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Abstract 

The World’s longest record of river water quality (River Thames – 130 years) provides a 

unique opportunity to understand fluvial dissolved organic carbon (DOC) concentrations 

dynamics. Understanding riverine DOC variability through long-term studies is crucial to 

capture patterns and drivers influencing sources of DOC at scales relevant for decision 

making. The Thames basin (UK) has undergone massive land-use change, as well as 

increased urbanisation and population during the period considered. We aimed to investigate 

the drivers of intra-annual to interannual DOC variability, assess the variability due to natural 

and anthropogenic factors, and understand the causes for the increased DOC variability over 

the period. Two approaches were used to achieve these aims. The first method was singular 

spectrum analysis, which was used to reconstruct the major oscillatory modes of DOC, 

hydroclimatic variables and atmospheric circulation patterns, and to visualise the interaction 

between these variables. The second approach used was generalized additive modelling, 

which was used to investigate other non-natural drivers of DOC variability. Our study shows 

that DOC variability increased by 80% over the data period, with the greatest increase 

occurring from the beginning of World War II onward. The primary driver of the increase in 

DOC variability was the increase in the average value of fluvial DOC over the period of 

record, which was itself linked to the increase in basin population and diffuse DOC sources to 

the river due to land-use and land-management changes. Seasonal DOC variability was 

linked to streamflow and temperature. Our study allows to identify drivers of fluvial intra-

annual and interannual DOC variability, and therefore empowers actions to reduce high DOC 

concentrations. 
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1. Introduction  

 

The flux of DOC from land to the ocean constitutes an important component of the global 

carbon cycle (Cole et al., 2007; Battin et al., 2009). Increased DOC in inland waters can be 

an indication of reduced carbon storage in terrestrial reserves or of increased carbon sources 

in the form of fertilisers, wastewater and other direct inputs to the landscape (Worrall et al., 

2004b; Butman et al., 2014). Once it has reached the river network, fluvial DOC can be 

degassed to the atmosphere, contributing to carbon dioxide emissions (Moody et al., 2013). 

Increases in freshwater DOC concentration have been observed throughout the northern 

hemisphere (Monteith et al., 2007), causing concern for so-called “global browning” of rivers 

(Roulet & Moore, 2006; Oosthoek, 2016). Moreover increased fluvial DOC constitutes a cost 

for water companies, as water requires additional pre-treatment before chlorination to avoid 

the formation of carcinogenic by-product compounds (Hsu et al., 2001; Worrall & Burt, 

2005).  

Most studies have investigated the drivers of fluvial DOC trends (Worrall and Burt, 

2004, 2007a; Monteith et al., 2007; Finstad et al., 2016), rather than its short-term variability. 

Recent synthesis studies have highlighted the contribution of anthropogenic activities to the 

increase in fluvial DOC (Bauer et al., 2013; Regnier et al., 2013; Butman et al., 2014; 

Noacco et al., 2017a). Nonetheless there are still gaps in our understanding as to how fluvial 

DOC dynamics from seasonal to decadal scales are impacted by anthropogenic activities and 

by climate variability, as highlighted by Tian et al. (2015a). This limitation could be due to 

the short length of most DOC records. A small number of studies had the possibility of 

considering records earlier than the 1960s (see references in Filella & Rodríguez-Murillo, 

2014), and this hampers the identification and attribution of long-term oscillations. 
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There are several reasons why it is important to investigate drivers of DOC variability 

in aquatic systems. Firstly, high DOC levels can affect aquatic life (Kullberg et al.; Karlsson 

et al., 2009; Woollings et al., 2015) due to light attenuation, and drinking water treatability 

(Eikebrokk et al., 2004; Ledesma et al., 2012; Zeng and Arnold, 2014). Intra-annual 

(Winterdahl et al., 2014; Hytteborn et al., 2015) to interannual (Erlandsson et al., 2008) DOC 

variability can exceed long-term trends in magnitude. Given that rapid and large variations in 

DOC concentration can lead to high DOC levels for brief periods, short-term changes can 

have effects as detrimental as long-term DOC increase. Long-term studies such as the present 

one which investigate interannual as well as intra-annual variability are essential to capture 

patterns and drivers influencing sources of DOC at the relevant temporal scales (Köhler et al., 

2008). In the specific, long-term climate records allow the examination of long-term 

variations in fluvial DOC, which in turn allow the putting of short-term observations into the 

right context (Botta, 2002). In fact, parts of long-term oscillations, due for example to 

teleconnections, could be misinterpreted as short-term trends, or natural variability could 

mask the effect of human activities (Burt et al., 2008; Burt and Howden, 2013; Hannaford et 

al., 2013). Our study aims to understand the links between teleconnections and DOC 

variability, and to separate the stationary signals from the non-stationary ones, which will 

enable the forecasting of the impact they will have on future water quality (Adrian et al., 

2009). Moreover, identifying the natural baseline of DOC variability allows the detection of 

early warning signs of a deteriorating aquatic environment and to provide evidence for 

policy-makers to steer towards more effective policy interventions (Burt et al., 2008; Putro et 

al., 2016), in view of achieving good ecological status under the EU Water Framework 

Directive (WFD) (European Union, 2000). Finally, gaining insights on the drivers of the 

variability of carbon exports to the ocean, both natural and anthropogenic, will allow the 

appraisal of the best management options to limit detrimental impact on the environment and 
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to better understand the future sustainability of catchments exposed to human activities (Tian 

et al., 2015a). 

In this study we investigate the drivers of DOC variability in the Thames basin. The 

Thames basin (UK) has undergone important historical changes, including the expansion of 

agricultural practices (e.g. extensive ploughing of grassland into arable land, introduction of 

widespread mechanization and land drainage (Howden et al., 2010; 2013)) and an increase of 

urbanisation and population, for over a century. These changes have caused an increase of 

fluvial DOC concentration throughout the 20
th

 century (Noacco et al., 2017a), while DOC 

variability has risen. Nonetheless the drivers of increased DOC levels might be different from 

those of increased DOC variability. The Thames basin offers a unique opportunity to 

investigate the relationship between hydroclimatic variability and DOC concentrations, as it 

is the longest fluvial DOC concentration record in the World (1884-2014, (Noacco et al., 

2017a)). Furthermore, the length of the record and the observed long-term changes in the 

basin land use and population make it possible to investigate the influence of hydroclimatic 

variability in comparison to long-term changes due to anthropogenic forcing.  

Large-scale teleconnections (i.e. spatially and temporally large-scale anomalies that 

influence the variability of the atmospheric circulation, such as El Niño/Southern Oscillation 

(ENSO), North Atlantic Oscillation (NAO) (NOAA, 2017)) are known to affect regional 

hydrological regimes (Zanchettin et al., 2008; Burt & Howden, 2013; Kosanic et al., 2014). 

Therefore the study of the connections between large-scale climate patterns and catchment-

scale precipitation and streamflow is essential to furthering our understanding of 

hydroclimatological processes (Kingston et al., 2009). The subsequent connection to basin 

carbon dynamics has seldom been considered. Assessing causality between atmospheric 

circulation patterns and streamflow or precipitation is complicated by the fact that multiple 
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circulation patterns may be influential in the same region (Kingston et al., 2006; Hannaford 

& Marsh, 2008).  

Our hypothesis is that the increase in fluvial DOC variability in the Thames basin in 

the 20
th

 century was due to hydroclimatic variability, influenced in turn by the variability of 

atmospheric circulation patterns. The aims of this study were to: (1) test if atmospheric 

circulation patterns, such as NAO and ENSO, influence the hydroclimatic variability (in the 

form of temperature, rainfall and streamflow) in the Thames basin; (2) test if the 

hydroclimatic variability in turn influences the intra-annual to interannual variability of DOC; 

and (3) estimate the contribution of anthropogenic drivers to DOC variability. A systematic 

study of the drivers of fluvial DOC variability enables us to assess the magnitude of naturally 

and anthropogenically driven DOC variability and to investigate the drivers of the century-

long increase in DOC variability. Moreover, our study is the first to quantify both the amount 

of DOC variability that can be predicted with the available data and the amount of DOC 

variability that cannot be predicted with the available variables. The former allows the 

forecast of fluvial DOC concentrations in the future, if conditions do not change, while the 

latter highlights the conditions in which high DOC variability is expected, therefore 

elucidating the conditions where further measurements are needed to investigate the sources 

of DOC. This in turn will aid future efforts to detect signs of deteriorating water quality. 

 

2. Review of teleconnections, hydroclimatic factors and human impacts on 

DOC 

A range of drivers can impact fluvial DOC variability, both natural (teleconnections 

and hydroclimatic factors) and anthropogenic, direct and indirect. Organic carbon 

concentrations in streams is known to have seasonal and interannual variability, due to 

climate variability (Köhler et al., 2008). Teleconnections, with their oscillatory components, 
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can influence DOC variability indirectly, by influencing hydroclimatic patterns. 

Teleconnections, given their long-distance range of influence, provide a useful framework to 

link carbon fluxes to climate variability, as they include covariability patterns between 

different climate factors over different time scales (Hallett et al., 2004). In this study, we aim 

to investigate the effects of intra-annual to interannual variability of the hydroclimate on 

DOC variability, therefore periodic oscillations such as the atmospheric circulation patterns 

are considered. A literature review of the main drivers, direct and indirect, of DOC variability 

is provided. 

The North Atlantic Oscillation is the most important mode of climatic variability in 

the northern hemisphere. It has a decadal-scale variability (Woollings et al., 2015). In the UK 

the effect of NAOI was found to be weak in the lowlands. Nonetheless in southern Britain a 

statistically significant negative correlation with precipitation was found in summer (Burt & 

Howden, 2013), and in winter (Wilby et al., 1997). These weak correlations in southern 

Britain compared to the western part could be due to catchments in the south being more 

sheltered from westerly winds and from moisture-laden air flows coming westerly from the 

North Atlantic, and to the permeable geology of these basins, which dampens the climate 

signal variability on river flow (Lavers et al., 2010). 

El Niño/Southern Oscillation (ENSO) is the most prominent global mode of climate 

variability (Tsai et al., 2015; Bonan, 2016; Zhu et al., 2017). ENSO has a low-frequency 

oscillatory component of around 5-7 years, and a near two-year component (Ghil & Vautard, 

1991). ENSO has been found to positively influence precipitation in the UK, especially 

during winter (Mariotti et al., 2002). In winter and spring, a warm event causes anomalous 

moisture from the subtropical Atlantic to be channelled away from western Europe toward 

higher latitudes, where positive rainfall anomalies are found (Mariotti et al., 2002). Most 

studies have found that ENSO does not influence the hydroclimate in the UK (Pozo-Vázquez 
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et al., 2005; Davey et al., 2014), therefore strong effects on DOC are unlikely. Nonetheless, 

this study aims to investigate how the intra-annual to interannual variability of the 

hydroclimate influences DOC variability, therefore understanding how periodic oscillations, 

such as the atmospheric circulation patterns, affect hydroclimatic variability will allow to 

elucidate the effect on DOC as well. 

Hydroclimatic factors are known to influence the production, transport and 

transformation of DOC (Tian et al., 2015b), even though a mechanistic description of DOC 

production and transport in the landscape is incomplete (Winterdahl et al., 2016). 

Temperature influences DOC production, as higher temperatures affect the metabolism of 

trees and microbes, and increase the activity of soil microorganisms which decompose 

organic matter, which in turn increases the production of DOC in leachate (Gillooly, 2001; 

Wallenstein and Weintraub, 2008; Winterdahl et al., 2016). DOC mobilization is influenced 

by temperature (Christ & David, 1996; Neff & Hooper, 2002; Winterdahl et al., 2011), as 

well as by precipitation (Clark et al., 2009; Laudon et al., 2012). Temperature influences the 

production and decay of potentially mobile organic matter between rainfall events by 

controlling microbial activity. Temperature also regulates dissolved organic matter (DOM) 

dissolution and desorption, although the sensitivity of these physiochemical processes to 

temperature changes is poorly known. Quantities of DOM mobilised in response to rainfall 

increase with temperature and decrease with rainfall intensity and frequency (Xu and Saiers, 

2010). The hydrology of a catchment impacts DOC both directly and indirectly. It has a 

direct influence on the soil residence time and on the transport of DOC from soil to river 

(Clark et al., 2010). DOC is further influenced indirectly by the soil water content, which 

affects the biological production and/or biogeochemical cycling and chemical controls on 

solubility (Clark et al., 2010). Both seasonal and interannual variations in DOC 

concentrations are typically dominated by variations in temperature and precipitation (Clark 
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et al., 2010). Erlandsson et al. (2008) investigated the interannual variability of organic 

matter in 28 Scandinavian basins with mainly agricultural, forest and alpine land cover over 

35 years and found the variability of streamflow and sulphate to be the most important 

drivers. Tian et al. (2015a) found interannual climate variability to dominate variability of C 

export from eastern North America to the Atlantic Ocean over the 20
th

 century. Correlation 

between river discharge and river carbon fluxes indicated that carbon export is mainly limited 

by water availability, instead of DOC production and export. Tian et al. (2015b) considered 

the drivers for C variability in the Mississippi River basin in the 2000s and found climate 

variability as well as floods and droughts to be most influential for interannual variability. 

Leach et al. (2016) found annual precipitation to account for most of the variability of C 

export in a Swedish catchment over a 12-year period. 

In addition to hydroclimatic factors, changes in land use, land management, 

anthropogenic atmospheric CO2 concentration (Tian et al., 2015b), and sulphur deposition 

(Clark et al., 2005; Monteith et al., 2007) can also influence fluvial DOC variability. Land 

use changes, including the increase in urban area, can impact DOC export directly and 

indirectly. The direct effect occurs by increasing DOC production (e.g. by increasing sewage 

effluents and combined sewer overflows), and indirectly by altering the hydrological regime 

of a catchment, through changes in the hydrological properties of the soil and vegetation 

(Farley et al., 2005; Piao et al., 2007). Changes in land management practices, due to 

ploughing, fertilisation and irrigation can also greatly impact fluvial carbon exports as well 

(Raymond, 2003; Oh and Raymond, 2006).  

 

3. Methodology 

3.1 Study area 

The River Thames basin is a temperate lowland catchment located in southeast England. It 

drains a 9,948 km
2
 mineral soil dominated catchment, from its source in the Cotswold Hills 
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to its tidal limit at Teddington Lock upstream of London (Marsh & Hannaford, 2008; Bowes 

et al., 2016). It has a large urban population, that has grown four-fold since the 1880s (rising 

from less than 1 to 3.7 million in 2007). It also provides two-thirds of London’s drinking 

water, with an urban area of just over 1,700 km
2
 (Environment Agency, 2009). Moreover it 

has many sewage treatment works (STW), related to its high population density (ca. 960 

people km
-2

) (Merrett, 2007). Tertiary wastewater treatment has been installed at the 36 

largest STW (serving approximately 2.7 million people) upstream of the tidal limit since 

2003 (Kinniburgh & Barnett, 2009). In spite of the high population density, the Thames basin 

upstream of London is predominantly rural, especially in the upland part (Environment 

Agency, 2009). The Thames basin is mostly underlain by Cretaceous Chalk, with areas of 

limestone, mudstones, sandstones, and Oxford clay (Howden et al., 2011). 

 

3.2 Data used 

3.2.1 Hydroclimatic and teleconnections 

Average monthly temperature (°C) and total monthly rainfall (mm) data were available for 

Oxford (Figure 1), which is centrally located within the basin, from 1853 (UK 

Meteorological Office – https://www.metoffice.gov.uk/public/weather/climate-

historic/#?tab=climateHistoric). The mean annual temperature and rainfall is 10.1 °C and 

652.7 mm (1884-2013, standard deviation 0.7 °C and 114.1 mm), respectively. Continuous 

gauged mean daily river flow records (m
3 

s
-1

) were available at the basin outlet at Teddington 

Weir from 1883, with mean annual flow of 65.5 m
3 

s
-1

 (1884-2013, standard deviation 26.7 

m
3 

s
-1

) (National River Flow Archive – https://nrfa.ceh.ac.uk/data/station/meanflow/39001- 

Figure 1). The NAOI was obtained as monthly indices from the NOAA Earth System 

Research Laboratory (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO/ - Figure 

1). In this study the Bivariate EnSo Timeseries (“BEST” ENSO index) 1-month running 
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mean was used (Figure 1), which combines an atmospheric component of the ENSO 

phenomenon (the Southern Oscillation Index or "SOI") and an oceanic component (Nino 3.4 

sea surface temperature (SST), which is defined as the SST averaged over the region 5N-5S 

and 170W to 120W). The inclusion of the SOI, which is better measured historically, reduces 

the effect of biases due to the reconstruction of the SST data (Smith and Sardeshmukh, 2000). 

This index was obtained from NOAA Earth System Research Laboratory 

(http://www.esrl.noaa.gov/psd/people/cathy.smith/best/#values). 

 

3.2.2 DOC concentration data 

Water colour data and DOC concentration (mg l
-l
) measurements (> 20,000 samples) (Figure 

1 in Noacco et al. (2017)) were made for the Thames at Hampton (51.42°N, 0.37°W) and at 

Teddington (51.43° N, 0.33° W). DOC measurements were not available throughout the 

period, but for some periods both DOC and colour were available, therefore calibration curve 

between DOC and water colour was constructed, as in Worrall & Burt, (2007b). A review of 

the methods for measuring colour (1883 to 1990) and DOC (1990 to 2013) and the 

calibration of DOC from colour measurements is provided in Appendix A and Noacco et al. 

(2017), while information on water colour and DOC sources is provided in Table 2 in Noacco 

et al. (2017). The monthly DOC data are available at https://doi.org/10.5285/57943561-4587-

4eb6-b14c-7adb90dc1dc8 (Noacco et al., 2017b). A statistical analysis of the impact of the 

change in analytical techniques is provided in Noacco et al. (2017). 

 

3.3 Singular Spectrum Analysis (SSA) 

SSA was used to extract the dominant frequency oscillations from the time series and to 

estimate the variability associated with each frequency component (Vautard et al., 1992). 

SSA is closely related to Empirical Orthogonal Function (EOF) (Kumar & Duffy, 2009) and 

https://doi.org/10.5285/57943561-4587-4eb6-b14c-7adb90dc1dc8
https://doi.org/10.5285/57943561-4587-4eb6-b14c-7adb90dc1dc8
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to principal component analysis in the lag time domain (Hanson et al., 2006). SSA is a data-

driven, model-free method, and does not require stationarity (Vautard et al., 1992; 

Golyandina & Zhigljavsky, 2013) or normality of the time series, and requires minimal 

statistical or data structure assumptions (Marques et al., 2006; Wang et al., 2015). Moreover 

SSA can reconstruct the original data with a minimum of independent oscillatory modes 

(Priestley & Priestley, 1981). SSA is based on the idea of sliding window over a time series 

to search for patterns, in order to extract the maximum variance with the minimum number of 

independent components (Kumar & Duffy, 2009). A detailed description of SSA can be 

found in Vautard et al., (1992), but a brief description is provided in Appendix B.  

SSA has been applied in a range of disciplines, including digital signal processing, 

nonlinear dynamics, climate, oceanography, medicine and mathematical statistics (Vautard et 

al., 1992; Marques et al., 2006), as well as hydrology (Lisi et al., 1995; Sivapragasam et al., 

2001; Marques et al., 2006). SSA can also be applied to detrend data to remove 

anthropogenic influences. 

The reconstructed mean monthly DOC (mg l
-1

), mean monthly streamflow (𝑄) (m
3
s

-

1
), total monthly precipitation (𝑃), mean monthly temperature (𝑇) (°C), monthly ENSO and 

monthly NAO indices, were plotted in Figure 2 (details in Appendix B). The reconstructed 

data was then plotted as a “hydro-geo-climatic” phase plane, where time series triplets were 

plotted together in a 3-D parametric plot with time implicit trajectories. Before plotting, each 

reconstructed time series was normalized by subtracting the mean and rescaling by its 

respective range (Kumar & Duffy, 2009) to facilitate comparison 

 

 𝑋̂(𝑡) =
𝑥̂(𝑡) − 𝑥̂𝑚𝑖𝑛

𝑥̂𝑚𝑎𝑥 − 𝑥̂𝑚𝑖𝑛
 (1) 
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𝑋̂(𝑡) represents the normalized variables 𝐷𝑂𝐶̂, 𝑄̂, 𝑃̂, 𝑇̂, 𝐸𝑁𝑆𝑂̂ 𝑜𝑟 𝑁𝐴𝑂̂′𝑠 at time t; 

𝑥̂𝑚𝑎𝑥 and 𝑥̂𝑚𝑖𝑛 are the maximum and minimum of the time series over their record length 

(1884-2013).  

Phase plane plots (Figures 3-6) help to visualise whether the modes of oscillation of 

DOC interact or co-vary with those of hydroclimatic variables, and if the oscillatory 

components in atmospheric circulation patterns interact with those of hydroclimatic variables, 

which could then influence DOC indirectly (Figures S1-3 show a simplified version, where 

only three years are plotted). These graphs also provide an index of the dynamic behaviour of 

the atmosphere-terrestrial-climatic system.  

 

The planar projections of the phase plane plots in the ENSO-Q and DOC-Q planes 

were analysed for two time periods: 1884 to 1937 and 1938 to 1989, to elucidate the 

behaviour of DOC and ENSO, and to understand their relationships with streamflow pre- and 

post-1938 (Figure 5). The variability in two seasons is highlighted as an example through 

histograms: in winter (December-February), when the catchment experiences peak flows, and 

in summer (June-August), characterised by the lowest flows. 

 

3.4 Generalised Additive Models 

GAM is a semi-parametric additive modelling technique where the impact of the covariates 

on the predicted variable is captured through smooth functions, which can be nonlinear. 

GAM is a generalization of multiple regression, which is also additive, but the linear 

responses are replaced by nonparametric functions with multiple parameters (i.e. the effects 

are not assumed to have a predetermined shape, such as linear, quadratic, etc., and it is not 

important to interpret the coefficients of the effects). GAMs are different from linear models 

because they are data-driven, and the shape of the response curves are determined by the 
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data, instead of choosing an a priori parametric model (Hwang et al., 2016). GAM has 

various advantages, which include that it is easy to interpret; it can uncover hidden patterns in 

the data (relationships between independent and dependent variable are not assumed to be 

linear) since it uses flexible predictor functions; it avoids over-fitting since the predictor 

functions are regularized (i.e. it imposes a penalty to control the “wiggliness” of the smooth 

effects (Wood, 2004)); and it strikes a balance between the interpretable (but biased) linear 

model, and the extremely flexible, “black box” learning algorithms (Larsen, 2015). GAMs 

have been widely used in a variety of fields, such as species distribution (Friedlaender et al., 

2006; Meynard and Quinn, 2007; Murase et al., 2009), plant ecology (Albert & Schmidt, 

2010; Salmaso et al., 2012), hydrological processes (Chebana et al., 2014), and water quality 

(Morton & Henderson, 2008; Ryder et al., 2014; Harding et al., 2016; Hwang et al., 2016). 

We used an additive model to determine the effects of several covariates on the mean 

and variance of the detrended DOC. The model was built from two sub-models. The 

explanatory variables statistically significant at a probability of not being zero less than 0.05 

were included. The first model explains the expected value of the detrended DOC (i.e. 

explained DOC standard deviation (SD) or the proportion of the DOC variability which is 

predictable, given the variables used). DOC was detrended given that we were interested in 

the variability of DOC, and not its long-term trend. For this model monthly average 

streamflow (𝑄𝑡) (m
3 

s
-1

), total monthly rainfall (𝑃𝑡) (mm), temperature (𝑇𝑡) (°C), monthly 

ENSO (𝐸𝑁𝑆𝑂𝑡), the interaction between streamflow and time (𝑡), the interaction between 

rainfall and time were used: 

 

𝐸(𝐷𝑂𝐶𝑡) = 𝑠1(𝑄𝑡) + 𝑠2(𝑃𝑡) + 𝑠3(𝐸𝑁𝑆𝑂𝑡) + 𝑠4(𝑇𝑡) + 𝐼(𝑄𝑡t) + 𝐼(𝑃𝑡t) (2) 

 

where 𝑠1, … , 𝑠4 are the smooth effects and 𝐼 is an interaction term (Wood, 2004). The second 

model sought to explain the log of the standard deviation of the detrended DOC (i.e. 
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unexplained DOC SD or the proportion of the DOC variability not predictable with the 

variables used), and for this model streamflow (𝑄𝑡), temperature (𝑇𝑡), ENSO (𝐸𝑁𝑆𝑂𝑡), the 

effect of the smoothed average value of DOC (𝑚𝑒𝑎𝑛𝐷𝑂𝐶𝑡
), and the effect of the change over 

time in sampling frequency (𝐹𝑟𝑒𝑞_𝑆𝑎𝑚𝑝𝑙𝑡) and analytical technique (𝐴𝑛_𝑇𝑒𝑐ℎ𝑛𝑡) were 

used: 

 

log√𝑉𝑎𝑟(𝐷𝑂𝐶𝑡) = 𝑄𝑡 + 𝑇𝑡 + 𝑚𝑒𝑎𝑛𝐷𝑂𝐶𝑡
+ 𝐹𝑟𝑒𝑞_𝑆𝑎𝑚𝑝𝑙𝑡 + 𝐴𝑛_𝑇𝑒𝑐ℎ𝑛𝑡 (3) 

 

where 𝑚𝑒𝑎𝑛𝐷𝑂𝐶𝑡
 is the smoothed value of the monthly DOC (mg l

-1
) and it represents the 

impact of anthropogenic drivers, given that it has been previously shown that the main 

drivers for the increase in mean DOC over the same period were increase in urbanisation, 

hence of wastewater, and land use change (Noacco et al., 2017a). Urbanisation increase and 

land-use change could not be included directly in the GAM model, as the available data are at 

the annual scale and typically operate over longer time scales, which would not have allowed 

to detect their impact on DOC intra-annual variability. Different methods for measuring 

water colour and DOC have been used over the period: DOC calibrated from Burgess units of 

colour (Burgess, 1902) (1884-1974), DOC calibrated from Hazen units of colour (1975-

1990), and DOC concentration measured directly (1991-2005). Furthermore, water colour 

and DOC were measured at different sampling frequencies over the period: daily (1884-

1952), weekly (1952-1985), monthly (1985-2013). The different analytical techniques and 

sampling frequencies are described at length in Appendix A and in Noacco et al. (2017) and 

are summarised in Table 2. Therefore the effect of these changes on DOC variability is 

included in Equation 3 through 𝐹𝑟𝑒𝑞_𝑆𝑎𝑚𝑝𝑙𝑡, a dummy variable to account for the periods 

with different sampling frequency, and through 𝐴𝑛_𝑇𝑒𝑐ℎ𝑛𝑡, a dummy variable to account for 

the periods with different analytical technique. By combining Equations 2 and 3 the total 
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variance of DOC within a year can then be obtained by the following variance 

decomposition:  

 

𝑉𝑎𝑟(𝐷𝑂𝐶|𝑦𝑒𝑎𝑟) = 

𝑉𝑎𝑟[𝐸(𝐷𝑂𝐶𝑡)|𝑡 ∈ 𝑦𝑒𝑎𝑟] + 𝐸[𝑉𝑎𝑟(𝐷𝑂𝐶𝑡)|𝑡 ∈ 𝑦𝑒𝑎𝑟]. 
(4) 

 

Where the first term on the right-hand side is the variance of the expected value of DOC in a 

given year (from Equation 2), while the second term is the variance of DOC around its 

expected value (from Equation 3) averaged over a year. These two terms are defined as 

explained and unexplained variance, respectively. The explained variance quantifies the 

model’s ability to predict the observed DOC, and it approximates the variability of the 

expected DOC around its mean over the whole period. The unexplained variance quantifies 

the remaining part of the observed DOC variance, and it is an estimate of the variability of 

DOC around its expected or conditional mean value. Hence, the predictability of DOC is 

directly proportional to the ratio of explained to unexplained variance. The second term is 

called unexplained variance because it is the variance coming from exogenous sources, not 

directly explained by the variables considered. Nonetheless, by considering the DOC 

variance as a function of the variables used, we can estimate how the uncertainty in DOC 

varies with these variables. Therefore, if the coefficient of a variable in Equation 3 is positive, 

the variability of DOC will increase as that variable increases, but this does not say whether 

the expected value of DOC will increase or decrease, hence the term unexplained. 

Analyses were carried out with the mgcv package (Wood, 2004) in R (R Core 

Development Team), where the distribution chosen was a Gaussian location scale additive 

model with a log of the standard deviation of 0.01.  
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4. Results 

4.1 SSA results 

SSA was used to extract the dominant oscillations of the time series considered (i.e. 

temperature, rainfall, streamflow, ENSO, NAO and DOC) Table 1. The annual oscillation is 

the leading pair of eigenvalues for temperature, rainfall, streamflow and NAO, which shows 

that the seasonal cycle explains most of the variability for these variables. By contrast, a 4.6-

year cycle is the dominant oscillation for DOC and ENSO. The annual cycle explains a 

higher proportion of the total variance of streamflow (40.4%), and especially of temperature 

(91%), compared to the other variables. Rainfall is mainly dominated by noise as only 10% 

of its variance is explained by its dominant oscillations, i.e. the annual and interannual 

oscillations (1, 2 and 2.8 years time periods) (Table 1). Interannual oscillations (> 1 year) 

explain 5% of the variance of rainfall, while they are amplified in streamflow, which explain 

8.6% of its variance, and even more in DOC, where they explain 18%. As expected ENSO is 

dominated by interannual oscillations, which explain 62.7% of its variance, while NAO is 

dominated by harmonics of the annual cycle (< 1 year), explaining 7.9%. The weak climate 

forcing modes (e.g. interannual oscillations in precipitation) are amplified in streamflow and 

DOC.  

The noise-free 𝑄̂ − 𝑇̂ − 𝐷𝑂𝐶̂ trajectory plot (i.e. with the dominant oscillatory 

components of the variables reconstructed from Equation B.2 and with the noise and trend 

components removed) shows a consistent pattern (Figure 3a) (as a banana shape) throughout 

the period (except in the last two decades), which suggests that the same oscillatory modes 

are present throughout (video S1). The 𝑄̂ − 𝑇̂ − 𝐷𝑂𝐶̂ trajectories move along the DOC axes, 

indicating that DOC is dominated by interannual oscillations. The noise-free 𝑄̂ − 𝑃̂ − 𝐷𝑂𝐶̂ 

trajectory plot does not show a consistent pattern throughout the period (Figure 3b, and video 

S2), which could be because the precipitation time series is dominated by noise and possibly 
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very weak oscillatory modes not resolved by SSA. The noise-free 𝑄̂ − 𝑇̂ − 𝐸𝑁𝑆𝑂̂ trajectories 

on the other hand have a consistent pattern (Figure 3c) (again as a banana shape) throughout 

the record considered (video S3). ENSO, like DOC, has a strong interannual component, 

which is shown by the 𝑄̂ − 𝑇̂ − 𝐸𝑁𝑆𝑂̂ trajectories moving along the ENSO axes. The pattern 

of the 𝑄̂ − 𝑃̂ − 𝐸𝑁𝑆𝑂̂ trajectories (Figure not shown) is less clear, again due to the nature of 

the rainfall time series. There is no consistent pattern for the 𝑄̂ − 𝑇̂ − 𝑁𝐴𝑂̂ trajectories for 

the whole period (Figure 3d and S1d), which changes over time, and is dominated by intra-

annual to annual oscillations. There are no strong correlations between DOC and ENSO or 

NAO, which are statistically significant. There is a weak positive correlation of 0.1 (p < 0.05) 

between DOC and ENSO in spring. 

The phase plane plots also help in identifying points in time when the dynamics of the 

system have changed, for example due to forcing factors. The variability of DOC increases 

after 1938, and its interannual oscillations are amplified especially during the period of WWII 

(Figure 4a-b). After 1990, the interannual and especially intra-annual components of DOC 

are amplified (Figure 4c). The interannual variability of ENSO does not change over this 

period, and it is relatively high compared to the one of DOC between 1884 and 1989 (Figure 

4d-f and video S3). The relationship between NAO and streamflow and temperature changes 

over the period (Figure 4g-i and S1d). Between 1884 and 1937 and between 1938 and 1989 

𝑄̂ − 𝑇̂ − 𝑁𝐴𝑂̂ plots show a multi-lobed and bi-lobe structure, respectively (Figure S2), which 

indicates the presence of important intra-annual frequencies, and harmonics of the annual 

cycle (Kumar & Duffy, 2009).  

 ENSO has the same interannual oscillations before and after 1938, and its 

relationship with streamflow and temperature is also consistent throughout the period 

(Figures 5 and S3). Only the variability of DOC has an increase after 1938 (Figure 5 and 

Table 3). This behaviour suggests that the increase in the intra-annual to interannual 
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variability of DOC is not related to changes in the ENSO signal, or to hydroclimatic forcing 

in general, even though DOC shares the same modes of oscillations as streamflow and 

temperature before 1989 (Figure 4a-b). The time averaged 𝑄̂ − 𝑇̂ − 𝐷𝑂𝐶̂ trajectories, and the 

pairwise planar projections Q-T, DOC-Q and DOC-T were examined for three time periods: 

1884-1938, 1939-1989, 1990-2013 (Figure 6). The shape of the Q-T trajectory does not 

change over time, which indicates that the hydroclimatic dynamics are not subject to changes 

over the periods considered. The phase plane shape of the trajectories of the dominant 

frequencies of DOC-Q and DOC-T expands over time, suggesting that there are changes in 

the amplitude of the dominant oscillations of DOC. Moreover, the increase in DOC 

variability is higher for higher flows and lower temperature, i.e. in the winter months (Figure 

6). 

 

4.2 GAM results 

In the previous section it was shown that the variability of the hydrological variables and 

teleconnections does not play a role in the increase in DOC variability, although they are 

linked to the intra-annual to interannual variability of DOC. Observed fluvial DOC variability 

increases by 80% over the period and by 230% until the 1994, after which it decreases by 

46% (Figure 7a). By regressing the observed SD of DOC on the predicted SD an R
2
 of 0.60 

was obtained. This relationship means that the variables considered (in Equations 2 and 3) 

explain 60% of the total observed DOC variability. The effect of streamflow was to increase 

the variance of DOC, while increases in temperature decreased DOC variance. Depending on 

the sources, higher flows could increase or dilute DOC, while higher temperatures are 

associated with lower DOC variability. NAO was not found to have a statistically significant 

effect on the variance of DOC, while ENSO was found to influence the expected value of the 

detrended DOC, but not its variance (Equation 2). GAM allows to capture non-linear 
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relationships, and the relationships found were indeed non-linear (Equation 2), therefore 

simpler approaches would have required strong assumptions regarding these relationships. 

Most of the variability is unexplained (Equation 4 and Figure 7b), which means that 

the variables considered could explain whether the variance of DOC increases or decreases, 

but not if the expected value of DOC increases or decreases (i.e. they cannot predict the mean 

value of DOC). The model shows that the hydroclimatic variables are not able to explain the 

increase in the variability of DOC over time. In particular the explained SD estimated with 

hydroclimatic and teleconnections variables is roughly constant over time and much lower 

than the unexplained SD. Therefore, the increase in DOC variability must be due to other 

causes. The predictability of DOC decreases with time (Figure 7b), as the ratio of explained 

to unexplained decreases over time. Finally, the contribution of the variables to the 

unexplained variability of DOC (Equation 3) is visually quantified (Figure 8). The baseline 

DOC SD is 0.4 mg l
-1

, which includes the variability due to hydroclimatic drivers (i.e. 

streamflow and temperature) and other unknown sources of DOC variability at the beginning 

of the period, when the anthropogenic impact on fluvial DOC was minimal. Therefore, the 

natural variability of DOC is around 0.4 mg l
-1

, and long-term changes over 0.4 mg l
-1

 might 

be attributable to anthropogenic drivers. The change in analytical technique from Burgess 

units (1884-1974) to Hazen units of colour (1974-1990) is related to a slight increase in the 

variability of DOC by 0.1 mg l
-1

. The change of sampling frequency from weekly (1952-

1985) to monthly (1985-2013) is related to a larger increase in the variability of DOC by 0.4 

mg l
-1

. But the variable that is related to most of the increase in the unexplained SD is the 

moving average value of DOC. Higher DOC average values are related to an increase in the 

SD of DOC. This effect is stronger during WWII when DOC variability increased by 0.7 mg 

l
-1

 and is coincident with a substantial conversion of grassland into arable land, which 

increased the release of DOC from soils to river discharge (Noacco et al., 2017a). In the 
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1990s the maximum increase in DOC variability, which was not due to changes in how DOC 

was measured, was by 1.5 mg l
-1

. In this period considerable areas of grassland were 

converted for arable production (Noacco et al., 2017a), and average DOC concentrations 

were at their highest. Since the late 1990s the average value of DOC decreased, and so did its 

SD, which decreased by 46% (0.6 mg l
-1

). Average DOC concentration increased by 80% 

over the whole period, by 196% over the period 1884-1994, increasing by 3.2 mg l
-1

. In the 

same period annual SD of DOC increased by 230%, increasing by 1.3 mg l
-1

. The maximum 

SD observed over the period of study was 3.3 mg l
-1

, and it is comparable to the long-term 

trend in DOC concentration, which highlights the importance of studying DOC variability to 

put DOC trends into the right perspective. The result obtained with the GAM analysis, that 

the mean DOC is the variable related to most of the increase in DOC variability, might seem 

a simple conclusion, but by having included other variables in the analysis its credibility is 

enhanced (Equations 2 and 3). In fact, in the case where these variables would not have been 

considered, the method would have been simpler, but the conclusions more dubious. 

To summarise, the unexplained SD of DOC is higher for high streamflow and low 

temperature. Moreover its increase over time is proportional to the average value of DOC. 

Higher values of DOC in the river were shown to be related to increased sewage effluents and 

land-use change (Noacco et al., 2017a). Spurious causes of DOC variability, likely from 

changes in analytical techniques and sampling frequency are higher after 1975, although they 

are not major contributors to DOC variability. 

 

5. Discussion 

In section 5.1 the hypothesis formulated in Section 1 (increased fluvial DOC variability is 

driven by hydroclimatic variability, driven in turn by atmospheric circulation patterns) is 

explored. In section 5.2 other possible drivers for the increase in DOC variability over the 
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past 130 years are discussed. In section 5.3 the importance of studying DOC variability is 

highlighted in an international context. 

5.1 Hydroclimatic influence on DOC variability 

We tested whether NAO and ENSO were influencing the variability of temperature, 

precipitation and streamflow in the Thames basin. We found that NAO has intra-annual to 

annual modes of oscillation, which do not seem to be closely related to those of streamflow, 

temperature or precipitation. NAO is known to have a decadal scale variability (Woollings et 

al., 2015), but no dominant decadal oscillation was found through SSA. The effect of NAO 

on rainfall has been found to be stronger for higher elevations in the UK (Burt & Howden, 

2013), which could explain why no strong relation was found between NAO and rainfall for a 

lowland catchment such as the Thames. ENSO has strong interannual oscillatory 

components, which were related to those of streamflow and temperature, but no direct effect 

of ENSO on the hydroclimate was found here. This lack of interaction could be due to the 

permeable geology of the Thames basin, which dampens changes in precipitation, and 

because of its easterly location, that it is sheltered from westerly airflows. In fact, Lavers et 

al. (2010) found westerly airflows to explain the weak correlations between teleconnections 

and precipitation or streamflow in the south of the UK. The study of Wang et al. (2015) 

found, for several basins in the southeast US with minimal anthropogenic impact, low-

frequency oscillations in streamflow and precipitation to be significantly correlated with 

ENSO. In this study the weak interannual oscillations in precipitation were found to be 

amplified in streamflow time series, which is likely due to subsurface storage. In fact, the 

basin storage can act as a “low-pass” filter and reduce relatively higher frequency oscillations 

(Kumar & Duffy, 2009), while low-frequency modes of ENSO pass through the system 

unaltered. Moreover, the variability of ENSO was found to be high over the whole period and 
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not to increase after 1938, which suggests that the DOC variability increase is likely not 

driven by ENSO.  

We also tested whether the hydroclimate was directly influencing DOC variability in 

the Thames basin. Hydroclimatic factors were found to influence the short-term (e.g. 

seasonal) variability of DOC, but the increase in DOC variability is not due to hydroclimatic 

drivers, as the variability of temperature and streamflow does not increase over the period 

considered. Nonetheless, the variability of DOC was higher for high flows and low 

temperatures, i.e. during the winter season. This result indicates which conditions to consider 

in future efforts aimed at investigating sources of DOC during periods of high fluvial DOC 

variability. 

Tian et al., (2015b) found that climate variability (change in temperature and 

precipitation) was responsible for most interannual variability in carbon export for eastern 

North America, an area which has also seen a marked increase in population and urban area 

since the 19
th

 century. In the study of Tian et al., (2015b) the climate changed substantially 

over the period of record (increase in both temperature and precipitation), which is not the 

case in this study (temperature increased by 1.3 °C over the period of study). In a small boreal 

river basin inter-annual DOC concentration was found to be mainly driven by climate, while 

seasonal DOC patterns were driven by temperature and soil moisture (Futter and Dewit, 

2008). In a study of 215 catchments in Sweden intra-annual variability of total organic carbon 

concentration was found to be mainly influenced by seasonal patterns (used as a proxy 

variable for soil temperature) (driving an absolute change of 4.2 mg l
-1

), followed by 

discharge (3.3 mg l
-1

), while the long-term trend had an influence one order of magnitude 

lower (0.17 mg l
-1

) (Hytteborn et al., 2015). Similar results were obtained in a study of 136 

streams in Sweden where the main drivers of DOC intra-annual variability were discharge, 

month of the year and temperature (Winterdahl et al., 2014). It was further found that in 
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colder northern areas, DOC and discharge had a positive correlation, while in warmer 

southern areas DOC concentration was positively correlated with discharge while negatively 

correlated with temperature. Other studies also showed that hydroclimatic factors were good 

explanatory variables for carbon export variability (Grieve, 1984; Botta, 2002; Ågren et al., 

2008; Eimers et al., 2008; Köhler et al., 2008; Alvarez-Cobelas et al., 2012). In the Thames 

basin, the hydroclimate (streamflow and temperature) influences the short-term (seasonal) 

variability of DOC, but it is not responsible for the long-term secular increase in DOC 

variability over the period of record.  

 

5.2 Non-natural drivers for DOC variability increase 

There is a dearth of information in the literature about the role of anthropogenic drivers in 

controlling the temporal variability of riverine DOC, given that hydroclimatic drivers are 

mainly assumed to affect DOC variability. Possible other causes for riverine DOC variability 

could be changes in land use (Farley et al., 2005; Piao et al., 2007), in land management 

(Raymond, 2003; Oh and Raymond, 2006), in atmospheric CO2 concentrations (Schlesinger 

and Lichter, 2001), and artificial changes in the DOC record (i.e. not due to actual physical 

changes in fluvial DOC concentration, but due to changes in analytical techniques and in the 

frequency of sampling over the period). 

Spurious drivers, such as the analytical technique and the sampling frequency, which 

inevitably changed over a period of 130 years, could increase the variability in the DOC 

record. The effect of these changes has been considered in the GAM analysis, and including 

these factors improved the prediction of the observed variance of DOC. The sampling 

frequency of DOC has become more infrequent over the study period – after 1985 only one 

or two samples per month were measured, compared to the daily measurements pre-1952. 

This can have caused an increase in the variability of the record due to the discontinuity of 
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the samples, which are not true monthly averages anymore, and are more prone to day-to-day 

variability. Nonetheless these factors are not the major source of DOC variability, and they 

do not explain the increase in variability during WWII and pre-1974.  

Land-use change can influence carbon export by altering the hydrology and DOC 

leachate production. Moreover soil respiration, soil carbon storage, and resistance to erosion 

are also altered by changing the land cover, which will impact carbon loads (Hope et al., 

1994; Kindler et al., 2011). The Thames basin has undergone extensive land-use change, with 

massive land conversions of permanent pasture into arable production during WWII and in 

the 1990s (Figure 2c in Noacco et al. (2017)) (Howden et al., 2011). Moreover, the 

catchment has seen an increase in urbanisation, which rose by a factor of 2.5 over the same 

period. Urbanisation can influence the variability of DOC directly and indirectly. Due to lack 

of data at the relevant temporal scale on human drivers, we used the mean of DOC 

concentration to represents the impact of anthropogenic drivers, which had been previously 

shown to be due to land use change and increase in urbanisation (Noacco et al., 2017a). The 

use of aquatic organic carbon trend to explain its intra-annual and interannual behaviour has 

also been used in Hytteborn et al., (2015). 

The indirect effect of urbanisation on DOC could be due to changes in the hydrology 

of the catchment. In fact, urbanisation and the associated increase in impervious surfaces can 

alter the rate of water infiltration in the soil to recharge groundwater (Lerner, 2002), modify 

evapotranspiration regimes (Zhang et al., 2011), or increase the flashiness of the basin and 

possibly the frequency of flooding (Konrad & Booth, 2005). Urbanisation can result in 

changing flow paths and more overland flow (Gremillion et al., 2000) relative to subsurface 

flow (Pitt et al., 2002), which could decrease DOC. In this study streamflow variability has 

not increased over the period due to increased urbanisation, as would be expected from other 

studies, which showed that streamflow is affected only if a significant portion (i.e. more than 
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13%) of the catchment is urban (Martin et al., 2012), which it is not the case here. Therefore, 

the indirect effect of urbanisation on the increase in DOC variability is ruled out. 

But urbanisation can also have a direct impact on DOC variability. In fact, sewage 

effluents to the river are themselves a source of DOM and of particulate organic matter 

(POM), and increased POM turnover within the stream increases DOC (Worrall & Moody, 

2014; Worrall et al., 2018). Sewage effluents are also a nutrient source which could enhance 

the activity of aquatic flora and fauna and thus increase the production of autochthonous 

DOC (Stanley et al., 2012). In 2017 1.6 billion m
3
 of sewage were treated in the 351 STWs in 

the Thames Water region (greater than the Thames basin), coming from 15 million customers 

(Thames Water, 2017). In addition, the increase in urban area is linked to increased combined 

sewer overflows (CSOs). In the tidal Thames River CSOs account for 39 million m
3
 of 

sewage discharged per year (Tideway, 2017). This is a recognised problem which the 

construction of the Thames Tideway Tunnel is looking to address (Tideway, 2017). CSOs are 

flow dependent, therefore the effect of their increase on DOC variability is consistent with 

the estimated effect of high flows on increased DOC variability (section 4.2). For the Thames 

basin the impact of sewage effluent on DOC would be higher prior to the implementation of 

the Urban Waste Water Treatment Directive (UWWTD) in 1992 (EEC, 1991), which, by 

introducing additional treatment, would have reduced the level of organic matter discharged 

into the river. Indeed, after the implementation of the UWWTD DOC variability decreased 

by 46% in this study (Figure 8), which confirms sewage as a driver for the rise in DOC 

variability.  

Previous studies have shown an increase in nitrogen and phosphorous, as well as 

DOC, in the river Thames since WWII (Howden et al., 2011; Powers et al., 2016). The 

increase in riverine nitrate has been ascribed as a consequence of extensive mechanical 

ploughing of grassland during WWII (due to the disturbance of stable organic matter, which 
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would speed organic matter decomposition and therefore leaching of Carbon and Nitrogen). 

Nitrate levels in the UK kept increasing due to mineral-N fertilisers applications, which rose 

steadily since the 1940s (Mattikalli and Richards, 1996; DEFRA, 2016). This increase could 

also have contributed to short-term acceleration of soil organic matter turnover (the so-called 

priming effect) (Kuzyakov et al., 2000), therefore increasing DOC export to the river. The 

acceleration of SOM mineralisation could be due to a lower C-to-N ratio and greater 

availability of substrate and energy source, which in turn accelerate microbial activity 

(Kuzyakov et al., 2000). The size of the priming effect increases with the amount of mineral 

fertilisers applied, which agrees with the rise in riverine DOC concentration post-WWII until 

the late 1990s. This nutrient enrichment increases autochthonous production, therefore 

greater inputs of relatively labile DOC (Hilton et al., 2006). However, nutrient enrichment 

could also increase microbial respiration and organic matter degradation (Benstead et al., 

2009; Stanley et al., 2012), which decreases DOC, and therefore resulting in the observed 

more erratic behaviour of DOC. The interaction between different sources of Carbon could 

have contributed to the observed increased DOC variability, with different mechanisms more 

important at different times, hence the large variability in DOC concentrations. Nonetheless, 

further studies with isotopic analyses could confirm the proposed mechanism by labelling 

different pools of C and N, therefore elucidating the sources of C in the river. 

To summarise, the variability of DOC seems to be strongly related to the increase in 

its average value over the period, as shown using GAMs. The long-term increase in the 

average value of fluvial DOC is due to higher loads being flushed out into the river either 

from sewage effluents, CSOs, or from diffuse sources due to land-use and land-management 

changes. These loads then gradually decrease downstream due to respiration of aquatic 

microorganisms and organic matter degradation, which are enhanced by nutrient enrichment 

(Benstead et al., 2009; Stanley et al., 2012). This mechanism would explain the less stable 



 

 

 

This article is protected by copyright. All rights reserved. 

DOC regime, which has an impact on aquatic life, even though the Thames River is cleaner 

today than it used to be. These findings have implications for future work, given that urban 

population increase is a constant trend globally (United Nations, 2008) and large scale land-

use changes are increasingly happening in developing countries (Davis et al., 2015). 

5.3 Relevance of the study of DOC variability in an international context 

This is the first study to consider both the predictable part of DOC variance (explained DOC 

standard deviation) and the unpredictable part of the variance (unexplained DOC standard 

deviation, i.e. the variability of DOC not predictable with the current variables available). 

The latter is very informative, in fact it tells us which hydroclimatic conditions (here high 

streamflow and low temperature) lead to high DOC variability, therefore indicating in which 

conditions DOC should be further investigated (e.g. with isotopic analysis) to understand 

DOC sources and when action should be taken to reduce potentially high levels. Our results 

can be easily extrapolated to form the basis of future explorations in other regions. In fact, 

this study, by incorporating 130 years of data, includes a wide range of hydroclimatic 

conditions and the Thames basin has undergone extensive land use and land management 

changes over the period of study. Moreover, the Thames basin is a large catchment, and 

therefore more spatially representative of how the drivers influence regional DOC dynamics, 

compared to small catchments which are more sensitive to specific basin characteristics. In 

the Thames basin we find that the magnitude of DOC variability (maximum annual SD over 

the period of 3.3 mg l
-1

) is larger than its long-term trend (2.6 mg l
-1

 over the period, 0.02 mg 

l
-1 

per year). This highlights the importance of considering the variability of fluvial DOC 

concentration in order to identify emerging trends of worsening water quality due to human 

derived impacts and not to confuse them with the intrinsic variability of the system. Other 

studies, which investigated fluvial DOC trend, have short-term DOC variability which 

exceeds the magnitude of DOC trend. For example, a study in a small peat dominated 
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catchment in the north-east of the UK found that weekly measurements of DOC 

concentration in the stream increased by 53.4% over 8 years, with an annual rate of increase 

of 0.6 mg l
-1

 (Worrall et al., 2004a). Nonetheless the intra-annual variability was two orders 

of magnitude larger than the trend between 1993 and 2000. Worrall et al., (2004a) found that 

only 6% of the DOC flux increase over the period was due to climate change, while the 

increased DOC production was due to the enzymic latch mechanism after severe droughts. In 

two forested catchments in the western Czech Republic temporal trends in DOC 

concentration were analysed over the period 1993-2007. While both catchments experienced 

positive DOC trends of 0.42 and 0.43 mg l
-1 

per year, resulting in a cumulative increase of 64 

and 65%, their intra-annual variability was more marked, and two orders of magnitude larger 

than trend. It was also found that the lowest concentrations were at low flows (5
th

 flow 

percentile DOC was 4.1 and 4.2 mg l
-1

), while very high concentrations were found at high 

flows (95
th

 flow percentile DOC was 26.1 and 28.0 mg l
-1

). The long-term trends were 

associated to changes in the ionic strength of soil-water and streamwater, while the 

hydroclimate was not found to change during the study period (Hruška et al., 2009). Another 

study of three catchments in Southwestern Nova Scotia, Canada, analysed the trends in total 

organic carbon concentrations over 25 years with weekly measurements (Clair et al., 2008). 

Two of the three basins showed decreasing trends (-0.25 and -0.58 mg l
-1 

per year) between 

1980 and 1995, contemporary to when most of the reduction in acid depositions occurred. 

While between 1995 and 2005 no trend was found in the three basins suggesting that the 

system had recovered from the earlier disturbance. However, the three basins had high 

seasonal organic carbon variability, which exceeded trends by two orders of magnitude, with 

peaks in organic carbon export in autumn due to high rainfalls and in spring due to snowmelt. 

In a study of three acid-sensitive, forested and undisturbed catchments in Norway with daily 

to weekly measurements significant increase in total organic carbon (with 90-95% DOC) was 
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found between 1985 and 2003 and linked to declining acid deposition (de Wit et al., 2007). 

Organic carbon increased between 0.06 to 0.13 mg l
-1

 per year, which resulted in a 

cumulative increase of between 14 and 36% over the period. These trends are lower than 

those for the previously mentioned studies (Worrall et al., 2004a; Clair et al., 2008; Hruška et 

al., 2009), but comparable to Finnish lakes (0.03-0.22 mg l
-1

) (Vuorenmaa et al., 2006) and 

the present study. Nonetheless, de Wit et al., (2007) recognised that the seasonal variability 

of fluvial organic carbon was considerably larger than the magnitude of the long-term trends 

(of 2-3 orders of magnitude) and climatically driven, with peak concentrations in late summer 

and early autumn, while the lowest values were in spring during snowmelt periods. 

Moreover, the seasonal pattern changed over the period of study, with organic carbon 

concentrations increasing significantly between August and October, while changes in the 

average annual discharge were not significant and less than 1%. These results highlight the 

importance of studying short-term variability in DOC concentrations. Moreover, the results 

also stress the importance of long-term sub-annual (e.g. at least daily or weekly) 

measurements campaigns of fluvial DOC concentrations, and warns against discontinuing 

long-term measurement campaigns, or making them less frequent (Burt et al., 2014). In fact, 

this type of study allows to assess the full range of DOC variability, which would instead be 

masked by annual measurements.  

 

6. Conclusions 

This work represents a methodological advancement in the study of fluvial DOC variability, 

which, contrary to the trend in mean DOC, has never been systematically studied. In this 

study SSA was used to detect dominant oscillations at intra-annual to interannual time scales 

in hydroclimatic variables as well as in fluvial DOC for the Thames river basin, and to 

estimate the fraction of the total variance they explain. Interannual oscillations in 
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precipitation are amplified in streamflow and DOC. Contrary to the results of other studies, 

teleconnections NAO and ENSO only seem to weakly influence the variability of streamflow, 

temperature or precipitation in the Thames basin. GAM analysis showed that hydroclimatic 

variables influence the short-term seasonal variability of DOC. Nonetheless they do not 

explain the increase in the variability of DOC over the 130 years studied. Our analysis 

suggests that the strongest driver of DOC variability increase is the rise in mean value of 

DOC over the last century, which is driven by increased sewage effluents and land-use and 

land-management changes. This study helps to identify the main drivers of fluvial DOC 

variability and the portion of DOC variability due to natural drivers, rather than 

anthropogenic ones. In turn, this analysis allows to detect signs of deteriorating water quality, 

which the natural variability of the system could obscure. Moreover, these findings highlight 

the complexity of fluvial DOC dynamics and how multiple processes combine to drive its 

variability. Knowledge from this study of the main drivers and conditions leading to high 

fluvial DOC variability is a useful basis for future attempts to distinguish trends from DOC 

variability. 
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8. Tables 

 

Table 1 Dominant time periods present in DOC (mg l
-1

), temperature (°C), rainfall (mm), 

streamflow (m
3
 s

-1
), ENSO and NAO; and corresponding fraction of variance explained of 

the original time series determined with singular spectrum analysis. 

 

  

Dominant 

oscillations with 

time periods (years) 

Variance explained 

(%) 

Total variance 

explained (%) 
Oscillatory pair 

DOC 4.6 10.7 36.2 1~2 

 
1 10 

 
3~4 

 
3.2 7.3 

 
5~6 

 
0.5 4.2 

 
9~10 

  0.7 4   11~12 

Temperature 1 91 92.2 1~2 

 
0.5 0.9 

 
3~4 

  0.7 0.3   9~10 

Rainfall 1 5 10 1~2 

 
2.8 2.7 

 
3~4 

  2 2.3   5~6 

Streamflow 1 40.4 50.5 1~2 

 
6.9-7.5 4.6 

 
3~4 

 
2.8 4 

 
5~6 

  0.5 1.5   24~25 

ENSO 4.6-5.2 17.3 62.7 1~2 

 
3.5-3.8 16.2 

 
3~4 

 
2.6 12.3 

 
5~6 

 
8.3 10.8 

 
7~8 

 
1.8 3.4 

 
14~15 

  1.5 2.7   16~17 

NAO 1 3.9 11.8 1~2 

 
0.5 3.2 

 
3~4 

 
0.8 2.4 

 
5~6 

  0.3 2.3   7~8 
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Table 2. Periods with different sampling frequency and analytical technique for DOC 

concentration (mg l
-1

) and water colour; and dummy variables used for GAM analysis. 

 

Covariate 

Dummy variable 

for Equation 3 

Period 

Sampling 

frequency 

Freq_Sampl 

1 1884-1952 Daily 

2 1952-1985 Weekly 

3 1985-2013 Monthly 

 
Analytical 

technique 

An_Techn 

1 1884-1974 

Burgess units of 

colour 

2 1974-1990 

Hazen units of 

colour 

3 1990-1998 DOC measured 
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Table 3. Standard deviations of the variables reconstructed with SSA (streamflow (m
3
 s

-1
), 

temperature (°C), precipitation (mm), DOC (mg l
-1

), ENSO and NAO) considered for the 

periods 1884 - 1989, 1884 – 1938, 1938 - 1898, and the whole year, summer period (June-

August) and winter period (December-February). 

 

SD Streamflow 

 
1884-1989 pre-1938 post-1938 

annual 0.22 0.22 0.22 

summer 0.07 0.07 0.07 

winter 0.1 0.1 0.1 

SD Temperature 

annual 0.32 0.31 0.32 

summer 0.02 0.02 0.02 

winter 0.02 0.02 0.02 

SD Precipitation 

annual 0.17 0.17 0.17 

summer 0.12 0.12 0.13 

winter 0.12 0.11 0.12 

SD DOC 

annual 0.13 0.07 0.15 

summer 0.11 0.05 0.14 

winter 0.11 0.06 0.14 

SD ENSO 

annual 0.17 0.15 0.18 

summer 0.16 0.14 0.18 

winter 0.17 0.16 0.19 

SD NAO 

annual 0.18 0.18 0.19 

summer 0.16 0.15 0.16 

winter 0.17 0.15 0.18 
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Figure 1 Original monthly time series (grey lines) and smoothed time series with approximately decadal Kernel 

moving average (black lines) for DOC (mg l
-1

), flow (m
3
 s

-1
), temperature (°C), rainfall (mm), ENSO and NAO 

between 1884 and 2013. 
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Figure 2 Original noisy time series for DOC (mg l
-1

), flow (m
3
 s

-1
), temperature (°C), rainfall (mm), ENSO and 

NAO (with DOC and temperature detrended) and noise-removed reconstructed time series using dominant 

frequency modes. 
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Figure 3 Phase plane trajectories for normalized DOC-Q-T, DOC-Q-P, ENSO-Q-T and NAO-Q-T for 

reconstructed time series between 1884 and 2013 (DOC in mg l
-1

; Q in m
3
 s

-1
; T in °C and P in mm). Every loop 

constitutes a water year (month 1 = October), so that changes in early and late winter are considered together, 

and they are colour coded so that earlier years are lighter brown while later years are darker brown. Dots are 

coloured by month, with cold colours used for winter and warm colours for summer. 
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Figure 4 Phase plane trajectories for normalized reconstructed time series of DOC-Q-T, ENSO-Q-T and NAO-

Q-T for three periods (1884-1937 (light brown), 1938-1989 (brown), 1990-2013 (black); DOC in mg l
-1

; Q in m
3
 

s
-1

 and T in °C). 
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Figure 5 Planar projections of the phase plane trajectories for normalized reconstructed time series of Q-ENSO 

pre-1938 (1884-1938) and post-1938 (1938-1989), and histograms of ENSO and Q for summer (June-August) 

and winter (December-February) pre and post-1938; and for Q-DOC pre and post-1938, and histograms of DOC 

and Q for summer and winter pre and post-1938 (DOC in mg l
-1

 and Q in m
3
 s

-1
). 
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Figure 6 Time averaged normalized DOC-Q-T trajectory of reconstructed time series for three periods and 

planar projections, with unaveraged-value of DOC, Q and T data for the months of January, April and July, 

respectively (DOC in mg l
-1

; Q in m
3
 s

-1
 and T in °C). 
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Figure 7 Annual standard deviation of DOC predicted with GAM model (Equation 4). (a) SD of observed DOC, 

smoothed SD of observed DOC, smoothed SD of DOC predicted with GAM with streamflow, precipitation, 

temperature and ENSO, average DOC, factors for change in analytical technique, and sampling frequency. (b) 

Smoothed decomposition of the SD: explained SD and unexplained SD (their sum gives the smoothed predicted 

SD). 
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Figure 8 Decomposition of the contribution to the log unexplained SD of DOC of streamflow and temperature, 

the average value of DOC, the factor change in sampling frequency, and the factor change in analytical 

technique over the period 1884-2013. 

 


