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1 Introduction

The discovery of neutrino mass and lepton mixing [1] not only represents the first labora-
tory particle physics beyond the Standard Model (BSM) but also raises additional flavour
puzzles such as why the neutrino masses are so small, and why lepton mixing is so large [2].
Early family symmetry models focussed on continuous non-Abelian gauge theories such as
SU(3) [3, 4]! or SO(3) [6-8]. Subsequently, non-Abelian discrete symmetries such as Ay
were introduced, for example to understand the theoretical origin of the observed pattern
of (approximate) tri-bimaximal lepton mixing [9-11]. When supersymmetry (SUSY) is
included, the problem of vacuum alignment which is crucial to the success of such theories,
can be more readily addressed using the flat directions of the potential [12-15]. However,
current data involves a non-zero reactor angle and a solar angle which deviate from their
tri-bimaximal values [16]. Since, in general, non-Abelian discrete symmetries do not imply
either a zero reactor angle or exact tri-bimaximal lepton mixing, these symmetries are still
widely used in current model building [17-19].

Although the motivation for non-Abelian discrete symmetries remains strong, there
are a few question marks surrounding the use of such symmetries in physics. The first
and most obvious question is from where do such symmetries originate? In the Standard
Model (SM) we are familiar with the idea of gauge theories being fundamental and robust
symmetries of nature, but discrete symmetries seem only relevant to charge conjugation
(C), parity (P) and time-reversal invariance (T) symmetry [20]. In supersymmetric (SUSY)
models, Abelian discrete symmetries are commonly used to ensure proton stability [21]. It is
possible that the non-Abelian discrete symmetries could arise from some high energy theory
such as string theory [22], perhaps as a subgroup of the modular group [13, 23-28] and/or
from the orbifolding of extra dimensions [29-32]. However, even if such symmetries do arise
from string theory, and survive quantum and gravitational corrections [33], when they are
spontaneously broken they would imply that distinct degenerate vacua exist separated by
an energy barrier, leading to a network of cosmological domain walls which would be in
conflict with standard cosmology, and appear to “over-close the Universe” [34-36].

The problem of domain walls with non-Abelian discrete symmetries such as A4 was
discussed in [37, 38] where three possible solutions were discussed:

1. to suppose that the A4 discrete symmetry is anomalous, and hence it is only a sym-
metry of the classical action and not a full symmetry of the theory, being broken
by quantum corrections. For example this could be due to extending the discrete
symmetry to the quark sector such that the symmetry is broken at the quantum
level due to the QCD anomaly [39]. However, it is not enough to completely solve
the problem since this anomaly cannot remove all the vacuum degeneracy [40];

2. to include explicit A4 breaking terms in the Lagrangian, possibly in the form of
Planck scale suppressed higher order operators, arising from gravitational effects;

3. to suppose that, in the thermal history of the Universe, the A4 breaking phase tran-
sition happens during inflation which effectively dilutes the domain walls, and that
the Ay is never restored after reheating following inflation.

!SU(3) has recently been considered in extra dimensions [5].



An alternative solution to the domain wall problem, which we pursue here, is to suppose
that the non-Abelian discrete symmetry arises as a low energy remnant symmetry after
the spontaneous breaking of some non-Abelian continuous gauge theory. This could take
place either within the framework of string theory [41], or, as in the present paper, in the
framework of quantum field theory (QFT). For example it has been shown how SO(3) can
be spontaneously broken to various non-Abelian discrete symmetries [42, 43]. In order to
achieve this, a scalar potential was constructed such leading to the vaccuum expectation
value (VEV) which breaks the continuous gauge symmetry to the discrete symmetry. The
key requirement for having a remnant non-Abelian discrete symmetry seems to be that the
scalar field which breaks the gauge symmetry is in some large irreducible representation
(irrep) of the continuous gauge group.

The above approach [42, 43] has been applied to flavour models based on non-Abelian
continuous gauge symmetries. For example, following [42, 43], the authors in [44] have
considered the breaking of gauged SO(3) — A4 by introducing 7-plet of SO(3) with the
further breaking of A4 realising tri-bimaximal mixing in a non-SUSY flavour model. How-
ever, a fine-tuning of around 1072 among parameters had to be considered in order to
get the correct hierarchy between p and 7 masses. The problem of how to achieve tri-
bimaximal mixing at leading order from non-Abelian continuous flavour symmetries has
also been discussed by other authors [45, 46] but the problem of determining the required
flavon VEVs remains unclear. One idea is to require the electroweak doublets and right-
handed fermions to separately transforming under different continuous flavour symmetries,
and realise maximal atmospheric mixing from the minimisation of the potential [47, 48].
Extended discussions including the breaking of SU(2) and SU(3) to non-Abelian discrete
symmetries have been discussed in [49-54] and the phenomenological implications of the
breaking of SU(3) flavour symmetry in flavour models has been discussed in [55, 56].

The above literature has been concerned with breaking a continuous gauge theory to
a non-Abelian discrete symmetry without SUSY. To date, the problem of how to achieve
such a breaking in a SUSY framework has not been addressed, even though there are many
SUSY flavour models in the literature [17-19]. As stated earlier, the main advantage of
such SUSY models is the possibility to achieve vacuum alignment using flat directions of
the potential, which enables some technical simplifications and enhances the theoretical
stability of the alignment [12]. There is also a strong motivation for considering such
breaking in a SUSY framework, in order to make contact with SUSY flavour models [17-19].
In addition, the usual motivations for embedding the non-Abelian discrete symmetry into
a gauge theory also apply in the SUSY context as well, namely:

e To provide a natural explanation of the origin of non-Abelian discrete flavour sym-
metries in SUSY flavour models.

e To avoid the domain wall problem of SUSY flavour models, since the non-Abelian
discrete flavour symmetry is just an approximate effective residual symmetry aris-
ing from the breaking of the continuous symmetry. When the approximate discrete
symmetry is broken it does not lead to domain walls.



Finally, if the continuous symmetry is gauged, there is the phenomenological motivation
that:

e The breaking of gauged flavour symmetries to finite non-Abelian flavour symme-
tries implies new massive gauge bosons in the spectrum, with possibly observable
phenomenological signatures. For instance, SUSY SO(3) — A, will lead to three
degenerate gauge bosons plus their superpartners.

In the present paper, motivated by the above considerations, we discuss the breaking
of a continuous SUSY gauge theory to a non-Abelian discrete symmetry using a potential
which preserves SUSY. As stated above, this is the first time that such a symmetry breaking
has been discussed in the literature, and the formalism developed here may be applied to
the numerous SUSY flavour models in the literature [17-19]. For example, we discuss
the breaking of SO(3) down to finite family symmetries such as A4, Sy and As using
supersymmetric potentials for the first time. In particular, we focus in detail on the
breaking of SUSY SO(3) to A4, with SUSY preserved by the symmetry breaking. We
further show how the A4 may be subsequently broken to smaller residual symmetries Z3 and
Zo, still preserving SUSY, which may be used to govern the mixing patterns in the charged
lepton and neutrino sectors, leading to a predictive framework. We then present an explicit
SUSY SO(3) x U(1) model of leptons which uses this symmetry breaking pattern and show
that it leads to a phenomenologically acceptable pattern of lepton mixing and masses.
Finally we discuss the phenomenological consequences of having a gauged SO(3), leading to
massive gauge bosons, and show that all domain wall problems are resolved in such models.

The layout of the remainder of the paper is then as follows. In section 2 we discuss the
spontaneous breaking of SO(3) to finite non-Abelian symmetries such as Ay, Sy and As
with supersymmetry. In section 3 we discuss the further breaking of A4 to residual Z3 and
Zy symmetries, showing how it may be achieved from a supersymmetric SO(3) potential.
In section 4 we construct in detail a supersymmetric A4 model along these lines, originating
from SO(3) x U(1), and show that it leads to a phenomenologically acceptable pattern of
lepton mixing and masses, once subleading corrections are taken into account. Within
this model, we also discuss the phenomenological consequences of having a gauged SO(3),
leading to massive gauge bosons, and show that all domain wall problems are resolved.
Section 5 concludes the paper. The paper has three appendices. In appendix A we list
the Clebsch-Gordan coefficients of SO(3) which are used in the paper. In appendix B we
display explicitly the solutions of the superpotential minimisation. In appendix C we show
the deviation from the Zs-invariant vacuum.

2 Spontaneous breaking of SO(3) to finite non-Abelian symmetries Ay,
S, and A5 with supersymmetry

The key point to break SO(3) to non-Abelian discrete symmetries is introducing a high
irrep of SO(3) and require it gain a non-trivial VEV. In this section, after a brief review of
SO(3), we discuss how to break SO(3) to A4 by introducing a 7-plet, and then generalise
our discussion to SO(3) — Sy and As.



2.1 The SO(3) group

The rotation group SO(3) is one of the most widely used Lie groups in physics and mathe-
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matics. It is generated by three generators 71, 72 and 73. Each element can be expressed by

2

1
G{aa} = €Xp Z T | =1+ Z T + B Z [l I S (2.1)

a=1,2,3 a=1,2,3 a=1,2,3

In the fundamental three dimensional (3d) space, the generators are represented as

-10 00 -1 00 0
t=1100]|, =000 |, P=[00-1]. (2.2)
000 10 0 010

Each irrep of SO(3) has 2p + 1 dimensions and we denote it as a 2p+1-plet. Each
2p+1-plet can be represented as a rank-p tensor Tj,;,. ., in the 3d space. This tensor is
symmetric and traceless,

3
G.igeriper. = Dirian. s Z G ig.ip... = 0, (2.3)

iq=1p=1

for any a,b < p. It transforms under SO(3) as
Piria...i = Oinji Oiajo =~ Qi Do » (2.4)

where O is transformation matrix corresponding to the element gy« in the 3d space, and
it is always a 3 x 3 real orthogonal matrix. Here and in the following, doubly repeated
indices are summed.

Products of two irreps can be reduced as 2p+1 x 2¢+1 = 2|p—q|+1 + 2|p—q|+3 +
-+ +2(p+¢)+1 and the Clebsch-Gordan coefficients are given in appendix A.

2.2 SO(3) — non-Abelian discrete symmetries

SO(3) can be spontaneously broken to other non-Abelian discrete symmetries by introduc-
ing different high irreps. Ref. [43] gives an incomplete list of subgroups which could be
obtained after the relevant irrep get a VEV. For instance, some of those subgroup obtained
by irreps up to 13 are shown in table 1. The minimal irrep for SO(3) — Sy is a 9-plet,
while that for SO(3) — As is a 13-plet. Applying a 9-plet flavon p and a 13-plet flavon 1,
respectively, we will realise these breakings in a SUSY framework in the following.

2.2.1 SO(3) — Ay

The simplest irrep to break SO(3) — Ay is using a 7-plet [42, 43]. In this work, we introduce
a 7-plet flavon £ to achieve this goal. In the 3d flavour space, it is represented as a rank-3
tensor &;;i, which satisfies the requirements in eq. (2.3), i.e.,

Eijk = &iki = Ekij = Sikj = &jik = Ekji» Giik = 0. (2.5)



irrep 1 3 il 7 9 11 13
subgroups SO(3) SO(2) Zo X Zy 1 S4
SO(3)  SO(2) A4 Ay
SO(3) 43 Sy
Dy As
SO(2)
SO(3)

Table 1. The not systematical stabiliser subgroups in the low-dimensional irreducible representa-
tions of the group SO(3) [43].

Constrained by eq. (2.5), there are 7 free components of £, which can be chosen as

&111, &112, €113, €123, 133, £233, €333 - (2.6)

For the A4 symmetry, we work in the Ma-Rajasekaran (MR) basis, where the generators
s and ¢ in the 3d irreducible representation are given by

10 0 001
gs=0-10 1], =[100]. (2.7)
00 -1 010

The Ag-invariant VEV, satisfying

(9s)iir(9s) 5 (9s)kr (Cirjrnr) = (Eajie)
(9t)iir (9¢) 57 (g ) krr Eirgrwr) = (Eigie) 5 (2.8)

is given by

(E123) = , (&11) = (112) = (€113) = (€133) = (§233) = (€333) = 0. (2.9)

S‘c
@/‘ﬁ

The VEV of ¢ is geometrically shown in figure 1.

The discussion of SO(3) — A4 has been given in refs. [42-44]. The main idea is
constructing flavon potential and clarifying the Ay-invariant one in eq. (2.9) to be the
minimum of the potential, where v¢ is determined by the minimisation. This idea cannot
be directly applied to supersymmetric flavour models. In the later case, the flavon potential
is directly related to the flavon superpotential

6 2
szz‘wf TR (2.10)

where ¢; represent any scalars in the theory, and the dots are negligible soft breaking
terms and D-terms for the fields charged under the gauge group. This potential is more
constrained than the non-supersymmetric version. If the minimisation of the superpotential
Owys/0¢; = 0 has a solution, the minimisation of the potential 0Vy/0¢; = 0 is identical
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Figure 1. A geometrical description of the 7-plet §;; as a tank-3 tensor with ¢, j, k = 1,2, 3. Points
in the same colour represent the identical components, e.g., {112 = €121 = 211 all in green, etc. As a
traceless tensor, points in grey are dependent upon the rest, e.g., {129 = €212 = €201 = —&111 — &133-
These properties leave only 7 independent components, showing in 7 different colours. For the
Ay-invariant VEV, only those in red, €123 = €130 = €231 = €213 = €312 = £321, take non-zero values.

to the minimisation of the superpotential. Since most flavour models have been built in
SUSY, it is necessary to consider if SO(3) — A4 can be achieved in SUSY.

In order to break SO(3) to A4, we introduce two driving fields 5‘11 ~ 1, £§f ~ 5 and
consider the following superpotential terms - -

we = & (e1(66)1 — pg) + e2(E5(8€)s) (2.11)

where ¢ and ¢y are complex dimensionless coefficients. As required [13], the driving fields
do not gain non-zero VEVs, realised by imposing U(1)gr charges. Minimisation of the
potential is identical to the minimisation of the flavon superpotential respecting to the
driving fields as follows,

Z"j — c1(g€)y — 12 =0, (2.12)
1

)

a?g = 2(€€)5 = 0. (213)

The explicit expressions of egs. (2.12) and (2.13) are listed in appendix B. Taking the A4-
invariant VEV to egs. (2.12) and (2.13), we see that eq. (2.13) is automatically satisfied



and eq. (2.12) leads to (£123) = £pe/v/6c1. Therefore, the Ay symmetry is consistent with
the vacuum solution obtained from the minimisation of the superpotential.

We need to check the uniqueness of A4 since it is not clear if A4 is the only symmetry
after SO(3) breaking. We assume there is another vacuum solution (€)', which has an
infinitesimal deviation from the Ag-invariant one, (€)' = (£) + d¢. Egs. (2.12) and (2.13)
must also be satisfied for (£)’. Directly taking them into account, we get the constraints
on 6. Straightforwardly, we obtain

08123 = 08111 = 0&333 = 0, 0&112 + 08233 = 0, (2.14)

leaving only three unconstrained parameters 6112, 0&113 and §&133. The unconstrained per-
turbation parameters 0§ can be rotated away if we consider a SO(3) basis transformation,
g{aa} in eq. (2.1) with 041 = 3%55113/#, 052 = 3%55112/”, a3 = — 3%55133/[1, and the
generators 7! being given in eq. (2.2). Therefore, (€) also preserves the A4 symmetry and
the shift from (§) to (€)' corresponds to only a basis transformation of SO(3). Such a basis
transformation has no physical meaning. We conclude that the minimisation equation of
the superpotential, i.e., eqs. (2.12) and (2.13), uniquely breaks SO(3) to Ay.

2.2.2 SO(3) — S,

For the S; symmetry, the generators in the 3d irreducible space are given by gs, g: and

010
gu=—1100]. (2.15)
001

In the 3d flavour space, the 9-plet p is represented as a rank-4 tensor p;;r;. Constrained
by eq. (2.3), there are 9 free components of p, which can be chosen as

P1111, P1112, P1113, P1123, L1133, L1233, P1333, £23335 3333 - (2.16)

In order to require the VEV (p) invariant under the Sy symmetry. The following constraints
are required,

(9s)iir (9s) 7 (9s )kt (g5 ) (pirjrirrr) = Pijka) »
(9t)iir (9¢) 57 (90 ki (98 ) {pirjrwrrr) = (Pijki) »
(9u)iir(9u) 5 (9u) ik (Gu)w {pirjrer) = (pijii) » (2.17)

which are equivalent to

(p1111) = (p3333) = —2(p1133)
(p1112) = (p1113) = (p1123) = (P1233) = (P1333) = (pP2333) = 0. (2.18)



Follwing a similar procedure but replacing the 7-plet & by a 9-plet p, we succeed to
break SO(3) to Sy in SUSY by introducing two driving fields pf ~ 1 and pg ~ 5. The
flavon superpotential is constructed as

wy = pf (12 — cp1(pp)1) + cp208(pp)s - (2.19)

Minimisation respect to the driving fields gives rise to

ow

875 = Ni —cp1(pp)1 =0, (2:20)
1

ow

i = e lor)s =0. (2.21)
5

Taking eq. (2.18) to the above equations, we see that eq. (2.21) is automatically satisfied
and eq. (2.20) leads to (p1133) = £/p/+/30¢p1.

The uniqueness of SO(3) — S4. We vary p away from the Sj-invariant VEV, p —
(p) + dp and require that egs. (2.20) and (2.21) are still satisfied. Then, we will get the
constraints on dp, which are straightforwardly expressed as

dp1111 = dp1123 = 9p1133 = Op1233 = dp3333 = 0,  Ip1113 + dp1333 = 0, (2.22)

leaving only three unconstrained parameters dpii12, 0p1113 and dpeszs. The uncon-
strained perturbation parameters dp can be rotated away if we consider a SO(3) basis

transformation, graey = 13x3 + a®7* with ol = y/ﬁ%éplng/u, o? = \/Gc%dplng,/u,
ad = —\/6(:—5”1(5p2333/u. Therefore, egs. (2.20) and (2.21) uniquely break SO(3) to Sj.

2.2.3 SO(3) — Aj
For the As symmetry, the generators in the 3d irreducible space are given by gs, g+ and
—1 bs b
1 2 01

Jw = —3 b2 by —1 s (2.23)
by —1 by

where by = $(v/5 — 1) and by = 3(—v/5 — 1).
The 13-plet ¢ in the 3d flavour space is represented as a rank-6 tensor ;;ximn. Con-
strained by eq. (2.3), there are 13 free components of v, which can be chosen to be

P111111, Y1111125 Y111113, Y111123, Y1111335 Y1112335 V111333, V112333, (2.24)
1113333, V123333, V133333, 1233333, 1333333 - (2.25)

In order to require the VEV (¢) invariant under the S; symmetry. The following constraints
are required,

(gs)ii’ (gs)jj’ (gs)kk’ (gs)ll/ (gs)mm’ (gs)nn’ <wi’j’k/l’m’n’> = <¢z‘jklmn> ,

(96)iir (9¢) 5 (9e) ke (90) 1 (9t ) (96 mns (it jrrvmmrn) = (Lijrtmn) »
(gw)ii’ (gw)jj’(gw)kk’ (gw)ll/ (gw)mm’ (gw)nn’ <ﬂ}i/j’k/l/m’n/> = <¢ijkzlmn> . (226)



They are equivalent to

(P111111) = (Y¥333333), (V111133) = 7\[10_5@)111111)7 (Y113333) = _7\(0_5

(Y111112) = (Y111113) = (P111123) = (Yr111233) =0,
(P111333) = (P112333) = (V133333) = (Y233333) = 0. (2.27)

In order to break SO(3) to As, we introducing two driving fields ¢f ~ 1 and 1,/13 ~ 9,
instead of 5. The flavon superpotential is constructed as

Wy, = ¢f (M?p —cp1(Y)1) + %27%)5(7,01/1)9- (2.28)

Minimisation respect to the driving fields gives rise to

(Y111111)

(9'[1)1/,

aq,bil = /'612/) — Cyl (d”ﬁ)l =0, (229)
0
at:;é = cya(tt)g = 0. (2.30)

Taking eq. (2.27) to the above equations, we see that eq. (2.30) is automatically satisfied
and eq. (2.29) leads to (Y111111) = Fpy/(41/21cy).

The uniqueness of SO(3) — As. We vary ¢ away from the As-invariant VEV,
Y — () + 9y and require that egs. (2.29) and (2.30) are still satisfied. Then, we will
get the constraints on §,

0111111 = 09111133 = 09113333 = 09333333 = 0,

S111112 = VBbad1123333 01111233 = b11123333 ,
111113 = —?5151#111333, 01133333 = ?511/1111333,
01112333 = b20111123 51a33333 = —V/5b1b111123 , (2.31)

leaving also three unconstrained parameters 6111123, 01111333 and d1123333. The uncon-
strained small parameters 019 can be rotated away if we consider a SO(3) basis transfor-

mation, giqey = Lzx3 + a7 with o' — —4,/ Botp193333/ pps 0% — 4/ Fr60111333/ they, and
a3 — —44/ 2284111123/ py. Therefore, egs. (2.29) and (2.30) uniquely break SO(3) to As.

2.3 Representation decomposition

After SO(3) is broken to a non-Abelian discrete group, it is necessary to decompose each
irrep of SO(3) to a couple of irreps of the discrete one. This task is achieved by comparing
reduction of Kronecker products of representations of SO(3) with those of the discrete
one [51].

For irreps of SO(3) decomposed to irreps of A4, we identify 1, 3 of SO(3) with 1, 3 of
Ay, respectively and compare the Kronecker products

3x3=1+3+5 (2.32)



in SO(3) with
3x3=1+1+1"+3+3 (2.33)

in A4. Since the right hand sides of both equations are identical, 5 of SO(3) is decomposed
to 1"+ 1”7 + 3 of A4. One further compares right hand side of

3x5=3+5+7 (2.34)
with that of
3x(1'+1"+3)=3+3+14+1+1"+3+3 (2.35)

and obtains 7 =1+ 3 + 3, where 1’ x 3 = 3 and 1” x 3 = 3 are used. Continuing to play
this game, we can get decomposition of as high irrep of SO(3) as we want into irreps of Ay.

This game is directly applied into irrep decomposition in Sy and As. In Sy, there are
five irreps: 1 (the trivial singlet), 1’ (different from 1’ of A4), 2, 3 and 3’. In As, there are
five irreps: 1 (the trivial singlet), 3, 3, 4 and 5. Keeping in mind the Kronecker products

1'x1 =1, 1'x2=2, 2x2=1+1+2,
3x3=3x%x38=1+2+3+3, 3x3=1+2+3+3 (2.36)
in Sy, and
3x3=1+3+5, 3'x3=1+3+5, 3x3 =4+5,
3x4=3+4+5, 3'x4=3+4+5, 3x5=3x5=3+34+4+5,
4x4=1+3+3+4+5, 4x5=3+3+3+4+5+5,
5x5=1+3+3+4+4+5+5 (2.37)

in As, and comparing them with Kronecker products in SO(3), we obtain irrep decompo-
sitions in Sy and As, respectively.

We summarise decomposition of irreps of SO(3) (up to 13) to irreps of A4, Sy and Aj
in table 2.

Before ending this section, we show more details of how a irrep of SO(3) is decomposed
into irreps of A4 as follows, which will be useful for our discussion in the next two sections.
)T

e For a triplet 3 of SO(3), ¢ = (¢1,p2,p3)", it is also a triplet 3 of Ay4.

e A 5-plet of SO(3), x, can be represented as a rank-2 tensor y;; in the 3d space. It is
symmetric, x;; = Xji, and traceless, x11 + x22 + x33 = 0. Independent components
can be chosen as x11, X12, X13, X23 and xs3. The 5-plet is decomposed to two non-
trivial singlets 1’ and 1” and one triplet 3 of A4. It is useful to re-parametrise y in

the form
RV L L
A0 X X3 X2
— 1 1 / 2,1 1
X = aXxs X +wix) X1 : (2.38)
LS X1 7@ +wy”)

~10 -



SO(3) Ay Sy As

1 1 1 1

3 3 3 3

5 1"+1"+3 2+3 5

7 1+3+3 1"+3+3 3+4

9 1+1+1"+3+3 1+2+3+3 4+5
11 17+1"+3+3+3 2+3+3+3 3+3+5
13 1+1+1+1"+3+3+3 1+1+2+3+3+3 1+3+4+5

Table 2. Decomposition of some irreps of SO(3) into irreps of A4, Sy and As. Results of decom-
position to irreps of A4 have been given in [44].

where w = ¢%7/3. This parametrisation has two advantages. One is the simple

transformation property in Ay,
X ~1, x'~1", x3=(x1,x2,Xx3) ~ 3 of Ay. (2.39)
The other is the normalised kinetic term,
(DX 0"x)1 =0, X "Y' —i—@ux”*a"x”—i-auxga“xg
zﬁux'*aux +8#X/'*8“XN+5MX13“X1 +0,x530" x2+0,x30" x3.  (2.40)
e The 7-plet of SO(3) is a symmetric and traceless rank-3 tensor in the 3d space. It is

decomposed to one trivial singlet 1 and two triplets 3 of A4. The former mentioned
& can be re-labelled as

§123 = \}5&)’
T flo = =6 — =6, g = =)+ ¢
AL nz = sl opb 113 = x/;;f 3 \/ﬁ— 3,
o 1,1 /
§133 = \/T—O& - %51 ;o So33 = mﬁz + \/6527 §333 = —\/T»Oﬁg- (2.41)
Here,
60’\’17 535 (51762’53) N37 féE(fi,§§,£§)~3of A4- (242)

And the kinetic term is also normalised,?

(DuE70"€)1 = 050"y + 0,50 €5 + Dt €l
= 0,650"60 + DuE70ME1 + 0,501 & + 0,630" 83 + 0,770
+ 0u€5 01 + 0,85 0" E5. (2.43)
Since &y is a trivial singlet of A4, once & gets a non-zero VEV, SO(3) will be bro-

ken but Ay is still preserved. This is consistent with the discussion in the former
subsection.

2Here we ignore the gauge interactions. Consequence of the gauge interactions will be given later in
section 4.6.
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3 The further breaking of A, to residual Z3 and Z,

In A4 lepton flavour models, A4 has to be broken to generate flavour mixing. In most
of these models, residual symmetries Z3 and Zs are preserved respectively in the charged
lepton sector and neutrino sector after A4 breaking. These residual symmetries are not
precise but good approximate symmetries. The misalignment between Z3 and Zs leading
to a mixing with tri-bimaximal mixing pattern at leading order.

Embedding A4 to the continuous SO(3) symmetry forces strong constraints on cou-
plings, and the breaking of A4 to Z3 and Z5 becomes very non-trivial. In this section, we
will show, for definiteness, how to realise A4 — Z3 and Z5 in the framework of supersym-
metric SO(3)-invariant theory.

3.1 A4 — Z3

The breaking of A4 to Z3 can be simply realised by using a triplet 3 of SO(3). We denote
such a flavon as ¢. In order to obtain the Zs-invariant VEV, we introduce an 1-plet
driving field ¢¢ and a 5-plet driving field ¢ and consider the following SO(3)-invariant
superpotential - -

we = ¢ (filpp)r — pd) + % (wg (§(<Ps0)§)§>l : (3.1)

Here as appearing in the non-renormalisable term, the scale A is assumed to be higher than
the scale of SO(3) breaking to Ay.

Minimisation of the superpotential gives rise to

Qwy 2
= — == O
o filew)r —py, =0,
31050 _ f2 .
Tcpg A (‘5(3090)5)5 =0, (32)

whose detailed formula is listed in appendix B. Starting from the Ay-invariant VEV (£) in
eq. (2.9), we use (5(90@)5)5 = 0 to derive pF = 3 = ¢2, and fl(gpgo)l—ui = 0 to determine

the value of p?. Here, we directly write out the following complete list of solutions

(p1) 1 -1 —1
(gpg) = $v, 1 , -1 , 1 , -1 , (3.3)
(p3) -1 -1 1

where vy, = pi,/+/3f1. For non-zero v, all four VEVs break the A4 symmetry. Each VEV
preserves a different Z3 group. In detail, (1,1,1)7 preserves Z{ = {1,¢,2}, (1,—1,-1)T
preserves Z5t* ={1, sts, (sts)?}, (1,1, —1)T preserves Z5t ={1, st, (st)%}, and (-1, —1,1)T
preserves ZL = {1,ts, (ts)?}. These Z3 groups are conjugate to each and have no physical
difference [57, 58].
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Eq. (3.2) involves interactions between ¢ and &, specifically the non-renormalisable
term which results in the breaking of A4. These terms may influence the VEV of £ and
shift it away from the A4-invariant one. In general, this shifting effect is small enough
due to suppression of the higher dimensional operator. In section 4, we will construct a
flavour model, and based on the model, we will discuss in detail the shift of the ¢ VEV
due to non-normalisable interactions with the other flavons in section 4.4. As we will prove
therein, the shift effect is suppressed by the scale A and in general very small.

3.2 A4 — Zs

We use the 5-plet x to achieve the Ay — Zs breaking. The relevant superpotential terms
could be considered as follows

wy = x{ (g10c)1 — 13) + gf (x4 (€0x0s) 5 ), + ng(xg (E00)9)5 ), +91(XE(x€)s) ;> (3:4)

where the driving fields Xi, Xg and Xg are 1-, 3- and 5-plets of SO(3). Minimisation of the
superpotential results in equations

ow

TX% = gl(XX)l_ Mi =0,

dwy _ 92 _ 9 _

oxi ~ A (€0x0)s); — T (€0x)a)3 =0,

Owy

X =0. 3.5
ot 94(x§)s (3.5)

Given the Ay-invariant VEV (&) in eq. (2.9) as input, (x§)s = 0 leads to x’ = x” = 0.
Then, (f(xx)é)g takes the same form as (f(XX)g)g and the requirement (f(XX)g)g =0or
(E(xx)g)g = 0 results in x1x2 = x2Xx3 = x3x1 = 0. Therefore, two of x1, x2 and x3 have

to be zero. And the rest non-vanishing one is determined by g1 (xx)1 — ui = 0. We obtain
the following complete list of solutions,

(') 0 0 0

o) 0 0 0

(x1) = +u, , 0 , 0 , (3.6)
(x2) 0 +0, 0

<X3> 0 0 ivx

where vy, = 1, /,/g91. These VEVs satisfy Zs symmetries. In details, the first, second, and
third pairs preserve Z5 = {1, s}, ZéStQ = {1,tst?}, Z§25t = {1,#?st}, respectively. All these
VEVs are conjugate with each other and have no physical differences [57, 58]. There is a
new scale u, introduced in the superpotential.

3.3 Spontaneously splitting 1’ with 1”7 of A4

In A4 models, the three singlet irreps 1, 1’ and 1” are usually assigned to e¢, u¢ and 7¢ (or
their permutation), respectively. These irreps are independent with each other in A4 and
the generated e, p and 7 masses are independent with each other.
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In the framework of SO(3), the non-trivial singlet irreps 1’ and 1” are obtained from
the decomposition of 5 of SO(3) (or higher irreps, e.g., 9 etc), as shown in table 2. These
singlets are always correlated with each other. As a consequence, if we directly arrange
two of the charged leptons (e.g., ¢ and 7¢) to the same 5 of SO(3), we have to face a fine
tuning of masses of these two charged leptons. In this subsection, we are going to consider
how to avoid this problem from the spontaneous symmetry breaking of Ay.

We introduce another 5-plet flavon (,

HCH) S5 VoIS
¢ = 756 gl +wi) 50 , (3.7)
%42 %Cl %(WQC' + w(")

and three driving fields Cf, (g and ff with the following superpotential

we = ¢} (hAl (€(¢Qs), — uz) + ha(C5(¢8)s) , + haCi (¢ (3:8)

Minimisaiton of the superpotential gives to

0 h

82”15 =1 (¢(6Q)s), —mE =0

0

823 = hy(CE)3 =0

ow

a§§ = h3(¢¢)1 = 0. (3.9)

The second row directly determines (; = (s = (3 = 0. It leaves the third row simplified to
(€¢)1 = 2¢'¢" = 0, resulting in ¢ =0 (or ¢' = 0). The rest one, ¢’ (or ¢”), is determined
by the first row, which is simplified to %(C’)?’ - ug =0, (or %((”)3 — ug = 0). These
results are summarised as

() vew 0 4

<<~/I> 0 Ucwl

(1) = 0 , 0 , (3.10)
(C2) 0 0

(C3) 0 0

with ve = ¢/ \/gu%A/(th) and i = 0,1,2. We will see how this VEV can separate p and 7
masses in the next section.

To summarise, we realise the breaking of A4 to Z3 and Z5 and achieve to split 1’ with
1” of A4 based on SO(3)-invariant superpotential. The scales representing the breaking of
Ay, vy, vy and ve, should be much lower than the scale of SO(3) breaking ve. This can
be satisfied by treating ,ui, ui and ug as effective descriptions from higher dimensional
operators. One may notice that there may exist some unnecessary interactions which are
not written out but cannot be forbidden based on current field arrangements. A detailed
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[Lepton mixing]

Figure 2. A sketch of the symmetry breaking in the model and how flavour mixing is generated.
The flavour symmetry at high energy is assumed to be supersymmetric SO(3). It is broken first to
Ay, which then breaks, at a lower scale, to the residual symmetry Zs in the charged lepton sector
and Z5 in the neutrino sector, with supersymmetry preserved throughout. The misalignment of the
residual symmetries gives rise to flavour mixing.

discussion on how to forbid the unnecessary coupling will be given in the next section on
the model building. Besides, the ways to realise Ay — Z3, A4 — Z5 and split 1’ from 1”
showing above are not the unique ways. One can introduce different irreps, combined with
different driving fields to achieve them. This difference further leads to the difference of
model building, which will not be discussed in this paper.

4 A supersymmetric A; model from SO(3) x U(1)

4.1 The model

In this section we will construct a supersymmetric A4 model, based on SO(3) x U(1),
with the breaking SO(3) — A4 and subsequently (at a lower scale) Ay — Z3, Z3, using
the vacuum alignments discussed previously, where the misalignment of Z3 in the charged
lepton sector and Z5 in the neutrino sector gives rise to lepton mixing. The model building
strategy is shown in figure 2. The U(1) symmetry is used to forbid couplings which are
unnecessary to generate the required flavon VEVs and flavour mixing. Note that no ad
hoc discrete symmetries are introduced in this model.

In A4 models, the right-handed charged leptons e, u¢ and 7¢ are arranged as 1, 1’ and
1” (or their permutation), respectively. In SO(3), the minimal irrep containing 1’ and 1” is
5. In order to match with A4 models, we embed 1’ and 1” of A4 to two different 5-plets of
SO(3). In our model, we embed u¢ and 7¢ to two different 5-plets R,, and R..> Four extra
right-handed leptons are introduced for R, and R;, respectively. These particles should
decouple at low energy theory to avoid unnecessary experimental constraints. We achieve

3Imbedding p¢ and 7€ into the same 5-plet leads to fine tuning between p and 7 masses.
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Fields ¢ N ¢ R, R, L L, L, L,

so63) 3 3 5 5 1 1 1 3 3

I e M T M M L B,

Fields »n 7 & ¢ x ¢ Hug

so@ 1 1 7 3 5 5 1

Ul +%2 -2 +1 41 -3 4% 0

Fields nf & ¢ of o xi x & ¢ ¢ ¢

so@) 1 1 5 5 5 1 3 5 1 3 1
2 2 7 7 1 1

U(1) 0 2 -2 2 -7 42 +I 1 -1 -1 -3

Table 3. Field arrangements in SO(3) x U(1) and decompositions of these fields in A, after

SO(3) x U(1) is broken to Aj.

this goal by introducing two left-handed 3-plets L,, L; and two singlets Lo, Lro.
write out explicitly each components of the fermion multiplets in the 3d space as follows,

ly N L,a Ly
=6, N=|M|, Li=|Le|. Li=|L
{3 N3 L3 L3
SR Ry N
R, = TR et + W RY) %Rm ,
%Rm %Rm %(w%c +wR}))
%(R; +7°) %ers %er
R, = %ng %(wR’T + w?7°) %Rﬂ
e 5B F5(WR, +wr°)

Here, ¢; = (v1,l1), lo = (v9,l2) and f3 = (vs3,l3) are the three SM lepton doublets.
R.3 = (R, Rz, Rug)T and R;3 = (R;1, Rro, R;3)7 transform as 3 of Ay.
Charges for all relevant fields in SO(3) x U(1) are listed in table 3. Besides SO(3), we

introduce additional U(1) symmetry to forbid unnecessary couplings.

4.2 Vacuum alignments

Terms leading to SO(3) breaking and A, breaking in the superpotential involving flavons

and driving fields are given by

wy D (dinii—pn) +& (e1(€6)1—Aen) +e2(£5(6€)s5)

+of (fl(w) ‘%773) f(%(&(sw)a)i)

/

A
+§f(%(<(<<) )i e (Clexs), n)+ha(GH(CE)a) y +haCH(CO) L+
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Here, the dots represent subleading corrections, which will be discussed in section 4.4.
Compared with the superpotential terms in sections 2 and 3, eq. (4.2) takes a very similar

form except the following differences:

e The constant ug is not explicitly written out, but replaced by A¢n. Here 1 and 7 are
SO(3) singlets. From the minimisation dwy/dn¢ = 0, we know that both (1) and (7)
cannot be zero, and thus, we denote them as vn;md vy, respectively. Once 7 gets this
VEV, ,ug = Agw, is effectively obtained. This treatment is helpful for us to arrange
charges for £&. Otherwise only a Zs charge can be arranged for &.

e The constants ,ug,, ui and ug are replaced by f.,n>/A, g,7°/A and h¢ (C(gpx)é)ln/AQ,
respectively. These constants are just effective description of the higher dimensional
operators after the relevant flavons get VEVs,

= g—XUzé z —Zf

et (4.3)

UC VU Up -

e The term QIXf(XX)l is not explicitly written out, but effectively obtained from the
operator %Xi(xx)ln after n gains the VEV. In this case, g; is effectively expressed
as g1 = gjvp/A. The term (wg(§(¢¢)§)§)1 does not contribute since (¢p)s vanishes
at the A4-invariant VEV.

The approach for how the flavons obtained the required VEVs have been discussed in

the former section. We do not repeat the relevant discussion here but just list the achieved
VEVs of flavons,

IS (123) = %, (€111) = (112) = (€113) = (€133) = (§233) = (€333) = 0;
(¢1) 1
7 (p2) | = ve | 1]
(¢3) 1
(xX') 0
x") 0
% {(x1) = Ux 1 ;
(x2) 0
(x3) 0
(¢ 1
(& 0
¢t @\ | =vcf| (o) | (4.4)
(C2) 0
(Cs) 0

where vg, v, vy and ve are respectively given by

fon

Aguy
e s

1
2L oo QCU (4.5)
giog 2f191h5A3
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We briefly discuss the scales involved in the model. The VEV v represents the scale
of SO(3) — A4 and v, and vy represent the scales of A4 — Z3 and Z, respectively. VEVs
of n and 7 do not break any non-Abelian symmetries but U(1), their role is to connect
the scales of SO(3) breaking and Ay breakings. For the scale of Ay — Z3, v, < vy is
naturally achieved due to the suppression of A in the dominator in eq. (4.5). For the scale
of Ay — Zs, vy < v, can be achieved by either assuming a hierarchy v, < vj all assuming
a small coefficient g,. The VEV v¢ can be much larger than v, and v if the dimension one
parameter A¢ is large enough. With the above treatment (but not the unique treatment),
we can easily achieve a hierarchy of energy scales

UV scale (A) > scale of SO(3) = Ay (ve) > scales of Ay = Z3,Z5 (vy,vy).  (4.6)

In the following, we simplify our discussion by assuming all dimensionless parameters
in the flavon superpotential being of order one. In this case, orders of magnitude of v, vy,
vy and v¢ are determined by A, A¢, v; and v, as

an\/i anﬁ \/7 an )i. (4.7)

The hierarchy in eq. (4.6) is obtained by requiring A > A¢ > vy >> vy,

4.3 Lepton masses

Lagrangian terms for generating charged lepton masses are given by

Wy = Wee + WR, + WR, +WN (4.8)
with

Yel c c
Wee D Ag( ©)1(pl)1e Hy+ 2 A3 <((<,0<,0)§<,0)§€> e“Hy,
WR, 2 %(SOMR )3)177Hd + yXQ (30 ) + Y Lo (CRy )

+ T (€0, )0) o+ Vi (E(LuR,)s),
WR, 2 K( ¢(lRr)3), Hy+—= Yo Lro((6Q)sRr), + Yr2 (§(LrRr)s)
wy > yn(EN) H, + %ﬁ%NN); FA(VN)), (19)

at leading order. After the flavons get their VEVs, we arrive at the effective Yukawa
couplings for leptons and Majorana masses for right-handed neutrinos.
The Yukawa coupling of €€ is given by

1

3

= Yo Afi, (" 1| eHqy (4.10)
1

where Ye = 3Ye1 + 4Ye2-
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Couplings involving R,, are given by

Yt org Vo la Y 55 Vi Ha 2V/3Yis % Lsxs Ha e
= (ET’LMO’LE3) 0 Yul”( 01x3 RZ )
yw%‘@ Yu2 Ti}a}),z Vo 2v/3Y,0v¢ L3xs Ryus3
(4.11)
where
1 1
Ve=|w |, Vi=]uw?]. (4.12)
w? w

L,3 and R,3 obtain three degenerate heavy masses 21/3Y, Y,0ve. These mass are much heavier
than the electroweak scale, and thus for the low energy theory, L,3 and R,3 decouple. L,
and RZ obtain a mass Y,jv¢. For ve heavier than the electroweak scale, RZ decouples
from the low energy theory. In this way, we successfully split RZ with p¢. After the heavy
leptons are integrated out, we are left with the following couplings at the low energy theory,

1

_y“:;*i“” " | w | pH,, (4.13)
w2

where y, = Y1 — yu2Yyu3/ Y2 with the y,o term obtained via a seesaw-like formula.
Those coupling to R, are given by

Yr \;%DAV:Hd Yr \;}gAVde O(yT %A)Hd 7€
2
= (T, Lo, LYy) 0 Yoo D1y R|.  (414)
03x1 03x1 2v/3Y ¢ Laxs Rr3

L,3 and R,3 obtain three degenerate heavy masses 2\/§Yfgvg, which are much heavier than
the electroweak scale. Lo and R, obtain a mass 2Y71v2 /(v/3A). This mass term should
also be heavier than the electroweak scale such that R/ can decouple from the low energy
theory. This mass term aims to split R, with 7¢ and it provides a stronger constraint to
the scale v than that splitting RZ with u¢. After all these heavy particles decouple, we
obtain Yukawa coupling for 7¢ at low energy as

1
w2 | rHy. (4.15)

v
ws—ﬂ:yﬂ'\/;{/\

After the Higgs Hy gets the VEV (H) = vg/\/2, we arrive at the charged lepton mass
matrix

3
Vers Ynins  Yrom
3 Vd
M= | yest wy, 2% 2y, e | —= (4.16)
B

Vo Uy

yeAa w? yu\[Ag yT%
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in the basis £ and (e, u¢, 7¢)T. This matrix is diagonal by a unitary matrix U; via UlT M; =
diag{me, m,, m;} with

111
U=U,=—|1w? w (4.17)
w w
and
U3Ud Vi Valg Vi, Vg
Me = ‘\/gye\/%A?’ My = Yu :;ij\g T = |Yr \}%A . (4.18)

In this model, since ye, y,,, and y, are totally independent free parameters, there is no need
to introduce a fine tuning of them to fit the hierarchy of e, u and 7 masses.

If we naturally assume the dimensionless parameters ., y, and y, are all of order one,
we then obtain me : my, : m; ~ (v,/A)? : v;/A : 1. The mass between Lo and R, is of
order vg /A. Tt should be much heavier than the electroweak scale to avoid the constraints
from collider searches, i.e., vg [y > vg.

The realisation of neutrino masses is straightforward. The relevant superpotential
terms at leading order are given by

wy = yn(EN) 1 H, + %r‘f(NN)l + A (X (NN)s), - (4.19)

The generated Dirac mass matrix between v and N and Majorana mass matrix for NV, in
the bases (v1,v2,v3)T and (N1, N2, N3)T, are respectively given by

_ YDy

Mp \/ijlsxs,
a00

My=|0ab]|, (4.20)
0ba

where a = 2)\771)%//\ and b = 2\/§AXUX. It is straightforward to diagonalise Mj; via
USMy U = diag{ My, My, M3} with

010
U,=|750%|P. (4.21)

1 —i

iV

where P, = diag{ei%,ei%,ei%’ } and

M, = |a—|—b|, My = |CL|, M3 = |a—b\, (422)
pr=arg(b+a), Pr=arg(a), Pz=arg(b—a). (4.23)
Applying the seesaw mechanism, M, = —MpM A}lMg, we obtain that M, is diagonalised

as U' M, U, = diag { m1,mz2, m3 }. The three mass eigenvalues for light neutrinos are given
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by m1 = yHv2/(2]b+ al), ma = y%v2/(2|al) and m3 = y%v2/(2]b— al). The PMNS matrix
is given by Upyns = U lT U, = UrpmP,. We are left with the tri-bimaximal mixing.

In the model discussed so far, the crucial point in deriving an Ay-invariant VEV is
the requirement (££)s = 0, while those to derive a Zj- or Zz-invariant vacuum is the
requirement (¢ (g0g0)§)5 =0or (x&)s = (¢ (XX)§)3 = 0, respectively. These requirements are
obtained via the minimisation of the superpotential. However, extra terms may be involved
in the superpotential and lead to that the above requirements do not hold explicitly. As a
consequence, the relevant vacuums do not preserve the symmetries explicitly. In the next
subsection, we will prove that after including these terms, the flavon VEVs do deviate from
the former symmetric ones, but the size of the deviations are safely very small. Then in
the subsequent subsection we consider subleading effects to the flavour mixing and show
that it gives important corrections.

4.4 Subleading corrections to the vacuum (are negligible)

We first list terms in the flavon superpotential which cannot be avoided by the flavour
symmetry SO(3) x U(1). The full flavon superpotential should be given by

wp=w ?<3+wf +wf ..., (4.24)

w}lg?’ represents renormalisable terms in the superpotential, and w?:‘l and w?:5 are non-
renormalisable quartic and quintic couplings, respectively. Up to quintic couplings, all
terms are listed in table 4, classified by the driving fields. As mentioned above, we follow
the general arrangement in most supersymmetric models that driving fields always linearly
couple to flavon fields. Compared with eq. (4.2), a lot of new terms appear here. We will
discuss how they modify the VEVs of £, ¢, x and ( in detail.

First for £, couplings involving the driving field {g include not just the renormalisable
term <§g(f£)§) v but also the quartic term (fg(fgo)§>1 7 and the quintic term ({g)()l n3,

(fg({f)é)l 17, etc. The minimisation 8wf/8§g = 0 does not lead to (£€)s = 0, but
1
(€8)s = K (€p)51 K X(pe)1+ 15 —xn° + 2 (56)57777 +- (4.25)
where the dots represent contribution of all rest terms involving fg in table 4. Dimensionless

free parameters are omitted here and in the following. Couplings involving the driving field

ff is modified into

(€)1 — Aen = 577+ 13 (€O + (426)

where the dots represent contributions of the rest terms in table 4. We denote the shifted
VEV as

g4 45, (4.27)
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renormalisable quartic terms quintic terms

forms w1 it x A Wi A2

T 13 (6€)77, nin?7?, nf ((€€)sx) m, nf ((e0)sx) 7, 1 ((€C)s(¥x)s),
nini 1t ((ex)z€),

& Actln, &, &l (€€)am, €8 ((ex)2€) 11, &1 (w)an®, €1 (€)%,

ui

1 ((e9)sx), &8 ((¢0)5(¢0)s),» &1 ((€€)a(60)a),

g (es),  (dews) @’ (@Es),m (8Ees);)
(

fi (ég)l "7?

vl elleen i’ PO’ Wi (pp)uni, @i ((€6)s(6¢)s)s,
w1 ((69)a(E)o),
o 0 (cfeer)s)s),  (#E((€0s0);) m (phlop)s), (€O (#E(CQ)S), (0,
(“((0r)s(c0s); ) - (2 ((205(cCIo);)
xi 0 X1 (o), X1(€€)10001, X1 ((€€)5(x0)s) 1> X1 ((€€)a(xX)9),
X4,
X5 0 (Xﬁ (€0xs)g) » (X&), m*, (e)a b, (X% (@(Xx)g)g)im
(d €0000s),  (E(0050s),) -
X5 (x8(€x)s), (X8(#x)s), 7, (X8(€x)s) , 17, (Xi ¢(xx)s) ) 1, (X8(¢Q)s) , 7°
(EX)L(CO)1,
(xg(x(CC)g)é)l,
(M (<)),
¢ o ¢t (C(¢0)s), ¢f (Cex)s)y m
@ (@), (@), m (Os), m (ontOm. (G e0s),)
(§§ (p(x¢)s) )l
G o 0 CL(COami, C1 (€8)5(#X)5),

Table 4. All terms up to quintic couplings in the flavon superpotential allowed by the flavour
symmetry SO(3) x U(1). p, and A¢ are free parameters with one mass unit to balance the dimension
in the superpotential.
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where £44 is the Ay-invariant part with each components given in eq. (4.4) and 0¢ represents
Ay-breaking corrections. Eq. (4.26) only gives an all overall small correction to ve without
breaking the A4 symmetry. Eq. (4.25) is approximately simplified to

2066405 = 1 (€1467), 1+ DX (670 7) 1+ o + (€M g+ (429)
where ((£44 + 6¢) (€4 + de)) s ~ 2(0¢£44)5 is used on the left hand side and &, y and ¢ are
replaced by the A4-, Zo- andiZg—invariant VEVs €44, x?2 and % on the right hand side
of eq. (4.4), respectively. In our paper, since we only care about the order of magnitude
of corrections, we neglect CG coefficients in the products and do a naive estimation of the
order of magnitude. Then we obtain

¢ VU UyU5 UyUs ]
% < La eVn “XY%p Xn 0.--- _ ¥ 4.29
Ué > m X{ AU& ) Avg ) AQUE’ ) A’Ug ’ ( )

where the fourth term in the curly bracket has a vanishing contribution since (£44£44 )5 = 0.
The relation in eq. (4.7) has been used. In the above estimation, we include all corrections
from table 4 and pick the largest one vev,/(Avg). Since vy, v, < ve < A, this correction
is very small and can be safely ignored. The exact correction may be different from the
estimation but must be smaller than it.

Similarly, we can estimate corrections to the VEVs of ¢, x and (. We denote the
shifted VEVs of ¢, x and ( as

9023 + 5<p s
X7 + 6y,
Cll +0¢ (4.30)

respectively, where ¢%3, x%2 and ¢ v represent leading-order value in eq. (4.4) and d, 0y
and ¢¢ are subleading order corrections. Once subleading high dimensional operators are
included, the minimisation of the superpotential gives rise to

2
% (e (™ 9™)s) 5 + % (€M Gp™)s);

~ %((EA%A“)@SOZ?’)QU + %(@Z3<PZ3)§(41 Mt
%(%(X%XZQ)Q; + 2%(5’44 (6xx7)5)3 + %(5£(X22X22)2)§ + QAE(EA“ (6xx™)9)3
~ %(£A4XZQ)§772 + %SO(XZQXZQ)y? e
(Fex™)s + (€455 ~ £ (&7x™)sn + X (VM
ha(CV a0y + ha(3cE™)y = 5 (Vg +
2y (CV )1 ~ g (¢ Y+ (431)
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A naive estimation gives the upper bounds of corrections

2
%Sm&x{% 4}2555

vy ve Avg’ Ve Avg

2 2
0% < paxd 06 n vevs L U
vy ™ ve Avy’ Avg’ Av,’
(&gmax{Q’vwvn’O"‘.}:W' (4.32)
UC Ug A’Ug AUS

Again, (£44641)5 = 0, as well as (¢V'¢Y); = 0, and the relation in eq. (4.7) are used in
the above. Upper bounds of relevant corrections to the Zs-invariant VEV §, /v, and the
¢ VEV 6¢/v¢ are as small as d¢/ve. The upper bound of the correction to the x VEV is
larger, 6, /vy S v3/(Avy) ~ /0y05/A. However, we calculate this correction in detail in
appendix C and find that the true correction

Oy VoUp
x . Zetn

o~ Aue (4.33)
which is also very small.
We numerically give an example of the size of these corrections. By setting
Ae = 0.3A, v; =0.1A, v;=0.03A, (4.34)
we obtain
ve ~0.1A, v, ~0.01A, v, ~0.03A, wve ~ 0.001A, (4.35)
and
%, 5—@, o < 0.005, Ox ~ 0.005. (4.36)
Ve Uy U Uy

All corrections are less than 1%. Therefore, VEVs of &, x, ¢ and ( are stable under
subleading corrections.

4.5 Subleading corrections to flavour mixing (are important)

At leading order, the flavour mixing appears as the tri-bimaximal pattern. Deviation arises
after subleading corrections are considered. There are two origins of subleading corrections:
subleading higher dimensional operators in superpotential terms for lepton mass generation
wy and higher dimensional operators in the flavon superpotential wy. The second type shift
the flavon VEVs and further modify the mixing. As discussed in the last subsection, these
corrections in this model are less than 1%, safely negligible. In the following, we will only
discuss corrections from the first origin.
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Subleading terms contributing to fe“Hy up to d < 7 and those to /R, Hg or (R, Hg up
to d < 6 include

1 1
wee D 5 (ph)1e” *Hy+ — Al ((é‘(w););f)leand,

wg, D %((ERM)Q(CC) 5) 1 Ha+ 53 {((ER )7€) Ha + (((Ry)3(¢X)3) 1Ha

+ (wRM)g(sox)g)ng + ((tR)e(ex)7) nHa
WR, D %(@RT)zﬁ) nHa+ 55 {((ER 3@)177an+( {)s),nHa
+ ((R)3(6(60)s) ) Ha+ ((1R:) ) Hy+ ((ER2)2€), (66)1 Ha
+ (R (6(60)s) ;) Ha+ (<6R7>7(5<5§>9)7)1Hd} . (4:37)

For terms involving only some of ¢, &, n and 7, no Zs-breaking effects are included. The
Z3 symmetry always guarantees that the corrected effective Yukawa couplings take the
forms (1,1,1)7, (1,w,w?)T and (1,w? w)T, as in eqs. (4.10), (4.13) and (4.15), respec-
tively. Terms breaking the Z3 symmetry are those involving ¢ or x. There are five terms
left, ((£R,.)5(CC)s),Has ((CR7)5(CC)s) nHay ((CRW)3(wx)3),mHas ((CRu)5(X)s),nHa, and
((ERM)Z(gpx)Z)lnH;. The first two terms only contribute to coupling between £ and R,3 or
R;3. The rest three terms contributing to couplings between ¢ and €. Their contributions
to the charged lepton mass matrix are characterised by adding a new matrix

0 0 0
SM; = 1}7717@% 0 cw + dw? 0 % (4.38)
0 cw? +dw 0
to M. Acting UL on the left hand side of §M, leaves
0—c—do0
UM = "X | g 2 —d 0 | 4

—d (4.39)
V3N g oe—a0) V2

where ¢ and d are real dimensionless parameters. The unitary matrix to diagonalise M; is
modified to U; ~ U, U, where U, is a complex rotation matrix on the eu plane,

cos Ocy, sin Heue_i‘i’e“ 0

Uep = | —sinfeuet®er  cosbe, 0 (4.40)
0 0 1
with
d
sin 0e, = 7(0 + d)vgty ,
YuvgA
Gep = arg ( — (c+ d)vanyHUﬁA) . (4.41)
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Here, we have ignored the (3,2) entry of UL§M; since it is too small compared with the 7
mass m; ~ vyvq/A.

In the neutrino sector, terms for neutrino masses up to d < 5 have only trivial cor-
rections, wy D % {({N)inqH, + (X(NN)Q)lﬂﬁ}- Therefore, the unitary matrix U, to
diagonal M, keeps the same as that in the leading order.

Including the subleading correction, the PMNS matrix is modified into Upyng =
UeTuUTBM. multiplying U, on the left hand side does not change the third row of the

PMNS matrix. Three mixing angles are given by [6-8]

sin By,

7

0 2 — 2sin 20, cos Pey
S11n = )
2 3(2 — sin?0,,,)

cos Ocy,

\/2 — sin? O,

In this model, a3 in the first octant is predicted. The reactor angle 613 ~ v,v, /(vyA). For

sin 913 =

sin 023 = (442)

the numerical value in eq. (4.35), we have v,vy /(vzA) ~ 0.05. In order to generate sizeable
value of 613, a relatively large value of the ratio (¢ + d)/y,, is required. This is not hard to
be achieved. The Dirac-type CP-violating phase is predicted to be

§ = arg ((3cos 20, + cos46e,,) cos gy — 1(Co8 20y, + 3) sin ey + 8in26e,,) . (4.43)

The unknown phase ¢, can be eliminated to yield sum rules which have been widely
studied [6-8, 59-64]. In the limit ¢., — 7/2, an almost maximal CP-violating phase
0 ~ 3m/2 is predicted.

4.6 Phenomenological implications of gauged SO(3)

We label the gauge field of SO(3) and U(1) as F'123 and B’, respectively. Their interactions
with flavons or fermions are simply obtained with the replacement

Ou— Dy=0,+gs > Fr"+QgB),, (4.44)
a=12,3
in the kinetic terms of the relevant fields. Here, g5 and g} are gauge couplings of SO(3)
and U(1), respectively, and the U(1) charge @ for each field is listed in table 3.
Specifically, the kinetic term for £ in eq. (2.43) is replaced by (D,£*DH¢), with

(Du8)ije = (0u€)ijr + 23 Z Ep 2 1(m)auk + (T4 ik + (T méiji] + Qg1 B, Eijie - (4.45)
a=1,2,3

where (Q = +1 for ¢ has been used. FL 123 gain masses once £ get the Ay-invariant VEV.
We obtain that MZ%“'I = M%,Q = M%,g, = (2g4ve)?. The degenerate mass spectrum is also
consistent with the A4 symmetry.* Later after the rest flavons ¢, ¢ and y gain VEVs, mass

4One may use the generators s and t to perform a A4 transformation, an As-invariant mass term for F’
is obtained only if all masses are degenerated.
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splitting are generated among F'"23. Since VEVs of ¢, ¢ and y are much smaller than that
of &, the mass splittings are very small, and masses of F’123 are still nearly degenerate.

B’ obtains a mass from VEVs of both £ and 0, 7, M3, = g'f(v? + v% + v%) After Ay
breaking, VEVs of ¢, ¢ and x contribute small corrections to the B’ mass. Interactions
between leptons and B’ are flavour-dependent, with charges for ¢, e, u¢ and 7¢ given by
—%, —%, —1 and —%, respectively.

In the limit of the A4 invariance, there is no mixing between F’ and B’. This can be sim-
ply explained as follows. The mixing between F’ and B’ from eq. (4.45) and (D,£{*D*);,
if exists, can be only generated via coupling F'B’¢€. Since F' ~ 3, B’ ~ 1, £ ~ 7, the
only SO(3) invariant formed by these fields is B, (F“(ﬁ*{)g)l. Here, the 3-plet contraction
between £* and £ are anti-symmetric. Once £ get the VEV, where only one of the seven
components has a non-zero value, (§y) = vg, the anti-symmetric contraction ((£*¢)s) van-
ishes. Therefore, there is no mixing between F’ and B’. The mixing between F’ and B’
is generated after A4 breaking, induced by terms such as B, (F”(f*X)g)l- The resulted
mixing between F’ and B’ is suppressed by the ratio v, /ve.

These gauge bosons are supposed to be very heavy, with masses around ~ O(vg) or
~ O(max(vg, vy, vy)), respectively, if gauge coeflicients are of order one. However, they
could be much lighter if gauge couplings are tiny. For example, if A is fixed at 10* TeV,
ve and vy, are predicted to be around 103 TeV and vy, vy and ve be around 100 TeV. For
a gauge coupling around 1073, TeV-scale gauge bosons are predicted. Then, interesting
signatures involving gauge interactions can be tested at colliders or precision measurements
of charged leptons. Another interesting point is the prediction of a heavy tau lepton with
mass also around TeV scale (vg/A ~ 1TeV). Its interaction with B’ can be tested at
colliders.

4.7 Absence of domain walls

The domain wall problem is a well-known problem for discrete symmetry breaking. In this
paper, all flavour symmetries at high scale are gauged. A4, and the residual symmetries
Z3 and Zs, are just phenomenologically effective symmetries at lower scales. The usual
domain wall problem for the global symmetry breaking does not apply here.

In our model, we actually have a two-step phase transition SO(3) — A4 and A4 —
Zs, Z. We discuss more on why the topological defect of domain walls does not exit in
the model.

At the first step, SO(3) — Ay, the breaking of a gauge symmetry does not introduce
domain walls. As noted in section 2, there are degenerate vacuums which are continuously
connected by SO(3) basis transformation as in eq. (2.1). All vacuums are perturbatively
equivalent.

At the second step, Ay — Z3, Zo, degenerate Z3-invariant or Zs-invariant vacuums exit,
as shown in egs. (3.3) and (3.6). Taking the Zs-invariant vacuum as an example, different
Zs-invariant vacuums are randomly generated during A4 breaking to Z3 and domain walls
separating different vacuums arise. These domain walls store energy with energy density

inside the wall around v* or v

o v~ Without considering gauge interactions, there are not
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enough energy inputted to force one vacuum jumping across the wall into another. There-
fore, domain walls survive. Once gauge interactions are included, domain walls should
decay to light particles mediated by gauge bosons. For the case of small gauge couplings,
the gauge bosons may be light enough, ie., Mg < v,, and domain walls may directly
decay into gauge bosons.

5 Conclusion

In this paper we have discussed the breaking of SO(3) down to finite family symmetries such
as Ay, S4 and Ag using supersymmetric potentials for the first time. We have analysed in
detail the case of supersymmetric A4 and its finite subgroups Z3 and Z,. We have proposed
a supersymmetric A4 model of leptons along these lines, originating from SO(3) x U(1),
which leads to a phenomenologically acceptable pattern of lepton mixing and masses once
subleading corrections are taken into account. We have also discussed the phenomenological
consequences of having a gauged SO(3), leading to massive gauge bosons, and have shown
that all domain wall problems are resolved in this model.

The main achievement of the paper is to show for the first time that supersymmetric
SO(3) flavour symmetry can be the origin of finite non-Abelian family symmetry models.
By focussing in detail on a supersymmetric A4 model, we have demonstrated that such
a strategy can lead to a viable lepton model which can explain all oscillation data with
SUSY being preserved in the low energy spectrum (below the flavour symmetry breaking
scales). Moreover, we have shown that, if the SO(3) is gauged, there may be interesting
phenomenological implications due to the massive gauge bosons.

About a half of the paper is devoted to the study of the realistic supersymmetric A4
model of leptons, arising from SO(3) x U(1). This study is important in order to verify
that it is really possible to construct a fully working model along these lines. The main
achievements of the specific model may be summarised as follows:

e We have achieved the breaking of SO(3) — A4 in SUSY, using high irreps of SO(3)
and flat directions. In this paper, we have chosen a 7-plet, i.e., a rank-3 tensor in 3d
space, to achieve the breaking. We have shown that it is possible to break SO(3) to
Sy or As by using different higher irreps.

e We have shown that it is possible to also achieve, at the level of SO(3), the subsequent
breaking of A, at a lower scale (below the SO(3) breaking scale) to the residual
symmetries Z3 and Z». Such Z3 and Z5 symmetries are preserved in charged lepton
sector and neutrino sector, respectively, after the A4 breaking, in accordance with
the semi-direct model building strategy.

e Starting from a supersymmetric flavour group SO(3) x U(1), we have shown how
SO(3) is broken first to A4, and then to Z3 and Zs. The A4, Z3 and Zy symmetries
are respectively achieved by the flavons £, ¢ and x after they gain the A4-, Z3- and
Zy-invariant VEVs, respectively. We have found that tri-bimaximal mixing (with
zero reactor angle) is realised at leading order. One technical point is that the singlet
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irreps 1’ and 1” of A4 always accompany each other after SO(3) breaking. To avoid
any fine tuning of parameters related to g and 7 masses, we have introduced an
additional flavon ¢ to split the 1’ and 1”.

e We have considered the influence of the higher dimensional operator corrections to the
model. We have shown that the A4-, Z3- and Zs-invariant VEVs are stable even after
subleading corrections are included. However, we have seen that the charged lepton
mass matrix is modified by higher dimensional operators, due to the coupling with
X, which gains the Zs-invariant VEV. This welcome correction leads to additional
mixing between e and y, giving rise to a non-zero 613 and the CP-violating phase J.

e If the SO(3) x U(1) is gauged, the model predicts three gauge bosons F'1?3 with the
nearly degenerate masses after SO(3) breaking to A4. Another gauge boson B’ gain a
mass after U(1) is broken. These gauge bosons with their flavour-dependent interac-
tions with leptons will lead to phenomenological signatures worthy of further study.

e We emphasise that the flavour symmetry at high scale is the continuous gauge sym-
metry SO(3) x U(1), with no ad hoc discrete symmetries introduced, and A4 being
just an effective flavour symmetry below the SO(3) breaking scale. We have shown
that the usual domain wall problems encountered in A4 models are resolved here.
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A Clebsch-Gordan coefficients of SO(3)

In SO(3), the product of two irreducible representations (irreps) ¢ of dimension 2p+ 1 and
W of dimension 2¢ + 1 are decomposed as follows:

(2p+1) x (2¢+1) = (2lp—g|+1) + (2[p—q|+3) + - + (2(p+9) +1) (A1)

Some useful Clebsch-Gordan coefficients of these products in the 3d space are listed in the
following:

o For g ~¥~3 3x3=1+3+5,

(¢\Ij)l ~ (z)a\:[/a bl
((6W)3), ~ €iap®a¥s

((¢\I/)§)U ~ ¢ia Vo — %&jqballla + (perms of ij) . (A.2)
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For p~3and ¥ ~5 3x5=3+5+7,

(((ﬁ\II);)Z ~ ¢aViq
((¢‘I’)§)ij ~ €igpPaVjp + (perms of ij),
((gb\p)z)ijk ~ @iV — %%’%‘Pka + (perms of ijk) . (A.3)

For ¢ ~3, U~ T7,3x7=5+T7+9,
((¢‘I’)§)ij ~ ¢qVijq + (perms of ij),
((QS\IJ)Z)Z‘jk ~ 6iab¢a\1jjkb + (perms of Z]k‘) ,

3 .
((¢\P)Q)ijkl ~ (bi\Ijjkl - ?&jgba\pkla + (perms of ’L]k}l) . (A4)

For ¢ ~3, ¥ ~9,3x9=7+9+1l,
(((;S\IJ)Z)ijk ~ ¢qWijke + (perms of ijk),
((¢‘Il)2)ijkl ~ 6iotb¢a,‘lljklb + (perms of Z.jkl) )

4 ..
((¢q’)£)ijk1m ~ &V jkim — §5ij¢a\11kzma + (perms of ijkim). (A.5)

For ¢ ~ ¥ ~55x5=1+3+5+7+9,

(@V)1 ~ PaprWap,
((d)\ll)ﬁ)z ~ €iabPacPhe ,

1 ..
((d"l’)é)ij ~ ¢ia¥Vja — g(sijgbab‘liab + (perms of ij),
1 ..
((éf)‘l’)z)ijk ~ €iabPja Vb — = €iabOjkPac¥pe + (perms of ijk) ,

5
2

4 . .
((¢‘I’)2)ijkl ~ ¢ij W — §5ij¢ka\l’m + 355ij5kz¢ab\l’ab + (perms of ijkl).  (A.6)

b F0r¢N§7\I}NZ7§XZ:§+§+Z+Q+ 17

((¢qj)§)z ~ PabViab ,
((¢‘I’)§)Zj ~ €iab®ac¥ jbe + (perms of ij),

2 .
((¢‘1’)z)ijk ~ @iaVjka — géijﬁbabll’kab + (perms of ijk),

2 iy
((d"l’)g)ijkl ~ €iab®ja Vb — 76mb5jk¢ac‘1’zbc + (perms of ijkl),

2 2
(((Iﬁq’)g)ijkl ~ iV kim — §5ij¢ka‘1’zma + —

91 5ij5kl¢ablpmab + (perms of Z]kl) .

(A7)
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e For g~V ~7, 7Tx7T=143+5+7+9+11+ 13,

((blp)l ~ (babc\I/abc 5
((0®)3), ~ €iabPacaVbed

1 ..
((qb\:[/)é)w ~ d)iabquab - géij(babcqjabc + (Perms of 'L]) )

1 ..
((¢‘I’)z)ijk ~ €iabPjac¥rbe — geiabéjkgbacd‘l}bcd + (perms of ijk),

4 2 ..
((Qb‘l’)g)ijkl ~ ®ijaVkia — ;&jﬁbkab‘l’zab + %fsij5kl¢abc\ljabc + (perms of ijkl),

4 2
(((b\ll)g)”klm ~ 6z'o,b(bjka\I]lmb - §6iab5jk¢lac\1"mbc + @Qab(sjkélmqﬁacdqucd

+ (perms of ijkim),
9 2
((d)\P)E) i ~ d)ijk‘;[llmn - 75ij¢klalpmna + 75ij5kl¢mab\pnab
ijklmn 11 11

2

— Tgléij(skléanSabc\Ijabc + (perms of ijkimn). (A.8)
e Forp~7, ¥V~9 7Tx9=3+5+7+9+11+13+ 15,

(((bql)&)z ~ GabePiabe 5
(((b\I/)Q)U ~ eiabd)acdq/jbcd + (perms of Z]) )

2 ..
((¢‘I’)z)ijk ~ Piab¥jkab — gdij(lsabcq/kabc + (perms of ijk),

2 ..
((¢9)g)..., ~ €iav®jacYkive — =€iabOjkPacdPivea + (Perms of ijkl)
ijkl 7
2 2
((gb\lj)ﬁ) ikl ¢ija\IJklma - 75ij¢kabllllmab + 76ij5kl¢abc\llmabc
ijkl 3 21
+ (perms of ijkl) . (A.9)

eFor g~V n~9 9%x9=14+3+5+7+9+11+13+15+ 17,

((b\I/)l ~ (babcdqlabcd 5
((0W)3); ~ €iabPacdr Vocds »

1 .
((@5‘1/)5)1] ~ d)iabc\ljjabc - g(sijqbabcdqjabcd + (Perms of ’U) )

1 ..
((¢\P)Z)ijk ~ €iabPjacd ¥ kbed — 56¢ab5jk¢acdf‘1’bcdf + (perms of ijk),

4 2
((ﬁb‘l’)g)ijkl ~ Qijab¥klab — §5ij¢kabc‘1’labc + géijéklﬁbabcd\l’abcd

+ (perms of ijkl),

4
((‘bqj)ﬂ)”klm ~ 6iab(ﬁjkac\lllmbc - §€iab5jk¢lacdq/mbcd

2 ..
+ @Gmbfsjkéslm%cdf‘l’bcdf + (perms of ijkim),

9 2
((gb\l’)ﬁ)”klmn ~ gbijkallllmna - ﬁéijgbklab\ymnab + ﬁ(sij(squbmabc\ynabc
2

- ﬁéij5kl5mn¢abcdqjabcd + (perms of ijkimn) . (A.10)
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(¢\Ij)l ~ ¢abcdfg‘llabcdfg 5

1
((‘blp)é)” ~ Qbiabcdf\pjabcdf -3

35ij¢abcdfg\1’abcdfg + (perms of ij),

4 2
((69)g) ..., ~ Dijabed¥ kiabed — =0ijPhabeds Yiabeds + =010k Pabedfg ¥ abedf g
ijh 7 35
+ (perms of ijkl). (A.11)

B Solutions of the superpotential minimisation

B.1 Solutions for SO(3) — Ay

Equations for the minimisation of the superpotential term we in egs. (2.12) and (2.13) are
respectively and explicitly written out as

2
m
—C*f + 26311 + 3&11€133 + 28515 + E1126a3s + 3E 15 + 3113333

+36755 + 3ET53 + 26333 + gy = 0 (B.1)
2 (€111 + &g — E1126233 — 3E113E333 — 26335 — 2E333) =0,
3&1118233 — 381128133 — 681238333 + 681338233 = 0,
3€111(26113 + €333) + 681128123 + 981138133 + 681238233 + 61338333 = 0,
—6&1118123 + 681128113 + 381128333 — 381138233 = 0,
2 (=268 — 3&im1éss — 26310 — 1128033 + E333 + E333) = 0. (B.2)

Five equations in eq. (B.2) corresponds to it (11), (12), (13), (23) and (33) entries of two

rank-2 tensor (£€)s = 8w§/(028§g), respectively. By setting £111 = &112 = 113 = &133 =
o33 = &333 = 0, eq. (B.2) is automatically satisfied. Then, eq. (B.1) is left with

2
*C*f +38553 =0, (B.3)

from which we obtain 103 = £,/ ug /(3c1). Then, we arrive at the special solution in
eq. (2.9).

B.2 Solutions for Ay — Z3

Equations for the minimasation of wy, is given in eq. (3.2). Taking the VEV of ¢ in

eq. (2.9) into these equations, i.e., {111 = &112 = &113 = 133 = &233 = 333 = 0, part of
these equations are automatically satisfied, the left vanishing ones are simplified as

2

1
i+ o5 +o3— 2 =0,
fi
A€123 (93 — ¢3) =0,
—A4&123 (93 — ¢1) = 0. (B.4)

It is straightforward to derive all solutions in eq. (3.3).
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B.3 Solutions for Ay — Z»

Equations of minimisation of w, are given in eq. (3.5). After £ get the Ay-invariant VEV,
they are explicitly written out as

/‘x _
201

VeX11X23 ( 2\[92) + veX12X13 ( \[92 + 96‘[ ) =0,

72v6 .
ve(x11 + X33)X13 ( \/;92 - Mg:;) + VeX12X23 ( \[92 1 96 )
)

XT1 + X11x33 + X33 + XT2 + Xi3 + X35 — =0; (B.5)

VeX12X33 (i 2\/112) + veX13X23 ( [92 + 96\[93 = (B.6)
—94\/;U£(X11 +2x33) =
g4\/gv§(2><11 + ng) =0. (B7)

Eq. (B.7) leads to x11 = x33 = 0. Taking it to eq. (B.6), we are left with x12Xx13 = X12X23 =
x13X23 = 0, and therefore two of x12,x13, X23 vanishing. The only non-vanishing one is
determined by eq. (B.5). All solutions are listed here,

(x11) 0 0 0

(x12) 0 0 i%

(x13) | = (2; o =S 0 (B.8)
(x23) =5 0 0

(x33) 0 0 0

Representing x;; by x’, X" and x123 in eq. (2.38), we obtain the result in eq. (3.6).

C Deviation from the Z,-invariant vacuum

The naive estimation only gives the upper bound of the correction. The true correction
may be smaller than it. It happens for the correction to the VEV of x. The minimisation
of the superpotential including subleading higher dimensional operators is given by

% G0 Px)s)s + 2 (€5 )a)s + LGP s + (€M (B o)s

>

LG G R OO
(Fex™)s + (€455 ~ 5 (67X )s + X (¢ (1)

Ignoring all the other subleading operators, we calculate its correction in detail instead of
using the naive estimation. In this case, eq. (C.1) is simplified to

(C.2)
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Here, we has ignored the correction to the & VEV since it is too small as discussed in the
above. The above equation is explicitly written out as

(793 = 592) (O +9x)

1 2
2 144 Ve Uy U{’vaﬁ
g2+ 03 ~ |0 )
z ( 11 ) A 0 VA2
\/; (92 + 93)
6X” — 5X’ 0 0 5
0 wéxu — w25X/ 0 ’L\/;’Ug ~0. (C3)
0 0 w2(5X// — (,U(SX/

This equation cannot give a self-consistent solution for d,/ or d,~ since the first equation
predict (0, + dy) /vy ~ v2/(Avy) and the second one gives b/ /vy ~ dy /vy ~ 0. It means
that after subleading higher dimensional operators are included in the flavon superpotential,
Ows/0x4 =0 and Ows/9x% = 0 cannot hold at the same time. In other word, there is no
flat direction for the flavon.

Without flat direction, one has to calculate the VEV correction via the minimisation
of the flavon potential. For similar discussion in only non-Abelian discrete symmetry, see
e.g., ref. [65]. In the model discussed here, the flavon potential is given by

2 2
ow ow
Vi=|od| o]+ (C.4)
g Oxs
Taking the superpotential terms in table 4 to Vy, we see that the first term is much smaller
2
than the second term, g% < 8wf . Therefore, the minimisation of Vy is approximate
3 oxg

to Qwy/ axg = 0, and the correction is given by

(SXNmax{ég U(pvn...}:vwvn. (C5)
Uy ve Avg Avg
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