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ABSTRACT: Water- and sediment-transfer models are commonly used to explain or 

predict patterns in the landscape at scales different from those at which observations 

are available. These patterns are often the result of emergent properties that occur 

because processes of water and sediment transfer are connected in different ways.  

Recent advances in geomorphology suggest that it is important to consider, at a 

specific spatio-temporal scale, the structural connectivity of system properties that 

control processes, and the functional connectivity resulting from the way those 

processes operate and evolve through time. We argue that a more careful 

consideration of how structural and functional connectivity are represented in models 

should lead to more robust models that are appropriate for the scale of application 

and provide results that can be upscaled. This approach is necessary because, 

notwithstanding the significant advances in computer power in recent years, many 

geomorphic models are still unable to represent the landscape in sufficient detail to 

allow all connectivity to emerge. It is important to go beyond the simple 

representation of structural connectivity elements and allow the dynamics of 

processes to be represented, for example by using a connectivity function. This 

commentary aims to show how a better representation of connectivity in models can 

be achieved, by considering the sorts of landscape features present, and whether 

these features can be represented explicitly in the model spatial structure, or must 

be represented implicitly at the subgrid scale. 
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Introduction 

The catchment provides a versatile domain for understanding geomorphic and 

hydrologic processes at a range of spatial and temporal scales. However, 

interactions, feedbacks and complex behaviour within catchments produce emergent 

properties which make it difficult to translate understanding between different scales, 

both in estimating larger-scale properties from smaller-scale observations 

(upscaling) or smaller-scale patterns from larger-scale outcomes (downscaling). 

Numerical modelling is often used as a tool to understand catchments and to attempt 

to overcome these scaling difficulties, either by supplementing observations with 

model results for unmeasured variables or at unmeasured locations (e.g. Stieglitz et 

al., 2003; Nunes et al., 2009; Croke et al., 2013), or for designing and testing 

different conceptual models of catchment behaviour (e.g. Van Nieuwenhuyse et al., 

2011; Hoffmann, 2015). To do so, models should be able to reproduce both the 

patterns and the linkages of water and sediment fluxes within the catchment(s) under 

simulation – herein referred to as landscape connectivity. Recent theoretical 

advances have improved the understanding of connectivity and the description of 

associated processes (Bracken et al., 2013, 2015), and these advances can be used 

to create better hydrologic and geomorphic catchment models by improving the way 

in which they represent landscape connectivity. However, achieving these 

improvements is far from straightforward; so far, there is no clear framework to guide 

how connectivity should be represented inside model components.  

We argue that the path to building better models is to build more effectively 

connected models, i.e. models which better represent fluxes of water and sediment 

through space, by better representing connectivity within and between its 

fundamental spatial units. The aim of this commentary is to suggest some ways in 

which a better representation of connectivity can be achieved. We discuss 

improvements in parameterizing connectivity, and propose using the scale of the 

fundamental modelling unit to select an appropriate combination between 

parameterized and emergent connectivity modelling approaches. 
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Representing landscape connectivity 

The representation of connectivity in models must first recognize the difference 

between structural and functional connectivity. The former reflects static properties of 

the system at a given timescale, while the latter represents the dynamic behaviour of 

the system at that timescale (Turnbull et al., 2008; Wainwright et al., 2011; With et 

al., 1997; Wu and David, 2002). The actual separation between structural and 

functional connectivity depends on the timescale of the analysis, as functional 

connectivity may act to reorganize the system and change structural connectivity at 

longer timescales, which must also be considered in model design (Wainwright et al., 

2011). Once the timescale for a given model is set, functional connectivity will be 

represented by the water and material flows simulated by the model, while structural 

connectivity will be represented by the model’s underlying spatial structure. 

Structural connectivity can be conceptualized as a spatial pattern of interconnected 

elements, linking the (microscopic) scale of the fundamental units via their basic links 

to neighbouring units, and the (macroscopic) scale at which the overall behaviour is 

considered: in this case, the catchment. 

The fundamental unit is the lowest level within this spatial hierarchy, i.e. the 

measurement unit of the entity of interest. In hydrology, the fundamental unit is 

traditionally defined based on structural characteristics of hydrological networks, 

such as the channel reach or sub-catchment, but could equally well be defined 

based on the scale of a process or, for convenience, as a single cell (pixel). Defining 

the appropriate scale of the fundamental unit should depend on the scale at which it 

is conceptually robust to work for a given application. However, typically, the 

fundamental unit is defined based on the scale at which measurements of 

parameters or processes are made, or at which data are available (often limited by 

access to DTMs), which does not necessarily equate to the scale(s) at which it is 

conceptually robust to work (see Grieve et al., 2016). This mismatch between the 

theoretical and the actual scale of the fundamental unit is a common limitation when 

designing the spatial structure of models. 

Links between fundamental units define the directionality and magnitude of transfers 

of water or materials among them. In catchment models, these links create a 
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network for the transfers throughout the system from which, ultimately, the larger 

scale behaviour is determined (see Heckmann and Schwanghart, 2013). The 

properties of each basic link can be represented as continuous (i.e. based on a 

process, such as the water flux through a stream reach) or discretized (i.e. 

classifying the property as high, intermediate, low, null) or even binary (i.e. on/off) 

(e.g. Larsen et al., 2012). The scale at which fundamental units are represented will 

affect how links can be represented, and therefore limitations in defining units will 

affect the structural link network. 

 

Addressing connectivity in models 

Distributed hydrological and sediment-transport models have been developed over 

the last few decades to take advantage of increased process understanding and 

availability of spatio-temporal data. To implement the concepts of landscape 

connectivity in these models (e.g. Bracken and Croke, 2007; Lexartza-Artza and 

Wainwright, 2009; Western et al., 2001), a range of approaches can be adopted 

between two extremes (Figure 1):  

(i) A fully explicit approach, in which all system properties and processes 

considered relevant are explicitly taken into account, and where 

connectivity is an emergent property from model results – in other words 

where basic links are considered explicitly; for instance, high-resolution 

spatially distributed models.  

(ii) An implicit approach, in which some or all connectivity-relevant links and 

properties are represented through proxies, and processes have been 

parameterized to include connectivity; for instance, lumped catchment 

models. 

(iii) Hybrid approaches, standing in-between these extremes, are also 

possible; for instance, large watershed models linking lumped models of 

individual catchments to a distributed model of the stream network. 
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Figure 1: Schematic overview of the different representations of landscape 

connectivity in different modelling approaches. 

A large number of spatially distributed hydrological and erosion models seek to 

represent the connectivity of most processes explicitly, by attempting to appropriately 

define the fundamental unit and their links (e.g. De Roo et al., 1996; Cerdan et al., 

2002; Nunes et al., 2005; Wainwright et al., 2008), providing a physically based 

description of the link (e.g. Finger et al., 2011) and, in some cases, including the 

dynamic evolution of links due to micro- or macro-topographic changes (e.g. Schoorl 

et al., 2002; Fiener et al., 2008; Ciampalini et al., 2012). However, even in the most 

complicated of these models, connectivity-relevant properties and processes are 

only in part represented explicitly, due to (i) the incomplete understanding or coding 

of processes, (ii) model resolution and computational considerations, and (iii) 

theoretical limitations to model completeness (Mulligan and Wainwright, 2013a; 

Rosenblueth and Wiener, 1945). Model resolution is, in fact, often too coarse to 

represent the system in such a way that connectivity can emerge. 

Furthermore, links between fundamental units are often hidden in effective 

parameters (i.e. model parameters which are different from the equivalent 

measurement to account for a process which the model structure does not 

represent), and thus, links do not dynamically interact with connectivity-related 

processes. A typical case in many runoff models is where random or orientated 
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surface roughness is parameterized (e.g. as static Manning’s n or roughness height 

due to tillage operations) without any process interaction (e.g. Smith et al. 2007; 

Williams, 1970; Fiener et al., 2008). These problems may be hidden by the disparity 

in the scales of the fundamental unit (usually the raster cell) and of the field 

observation used to evaluate the model (often a catchment outflow), but they are 

important in the simulation of spatial patterns. 

Problems can be circumvented by using the implicit approach: representing fine-

scale structures and processes within coarser-scale modelling approaches, which 

helps to improve representations of landscape connectivity, and at a lesser cost in 

terms of data input and computational requirements but at the expense of some loss 

of accuracy compared to a fully explicit model. This approach is usually adopted by 

lumped and semi-distributed models used on larger scales, i.e. where the 

fundamental unit is defined at a much coarser spatial scale (e.g. in SWAT; Arnold 

and Fohrer, 2005; see discussion in Mulligan and Wainwright 2013b). However, in 

the implicit approach, connectivity is also often represented by effective parameters 

with little dynamic evolution or interaction between processes, limiting the simulation 

of emergent behaviour at the catchment scale. For example, connectivity is implicit in 

the use of soil moisture to select different rainfall-runoff response functions such as 

with the Curve Number approach (Garen and Moore, 2005), or in the use of a single 

value to represent sediment transfer between units, either a fixed percentage (e.g. 

Watem-Sedem, Van Oost et al., 2000) or a fixed mass (e.g. STREAM, Cerdan et al., 

2002), even though these values may, in fact, evolve through space and time. 

What is common to many of these approaches is the representation of functional 

connectivity as a static property or, at best, one with limited changes. Stochastic 

approaches have been proposed where deterministic links are replaced by all units 

having a probability of being linked to others (see Hütt et al., 2012, for a non-

geomorphologic example), but they still do not overcome the inherently static nature 

in which the system is represented. Models that attempt to simulate the temporal 

behaviour of systems cannot represent the evolutionary behaviour of those systems 

correctly if they do not capture the dynamics of functional connectivity in some way. 

One approach to achieve this dynamic representation of connectivity would be to use 

a connectivity function. 
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From functional connectivity to connectivity functions 

To produce a connectivity function, one must first start with an explicit representation 

of fundamental units; then, once the emergent behaviour of these links has been 

described, a simple and sound functional relationship can be derived to represent 

implicitly the interactions among individual links. A landscape-connectivity function 

will reflect the connectivity in overland flow or sediment transfer within the unit. 

Percolation theory provides an example of a conceptual framework in which these 

relationships can be derived from first principles (e.g. Berkowitz and Ewing, 1998; 

Darboux et al., 2002; Harel and Mouche, 2014), although more often the 

relationships are derived by the confrontation of empirical data with transport 

equations of varying degrees of complexity.  

A connectivity function can, in principle, be represented by a binary or continuous 

approach. A continuous definition does not necessarily lead to a better assessment 

of connectivity and it is even usual for a connectivity evaluation procedure to start 

with the binarization of the continuous values of individual links (e.g. Souchère et al., 

1998). A simple example of a connectivity-based binary switch at a relatively small 

scale (DTM grid cell) is when a decision is made regarding flow direction in the 

presence of orientated roughness whenever the orientation of tillage-induced 

roughness does not coincide with slope aspect (Souchère et al., 1998; Takken et al., 

2001). In this case, the binary switch does not affect whether or not two contiguous 

cells are connected, but it governs the directionality of the flow, i.e. it controls which 

neighbouring cell gets connected to the source cell. Other examples of binary 

connectivity switches in hydrological models include the use of the maximum 

depression storage as a threshold to transfer flow from one modelling unit to one or 

more neighbours (Singh and Frevert, 2002), and the so-called “bucket models” in 

which water is transferred from one soil layer to the next only after the moisture 

content reaches field capacity (Walker and Zhang, 2001). 

Alternatively, a continuous function may be used to describe connectivity whereby 

units are connected via links with varying levels of connectivity. Taking the examples 

given above, Razafison et al. (2012) introduced a non-binary approach to determine 
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water flow in the topographic or the tillage direction based on an anisotropic friction 

coefficient; and the LISEM model replaces the maximum depression storage 

approach by a continuous function governing the rate of water transfer as a function 

of the degree of filling of the depression storage (De Roo et al., 1996). Other 

examples of such continuous switches are the recent use of the “porosity concept” to 

regulate the amount and cross section of flow between adjacent cells (Lane et al., 

2004; McMillan and Brasington, 2007). 

Antoine et al. (1999) developed a more complex approach to express sub-grid water 

connectivity as a function of the level of depression storage filled, the Relative 

Surface Connection function (RSCf). Depressions and flow-paths within a given 

model cell are explicitly simulated from rainfall using a very high resolution (10-mm) 

DTM. The RSCf can be combined with a weighted surface procedure to generate 

realistic hydrographs of elementary units (Antoine et al., 2011). Peñuela et al. (2015) 

replaced the need of a high-resolution DTM with a three-point parameterization 

estimated from slope and structural terrain information for random roughness, which 

allows the application of this method at the watershed scale. 

 

Building more effectively connected models 

Models can effectively integrate connectivity by using connectivity functions. These 

functions should be selected to represent the fundamental unit for which the model 

was designed, which can range from small to large scales, e.g. from single DTM grid 

cells and fields to entire watersheds. Figure 2 provides an initial assessment of the 

likely scales at which connectivity could be included in model design, and whether 

the representation of connectivity should be explicit, i.e. allowed to emerge from 

existing connectivity links; or implicit, i.e. through connectivity functions. 
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Figure 2: Schematic representation of scales at which certain landscape features 

that are influential in terms of water or sediment connectivity are resolved explicitly or 

implicitly in environmental models. 

 

A schematic representation such as this can help decide the appropriate resolution 

of application for a given model, based on the processes that are represented 

implicitly. For example, commonly used spatially distributed models such as LISEM 

(De Roo et al., 1996) or LandSoil (Ciampalini et al., 2012) are typically applied with 

spatial resolutions between 1 and 10 m. While these relatively fine resolutions should 

allow them to represent most connectivity processes explicitly, implicit solutions 

should be found to address, for example, connectivity due to roughness and rills. 

Moreover, the application of these models with larger-resolutions DTMs such as 

global datasets with resolutions between 30 and 90 m would stretch their capacities, 

as it would be difficult for the connectivity effects of vegetation patches, field edges 

or gullies to be explicitly represented. Past approaches have tried to address this 

issue using sub-grid scale parameterization (e.g. Zhang et al., 2002), but progress is 

Random roughness

Field edges, hedges, …

Rills

Gullies

Vegetation patches

LU pattern

Snow patches

Grass strips, waterways

Ponds, reservoirs

Pipes, ditches

Orientated roughness

-3        -2        -1        0         1        2         3         4         5        6 (log m)

Explicit representation possible (connectivity emerges)

Implicit representation only

Spatial discretization



 

 
This article is protected by copyright. All rights reserved. 

now needed to integrate sub-grid scale processes in models using connectivity 

functions to take advantage of the opportunities offered by these datasets. 

Model development is always a trade-off between inclusion of detail and parsimony 

of representation. By considering why parameters may be appropriate at different 

scales, and how connectivity functions can represent linkages between different 

scales, we suggest that more robust models can be designed that will require less 

(or no) empirical calibration, and thus underpin their physical basis and potential for 

extrapolation. The use of such linkages also supports process based up- or 

downscaling, and can thus aid in model evaluation and testing where data are only 

available at very different scales from model implementation. While the increasing 

availability of high resolution topographic data (e.g. from TLS and UAVs: Ouedraogo 

et al., 2014; Pineux et al., 2017) means that models could be applied at very high 

spatial resolutions to account for connectivity explicitly, computational tractability 

means that it is unlikely that direct advantage can be taken of these data for some 

time to come. By using these data in the definitions of connectivity functions, direct 

advantage can be taken of these data immediately, especially if connectivity links 

across different scales can be defined a priori. More research is required to define 

connectivity functions that can be applied at a wide range of scales and in relation to 

different processes, and in particular to define the feedbacks between functional and 

structural connectivity at different scales. 
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