other mechanism can generate more revenue. To develop intuition for this
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result, note that in the studied mechanisms each participant submits a bid, and the payment

rule of the mechanism determines the size of the donations of all participants depending on

the bids submitted. A bidder cannot be asked to pay more than their expressed willing-

ness contribute, and a participant who bids zero does not make a contribution to the public

good. In that sense, contributions in the mechanism are voluntary. The penalty for non-

contributors consists of being assigned zero probability for winning the prize and possibly in

a reduction of the overall provision of the public good. Note that among all voluntary mech-

anisms, the lowest-bid all-pay auction entails the most severe penalty to non-contributors as

it eliminates all the contributions of the other players and assigns a zero chance for winning

the prize. Thus, the lowest-bid all-pay auction should generates the largest amount of dona-

tions as it is most effective at “punishing” non-contributors. The next proposition supports

this intuition.

Proposition 4 (Optimality of LOW–AUC). Among all mechanisms which transfer a

total value V to bidders, the lowest-bid auction generates the highest expected revenue in its

symmetric equilibrium.

Proof. We denote by ϕi :� ϕipFi, F�iq the transfer that a voluntary participation mecha-

nism prescribes to bidder i in a symmetric mixed strategy Nash equilibrium.13 Similarly, we

denote by Ci :� CipFi, F�iq the expected contribution of bidder i in the symmetric equilib-

rium of a voluntary mechanism. Recall that in a voluntary mechanism a bidder who submits

a bid of zero is not required to pay. We now establish an upper bound on the total revenue

generated by any mechanism using the voluntary participation constraint. For each i, this

13For mechanisms in which a single prize is awarded, this transfer equals ϕipFi, F�iq � PipFi, F�iq � V .
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constraint is given by Ci ¤ ϕi � α �
°n
j�1Cj. Summing over all i we obtain

ņ

i�1

Ci ¤
ņ

i�1

ϕi � αn �
ņ

j�1

Cj ðñ
ņ

j�1

Cj ¤ V � αn �
ņ

j�1

Cj ðñ
ņ

j�1

Cj ¤
V

1�αn
.

Thus, due to the participation constraint, no higher revenue can be generated by any volun-

tary mechanism.

4 Experimental design

We conducted a laboratory experiment to compare the fund-raising performance of the

considered six mechanisms. In order to explore the potential role of competition, we added

the number of active agents (i.e. agents who have a budget and can contribute to the public

good) as another treatment variation. In total our experiment consisted of twelve treatments

(two for each mechanism).

Between April 2009 and January 2011, students from [blinded for review purposes]

were recruited to participate in an experiment on economic decision-making in which money

can be earned. During the experiment, subjects were seated behind isolated computer ter-

minals, via which the experiment was run. After subjects read the instructions, answered

the control questions correctly, and eventual clarifying questions were answered, the z-Tree

software (Fischbacher, 2007) was started.14 It was made clear that they would be paid in

cash at the end of the session and they earned on average 20.28 US dollars for a session

lasting approximately 75 minutes.

For each of our twelve treatments, one experimental session was conducted with twenty

different subjects. In order to allow these subjects to familiarize themselves with the mech-

14Instructions for one of the treatments are included in Appendix B.
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anism they are participating in, we conducted sessions of twenty rounds. At the beginning

of each round, subjects were randomly assigned to groups of size four. To limit supergame

effects, reciprocity, possibilities to collude, or other types of interdependence of choices, sub-

jects were not aware of whom they were grouped with, but they did know that the group

composition changed every round. Depending on the treatment, either two or three ran-

domly chosen subjects in each quadruple were assigned the role of active agent while the

remaining agent(s) were assigned the role of passive agent. The active agents had a budget

of 100 tokens, and had to specify an amount they are willing to contribute (their bid) to the

public good, whereby any integer between 0 and 100 could be chosen. The passive agents

had no budget and benefited only from the donations of the active agents.

In the treatments with own-bid payment rule, the actual contribution for each active bid-

der corresponded to her own willingness-to-contribute, while in the treatments with lowest-

bid payment rule, the actual contribution for an active agent was determined by the lowest

willingness-to-contribute specified by the active agents in her group. For each active agent,

the actual contribution was subtracted from the given budget. The benefit from the pub-

lic good, both for active and passive agents, equaled the sum of the actual contributions

multiplied by the marginal per capita return of 0.3.

In addition to these earnings, a prize of 20 tokens was allocated to one of the active agents

in a group. In the random treatments, the prize was randomly assigned to one of the active

agents. In the lottery treatments, the probability of winning the prize was proportional to

the agent’s willingness-to-contribute. In the auction treatments, the prize was awarded to

the agent with the highest willingness-to-contribute (ties were resolved at random).

After each round of play, subjects received information on the willingness-to-contribute
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of all active agents, their own contribution (in case the subject was an active agent), the

total amount of contributions, whether they won the prize, and their entire payoff. In order

to make sure that subjects took notice of this feedback, and hence become aware of the

outcomes of their decisions, they were asked to record part of it on paper. The payoff at the

end of each session was determined by a random selection of one of the twenty rounds. So,

while participants experienced both the roles of an active agent and a passive agent during

the course of the 20 rounds, the final payoff was determined on the basis of their role in the

round selected for payment. These tokens were converted into dollars at a rate of 0.15 US

dollars per token.

In the experiment, the marginal per capita return was chosen in such a way that all

active agents donating their entire budget was socially optimal when we take into account

the payoffs of both the active and the passive agents. Each token donated to the public

good generated a return of 1.2 tokens for the group of four. For the sub-society of the active

bidders, however, the benefit of providing the public good did not cover the cost.15 Exploring

this scenario is of particular interest because in reality the donors are often only a subset of

the beneficiaries of the public good. Even more importantly, in this scenario the free-riding

problem cannot be resolved without prize-based mechanisms or, more generally, mechanisms

that transfer some value to the donors. These types of mechanisms are the particular focus

of our analysis.

Table 1 presents the expected actual contribution levels per donor in the limiting logit

equilibrium of the discrete version of the mechanisms that were implemented in the experi-

15With α � 0.3 the total return of 1 token invested in the public good was 0.6 of a token in the case of
n � 2 active players and 0.9 of a token in the case of n � 3 active players.
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ment. This limiting logit equilibrium, as introduced by McKelvey and Palfrey (1995), is the

unique Nash equilibrium found when assuming that the random utility component is extreme

value distributed and letting the respective noise parameter diverge. For the mechanisms

that we are able to solve analytically on the continuous domain (all except the lowest-bid

lottery), the expected actual contributions in this limiting logit equilibrium are quite close

to that of the analytical solution for the continuous domain.16

RND LOT AUC

OWN n � 2 0.00 8.00 14.00
n � 3 0.00 6.00 9.12

LOW n � 2 0.00 19.93 24.03
n � 3 0.00 64.50 66.31

Table 1: Individual (expected) actual contributions according to Nash equilibrium behavior.

The numbers in the table conform to the revenue ranking established in our theoretical

analysis. First, the mechanisms that entail competition for the prize (via either all-pay

auctions or lotteries) generate larger total donations compared to the random assignment of

the prize. Second, comparing the all-pay auction with the lottery, we find that the auction is

more effective in generating donations. Third, the lowest-bid payment rule generates more

revenue than the own-bid payment rule for the lottery and the all-pay auction.

5 Experimental results

In this section we investigate whether there is empirical evidence for the established theo-

retical differences in revenue in the six treatments. We begin with a discussion of the issue

of dependence of observations in our data (Section 5.1) and then present summary statistics

16To solve for the limiting logit equilibrium, we used the QRE-solver of Gambit (see McKelvey, McLennan
and Turocy, 2014; http://www.gambit-project.org). For reasons of computational complexity we used a grid
twice as rough as that used in the experiment.
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and graphically illustrate the dynamics of contributions over rounds (Section 5.2). Further

we analyze the impact of the allocation rule (Section 5.3) and the payment rule (Section 5.4)

on individual contributions. Finally, we explore whether the lowest-bid all-pay auction is the

optimal mechanism and describe the results of additional experiments that we conducted in

order to understand the reasons for the discrepancies that we observed between theoretical

predictions and behavior in the experiment (Section 5.5).17

5.1 Unit of observation and (in)dependence

To compare the performance of the mechanisms, we use the average individual actual contri-

bution as the unit of observation. As subjects interact repeatedly, subject-level observations

may lack independence. Yet, our experiment is particularly designed to limit the degree of

such dependence. First, subjects are randomly rematched in five groups of four over twenty

rounds, so that the probability of each subject interacting with the same players as in the

previous round is rather small. Second, subjects are randomly assigned to roles (active or

passive agent) within groups, which further reduces the probability that the same subject(s)

interact in two consecutive rounds. Third, identities of subjects are not revealed before or

after decisions are made. Fourth, payments are determined according to an ex-post ran-

domly selected round, which limits supergame incentives and reasoning. All four features of

the design serve to confine possible dependence across individual observations.

In addition, as in Corazzini et al. (2010), we investigate the issue of dependence em-

17While the presence of bystanders is a distinctive feature of our setting, the number of bystanders differs
between our treatments. Understanding the pure effect of the presence and the number of bystanders requires
that the number of active agents is held fixed which is beyond the scope of this paper. Such a question would
require a design where the number of bystanders is varied while keeping the number of donors fixed, with
treatment variations where either the marginal per capita return α or the social benefit of donation αN is
kept fixed (while staying within the condition αn   1   αN for all treatments).
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pirically. Spearman rank correlation tests for the null hypothesis of independence between

the willingness-to-contribute of each subject and the average willingness-to-contribute of the

subjects who were in the same group in the previous period, show significant correlation

at the 10% level only in 12.9% of the cases (31 out of 240).18 Further, in the significant

cases, 74.2% of the correlation coefficients are positive and 25.8% are negative, indicating

that there is no systematic pattern in the relationship between the contributions of subjects

in one period and of their group members from the previous period.

On the basis of both the features of our experimental design and the results of the

Spearman tests, we consider the dependence across individual decisions to be negligible so

that we can draw inferences using subjects as the unit of observation.

While individual willingness-to-contribute decisions may be considered independent, and

this directly implies independence of individual actual contributions for the treatments with

the own-bid payment rule, the actual individual contributions in the treatments with the

lowest-bid payment rule are strongly dependent. To attribute the contribution of a bidders to

their willingness-to-contribute and not the lowest bid submitted in the group, we constructed

individual expected actual contributions for these treatments.

First, we construct for each treatment an empirical distribution of all bids observed in all

rounds. Then, for each subject, and each round in which this subject is active, we calculate

the expected actual contribution of this individual on the basis of her own willingness-to-

contribute in this round, assuming that the other donors in her group randomize according

18Corazzini et al. (2010) performs these tests on 5% level. Since subjects are passive in some rounds, we
have less observations per subject. For that reason we decided to take a more conservative test. Despite
using a more conservative test, we can report a lower percentage of correlation (13% versus 15%). The
respective percentage on 5% level is in our case 5.8% (14 out of 240).
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to the empirical distribution. The individual expected actual contribution of the subject is

given by the average of these expected actual contributions over all rounds in which this

individual is active.

In order to control for the effect of experience on decisions and outcomes, we also construct

the individual expected actual contributions on the basis of the data gathered in the first half

and in the second half of the experiment. For these variables, both the empirical distributions

used to construct the expected actual contributions and the averaging over the individuals’

expected actual contributions are restricted only to the first or to the second half of the

rounds.

Tables 7–9 in Appendix D present, for each treatment, the average values of the three key

variables (that is, willingness-to-contribute, actual contribution, and expected actual contri-

bution) and the correlations between them. For the mechanisms with the own-bid payment

rule, these averages are identical. For the mechanisms with the lowest-bid payment rule, we

observe that the actual contributions are very close to the expected actual contributions.

Furthermore, the amounts that subjects are willing to contribute almost perfectly correlate

with the expected actual contributions. Under the random allocation rule and the lowest-

bid payment rule, the constructed synthetic measure of the expected actual contribution can

be interpreted as the pure attitude of bidders to contribute that is analogous to the pure

attitude to contribute expressed in the bids under the own-bid payment rule.

5.2 Summary statistics and timing effects

Figure 1 shows the dynamics of the average individual (expected) actual contributions over

rounds in the different treatments. The first row of graphs corresponds to the own-bid
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payment rule and the second row to the lowest-bid payment rule. The three columns of

graphs correspond to the random, the lottery and the auction allocation rule, respectively.

In each graph the dashed curve corresponds to the treatment with two bidders and the solid

curve to that with three bidders.
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Figure 1: Average individual (expected) actual contributions over rounds in the different treatments.
The first row of figures corresponds to the own-bid payment rule; the second to the lowest-bid
payment rule. The first column corresponds to the random allocation rule; the second to the lottery;
the third to the auction. Dashed curves correspond to the treatments with two bidders; solid curves
to three bidders.

The mechanism with the own-bid payment rule and the prize being randomly allocated is

strategically equivalent to a voluntary contribution mechanism. Usually contributions in this

mechanism exhibit a declining trend. As an example, see Lange et al. (2007) who consider

a setting with four donors and a marginal per capita return of 0.3 in a stranger matching

environment. While our initial contribution levels are comparable to that reported in Lange

et al. (2007), we do not observe a steep decline in contributions in our experimental data

(see top-left graph). A likely reason for the sustained contributions over time is that in our

experiment subjects are randomly assigned in each round into the passive or the active role
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– an aspect which presumably creates stronger pro-social preferences.

Table 2 presents for each treatment the average individual (expected) actual contribution

in the first and the second half of the experiment, and the result of a Wilcoxon test for

equality of these values.19 The statistical tests reveal that individual actual contributions

do not change over time in the mechanisms with own-bid payment rule when there are two

donors and decrease when there are three donors. Apart from the lottery with two donors

we find an increase in the individual expected actual contributions in the treatments with

the lowest-bid payment rule.

RND LOT AUC

OWN n � 2 41.78 �.4103 43.29 53.84 �.2322 46.60 63.88 �.4440 53.93
n � 3 37.29 ¡.0333 29.71 36.70 ¡.0545 30.59 39.95 ¡.0002 20.11

LOW n � 2 27.95  .0111 34.90 61.01 �.4209 53.17 35.04  .0251 42.28
n � 3 20.06  .0006 24.80 37.81  .0022 47.21 42.48  .0002 57.24

Table 2: Individual (expected) actual contributions in the first half versus that in the second half of
the experiment.

Because differences between the first and the last ten rounds are observed in eight out

of the twelve treatments, when presenting the results, we decided to refer to the last ten

rounds. For the sake of completeness, all tables show the averages and the test results also

for the first ten rounds and for all rounds.

5.3 Impact of allocation rule

Table 3 presents pairwise comparisons between the three allocation rules while holding fixed

the payment rule on the basis of all rounds, the first ten rounds, and the last ten rounds.

19For this table, and the tables to follow, we constructed the values for the treatments with lowest-
bid payment rule on the basis of the empirical distribution over willingness-to-contribute decisions in the
respective rounds. Graphs of the distribution of individual (expected) actual contributions in the different
treatments on the basis of all decisions in the first ten and last ten rounds are presented in Figures 2 and 3
in Appendix C.
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For each comparison between two treatments, the average individual (expected) actual con-

tributions (over the respective rounds) for each of the treatments and the result of a Mann-

Whitney test are presented in this table.20

Number of Payment Allocation rule
donors rule comparison 1–20 1–10 11–20

n � 2 OWN RND vs. LOT 42.31 �.4487 49.76 41.78 �.1104 53.84 43.29 �.6456 46.60
RND vs. AUC 42.31  .0989 57.68 41.78  .0043 63.88 43.29 �.3039 53.93
LOT vs. AUC 49.76 �.2503 57.68 53.84  .0764 63.88 46.60 �.4093 53.93

LOW RND vs. LOT 30.57  .0000 55.27 27.95  .0000 61.01 34.90  .0013 53.17
RND vs. AUC 30.57  .0935 37.79 27.95  .0834 35.04 34.90 �.1230 42.28
LOT vs. AUC 55.27 ¡.0011 37.79 61.01 ¡.0000 35.04 53.17 ¡.0398 42.28

n � 3 OWN RND vs. LOT 33.61 �.9569 33.81 37.29 �.7454 36.70 29.71 �.9784 30.59
RND vs. AUC 33.61 �.5885 29.84 37.29 �.6651 39.95 29.71 �.1676 20.11
LOT vs. AUC 33.81 �.6849 29.84 36.70 �.6553 39.95 30.59 �.1850 20.11

LOW RND vs. LOT 22.03  .0000 41.88 20.06  .0000 37.81 24.80  .0003 47.21
RND vs. AUC 22.03  .0000 49.30 20.06  .0000 42.48 24.80  .0000 57.24
LOT vs. AUC 41.88  .0547 49.30 37.81 �.1595 42.48 47.21  .0416 57.24

Table 3: Impact of allocation rule.

On the basis of the last ten periods, we find that, in both treatments with two and

with three donors, the allocation rule has no significant impact on actual contributions if

the own-bid payment rule is adopted. These findings differ from the results reported in

the literature comparing lotteries with voluntary contributions. Morgan and Sefton (2000),

Lange et al. (2007), Corazzini et al. (2010) and Orzen (2008) find that the lottery generates

more contributions than the voluntary contribution mechanism. The latter two studies report

in addition that the auction outperforms the voluntary contribution mechanism. These

results may be due to differences between the experimental designs, such as the number of

donors, informational conditions, the presence of bystanders, etc.

20Given that we compare three allocation rules, we can reduce the number of tests by running Kruskal-
Wallis tests that take as null hypothesis equality across all variations. The Kruskal-Wallis tests reject equality
across all variations (with p-values below .01) for the lowest-bid treatments regardless of number of donors
and phase considered and for the own-bid treatment only in the first half with two donors. In all other
instances the tests do not reject equality across all variations (with p-values above 0.20).
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With respect to the comparison between the lottery and the auction, the evidence from

previous experimental studies is mixed. Within an independent private value set-up, Schram

and Onderstal (2009) observe that the auction generates higher revenues than the lottery,

while Corazzini et al. (2010) find that the lottery outperforms the auction, in contrast to

their theoretical prediction. In a setting that is more closely related to ours, Orzen (2008)

finds no difference between the auction and the lottery.

If the lowest-bid payment rule is adopted, the random allocation rule is dominated by

both the lottery and the auction (no significant differences are observed between the random

allocation rule and the auction in the treatment with two donors). Under this payment rule,

the lottery dominates the auction in the treatment with two donors, and is dominated by

the auction in the treatment with three donors.

The constant marginal per capita return in our setting makes the fund-raising mecha-

nisms analyzed here isomorphic to mechanisms in an environment without a public good but

with an inflated prize (see Lemma 1). This affords direct comparison of our results to the

experimental literature on rent-seeking contests. In particular, the auction and the lottery

with the standard own-bid payment rule are studied experimentally in equivalent settings.

Gneezy and Smorodinsky (2006) report systematic overbidding in the all-pay auction in the

early stage of their experiment which is stronger in treatments with more bidders. How-

ever, contributions decline over time and in the later rounds total contribution levels do

not depend on the number of bidders – an observation consistent with theory. We observe

here similar overbidding in early rounds and a similar intertemporal pattern of declining

contribution levels and convergence between treatments with different number of agents (see

Figure 1 and Table 3 presented here and Figure 1 in Gneezy and Smorodinsky 2006). Davis
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and Reilly (1998) compare rent dissipation in the auction and the lottery and document

systematic overbidding in both mechanisms with a greater rent dissipation observed in the

auction. We also observe overbidding, but do not find significant differences between mech-

anisms (see Table 3). One possible explanation for this difference is that in our treatments

the existence of passive agents and the pro-social behavior of active agents outweigh the

differences in competition between the lottery and the auction.

5.4 Impact of payment rule

Table 4 shows pairwise treatment comparisons between payment rules while holding fixed

the allocation rule. For each comparison between two treatments, the average individual

(expected) actual contributions (over the respective rounds) for each of the treatments and

the result of a Mann-Whitney test are presented in this table.

Number of Allocation Payment rule
donors rule comparison 1–20 1–10 11–20

n � 2 RND OWN vs. LOW 42.31 ¡.0398 30.57 41.78 ¡.0173 27.95 43.29 �.2674 34.90
LOT OWN vs. LOW 49.76 �.5338 55.27 53.84 �.2111 61.01 46.60 �.8924 53.17
AUC OWN vs. LOW 57.68 ¡.0215 37.79 63.88 ¡.0002 35.04 53.93 �.3039 42.28

n � 3 RND OWN vs. LOW 33.61 ¡.0200 22.03 37.29 ¡.0002 20.06 29.71 �.8924 24.80
LOT OWN vs. LOW 33.81 �.1368 41.88 36.70 �.8076 37.81 30.59  .0074 47.21
AUC OWN vs. LOW 29.84  .0010 49.30 39.95 �.7867 42.48 20.11  .0000 57.24

Table 4: Impact of payment rule.

On the basis of the data over the last ten rounds, the lowest-bid payment rule does

not raise significantly more contributions than the own-bid payment rule when the prize is

randomly allocated (though, on the basis of the first ten rounds it produces significantly lower

contributions). For the mechanisms where the prize is allocated via competitive bidding, we

find that the lowest-bid payment rule yields significantly more revenue than the own-bid

payment rule when three donors compete, but not when two donors compete.
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5.5 Optimality of the lowest-bid all-pay auction

On the basis of the analysis in the previous two sections, we find that the lowest-bid all-

pay auction is the optimal mechanism when three donors are competing for the prize. This

result conforms to Orzen’s (2008) finding that the lowest-bid all-pay auction is optimal in

a setting without bystanders. Orzen attributes the success of the lowest-bid auction to its

ability to promote “conditional cooperation.” In the case of two active bidders, however,

we find the lowest-bid auction is no longer optimal. It generates donations that are not

statistically different from the donations under the random assignment of the prize. Our ex-

periment is similar to Orzen’s in the aspect that the budget is high relative to the prize that

can be earned. Thus, both experiments can be considered as complementary to each other

when viewed as attempts to study the performance of mechanisms relying on “conditional

cooperation.” To gain understanding of whether, and for what reason the conditional co-

operation breaks down when only two active bidders are donating, we conducted additional

experiments with this mechanism in [blinded for review purposes]. These additional

experiments were run in a set-up identical to those run in [blinded for review purposes]

(same number of subjects, same instructions, etc.), except for one difference: once subjects

have made their willingness-to-contribute decision, we ask them (1) how much they expect

their actual contribution to be and (2) how likely in their view it is that they win the prize.21

Table 5 presents the performance throughout the different rounds in the [blinded for

21We did not provide additional payments to subjects based on the belief they reported for two main
reasons. First, the domain of feasible beliefs is dependent on the expressed willingness to contribute, and
this could have impacted the bids submitted by subjects. Second, incentivizing subjects would necessitate
the use of scoring rules that assign payments to point predictions submitted by subjects which, in the case of
three active agents, would have to be constructed on the basis of two submitted bids. An alternative would
have been to ask subjects directly to predict the bids submitted by the other active agents, yet this would
create an identification problem concerning the two aspects we are interested in.

34



review purposes] sessions and the [blinded for review purposes] sessions. While dona-

tions seem to be a bit lower in [blinded for review purposes] in comparison to [blinded

for review purposes], we see that the rather good performance of the lowest-bid all-pay

auction with three donors and the rather poor performance with two donors is replicated in

the [blinded for review purposes] experiments; even the small increase in contributions

from the first half to the second half of the experiment is replicated.

Number of 1–20 1–10 11–20

donors Loc1 Loc2 Loc1 Loc2 Loc1 Loc2

n � 2 37.79 28.51 35.04 27.08 42.28 30.51
n � 3 49.30 46.90 42.48 45.35 57.24 48.63

Table 5: Average individual (expected) actual contributions in the lowest-bid all-pay auction. Loc1:
[blinded for review purposes] sessions; Loc2: [blinded for review purposes] sessions.

For each willingness-to-contribute decision we compare the stated beliefs on actual con-

tributions and winning probabilities with the actual (expected) values on the basis of the

empirical distribution. We term the difference between believed and actual contribution val-

ues “overestimation of actual contribution” and the difference between believed and actual

winning probabilities “overestimation of winning probability.” Table 6 presents the share

of instances in which beliefs reflect an overestimation of actual contributions and winning

probabilities. We observe that when only two donors are contributing, they underestimate

each other’s bids and overestimate their probability of winning relative to the case of three

contributing donors. Thus, the belief in conditional cooperation that sustains the high con-

tribution levels in the case of three donors weakens once the benefit of joint contributions

becomes small relative to cost.22

22In the case of three active donors for each token donated each bidder receives 0.9 tokens whereas in the
case of two active bidders the benefit is only 0.6 tokes for each token contributed.
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Number of Actual contribution Winning probability

donors 1–20 1–10 11–20 1–20 1–10 11–20

n � 2 overestimation 47.00 45.00 46.00 60.00 63.00 60.00
correct 10.00 10.00 10.00 0.50 0.00 0.00
underestimation 43.00 45.00 44.00 39.50 37.00 40.00

n � 3 overestimation 60.33 52.67 72.00 32.00 46.67 17.33
correct 14.33 13.33 15.33 0.00 0.00 0.00
underestimation 25.33 34.00 12.67 68.00 53.33 82.67

Table 6: Overestimation of actual contributions and winning probabilities. The numbers in the
table present the share of instances in which beliefs reflect an overestimation, are correct or reflect
an underestimation.

6 Conclusion

In this paper we study the performance of prize-based mechanisms for fund-raising in a

framework which is amenable to changes in the allocation and the payment rule of the fund-

raising mechanism. Our complete information setting allows us to experimentally study the

patterns of behavior that are due to the variation of the mechanism itself rather than the

complexity of the economic environment. We show that, in our complete information setting,

the lowest-bid all-pay auction is the theoretically optimal fund-raising mechanism, and we

derive the symmetric mixed strategy equilibrium distribution of this mechanism. We further

study equilibrium bidding in the lowest-bid lottery – a mechanism in which the winning

chances are proportional to the announced contribution levels, yet actual contributions are

determined by the lowest-bid rule.

We find that, in the laboratory, the theoretically optimal mechanism generated the high-

est expected revenue with three donors. With two donors, however, contributions are dis-

appointingly low and on par with the donations in the voluntary mechanism; the lottery

generates more revenues with the difference being statistically significant. We ran additional

treatments to gain insights into this bidding behavior by eliciting beliefs from participants
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about the expected behavior of their fellow bidders, whereby we measured the way beliefs

deviated from the empirical distribution of actual bids made in the experiment. We find that,

with three active agents, bidders over-estimate the bidding of their fellow bidders – a belief

which sustains high levels of contributions in the optimal auction. Our results point to the

limits of optimal mechanism design for fund-raising: the theoretically optimal mechanism

outperforms the other mechanisms when three active participants support one participant

without a budget, but is not behaviorally optimal when two active participants support two

participants without a budget.

Our analysis opens various opportunities for further theoretical and experimental re-

search. Of direct relation to the current experimental findings is the question of whether

the discrepancy between theoretical predictions and experimental results can be reconciled

with alternative models which account for pro-social behavior. One explanation would be

provided by the theoretical framework proposed in Corazzini et al. (2010) which posits that

subjects bear a psychological cost of contributing less than socially optimal levels. This

approach has been successfully used to explain some pervasive discrepancies observed in

experiments, including the positive contributions in the voluntary contribution mechanism,

the dominance of the lottery over the all-pay auction (see Corazzini et al., 2010) and other

notable effects observed in lottery treatments as documented in Morgan and Sefton (2000)

and Orzen (2008). Taken to our framework, this approach presumably has the potential

to explain the reversal of the ranking of the auction and the lottery under the lowest-bid

payment rule as we move from two to three active bidders.23

23Such an approach may underscore the importance of the shilling effect inherent in the lowest-bid pricing
rule for the ranking of fund-raising mechanisms. As me move from a setting with two to a setting with three
bidders, the private cost of increasing the bid of the lowest bidder decreases from 1� 2α to 1� 3α and the
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Another aspect of importance is understanding how the ranking of mechanisms changes

as we alter some key assumption of the model. An assumption which is probably most often

violated in reality is the symmetry of bidders. In this paper, we assume symmetry across

four dimensions: budgets of active bidders, individual benefits from the public good, value

of the prize, and equilibrium behavior. Relaxing any of these symmetry assumptions, albeit

theoretically challenging, may generate new insights. Recent work by Bos (2011) shows that

the dominance of the own-bid all-pay auction over the lottery does not generally hold if

bidders are not symmetric in the way they value the prize and the public good. How to

design optimal mechanisms when such asymmetries are present remains an open question.

Another extension is to allow for endogenous participation by donors. In a field exper-

iment, Carpenter, Holmes and Matthews (2008) observe that, in contrast to theory, the

winner-pay first-price auction generates more revenue than the own-bid all-pay auction (and

the winner-pay second-price auction) – a finding that the authors attribute to endogenous

participation: individuals feel more attracted to participate in mechanisms that they are

familiar with. In a more recent theoretical work, Carpenter, Holmes and Matthews (2010a)

derive the symmetric Bayesian Nash equilibria for the above mechanisms in a scenario where

bidders are facing mechanism-specific entry costs. How to design optimal fund-raising mech-

anisms with endogenous participation, however, is yet to be explored – even in symmetric

settings.

Finally, our model considers the fund-raising activity in isolation of future fund-raisers.

social benefit increases from 2α to 3α. Thus, for some values of the parameter α, a bidder who believes that
the other agent(s) bid high, would bid very high in an auction with three bidders and very low in an auction
with two bidders when social preferences are taken into consideration. Such drastic changes in contribution
levels would not be observed in the lottery as the item is not always assigned to the highest bidder.
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Many fund-raising efforts are, however, repeated events in which behavioral spill-overs play a

role. Using field experiments, Landry, Lange, List, Price and Rupp (2010) find that previous

donors are more likely to give than those who are asked for a first time to contribute, and

explore factors that keep donors committed to the cause. One important conclusion that

Landry et al. (2010) draw is that donors initially attracted via economic mechanisms –

such as auctions, lotteries, seed money, matching grants, etc. – are more likely to continue

to contribute in the future than the ones attracted by “non-mechanism” factors (e.g. the

appearance of the solicitor). Thus, theoretical and experimental work on optimal economic

mechanisms for fund-raising that explicitly accounts for the recurrence of fund-raising events

presents another fruitful avenue for future research.
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A Proofs and additional result

Proof of Proposition 2 (LOW–LOT)

The existence of a symmetric equilibrium follows from Theorem 1 in Becker and Damianov

(2006) who show that any symmetric game with a continuous payoff function has a symmetric

(mixed strategy) equilibrium. Applying Lemma 1, we consider the setting without a public

good and a prize of V
1�αn

.

Part (A).

We proceed in three steps.

Step 1. Equation (3) holds for any open interval pc, dq that belongs to the support. For all

x P pc, dq the expected payoff Ex�i
rΠLOW–LOT

i p0, V
1�αn

qpx, F qs is constant. Hence

B

Bx
Ex�i

rΠLOW–LOT
i p0, V

1�αn
qpx, F qs � 0. (5)

Let us define the marginal revenue of bidder i in the lowest-bid lottery by

MRLOW–LOTpx, F q �
B

Bx

�
V

1� αn
�

»
�

j�i
Sj

x

x�
°
j�i xj

dF px�iq

�

�
V

1� αn
�

»
�

j�i
Sj

°
j�i xj

px�
°
j�i xjq

2
dF px�iq

and the marginal cost by

MCLOW–LOTpx, F q �
B

Bx

�» x
0

y dp1� p1� F pyqqn�1q � p1� F pxqqn�1 � x

�
� x � d

dx
r1� p1� F pxqqn�1s � p1� F pxqqn�1 � pn� 1qp1� F pxqqn�2F 1pxq � x

� x � pn� 1qp1� F pxqqn�2F 1pxq � p1� F pxqqn�1 � pn� 1qp1� F pxqqn�2F 1pxq � x

� p1� F pxqqn�1.

Equation (5) can be represented as

MRLOW–LOTpx, F q �MCLOW–LOTpx, F q (6)
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with the interpretation that, for all x in the mixed strategy equilibrium support, marginal

revenue of increasing the bid of a player should be equal to the marginal cost. From the

derived expressions for the marginal revenue and the marginal cost we obtain that equation

(6) is equivalent to

V

1� αn
�

»
�

j�i
Sj

°
j�i xj

px�
°
j�i xjq

2
dF px�iq � p1� F pxqqn�1

which corresponds to equation (3) stated in the proposition. In the next step we show that

the support of the mixed strategy distribution cannot have gaps, i.e. all open intervals in

rb, Bs have a positive probability mass. More formally, we establish the following claim.

Step 2. For any c and d where b ¤ c   d ¤ B, if rb, cs Y rd,Bs belongs to the mixed

strategy support then pc, dq also belongs to the support of the mixed strategy equilibrium.

Assume by contradiction that Ex�i
rΠLOW–LOT

i p0, V
1�αn

qpx, F qs � k for x P rb, cs Y rd,Bs

and Ex�i
rΠLOW–LOT

i p0, V
1�αn

qpx, F qs   k for x P pc, dq. Observe that, since
°

j�i xj

px�
°

j�i xjq
2 is

decreasing in x it follows that MRLOW–LOTpx, F q is decreasing in x. As MCLOW–LOTpx, F q

is constant for x P pc, dq, because F pxq is constant (note that we assumed no probability

mass in this interval) and MRLOW–LOTpx, F q � MCLOW–LOTpx, F q for x � c it follows that

MRLOW–LOTpx, F q  MCLOW–LOTpx, F q for x P pc, dq. Therefore,

Ex�i
rΠLOW–LOT

i p0, V
1�αn

qpc, F qs ¡ Ex�i
rΠLOW–LOT

i p0, V
1�αn

qpd, F qs,

a contradiction.
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Step 3. The symmetric equilibrium has a mass point at B. Assume by contradiction that

there is no mass point and B. It follows that

MCLOW–LOTpB,F q � p1� F pBqqn � 0

Note that

MRLOW–LOTpB,F q �
V

1� αn
�

»
�

j�i
Sj

°
j�i xj

pB �
°
j�i xjq

2
dF px�iq ¡ 0

a contradiction to condition (6).

Part (B).

We proceed in two steps.

Step 1. All players donating their entire budget B is an equilibrium profile. When bidder

i plays the pure strategy x ¤ B and all other bidders play B the payoff of bidder i is given

by

ΠLOW–LOT
i p0, V

1�αn
qpx,Bq � B � x� x

x�pn�1qB
� V
1�αn

.

The first-order condition for the best response of bidder i is given by

B
Bx

ΠLOW–LOT
i p0, V

1�αn
qpx,Bq � pn�1qB

px�pn�1qBq2
� V
1�αn

� 1 � 0.

Requiring that the first-order condition holds for x � B gives B � n�1
n

� V
n p1�αnq

. For

B ¤ n�1
n

� V
n p1�αnq

the inequality B
Bx

ΠLOW–LOT
i p0, V

1�αn
qpx,Bq ¡ 0 holds for all x   B and

therefore the strategy profile in which all bidders donate B is a symmetric pure strategy

equilibrium profile. For B ¡ n�1
n
� V
n p1�αnq

it is straightforward that the symmetric equilibrium

is not given in pure strategies. Indeed, a symmetric pure strategy profile cannot constitute
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an equilibrium because, by increasing their bid, bidders increase their probability of winning

but not their payment.

Step 2. No other symmetric equilibrium exists. Assume that there is another equilibrium

with a cumulative distribution function Gpxq. The distribution Gpxq should satisfy the prop-

erties given in Part (A), that is, it has support over the interval rb, Bs where 0 ¤ b   B and

satisfies equation (6). Let us denote the sum of the donations of all players except player i

by y :�
°
j�i xj and let ϕpx, yq :� y

px�yq2
. Note that ϕpx, yq decreasing in x for all x P rb, Bs

and observe that B
By
pϕpx, yqq � x�y

px�yq3
. It follows that ϕpx, yq is decreasing in y for y ¡ x.

Hence, for y P rb, pn� 1qBq it follows that

ϕpb, yq ¡ ϕpb, pn� 1qBq ¡ ϕpB, pn� 1qBq �
pn� 1qB

pnBq2
.

For the marginal revenue the following inequalities hold

MRLOW–LOTpb,Gq �
V

1� αn
�

» pn�1qB

pn�1q b

ϕpb, yqdLGpyq ¡
V

1� αn
�
pn� 1qB

pnBq2

where LGpyq the probability distribution function of y �
°
j�i xj, (i.e. LGpyq is the convo-

lution of Gpxqq. Note that for B ¤ n�1
n

� V
n p1�αnq

the inequality V
1�αn

� pn�1qB
pnBq2

¥ 1 holds,

and hence MRLOW–LOTpb,Gq ¡ 1 ¥ p1 � Gpbqqn � MCLOW–LOTpb,Gq, a contradiction to

condition (6).

�

Proof of Proposition 3 (LOW–AUC)

Applying Lemma 1, we consider the setting without a public good and a prize of V
1�αn

. It

is easy to see that no symmetric equilibrium in pure strategies exists because each bidder
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has an incentive to increase her bid and secure the prize without paying more. Thus, we

consider the mixed strategy extension of the game in which each player i chooses a cumulative

distribution function Fipxq over the set of pure strategies. Let us also denote by φipx̃q �

Fipx̃q � limxÒx̃ Fipxq the size of a mass point placed at bid x̃. We proceed now in six steps.

Step 1. There are no mass points in the symmetric equilibrium distribution (except at

the budget constraint B). Assume that there exists an atom in the symmetric equilibrium

distribution, i.e. there is a mass point at bid x̃. With a probability of φipx̃q
n�1 there is a tie

at this bid in which case bidder i wins the prize only with a probability of 1{n. Consider

a deviation according to which bidder i shifts the mass φipx̃q from x̃ to x̃ � ε. The total

probability of winning the prize will increase by at least p1� 1
n
q �φipx̃q

n�1, while the payment

will increase by no more than ε (observe that the payment function is continuous). For a

small enough ε the deviation is profitable.

Step 2. The lower bound of the support of the symmetric equilibrium is zero. Assume on

the contrary that the lower bound is ` ¡ 0. Because the distribution is atom-less, with a

bid of `, bidder i pays `, but the chance of winning the prize is zero. So, a bid of zero is a

profitable deviation.

Step 3. In the symmetric equilibrium each bidder contributes on average the amount

V
n p1�αnq

. As the bid of zero is in the support of the mixed strategy equilibrium, and the

payoff is B when this bid is played, the expected payoff of each bidder in a symmetric equi-

librium must be B. Let E be the expected payment of each bidder (assuming symmetric

equilibrium strategies). The expected payoff of the equilibrium mixed strategy equals the
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expected payoff of each strategy in the support, in particular the bid of zero. Observe now

that with a bid of zero the chance of a bidder to win the prize is zero, and total contributions

equal zero as well. Thus, if according to the symmetric equilibrium distribution function each

bidder donates on average E, the following equation holds for E

V
n
� α � n � E � E � 0 ðñ E � V

n p1�αnq
.

Step 4. Derivation of the symmetric equilibrium mixed strategy distribution. Let us denote

the symmetric mixed strategy cumulative probability distribution function by F. As the

expected payoff is constant for all x in the support, we have

B

Bx
Ex�i

rΠLOW–AUC
i p0, V

1�αn
qpx, F qs � 0.

This is equivalent to

MRLOW–AUCpx, F q �MCLOW–AUCpx, F q (7)

where

MRLOW–AUCpx, F q �
B

Bx

�
V

1� αn
� F pxqn�1

�
�

V

1� αn
pn� 1qF pxqn�2F 1pxq

and

MCLOW–AUCpx, F q �
B

Bx

�» x
0

y dp1� p1� F pyqqn�1q � p1� F pxqqn�1 � x

�
�MCLOW–LOTpx, F q � p1� F pxqqn�1.

Substituting these results in equation (7) and rearranging terms we obtain that the equilib-

rium distribution function satisfies the differential equation

F 1pxq �
1� αn

V
�
p1� F pxqqn�1

pn� 1qF pxqn�2
(8)

with an initial condition F p0q � 0.
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Step 5. The symmetric equilibrium is unique. Assume by contradiction that there are two

symmetric equilibria, given by the cumulative distribution functions F pxq and Gpxq. Using

the standard definition of stochastic dominance, we say that F pxq first degree stochastically

dominates Gpxq if F pxq ¤ Gpxq for all x with strict inequality for some x. Since both

distributions are assumed to be equilibria, then it cannot be the case that F pxq first degree

dominates Gpxq or vice versa. Indeed, if this were the case, then the lowest-order statistic of

F pxq, given by the distribution 1�p1�F pxqqn would stochastically dominate the lowest-order

statistic of Gpxq, given by 1�p1�Gpxqqn. As expected revenue is n times the expected value

of the lowest-order statistic, both distributions will lead to different expected revenues. This

contradicts the result we established that the expected contribution in every mixed strategy

equilibrium equals V
1�αn

(see Step 3). As both functions, being equilibrium distributions,

are continuous, and F p0q � Gp0q � 0, the distribution functions must cross at least one

more time. Let us assume that y ¡ 0 is the minimum point at which they cross again, i.e.

F pyq � Gpyq, and without loss of generality let us assume that F pxq ¤ Gpxq for 0 ¤ x ¤ y.

Then, in the interval r0, ys, on average, one of the distributions will result in a higher payment

for the bidders than the other. This is, however, not possible, because the expected payoff

is zero at all points in the support, and at both points the probability of winning the item

is the same. That is, the same increase in probability should be gained by the same increase

in the expected payment. Thus, there is only one symmetric mixed strategy equilibrium.

Step 6. Effect of the budget constraint B. To prove that the strategy profile described in

the proposition is indeed an equilibrium, we need to show that all bids that belong to the

support yield the same expected payoff for a bidder, given that the other bidders follow the
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equilibrium strategy. Observe that all bids in r0, bs generate the same probability of winning

the prize as in the case without a budget constraint, and the expected payments of these

bids are also the same. It remains to show that the bid B generates the same payoff as the

bid b. Note that the only case in which a bid B will win the item and a bid b will not is when

there is at least one other bidder who bids B. If several bidders bid B there will be a tie.

Let bidder i submit a bid of B. The additional probability for this bidder to win the item

(compared to the situation in which he bids b) is given by the following binomial expression

describing the probabilities of a tie for bidder i and any number of his rivals ranging from 1

to pn� 1q:

n�1̧

j�1

�
n�1
j

�
p1� F pbqqjF pbqn�1�j 1

j�1
.

A standard manipulation of the above expression yields

1� F pbqn

np1� F pbqq
� F pbqn�1.

Thus, the additional expected gain from bidding B instead of b is

V

1� αn
�
� 1� F pbqn

np1� F pbqq
� F pbqn�1

�
. (9)

With a bid of B bidder i pays the same as with the bid b when at least one of his rivals bids

below B. When all other bidders bid B, then bidder i pays B. Thus, the additional cost of

raising the bid from b to B is

p1� F pbqqn�1pB � bq. (10)

The condition given in the proposition equates the expressions (9) and (10) and ensures

that the benefit of raising the bid from b to B corresponds to the cost. To see that bids
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in the interval pb, Bq do not lead to a higher payoff for a bidder, observe that the winning

probability and the expected payoff with these bids are the same as with the bid b. The

uniqueness of the symmetric equilibrium established in Step 5 guarantees that there is a

unique b which solves the equation given in the proposition.

�

Additional result

Proposition 5. In the case n � 2 the symmetric equilibrium of the lowest-bid all-pay auction

takes the form

F pxq � 1� e�c�x

with c � 1�αn
V

.

In the case n ¡ 2 the inverse of the cumulative distribution function takes the form

F pyq�1 � pn�1q
c

�
�

1
n�2

p y
1�y

qn�2 � 1
n�3

p y
1�y

qn�3 � . . .� 1
2
p y
1�y

q2 � y
1�y

� lnp 1
1�y

q
�

when n is odd, and

F pyq�1 � pn�1q
c

�
�

1
n�2

p y
1�y

qn�2 � 1
n�3

p y
1�y

qn�3 � . . .� 1
2
p y
1�y

q2 � y
1�y

� lnp 1
1�y

q
�

when n is even.

Proof. Equation (8) is an autonomous equation. Denoting y � F pxq we obtain

dy

dx
� c �

p1� yqn�1

pn� 1qyn�2

or

pn� 1qyn�2

c � p1� yqn�1
� dy � dx,
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where c � 1�αn
V

. Integration with z � y
1�y

yields

x�K �
pn� 1q

c
�

»
yn�2

p1� yqn�1
dy �

pn� 1q

c
�

»
zn�2

z � 1
dz.

If n is odd we obtain

x�K � pn�1q
c

�

»
zn�2�1�1

z�1
dz

� pn�1q
c

�

» �
zn�3 � zn�4 � . . .� z � 1� 1

z�1

�
dz

� pn�1q
c

�
�
zn�2

n�2
� zn�3

n�3
� . . .� z2

2
� z � ln |z � 1|

�

� pn�1q
c

�
�

1
n�2

p y
1�y

qn�2 � 1
n�3

p y
1�y

qn�3 � . . .� 1
2
p y
1�y

q2 � y
1�y

� lnp 1
1�y

qq
�
.

If n is even we obtain

x�K � pn�1q
c

�

»
zn�2�1�1

z�1
dz

� pn�1q
c

�

» �
zn�3 � zn�4 � . . .� z � 1� 1

z�1

�
dz

� pn�1q
c

�
�
zn�2

n�2
� zn�3

n�3
� . . .� z2

2
� z � ln |z � 1|

�

� pn�1q
c

�
�

1
n�2

p y
1�y

qn�2 � 1
n�3

p y
1�y

qn�3 � . . .� 1
2
p y
1�y

q2 � y
1�y

� lnp 1
1�y

q
�
.

In both cases the initial condition yp0q � 0 gives K � 0.
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B Experimental instructions (LOW–AUC–3)

Welcome to our experiment. Please read these instructions carefully. They are the same for

every participant. Please do not talk with other participants and remain quiet during the

entire experiment. Please turn off your cell phone and don’t switch it on until the end of the

experiment. If you have a question, please raise your hand and we will come to you. The

entire experiment will take around 60 minutes.

The experiment will consist of 20 rounds. In each round you will be assigned to a group

of 4 participants. The other 3 members of your group will be selected randomly from all

experimental participants in each round.

In each round your computer screen will indicate whether you are an active or a passive

participant. There will be 3 active members and 1 passive member in your group each

round, and this assignment will also be random.

Procedure in each round

If you are an active participant, you will have a budget of 100 ECU (Experimental Currency

Units) in this round. At this point you will need to specify the highest amount you are

willing to contribute to the group account (or your willingness-to-contribute). Your actual

contribution will be equal to the lowest willingness-to-contribute specified by an active member

(yourself or someone else). The actual contributions of the active members will be taken

from their private accounts and transferred to the group account. The funds in the group

account will generate a return of 1.2 ECU for each ECU available in the group account, and

will be split equally among the 4 members of the group. Hence, each member will receive
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0.3 ECU for each ECU actually contributed to the group account.

If your willingness-to-contribute is the highest, you will receive an additional prize of 20

ECU. In case you specified the highest willingness-to-contribute and another active member

specified the same willingness-to-contribute, the 20 ECU prize will be awarded randomly to

one of you. Hence, your total earnings in this round will be the sum of:

• 0.3 times the total amount in the group account,

• the amount that remains in your private account,

• another 20 ECU if you win the prize.

If you are a passive participant you will not have a budget in this round. Your earnings will

equal 0.3 times the total amount that the three active group members actually contributed

to the group account. At the end of each round you will learn the willingness-to-contribute

specified by each active bidder, and whether you won the prize. Please write down in your

answer sheet 1) the total amount of ECU contributed to the group account, and 2) the total

amount of ECU you earned in this round.

Example of contributions and earnings:

Group member: 1 2 3 4
Role: Active Active Active Passive
Budget: 100 100 100 0
Willingness to contribute: 20 40 40 –
Actual contribution: 20 20 20 –
Group account: 20� 20� 20 � 60
Earnings

Groups account (0.3� 60 � 18): 18 18 18 18
Private account: 80 80 80 0
Chance of winning the 20 ECU prize: 0% 50% 50% –
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Payments

At the end of the experiment we will randomly select one out of the 20 rounds. The total

amount of ECU you have earned in this round will be converted to US Dollars at the exchange

rate of $0.15 for 1 ECU. To this amount we will add another $7.50 and the entire amount

will be paid to you in private and in cash.

That is all about the rules. They are the same for every participant. If you have any question,

raise your hand and we will come to you. Before starting the experiment, please answer the

questions on the following page to make sure that you understood all the rules.
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C Additional graphs
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Figure 2: Distribution of individual (expected) actual contributions in the different treatments with
two donors. The first row of figures corresponds to the own-bid payment rule; the second to the
lowest-bid payment rule. The first column corresponds to the random allocation rule; the second to
the lottery; the third to the auction. Dashed curves are based on all decisions in the first ten rounds;
solid curves those in the last ten rounds.
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Figure 3: Distribution of individual (expected) actual contributions in the different treatments with
three donors. The first row of figures corresponds to the own-bid payment rule; the second to the
lowest-bid payment rule. The first column corresponds to the random allocation rule; the second to
the lottery; the third to the auction. Dashed curves are based on all decisions in the first ten rounds;
solid curves those in the last ten rounds.
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D Additional tables

Number of Payment Allocation Will. to Act. Exp. act. Corr. exp. act. contr. with

donors rule rule contr. contr. contr. will. to contr. act. contr.

n � 2 OWN RND 42.15 42.15 42.15 1.0000 1.0000
LOT 49.52 49.52 49.52 1.0000 1.0000
AUC 59.34 59.34 59.34 1.0000 1.0000

LOW RND 46.71 31.34 30.86 0.9532 0.6318
LOT 73.26 57.92 57.62 0.9895 0.6593
AUC 59.14 39.76 37.35 0.9941 0.6729

n � 3 OWN RND 33.23 33.23 33.23 1.0000 1.0000
LOT 34.51 34.51 34.51 1.0000 1.0000
AUC 30.29 30.29 30.29 1.0000 1.0000

LOW RND 49.79 21.12 21.91 0.8881 0.4664
LOT 72.81 42.54 41.37 0.9916 0.5210
AUC 78.30 51.15 49.66 0.9958 0.5411

Table 7: Average values of the key variables and correlations between them in the different treatments
on the basis of the data in all twenty rounds.

Number of Payment Allocation Will. to Act. Exp. act. Corr. exp. act. contr. with

donors rule rule contr. contr. contr. will. to contr. act. contr.

n � 2 OWN RND 39.44 39.44 39.44 1.0000 1.0000
LOT 54.68 54.68 54.68 1.0000 1.0000
AUC 62.93 62.93 62.93 1.0000 1.0000

LOW RND 41.62 28.06 28.05 0.9217 0.6289
LOT 75.10 61.84 61.22 0.9854 0.6718
AUC 54.90 37.60 34.37 0.9849 0.6894

n � 3 OWN RND 36.32 36.32 36.32 1.0000 1.0000
LOT 37.37 37.37 37.37 1.0000 1.0000
AUC 39.91 39.91 39.91 1.0000 1.0000

LOW RND 44.89 20.20 19.84 0.8427 0.5053
LOT 68.56 38.96 36.33 0.9828 0.5520
AUC 73.49 44.46 42.06 0.9925 0.5406

Table 8: Average values of the key variables and correlations between them in the different treatments
on the basis of the data in the first ten rounds.
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Number of Payment Allocation Will. to Act. Exp. act. Corr. exp. act. contr. with

donors rule rule contr. contr. contr. will. to contr. act. contr.

n � 2 OWN RND 44.86 44.86 44.86 1.0000 1.0000
LOT 44.36 44.36 44.36 1.0000 1.0000
AUC 55.75 55.75 55.75 1.0000 1.0000

LOW RND 51.80 34.62 34.93 0.9681 0.6355
LOT 71.42 54.00 54.24 0.9933 0.6475
AUC 63.37 41.92 41.24 0.9984 0.6555

n � 3 OWN RND 30.15 30.15 30.15 1.0000 1.0000
LOT 31.65 31.65 31.65 1.0000 1.0000
AUC 20.66 20.66 20.66 1.0000 1.0000

LOW RND 54.69 22.04 24.80 0.9213 0.4372
LOT 77.05 46.12 47.44 0.9966 0.4859
AUC 83.11 57.84 58.45 0.9979 0.5202

Table 9: Average values of the key variables and correlations between them in the different treatments
on the basis of the data in the last ten rounds.
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