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Abstract

Levy and Zahariev [Phys. Rev. Lett. 113 113002 (2014)] have proposed a new

approach for performing density functional theory calculations, termed direct energy

Kohn-Sham (DEKS) theory. In this approach, the electronic energy equals the sum of

orbital energies, obtained from Kohn-Sham-like orbital equations involving a shifted

Hartree-exchange-correlation potential, which must be approximated. In the present

study, density scaling homogeneity considerations are used to facilitate DEKS calcula-

tions on a series of atoms and molecules, leading to three non-local approximations to

the shifted potential. The first two rely on preliminary Kohn-Sham calculations using

a standard generalised gradient approximation (GGA) exchange-correlation functional

and the results illustrate the benefit of describing the dominant Hartree component of

the shift exactly. A uniform electron gas analysis is subsequently used to eliminate the
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need for these Kohn-Sham calculations, leading to a potential with an unconventional

form that yields encouraging results, providing strong motivation for further research

in DEKS theory.

1 Introduction and Background

In density functional theory (DFT), the ground state electronic energy (omitting nuclear

repulsion) is

E = Ts +

∫
v(r)ρ(r)dr +G , (1)

where Ts is the non-interacting kinetic energy, v(r) is the external potential, ρ(r) is the

ground state electron density, and G is the Hartree-exchange-correlation (Hxc) energy,

G = J + Exc , (2)

comprising the Hartree energy,

J =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′| drdr
′ , (3)

and the exchange-correlation energy, Exc.

In Kohn-Sham (KS)1 DFT, the density is obtained from orbitals, ϕi(r), that are solutions

to the KS equations,

[
−1

2
∇2 + v(r) + w(r)

]
ϕi(r) = εiϕi(r) , (4)

where w(r) is the Hxc potential,

w(r) =
δG

δρ(r)
= vJ(r) + vxc(r) , (5)
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comprising Hartree and exchange-correlation potentials, respectively, and εi are the orbital

energies. Multiplying Eq (4) on the left by ϕi(r), summing over occupied orbitals i, inte-

grating over space, and using the definition of the density, allows Eq (1) to be re-written

as

E =
∑
i

εi +G−
∫
w(r)ρ(r)dr , (6)

illustrating that the KS electronic energy is not the sum of the orbital energies.

In a recent study, Levy and Zahariev (LZ)2 proposed an alternative formalism where the

electronic energy is the sum of the orbital energies. They considered the Kohn-Sham-like

equations,

[
−1

2
∇2 + v(r) + w(r)

]
ϕi(r) = εiϕi(r) , (7)

where w(r) is a shifted Hxc potential,

w(r) = w(r) + c , (8)

and c is the density-dependent constant shift,

c =
G−

∫
w(r)ρ(r)dr

N
, (9)

where

N =

∫
ρ(r)dr (10)

is the electron number. The orbital solutions to Eq (7) are the KS orbitals, but the orbital

energies εi are shifted from the KS orbital energies by c. In analogy to the KS case, the

3



electronic energy in Eq (1) can be re-written as

E =
∑
i

εi +G−
∫
w(r)ρ(r)dr . (11)

However, it follows from Eqs (8) and (9) that

G =

∫
w(r)ρ(r)dr (12)

and so Eq (11) reduces to the desired result,

E =
∑
i

εi . (13)

In practical calculations, Eqs (4) and (7) must be solved within a finite basis set, but this

does not affect the form of Eqs (6) and (13).

LZ showed that the exact potential w(r) has desirable characteristics. First, it does not

exhibit a discontinuity3 upon an increase in fractional electron number3–6 beyond an integer.

This is evident from Eq (13): the exact electronic energy must be continuous with electron

number, which requires the sum of the orbital energies and thus the potential, w(r), to be

continuous. And second, it can be shown that upon any isoelectronic change in the density,

w(r) changes less than any other potential that differs from w(r) by a density-dependent ad-

ditive constant. LZ suggested that approximating w(r) directly − and subsequently solving

Eq (7) and calculating the electronic energy using Eq (13) − represents a new, direct energy

Kohn-Sham (DEKS) approach for approximating the ground state density and energy in

DFT. The practical value of such a scheme will depend on how well w(r) can be approxi-

mated; any insight that can be provided will be valuable. For further discussion of the DEKS

approach, see Refs 2,7–11; also see Refs. 12,13 for an earlier, Hartree-Fock variant.

The key quantities in DFT are functionals of the density and in another series of pa-

pers,14–20 Tozer and co-workers have studied their density scaling properties. A functional
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F [ρ] is said to be homogeneous of degree kF under density scaling if it satisfies

F [λρ] = λkFF [ρ] , (14)

or equivalently (for kF 6= 0),21

kF =

∫
δF
δρ(r)

ρ(r)dr

F
. (15)

As an example, the Dirac exchange22 functional is homogeneous of degree 4/3 under density

scaling.

For an arbitrary functional F , Eq (15) can be regarded23 as defining a homogeneity pa-

rameter, kF , that quantifies the behaviour of that functional under density scaling. If the

value of kF evaluated using Eq (15) is the same for all systems then the functional is homo-

geneous. However, if the value is system-dependent then the functional is inhomogeneous

and the degree of system-dependence provides a measure of the degree of inhomogeneity.

Using these ideas, the KS electronic energy in Eq (6) can be written

E =
∑
i

εi +G(1− kG) (16)

where kG is the homogeneity parameter for the Hxc functional,

kG =

∫
δG
δρ(r)

ρ(r)dr

G
=

∫
w(r)ρ(r)dr

G
. (17)

It is evident from Eq (16) that if the homogeneity parameter was to take the value kG = 1,

then the KS electronic energy would reduce to the sum of the orbital energies, thereby

highlighting a key link between density scaling behaviour and the DEKS approach. The aim

of the present study is to use density scaling homogeneity considerations to facilitate DEKS

calculations and to provide approximations to the shifted potential, w(r).
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We commence in Section 2 by defining our Hxc functional and shifted potential and de-

scribing our computational procedure for performing DEKS calculations. Attention is paid

to the partitioning of the shifted potential into Hartree and exchange-correlation compo-

nents and the calculation of reference data to compare with. DEKS results are presented in

Section 3. Initially, we present results based on the use of kG = 1, using input from prelimi-

nary KS calculations with a standard generalised gradient approximation (GGA) exchange-

correlation functional. Examination of the potentials leads us to modify the approach, in

order to describe the dominant Hartree component of the shift exactly. Significant improve-

ments are obtained, although the calculations still rely on preliminary KS calculations. A

uniform electron gas analysis is used to eliminate this reliance, leading to a potential with an

unconventional form that yields encouraging results. Conclusions are presented in Section 4.

2 Methodology

2.1 Functional form and computational procedure

We start by defining an underlying Hxc functional (Eq (2)), the potential of which will be

shifted by c to yield the desired w(r) in Eq (8). For the Hartree component, we use the exact

J in Eq (3), which is homogeneous of degree two under density scaling (i.e. Eq (15) yields

kJ = 2). For the exchange-correlation component, we write

Exc = αGxc , (18)

where α is a parameter and

Gxc =
(∫

ρ
3k

3k−1 (r)dr
) 3k−1

3
. (19)

This exchange-correlation functional, which is based on a form proposed by Liu and Parr,24 is

homogeneous of degree k under density scaling (i.e. Eq (15) yields kxc = k). With respect to
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the more common coordinate scaling,25 it is homogeneous of degree one, which is motivated

by the fact that the exact exchange component behaves in this manner. Our Hxc functional

is therefore

G = J + αGxc . (20)

Next, we define the values of c (Eq (9)) and k (in Eq (19)); see later for details. The value

of α in Eq (20) is then determined. Initially, in Sections 3.1 and 3.2, we determine it on a

system-by-system basis (using similar ideas to those of Ref. 20) by performing a preliminary

KS calculation using a standard GGA exchange-correlation functional and requiring that the

evaluation of the approximate G in Eq (20), using the GGA density, yields the GGA Hxc

energy. This simply requires

α = EGGA
xc /GGGA

xc , (21)

where GGGA
xc is obtained by evaluating Eq (19) using the GGA density and EGGA

xc is the

GGA exchange-correlation energy. For the GGA, we use the Perdew-Burke-Ernzerhof (PBE)

functional26 throughout. In Section 3.4, an alternative approach for determining α is used,

which does not rely on a preliminary KS calculation.

We then construct the potential w(r) in Eq (8) for our Hxc functional in Eq (20),

w(r) = vJ(r) + α
δGxc

δρ(r)
+ c , (22)

where

δGxc

δρ(r)
= k
(∫

ρ
3k

3k−1 (r)dr
) 3k−4

3
ρ

1
3k−1 (r) , (23)

noting that α simply contributes a multiplicative factor because it is constructed from the
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fixed, GGA density. It is noteworthy that, like the Hartree potential, vJ(r), the potential in

Eq (23) is non-local, in the sense that its value at a point in space depends on the electron

density at all points in space.

We then solve the DEKS orbital equations (7) within the basis set, using the potential

in Eq (22), and evaluate the electronic energy using Eq (13); the value must be identical to

that obtained using the conventional evaluation, Eq (1).

The variational nature of our DEKS implementation was verified with the usual Hellmann-

Feynman dipole moment check. We consider 17 closed-shell atoms and small molecules,

taken from Ref. 15, namely He, Be, Ne, Mg, Ar, CH4, NH3, H2O, HF, CO, N2, F2, PH3,

H2S, HCl, SO2, and Cl2. All calculations are performed using the aug-cc-pVTZ basis set at

the reference, near-exact geometries of Ref. 27, using the CADPAC program.28

2.2 Partitioning of the shifted Hxc potential

In addition to the total potential, w(r), it is of interest to consider the individual Hartree

and exchange-correlation components. For a general DEKS calculation, it follows from Eqs

(2) and (5) that the shift in Eq (9) partitions into

c = cJ + cxc . (24)

The Hartree component is

cJ =
J −

∫
vJ(r)ρ(r)dr

N
= − J

N
, (25)

where we have used the fact that J is homogeneous of degree two under density scaling.

Similarly, the exchange-correlation component is

cxc =
Exc −

∫
vxc(r)ρ(r)dr

N
. (26)
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The total potential in Eq (8) can therefore be partitioned as

w(r) = vJ(r) + vxc(r), (27)

where

vJ(r) = vJ(r) + cJ (28)

and

vxc(r) = vxc(r) + cxc . (29)

It follows from Eqs (25), (26), (28), and (29) that the individual energy components are

simply expressed in terms of these potentials,

J =

∫
vJ(r)ρ(r)dr (30)

and

Exc =

∫
vxc(r)ρ(r)dr , (31)

in a manner analogous to Eq (12).

We therefore partition our potential in Eq (22) according to Eq (27), noting that the

specific form of the exchange-correlation component is

vxc(r) = α
δGxc

δρ(r)
+ cxc . (32)

The value of cJ is obtained by evaluating Eq (25) using the self-consistent density. The value

of cxc can be obtained by substituting Eq (18) into Eq (26) but, as will be seen, this is not
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necessary in practice because the value of cxc is completely determined by our choice of c.

2.3 PBE DEKS results for comparison

Given the role of the PBE GGA functional in our computational approach, it is natural to

quantify the accuracy of our DEKS results by comparing with DEKS results obtained using

PBE. The latter are straightforward to perform: We solve the KS equations (4) within the

basis set using PBE and then compute the shift c, either directly using Eq (9) or, given that

the electronic energy is already known, by simply rearranging Eqs (6) and (9) to give

c =
E −∑i εi

N
. (33)

We then determine cJ by evaluating Eq (25) using PBE quantities and evaluate cxc using Eq

(24). The PBE DEKS εi values are then obtained by adding c to the KS orbital energies.

The PBE DEKS electronic energies (Eq (13)) and exchange-correlation energies (Eq (31))

are identical to the KS values, whilst the PBE DEKS potentials comprise the KS potentials,

shifted by cJ and cxc.

We note that for the 17 systems considered, the PBE cJ values are significantly larger

in magnitude, and opposite in sign, to the cxc values. Specifically, the average value of the

ratio cJ/cxc is −20.3, which can be understood in part from the fact that PBE is approxi-

mately homogeneous of degree 4/3 under density scaling (the dominant component is Dirac

exchange). It follows from Eqs (26) and (15) that for PBE,

cxc ≈
Exc − 4

3
Exc

N
≈ −Exc

3N
. (34)

and so from Eqs (25) and (34), cJ/cxc ≈ 3J/Exc. The average value of this ratio for the 17

systems is −17.6, close to the aforementioned value.
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3 Results

3.1 DEKS calculations using kG = 1 (c = 0, cxc = −cJ)

Our initial investigations centred around the aforementioned observation that if kG = 1 then

the KS electronic energy equals the sum of the orbital energies. Given that the role of the

shift, c, in DEKS is to shift the KS Hxc potential to achieve exactly this, it follows that c

must be zero (i.e. DEKS ≡ KS) and this is easily verified by evaluating Eq (9) using Eq (17)

with kG = 1. It follows from Eq (24) that cxc = −cJ . We therefore commence by performing

DEKS calculations with kG = 1, c = 0, cxc = −cJ . It is important to note that setting c = 0

does not preclude a shift in the potential compared to the KS potentials of conventional

functionals; it simply means that any shift must be directly incorporated into the potential

via the functional form, rather than being explicitly added.

Evaluating the homogeneity parameter, Eq (17), for the functional G in Eq (20) yields

kG =
2J + kαGxc

J + αGxc

(35)

and so setting kG = 1 yields the value of k to be used in Eq (19),

k = 1− J

αGxc

. (36)

We determine this value on a system-by-system basis by approximating J to be the KS GGA

Hartree energy and αGxc to be the KS GGA exchange-correlation energy, from preliminary

KS calculations. We then follow the procedure described in Section 2.1, using c = 0 and

Eq (21). However, due to the use of GGA quantities in the calculation of k, the value

of kG determined using the self-consistent DEKS quantities is not exactly unity and so

the electronic energy in Eq (1) is not exactly equal to the sum of the orbital energies.

Discrepancies range from 0.01 a.u. (He) to 24.32 a.u. (Cl2), with an average discrepancy

across the 17 systems of 6.34 a.u. These discrepancies are significantly smaller than from
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PBE KS calculations (1.73 a.u. (He) to 465.85 a.u. (Cl2), with an average of 127.98 a.u.),

but they are still non-negligible and the calculations are not true DEKS calculations.

To address this, we use the values of J and αGxc from the initial DEKS calculation to

determine a revised value of k using Eq (36) and then repeat the procedure in Section 2.1. It-

erating this whole process leads to computed kG values that do approach unity and electronic

energies in Eq (1) that do approach the sum of the orbital energies. In practice, we stop the

iterative procedure when the electronic energy agrees with the sum of the orbital energies

to within one milihartree, which is orders of magnitude smaller than the aforementioned

discrepancies. For the systems considered, this is achieved after two to four iterations (two

iterations for He; three iterations for the other systems not containing third row atoms; and

four iterations for systems containing third row atoms). The results are denoted DEKS1.

Table 1 presents the DEKS1 k and α values for the 17 systems, ordered by increasing

electron number, N . With increasing N , the values of k broadly increase, whereas the values

of α become less negative, approaching extremely small values. (This can be understood

from the fact that as k increases, so the functional in Eq (19) increasingly resembles Nk,

thus requiring a very small prefactor). Tables 2, 3, and 4 present the DEKS1 electronic

energies (Eq (13) = Eq (1)), exchange-correlation energies (Eq (18) = Eq (31)), and highest

occupied molecular orbital (HOMO) energies, εHOMO (from Eq (7)), respectively, compared

to the reference PBE DEKS values. The mean absolute deviations (MADs), relative to the

PBE DEKS values, are 0.729, 1.927, and 0.170 a.u., respectively. Recall that whilst the PBE

DEKS electronic energies and exchange-correlation energies are identical to the KS values,

the values of εHOMO are shifted from the KS values by the PBE values of c. These shifts are

significant: for the 17 systems, the average value of c is −6.895 a.u. (Put another way, the

MAD between PBE KS and PBE DEKS HOMO energies is 6.895 a.u.). The DEKS1 MAD

of just 0.170 a.u. in Table 4 suggests that the shift has been successfully incorporated into

the potential in the regions of space relevant to the HOMO.

To investigate this, Figures 1(a), 1(b), and 1(c) plot the potentials vJ(r), vxc(r), and
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Table 1: Parameters defining DEKS1, DEKS2, and DEKS3.

DEKS1 DEKS2 DEKS3

k α α βN
1
3

He 2.927 −3.210× 10−01 −1.046 −0.868
Be 3.566 −5.449× 10−02 −1.156 −1.093
Ne 6.195 −1.501× 10−05 −1.527 −1.484
CH4 5.690 −4.954× 10−05 −1.544 −1.484
NH3 5.801 −3.874× 10−05 −1.522 −1.484
H2O 5.920 −2.932× 10−05 −1.515 −1.484
HF 6.052 −2.135× 10−05 −1.517 −1.484
Mg 6.610 −2.434× 10−06 −1.576 −1.577
CO 6.394 −1.797× 10−06 −1.722 −1.660
N2 6.387 −1.826× 10−06 −1.726 −1.660
Ar 8.217 −2.844× 10−09 −1.734 −1.805
F2 7.110 −6.217× 10−08 −1.860 −1.805
PH3 7.726 −1.226× 10−08 −1.718 −1.805
H2S 7.913 −7.075× 10−09 −1.720 −1.805
HCl 8.072 −4.398× 10−09 −1.726 −1.805
SO2 8.994 −3.519× 10−12 −2.151 −2.187
Cl2 9.219 −1.046× 10−12 −2.153 −2.231

Table 2: DEKS electronic energies (in a.u.).

DEKS1 DEKS2 DEKS3 PBE
He −2.899 −2.893 −2.718 −2.892
Be −14.735 −14.643 −14.497 −14.629
Ne −129.198 −128.906 −128.562 −128.853
CH4 −40.635 −40.508 −40.243 −40.464
NH3 −56.749 −56.562 −56.365 −56.512
H2O −76.674 −76.434 −76.248 −76.381
HF −100.728 −100.447 −100.213 −100.393
Mg −200.740 −199.993 −199.999 −199.949
CO −113.653 −113.292 −112.800 −113.233
N2 −109.847 −109.508 −108.991 −109.452
Ar −528.690 −527.433 −528.691 −527.338
F2 −199.961 −199.503 −198.902 −199.418
PH3 −344.100 −343.075 −344.296 −342.988
H2S −400.469 −399.324 −400.608 −399.234
HCl −461.955 −460.728 −462.024 −460.636
SO2 −549.858 −548.538 −549.235 −548.391
Cl2 −922.302 −920.185 −922.212 −920.036
MAD vs. PBE 0.729 0.069 0.658
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Table 3: DEKS exchange-correlation energies (in a.u.)

DEKS1 DEKS2 DEKS3 PBE
He −1.081 −1.049 −0.840 −1.046
Be −3.002 −2.717 −2.556 −2.719
Ne −13.482 −12.270 −11.907 −12.368
CH4 −7.330 −6.838 −6.553 −6.836
NH3 −8.639 −7.921 −7.711 −7.946
H2O −10.120 −9.184 −8.987 −9.238
HF −11.756 −10.635 −10.387 −10.713
Mg −18.205 −16.146 −16.151 −16.290
CO −14.941 −13.705 −13.184 −13.756
N2 −14.680 −13.534 −12.987 −13.572
Ar −34.105 −30.465 −31.749 −30.662
F2 −22.230 −20.427 −19.793 −20.553
PH3 −26.876 −23.988 −25.243 −24.142
H2S −29.263 −26.040 −27.353 −26.203
HCl −31.693 −28.197 −29.521 −28.377
SO2 −46.535 −42.267 −42.986 −42.546
Cl2 −61.832 −55.711 −57.779 −56.039
MAD vs. PBE 1.927 0.113 0.626

Table 4: DEKS HOMO energies, εHOMO (in a.u.)

DEKS1 DEKS2 DEKS3 PBE
He −1.449 −1.447 −1.359 −1.446
Be −1.804 −1.817 −1.804 −1.810
Ne −6.966 −6.592 −6.574 −6.716
CH4 −3.566 −3.362 −3.349 −3.436
NH3 −4.055 −3.843 −3.834 −3.914
H2O −4.853 −4.577 −4.568 −4.667
HF −5.823 −5.491 −5.480 −5.600
Mg −7.415 −7.818 −7.818 −7.751
CO −5.645 −5.440 −5.424 −5.505
N2 −5.640 −5.386 −5.369 −5.462
Ar −12.987 −12.692 −12.715 −12.737
F2 −7.446 −7.084 −7.067 −7.201
PH3 −9.488 −9.422 −9.445 −9.422
H2S −10.544 −10.398 −10.420 −10.404
HCl −11.738 −11.501 −11.523 −11.528
SO2 −11.248 −11.002 −11.010 −11.057
Cl2 −14.169 −13.947 −13.965 −13.970
MAD vs. PBE 0.170 0.056 0.065
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w(r), respectively (Eqs (27)-(29)), along the bond axis in the representative N2 molecule,

from DEKS1 and PBE DEKS calculations. The nuclei are located at ±1.037 a.u. Note the

different vertical scales on the plots, which have been chosen to capture the key features of

the PBE DEKS potentials. The Hartree potentials in Figure 1(a) differ only because of the

different densities used in their evaluation; the differences are most pronounced in asymptotic

(large |z|) regions where the values approach cJ = −5.65 a.u. for DEKS1 and cJ = −5.36

a.u. for PBE. The exchange-correlation potentials in Figure 1(b) are notably different and

this is reflected in the total potentials in Figure 1(c). Note that the PBE behaviour at the

nuclei is unphysical, which is a well-known issue with GGA potentials.29 For this system, the

value of the PBE shift is c = −5.09 a.u, so it is evident from Figure 1(c) that this shift has

been very successfully incorporated into the DEKS1 potential in regions of space relevant to

the HOMO, as was anticipated based on the HOMO values in Table 4.

To improve the agreement between the DEKS1 and PBE potentials in Figures 1(a)-(c),

the discrepancies in Figure 1(b) must be eliminated; discrepancies in Figures 1(a) and 1(c)

will both be eliminated if that can be achieved. It is therefore important to understand

the discrepancies in Figure 1(b). The PBE potential is the asymptotically vanishing KS

potential, shifted by the relatively small positive amount, cxc = 0.28 a.u. For DEKS1, where

cxc = −cJ , the potential, Eq (32), is

vxc(r) = α
δGxc

δρ(r)
+ cxc = α

δGxc

δρ(r)
− cJ (37)

where cJ is a large negative value (−5.65 a.u.). So, for the DEKS1 potential to resemble the

PBE potential, the term α δGxc

δρ(r)
needs to incorporate a large negative shift over all of space,

compensating for the positive (−cJ) shift in Eq (37). This is a severe requirement that is

approximately achieved in regions where the density is significant, but cannot be achieved

in asymptotic regions because the mathematical form of our Gxc yields an asymptotically

vanishing potential. The onset of this breakdown is clearly evident at large positive and
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Figure 1: DEKS potentials plotted along the bond axis in N2, determined using DEKS1 and
PBE (in a.u.)
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negative z in Figure 1(b), where the DEKS1 potential becomes significantly too positive.

The problem can equivalently be phrased in the context of the the total potential, w(r): The

potential must be shifted from the KS potential by a large, negative value (−5.09 a.u.), but

the potential of our approximate G can only introduce a shift in regions where the density

is significant; asymptotically, it vanishes, and the onset of this is evident at large and small

z in Figure 1(c).

Although we have highlighted this problem for N2, it will be a problem for all the systems

considered, because in all cases the DEKS1 value of cJ is significantly larger in magnitude

than the PBE value of cxc. (Recall that the average ratio of the quantities is −20.3 for PBE).

3.2 DEKS calculations using k = 1 (c = cJ , cxc = 0)

An obvious way forward is to set c = cJ , meaning cxc = 0. Eq (37) then becomes

vxc(r) = α
δGxc

δρ(r)
+ cxc = α

δGxc

δρ(r)
(38)

and so α δGxc

δρ(r)
no longer needs to incorporate a large negative shift over all of space. It simply

needs to resemble the PBE KS potential, shifted by its much smaller cxc value. As before,

it can only do this in regions where the density is significant, and it will fail asymptotically.

But this failure will be less pronounced due to the much smaller magnitude of this shift. In

the context of the total potential, setting c = cJ means that we pick up the known, dominant

Hartree component of the shift exactly, leaving only a small exchange-correlation component

to be recovered by the functional form.

So, for the exchange-correlation part of Hxc, we need a functional for which cxc = 0.

From Eq (26), this implies

Exc =

∫
vxc(r)ρ(r)dr , (39)

meaning the exchange-correlation functional must be homogeneous of degree one under den-
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sity scaling (see Eq (15)). Note that Eq (39) is a special case (cxc = 0) of Eq (31). We must

therefore set k = 1 in Eq (19), meaning the Hxc functional is

G = J + α
(∫

ρ
3
2 (r)dr

) 2
3
. (40)

We then follow the procedure described in Section 2.1, using c = cJ = − J
N

, k = 1, and Eq

(21). (In practice, we solve the KS equations (no shift) for the functional and then add the

converged value of c = − J
N

to each orbital energy at convergence; it is equivalent). The

electronic energy in Eq (1) is now equal to the sum of the orbital energies; the maximum

discrepancy is ∼10−5 a.u., which arises due to numerical integration / SCF convergence

errors. No iterative procedure is required this time, because k has no dependence on the

output of the calculation (in contrast to Eq (36) in the DEKS1 case). The results are denoted

DEKS2.

Table 1 lists the DEKS2 α values. With increasing N , the values become more negative,

but the variation is many orders of magnitude smaller than it was for DEKS1. Tables 2, 3,

and 4 list the electronic energies, exchange-correlation energies, and εHOMO values. Compared

to DEKS1, the DEKS2 MADs reduce by more than an order of magnitude for the electronic

energy and exchange-correlation energy, and a factor of three for the εHOMO values. For the

electronic energies, essentially exact values can be determined from a knowledge of atomic

energies30 and electronic atomisation energies.31 Interestingly, the mean absolute deviation of

DEKS2 energies from these exact values is just 0.053 a.u., smaller than the PBE deviation

of 0.122 a.u. (The DEKS1 deviation is an order of magnitude larger than the DEKS2

deviation).

Figures 2(a), 2(b), and (2c) compare the DEKS2 and PBE DEKS potentials for N2. The

agreement between the Hartree potentials in Figure 2(a) is improved compared to DEKS1;

asymptotically, the DEKS2 potential approaches cJ = −5.23 a.u., which is now notably closer

to the PBE asymptotic value of −5.36 a.u. The improvement in the exchange-correlation
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potential in Figure 2(b) is striking; the two curves can barely be distinguished in regions

around z = ±(0.8 − 1.5)a.u. This is reflected in the total potential in Figure 2(c), which

benefits from a cancellation of errors in asymptotic regions.

As noted above and evident in Figure 2(b), the DEKS2 exchange-correlation potential

is unable to reproduce the small positive shift at small and large z, but this is a minor

deficiency compared to the DEKS1 case. It is also unable to reproduce the characteristic

shell structure in the PBE potential (which is also present in the exact potential, eg see Ref.

32) and this can be traced to the lack of gradient dependence in the functional (as was also

observed in Ref. 20). Although there is much room for improvement, the fact that the PBE

potential can be reasonably reproduced by the potential of the (unconventional) second term

in Eq (40) is intriguing.

3.3 System-dependence of DEKS2 α values and size-extensivity

A drawback of DEKS2 is that the α values in Table 1 were determined from preliminary KS

GGA calculations, using Eq (21), meaning DEKS2 calculations cannot be performed without

knowledge of an existing exchange-correlation functional (namely PBE). To eliminate this,

we must understand the system-dependence of the DEKS2 α values. The following analysis

is insightful.

The exchange-correlation functional in DEKS2 is

Exc = α
(∫

ρ
3
2 (r)dr

) 2
3
. (41)

Consider the application of this functional to a uniform electron gas, where the exchange-

correlation energy is approximated by the Dirac exchange energy. Equating the two approx-

imations gives

α
(∫

ρ
3
2 (r)dr

) 2
3

= Cx

∫
ρ

4
3 (r)dr , (42)
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Figure 2: DEKS potentials plotted along the bond axis in N2, determined using DEKS2 and
PBE (in a.u.)
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where Cx = −0.7386 is the Dirac exchange prefactor.22 Setting the constant density ρ(r) =

N
V

, where V is the volume, gives

α = CxN
1
3 . (43)

Figure 3 shows a scatter plot of the DEKS2 α values vs N
1
3 and we do indeed observe a

near-linear dependence, consistent with Eq (43). The straight line shown is the best zero-

intercept fit, α = −0.6888N
1
3 (R2 = 0.93). The prefactor is reassuringly similar to the Dirac

value.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
−2.5

−2.0

−1.5

−1.0

−0.5

0.0

N1/3

D
E
K
S
2
α

Figure 3: Dependence of the 17 DEKS2 α values on N
1
3 . The straight line is the best

zero-intercept fit, α = −0.6888N
1
3 .

It is pertinent at this point to comment on the issue of size extensivity, which requires

the electronic energy of a system composed of two non-interacting closed-shell fragments to

equal the sum of the energies of the two fragments.33,34 If the value of α in Eq (41) was

system-independent then the presence of the external power differing from unity would mean

the functional is not size-extensive, irrespective of whether the two fragments are different

or identical. Interestingly, following the above analysis, if we write

α = βN
1
3 (44)
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where β is a system-independent constant, then the functional becomes

Exc = βN
1
3

(∫
ρ

3
2 (r)dr

) 2
3
, (45)

and although this is not size-extensive when the two fragments are different, it is size-

extensive when they are identical. Indeed, it yields the correct energy for any number of

non-interacting identical fragments due to the cooperativity of the 1/3 and 2/3 powers.

There is a subtle point here. We have chosen to treat N in Eq (45) as a parameter, rather

than a functional of the density. By doing this, the desired system-dependence is recovered

without affecting the density scaling properties of the functional. If we had instead chosen

to treat N as a functional of the density then the desired system-dependence would again be

recovered, but the functional would become homogeneous of degree 4/3 (rather than unity)

under density scaling. In earlier studies, Parr and Ghosh35 and Gledhill and Tozer20 also

chose to treat N as a parameter, in the context of the Fermi-Amaldi functional.36

3.4 DEKS calculations without preliminary KS calculations

The analysis in Section 3.3 provides a mechanism for eliminating the need for preliminary

KS calculations, thereby enabling us to approximate w(r) without reference to any existing

exchange-correlation functional. We follow the DEKS2 approach with the functional in Eq

(40), but rather than evaluating α using Eq (21), we instead use the value in Eq (44), with

β = −0.6888 a.u.. The Hxc functional is therefore

G = J + βN
1
3

(∫
ρ

3
2 (r)dr

) 2
3

(46)

and the shifted potential is

w(r) = vJ(r) + βN
1
3

(∫
ρ

3
2 (r)dr

)− 1
3
ρ

1
2 (r)− J

N
(47)
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(To verify this, substitute for c = − J
N

, k = 1, and α = βN
1
3 in Eqs (22) and (23)). The

electronic energy in Eq (1) is again equal to the sum of the orbital energies, to within

integration grid / SCF convergence errors. The results are denoted DEKS3.

Table 1 lists the values of βN
1
3 , which broadly reproduce the DEKS2 α values. Tables

2, 3, and 4 present the DEKS3 energy quantities. In essentially all cases, the change from

DEKS2 to DEKS3 reflects the change in the prefactor: If βN
1
3 is more/less negative than

the DEKS2 α value then the energy quantities become correspondingly more/less negative.

Overall, DEKS3 cannot compete with DEKS2, but it does perform better than DEKS1

throughout; the εHOMO values are particularly accurate. Given the simplicity of the potential

in Eq (47) and the infancy of the DEKS formalism, we are encouraged by the performance.

Indeed, relative to PBE, the DEKS3 electronic energies have a smaller MAD (0.658 a.u.)

than that obtained from KS calculations using the S-VWN22,37 functional (0.929 a.u.), which,

like DEKS3, only involves the electron density, with no gradient dependence.

We do not present the DEKS3 potentials for N2, since on the scale plotted, they are

essentially indistinguishable from the DEKS2 potentials in Figure 2. In non-asymptotic

regions, the DEKS3 potential is typically 96% of the value of the DEKS2 potential, reflecting

the ratio of βN
1
3 to the DEKS2 α value, but this is not visible on the scale plotted.

We make three final remarks. First, by having an explicit functional G, we ensure that the

r-dependent part of w(r) in Eq (47) is a functional derivative. This is an important condition,

which is not necessarily satisfied when a potential is approximated directly, without reference

to a functional. Failing to use a functional derivative in KS theory can lead to problems with

lack of translational invariance.38 Second, the fact that we have a functional also means that

the approximation in Eq (46) can be used directly in KS theory. Indeed, it may represent

a useful research direction in KS theory, independent of the DEKS approach. After all, the

only difference between KS and DEKS for this functional is the requirement to add −J/N

to the orbital energies in the latter case, before summing them. And third, we comment

further on the DEKS3 εHOMO values in Table 4. The DEKS3 values are in good agreement
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with the PBE DEKS values, which themselves have been shown2,8 to be in rather good

agreement with near-exact DEKS values. Of course, neither resemble the negative of the

ionisation potential, due to the substantial shifts between the exact DEKS and exact KS

HOMO values.

4 Conclusions

DEKS calculations represent a new approach for performing DFT calculations.2 The central

quantity is the shifted Hartree-exchange-correlation potential, w(r), which exhibits desirable

characteristics, but which must be approximated. We have demonstrated that density scaling

homogeneity considerations can be used to facilitate DEKS calculations, providing three

approximations to the shifted potential.

DEKS1 calculations using c = 0 provide reasonable quality εHOMO values, suggesting that

the shift is successfully incorporated into the potential in regions of space relevant to the

HOMO; this was explicitly verified for the N2 molecule. However, electronic energies and

exchange-correlation energies are notably less accurate. Examination of the potentials led

us to consider the DEKS2 approach where the dominant Hartree component of the shift

is described exactly, using c = cJ . This leads to significant improvements, although the

results still rely on a preliminary KS PBE calculation for each system. A uniform electron

gas analysis was used to eliminate this reliance, enabling us to approximate w(r) without

reference to any existing exchange-correlation functional. The resulting DEKS3 potential

has an unconventional form, Eq (47), which yields encouraging results, intermediate between

DEKS1 and DEKS2.

The results of this study provide strong motivation for further research in DEKS theory.

We are currently investigating the performance of Eqs (46) and (47) for other molecular prop-

erties and we are investigating approaches for further improving accuracy, particularly with

regard to the description of the cxc contribution to the shift. The imposition of additional
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known exact constraints should help.
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