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Short Summary

Understanding how hormones and genes interactaiictate plant is a major challenge in
plant developmental biology. Integrating a varietexperimental data into a crosstalk
network reveals multiple layers of complexity irxay cytokinin and ethylene crosstalk. A
novel methodology that iteratively combines expemts with systems modelling analysis is

essential for elucidating this complexity in roetvelopment.
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ABSTRACT

Understanding how hormones and genes interactaicte plant growth in a changing
environment is a major challenge in plant developaebiology. Auxin, cytokinin and
ethylene are three important hormones that regulatey aspects of plant development. This
review critically evaluates the crosstalk betwdenthree hormones in Arabidopsis root
development. We integrate a variety of experimethdah into a crosstalk network, which
reveals multiple layers of complexity in auxin, @giinin and ethylene crosstalk. In particular,
data integration reveals an additional, largelyrlmaked link between the ethylene and
cytokinin pathways, which acts through a phosplayrehechanism. This proposed link
addresses outstanding questions on whether ethgfgieation promotes or inhibits
receptor kinase activity of the ethylene receptiscidating the complexity in auxin,
cytokinin and ethylene crosstalk requires a contbexperimental and systems modelling
approach. We evaluate important modelling effartsefstablishing how crosstalk between
auxin, cytokinin and ethylene regulates pattermmigpot development. We discuss how a
novel methodology that iteratively combines expemts with systems modelling analysis is
essential for elucidating the complexity in crobstd auxin, cytokinin and ethylene in root
development. Finally, we discuss the future chgksnfrom a combined experimental and

modelling perspective.

KEYWORDS
Arabidopsis, auxin, cytokinin, ethylene, hormonasstalk, spatiotemporal modelling,

systems biology, root.
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INTRODUCTION

Plants are sessile organisms and therefore theyadapt their growth and architecture to a
changing environment. Hormone signalling systeawsdinate plant growth and
development through a range of complex interacti®he original ‘classical’ plant hormones
are ethylene, cytokinin, auxin, abscisic acid aiberellins; more recently identified
hormones include brassinosteroids, strigolactosedylic acid, nitric oxide and jasmonic
acid (Santner and Estelle, 2009). Hormone actwsitiecells are a function of multiple factors
such as hormone biosynthesis, degradation and gatnpm, long and short range transport,
as well as hormone activation and inactivation (Biehco et al., 2013; Ludwig-Muller 2011;
Weyers and Paeterson, 2001). Hormones and theiaesbregulatory and target genes form
a network in which relevant genes regulate hornamtiities and hormones regulate gene
expression (Bargmann et al., 2013; Chandler, 2D@puydt and Hardke, 2011; Vanstraelen
and Benkova, 2012). Therefore the activities oféheormones depend on cellular context
and exhibit either synergistic or antagonisticliattions (Garay-Arroyo et al., 2012). This
interaction means the activity of each hormone oanhange independently of the various
crosstalk components in space and time. Importaestpns for understanding hormonal
crosstalk in root development therefore include I@nmone concentrations and expression
of the associate regulatory and target genes areathurelated; and how patterning of both

hormones and gene expression emerges under tba attiormonal crosstalk.

The most common form of biologically active auxsnndole-3-acetic acid (IAA), although
other compounds similar to I1AA, such as indole-3ylia acid (IBA), phenylacetic acid, and
4-chloroindole-3-acetic acid (4-CI-1AA) (Tivendadad Cohen, 2015) are also auxins.
Cytokinins are R substituted adenine derivatives (Kieber and Seha014). Ethylene is a
simple gaseous hydrocarbonz) (Schaller and Kieber, 2002). These three hormones
regulate many aspects of plant development (KiabdrSchaller, 2014; Paque and Weijers,
2016; Schaller and Kieber, 2002). Importantly, tree hormones form complex regulatory
networks at the levels of gene expression, sigiatliansduction, and metabolic conversions
(Liu et al., 2014).

This review focuses on a critical analysis of ctalksbetween auxin, cytokinin and ethylene
in root development. We integrate a variety ofeskpental data to reveal multiple layers of
complexity in auxin, cytokinin and ethylene crofisia Arabidopsis root development.

Elucidating the complexity in auxin, cytokinin aathylene crosstalk requires a combined
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approach, involving both experimental measuremedtsystems modelling. We evaluate
important modelling efforts to establish how crafisbetween auxin, cytokinin and ethylene
regulates patterning in root development; we dis¢usv an iterative methodology, from
experiments to system modelling and back agaessential for understanding the
complexity of hormonal crosstalk in root developmemd finally, we discuss the future

challenges from a combined experimental and madgeperspective.

INTEGRATION OF EXPERIMENTAL DATA REVEALS MULTIPLEL AYERS OF
COMPLEXITY IN AUXIN, CYTOKININ AND ETHYLENE CROSSTA LKIN
ARABIDOPSIS ROOT DEVELOPMENT

Crosstalk between hormone signalling and gene sgjae in root development can be
extremely complex. Signalling pathways are not s$enipdependent linear pathways, but can
display redundancy, functional overlap, and mutigledback loops combined with direct
and indirect regulation amongst different pathw@yse to this complexity, it is extremely
difficult to understand fully the outcome of a sihechormone signal, since it inevitably
affects multiple pathways, which directly or inditly regulate each other.

Experimental data accumulated over many years earséd to construct a network of
crosstalk between auxin, cytokinin and ethylenAnabidopsis root development, as
illustrated in Figure 1. The crosstalk network, l@hnevitably incomplete, provides a
foundation for analysing the interactions betwdersé hormones in root development. Each
link or ‘reaction’ in the network is establisheddxhon experimental results, as summarised
in Table S1. As shown in Figure 1, there are midtgorect and indirect links between the
signalling pathways of the three hormones. Crds$tetween the three hormones occurs at
all levels including metabolism, signalling and gexpression. Importantly, integration of
various experimental data into a crosstalk netwaskn Figure 1, reveals multiple layers of
complexity. Elucidating this complexity is essahfor understanding how auxin, cytokinin

and ethylene coordinate to regulate root developmen
---Figure 1 here---

The hormonal crosstalk network, Figure 1, is a maltel type of network, consisting of
gene expression, signal transduction and metabotigersions. Building such a network
requires the integration of biological knowledgakhof these three levels (Liu et al., 2014).
Importantly, from the viewpoint of the hormonal sstalk network in Figure 1, root

development is regulated by the integrated actfa@ugin, cytokinin and ethylene signalling.
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Changing any single component of the hormonal tatlseetwork in Figurel, potentially
changes all other components in the network. Ttmestole of one hormone such as auxin in
regulating root development requires examinatiothécontext of other hormones such as
cytokinin and ethylene. In this sense, all aspetthe three hormones (auxin, ethylene and
cytokinin) should be discussed in order to compnehely review crosstalk between auxin,
cytokinin and ethylene in root development. Howettes is clearly not feasible for a single

review article.

Due to the importance of the three hormones inlegigng plant development, many aspects
of these hormones have already been reviewed.idRekeviews have covered different
topics such as metabolism of auxin (Hurny and Beak8017; Li et al., 2016; Ljung, 2013;
Zhao, 2010; 2014); cytokinin (Hurny and Benkov@l?2, Hirose et al., 2008; Kieber and
Schaller, 2014; Zurcher and Miller, 2016); and kg (Larsen, 2015; Schaller and Kieber,
2002); as well as signalling and/or metabolicripley between auxin, cytokinin and
ethylene (Jones and Ljung, 2011; Ljung, 2013;tSl.£2011; Schaller et al., 2015;
Chandler and Werr, 2015; Van de Poel et al., 200/&) suggest that readers consult these

reviews for information on each specific topic.

In the following sections, we attempt to highlighé complexities of hormone signalling
pathways and crosstalk between auxin, cytokininethgilene. By doing so, we highlight
both the numerous layers of complexity in auxiripkinin and ethylene crosstadiad, as a
result, the necessity of a systems approach fardgting the role of these hormones in root

development.

Pathway complexities involving receptor clusterscahigher level complexes, multiple

pathways and regulatory feedback loops

In the ethylene signalling pathway of Arabidopsirere are 5 receptors (ETR1, ETR2, ERS1,
ERS2, EIN4 in 2 subfamilies), which predominant#igide at the endoplasmic reticulum

(ER) membrane, with differing but overlapping aradtjally redundant functions, acting by
phosphorelays and/or conformational change thraluglerization and higher level
component clusters. There are two recognised pghwahe first is the classical and
dominant CTR1-dependent pathway (links 1,5,6,8,8/4814 in Table S1) where, in the
presence of ethylene, the receptors are inactivatieidh in turn inactivates CTR1 and
releases the CTR1 suppression of downstream ethgignalling. The second is a weaker
CTR1-independent pathway which by-passes CTR1qlink7, 8, 9, 13 and 14 in Table S1).
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The two pathways are thought to converge at EINRgI6, 7 in Table S1). In the presence of

ethylene, both pathways act in the same direct@ramote the ethylene response.

Common to both pathways are several regulatorybi@eldloops. For example, in the
presence of ethylene, EIN3 accumulates and prone®ER (link 12 in Table S1), which is
an inhibitor of ethylene signalling (link 9 in Ta&$§1). Downstream ethylene signalling both
positively and negatively regulates levels of tiHdRR2 receptor (links 17, 18 in Table S1);
and ethylene signalling both positively and negdyivegulates the activity of ETR1 through
expression of the ETR1 receptor activators RTE1RI, which are upregulated (link 19 in
Table S1) and inhibited (link 20 in Table S1) blyyé¢ne respectively. Indirect feedback
loops also exist. For example, ethylene signallegulates auxin biosynthesis (link 15 in
Table S1) and auxin transport (link 16 in Table, 8#)ich affects auxin concentrations,
patterning and signalling and in turn, ethylene eytdkinin metabolism and signalling

pathways.

Similar to the ethylene signalling pathway, botkiawand cytokinin pathways also display
complex relationships involving metabolism, sigimglland gene expression. Another layer
of crosstalk complexity is that expression of mgeyes is regulated by more than one

hormone, as revealed by integrating the experirhdata (Figure 1 and Table S1).

Both ethylene and cytokinin regulate the ARRS5 cyitioik reporter

The Arabidopsis ARRS gene, commonly used in cytokinin reporter conssr@é/erner et al.,
2003; Zurcher et al., 2013) but regulated by bgtbkinin and ethylene signalling, provides
an example of crosstalk between different hormpa#thways. The application of cytokinin
initiates the phosphorelay function of the cytokineceptors, which in turn phosphorylates
and activates the Type-/A&abidopsis transcriptional response regulators (ARRS) (liB&s
31, 33 in Table S1). The Type-B ARRs then upregullaé Type-A ARRs (link 38 in Table
S1), which are not transcription factors but inhibype-B activity (link 39 in Table S1).
ThereforeARRS (a Type-A ARR) is upregulated in the presenceytdlanin due to the
action of the links 30, 31, 33 and 38 in Table S1.

In the presence of ethylene, both the CTR1-depdratehCTR1 independent ethylene
pathways upregulate the activity of EIN3, whicliagarded as a key transcription factor
promoting ethylene signalling. However, EIN3 atematively regulates the Type-A
Arabidopsis response regulatofsRR5, 7, 15 (link 11 in Table S1), which are components in
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the cytokinin pathway. Therefore, all ARR5-driveriakinin response reporters reflect a
combination of both cytokinin and ethylene activity addition, since Type-A ARRs are
negative regulators of Type-B ARR activity (link B8Table S1), downstream ethylene
signalling can also positively regulate the cytakipathway, in turn affectingRR5

expression. We note that link 11 in Figure 1 wdaldshed based on experimental data from
both rosette leaves and whole seedlings but naifsgly from roots; however EIN3 was
shown to bind th&RR5 promoter and the addition of ethylene downregdl&feR5

expression in seedlings. Additional experimentsrageiired to verify this link in roots and

how it could potentially regulate root development.

Figure 1 and Table S1 also reveal additional catissinks between auxin, cytokinin and
ethylene. The example detailed below demonstrhtdsritegrating the experimental data
suggests the existence of an additional third etig/kignalling pathway.

Components in the cytokinin pathway form part otlaird ethylene signalling pathway
which acts in the opposite direction to the CTR1péadent and -independent ethylene
pathways

Figure 1 and Table S1 reveal an additional linkveein the ethylene and cytokinin pathways,
which has been largely overlooked, through a pregghosphorelay interaction (Shakeel et
al., 2013; Mason and Schaller, 2005).

In the absence of ethylene, this pathway is imtdiy the histidine kinase activity of the
subfamily 1 ethylene receptors ETR1 and ERS1 @ihkn Table S1), which phosphorylates
and activates ARR2 in the cytokinin pathway (lirki@ Table S1), resulting in the
upregulation oERF1 in the ethylene pathway (link 25 in Table S1) ¢sigively regulate
ethylene signalling (link 14 in Table S1).

There are numerous experimental results indicahagsuch a pathway could exist. As early
as 1995, an ‘ethylene-independent’ pathway wasesigd, since cytokinin application
produced a partial ethylene response in seedliegsetd with the ethylene biosynthesis
inhibitor AVG (Cary et al., 1995). Further eviderfoem later experiments show that, in the
absence of ethylene, ERS1 can promote ethylenalbign(and growth inhibition)
dependent on ETR1, since the addition ofefs¢ null mutant to any ethylene receptor
mutant background, not containi&€RSL wildtype (WT) or mutant but containing WT ETR1,
partially reversed the mutant phenotype and gromtitbition (Liu et al., 2010a). It was also
demonstrated that ERS1 could act as both a positidenegative regulator of ethylene

7



210
211
212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228

229
230
231

232
233
234
235
236
237
238
239
240
241

signalling and response (Liu et al., 2010a). Detetf the histidine kinase activities of the
subfamily 1 receptors ETR1 and ERS1 was also showeduce ethylene-response
sensitivity compared to WT (Hall et al., 2012), imgadicating that the subfamily 1 receptors
can act to promote ethylene signalling. Invesigaof phospho-transfer interactions
between the ethylene receptor ETR1 and ARR2 iytekinin pathway, and of the
relationship between ARR2 aidRF1 where ARR2 was shown to upregul&fef1 in the
ethylene pathway, provided additional informationtbe likely components and interactions
involved in this proposed pathway (Hass et al. 20®RIthough these experimental data
demonstrate the link between ETR1 and ARR2 andesiggpotential link between active
ARR2 and ethylene signalling, whether or not thik Influences a specific developmental
process should be carefully considered. Furtheemx@nts are required to explore how this
link potentially regulates root development.

Integration of experimental data into a crosstatwork (Figure 1) therefore suggests the
existence of a third ethylene signalling pathwaat tcts in the opposite direction to the other
two pathways, where, in the absence of ethylen@pinotes ethylene signalling in contrast
to the CTR1-dependent and -independent pathwayshvahippress ethylene signalling. As
demonstrated in Figure 1, the CTR1-dependent awggpiendent pathways meet at EIN2 and
then continue through ERF1 where they merge wighéthethylene pathway which links to
ERF1 via ARR2 from the cytokinin pathway.

The third ethylene pathway, involving componentstbé cytokinin pathway, resolves
outstanding questions on whether ethylene applicatpromotes or inhibits receptor kinase

activity of the ethylene receptors

Whether ethylene application acts to promote oibibkhe kinase activity of the ethylene
receptors remains unresolved (Merchante et al3201ivivo studies have shown that
ethylene inhibits kinase activity in tomatoes (Kgashihara et al., 2012); other results found
that ethylene suppresses the auto-phosphorylattoritg of bacterially expressed ETR1
(Voet-van-Vormizeele and Groth, 2008); and simigsults were also found using purified
ETR1 (Bisson and Groth, 2010). Nevertheless, theatrast to observations where kinase
inactive etrl protein was expressed in subfamiipable null mutant background seedlings,
etr1-9 ersl-3. Since active ethylene receptors (in the absehethglene) are thought to
negatively regulate ethylene signalling, the expa@cesult was that the mutants with inactive
(or partially inactive) receptors would show anreased response to ethylene compared to
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WT. However, the kinase inactive etrl expressdtierndouble nulktr1-9; ersl-3 showed a
significant decrease in ethylene dose response a@upo WT (Hall et al., 2012). Moreover,
the expression levels of ethylene-induced genes ogrer in the kinase inactiwatr 1 line
compared to the WT (Hall et al., 2012). These tattsults appear contradictory to the earlier
findings which indicate that ethylene inhibits net activity. Since subfamily 1 receptors
are the only receptors to have histidine kinaswifgcttwo possible reasons were proposed:
first that ethylene promotes (not inhibits) thetidise kinase activity of ETR1; or second, the
existence of an additional CTR1-independent etleyfthway involving histidine kinase

activity and a phosphotransfer relay (Hall et2012).

The question of whether ethylene promotes or ithiistidine kinase activity of the
subfamily 1 receptors arose due to the results tiathet al. (2012) combined with the
assumption that ethylene application always prometkylene signalling. Since the third
pathway acts in a different direction to the ottves pathways and inhibits ethylene
signalling in the presence of ethylene, it remabhesassumption that ethylene must always
induce ethylene signalling. This resolves the amiding question since the assumption that
ethylene inhibits kinase and receptor activityasvrconsistent with all available

experimental results.

This example also demonstrates how experimentalfdain multiple signalling pathways
can be combined to address apparently contradicésts that arise when a single hormone
signalling pathway is analysed in isolation andhait considering regulatory cross-links to

other pathways.

Cytokinin concentration and signalling is regulateoly the kinase activity of the ethylene
receptors

As shown in Figure 1, the kinase activity of thefaumily 1 ethylene receptors initiates a
phosphorelay cascade that phosphorylates and @ssid&R2 (links 21, 22 in Table S1).
Since ARR2 upregulates cytokinin oxidase (link a3 able S1), decreases in ETR1 and
ERS1 receptor activity should reduce the activitgydokinin oxidase and result in increased
cytokinin concentration. We note that, althougls tleigulatory relationship is based on
experimental observations (Hass et al., 2004), Wdrair not such a regulation occurs during
root development requires further study. PLSpsanoter of ETR1 receptor activity
(Casson et al. 2002; Chilley et al. 2006) anddfoze a reduction in PLS should result in a
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decrease in ETR1 activity and an increase in cginkdoncentration. This is confirmed in
experimental results for thgés null mutant where there was a 1.42 median folahgkan

cytokinin concentration compared to wildtype (Litaé, 2010b).

The presence of multiple ARR2 binding motifs in fremoter regions of cytokinin-induced
genes has led to the suggestion that ARR2 couldasch master regulator of cytokinin
signalling responses (Hwang and Sheen, 2001). fdrer¢he histidine kinase activity of
ETR1 and ERS1, which has been shown to regulatphtbsphorylation state and activity of
ARR?2 (links 21, 22 in Table S1), potentially pog#lly regulates general cytokinin signalling
through ARR2. Ethylene signalling also inhibits AREirough EIN3 (link 11 in Table S1).
Since ARR5 acts as an inhibitor of cytokinin sidingl, the application of ethylene can both
positively and negatively regulate cytokinin sidmag by interactions between ethylene and
cytokinin pathways, through ARR5 and ARR2 respetyiv

The auxin and cytokinin pathways are cross-linke@\sHY?2

SHY?2 acts in both the auxin and cytokinin pathwangd therefore functions as a 2-way link
between the two pathways. In the cytokinin pathveayivated transcription factors ARR1
and ARR12 (Type-B) upregulagY2 (link 48 in Table S1). However, SHY2 inhibits
activities of IPT enzymes to reduce cytokinin biathesis (links 66, 46 in Table S1),
introducing a negative feedback loop where cytaksignalling limits its own synthesis.

SHY?2 also acts in the auxin pathway as an Aux/lAKia signalling repressor (link 64 in
Table S1), and is degraded in the presence of aaxemove the inhibition and release auxin
signalling (link 61 in Table S1). In addition, SHYf#hibits transcription of the auxin efflux
carriersPIN1, 3, and7 (link 67 in Table S1), so regulating auxin trang@md distribution.

By acting in both pathways, SHY?2 also functionadisk between the two pathways so that
auxin signalling regulates cytokinin signalling aride versa. For example, upregulation of
SHY2 by cytokinin will act to inhibit auxin signallinfinks 48, 64, 65 in Table S1) while
degradation of SHY2 by auxin increases cytokinwsinthesis (links 61, 66, 46 in Table
S1). SHY2 therefore plays a complex regulatory meleoth the cytokinin and auxin

signalling pathways.
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Downstream auxin signalling also upregulates Typ&RR7 andARR15 (link 69 in Table
S1). Type-A ARRs act as inhibitors of Type-B ARRBK: 39), and therefore potentially
downstream auxin signalling downregulates SHY 2vagt{links 69, 39, 48 in Table S1), to
further promote auxin signalling (links 64, 65 iable S1).

Auxin signalling downregulates cytokinin signallinghrough AHP6

AHPG6 introduces another regulatory link betweenatein and cytokinin pathways.
Downstream auxin signalling promotes the transionpdf AHP6 (link 68 in Table S1) and
so inhibits the phosphorelay transfer cascade gudiain signalling (links 36, 31 in Table
S1). This, in turn, links back into the auxin pa#tywthrough SHY?2 as described above.

Auxin self-regulates it's own transport and cytokimbiosynthesis through auxin response
factors (ARFs)

Auxin response factors (ARFS) act via several iffié pathways to regulate auxin transport,
directly and through the cytokinin signalling patiywand to also regulate cytokinin
biosynthesis. In addition to the canonical auxgnalling pathway (link 65 in Table S1),
ARFs act by the direct regulation of PIN auxin sparters, by the indirect regulation of PIN
transporters through cytokinin response factorsR§)Rand by the direct regulation of
cytokinin biosynthesis genes, as follows. The augsponse factor ARF5/MP
(MONOPTEROS) directly upregulat®N1,3,7 and ARF7 directly upregulat&N3 (link

78 in Table S1). ARF5/MP also upregulates the agiokesponse factor ger@RF2 (link 77
in Table S1) which regulaté¥dN1 andPIN7 in conjunction with CRF3 and CRF6 (link 57 in
Table S1). Furthermore, ARF7 has been shown togupate the cytokinin biosynthetic
enzymes IPT5 and IPT7 (link 79 in Table S1).

Crosstalk regulates auxin transporters and hormopatterning

All of the ethylene, cytokinin and auxin signallipgthways have been shown to regulate
auxin cellular influx and efflux carriers (links 180, 51, 54, 75 and 76 in Table S1). The
polar properties of the auxin efflux carriers ebsdibthe classical auxin patterning with the
maximum auxin response occurring in the quiescentre region of the root tip (Grieneisen
et al., 2007). It is thought that auxin patternimi@ key driver for patterning of the other

hormones, which in turn also influence auxin paitey (Liu et al., 2014). The crosstalk
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regulation of the auxin influx and efflux carridorg all three hormones therefore plays an
important role in regulating hormone patterning] anbsequent gene expression and root

development.

Complex regulatory loops modulate hormonal signalj

Examination of the network in Figure 1 reveals ntous examples of positive, negative and
duplicate regulatory loops. Figure S1 highlighwraple example from within each of the
three pathways. Figure S1la shows that ethyleneqtemsignalling by increasing the
degradation of EBF1,2, the accumulation of EINBIEANd the upregulation of ERFL1.
Signalling is simultaneously inhibited by the upxkgion of EBF2. Figure S1b shows that
auxin promotes signalling through two pathwaysptighAUX/IAA and also througBHY2.
Inhibition of PIN1, PIN3 and PIN7 b$HY2, in turn, affects auxin concentration or
responses. Figure S1c shows that cytokinin sigrpls self-regulated by the phosphorylation
and activation of the Type-B ARRs (including ARR2)d the simultaneous upregulation of
cytokinin degradation through ARR2 and CKX. Additad and far more complex regulatory
loops can be identified when signalling betweerywalys is taken into consideration.

Therefore, depending on the relative balance ahbaoe patterning and the associated signal
pathways, the outcome from a given hormone stimetwsd vary depending on which
regulatory factor dominates in a different arethefroot or under a different set of
conditions. Thus, the outcomes from the crossthlugin, cytokinin and ethylene are

essentially nonlinear and unintuitive.

TACKLING THE COMPLEXITY IN AUXIN, CYTOKININ AND ETH  YLENE
CROSSTALK IN ARABIDOPSIS ROOT DEVELOPMENT: A METHOD OLOGY
THAT ITERATIVELY COMBINES EXPERIMENTS AND SYSTEMS M ODELLING

Figure 1 and Table S1 demonstrate that auxin, @yitolnd ethylene form a complex
hormonal crosstalk network that regulates root tgrment. A hormonal crosstalk network is
a type of network that consists of gene expressigmal transduction and metabolic
conversions (Liu et al., 2014). Therefore, analyshe action of such a network requires a
model that integrates these different processef#nibg a hormonal crosstalk network model
for root development needs careful consideratiosewkral different factors (Moore et al.,
2015a; 2015b); including the relationships betwé®nmones and the associated genes;
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formulation of kinetic equations following thermawmic and kinetic principles; spatial root
structure; transport kinetics for all hormonal atatk components; and parameterisation of a

hormonal crosstalk model.

Modelling the individual gene expression, signahsduction and metabolic conversion
processes in a hormonal crosstalk network necessitlae development of complex models.
For example, modelling the regulation of gene esgimn requires a range of models from
Boolean network to ordinary differential equationdels (Karlebach and Shamir, 2008).
Modelling signalling transduction needs to propddsmulate kinetic equations following
thermodynamic and kinetic principles (Klipp et 2009). Modelling metabolic conversions
must examine how metabolic flux is controlled (F&897). It is therefore evident that
modelling the action of a hormonal crosstalk neknara spatial root structure presents a

very challenging task, as discussed below.

In principle, a possible way to reduce the compeaf modelling a hormonal crosstalk
network in a spatial root structure is to modelalsgon of one hormone at a time. Some

important modelling efforts have concentrated anahalysis of auxin patterning.

Modelling auxin patterning

Auxin patterning in the Arabidopsis root is predoamtly regulated by auxin transport
proteins (Zazimalova et al., 2010), which includ4HFORMED (PIN) proteins (PINs)
(Adamowski and Friml, 2015), the AUX1/LIKE-AUX1 (AX11/ LAX) family of influx
carriers/channels (Swarup and Peret, 2012), andBI@B transporters (Geisler and Murphy,
2006; Cho and Cho, 2012). How auxin transportegsilate auxin patterning is an important

modelling topic.

Grieneisen et al. (2007; 2012) developed a modeldimulates intercellular auxin flow
through a generalised rectangular root systemnitael includes auxin influx from the
shoot to the root, local auxin biosynthesis andagemflux across the plasma membrane
from the cell walls into the cytosol mediated byquitous AUX1 protein concentration
levels, and auxin efflux from the cells into thdl eealls mediated by polar PIN proteins. A
generalised PIN protein is represented in the @rsam et al. (2007; 2012) model, which
only includes PIN1, PIN2 and PIN3. Depending antifpe of cell within the generalised

rectangular root system, the model prescribes gldrconcentration at the plasma
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membrane. Based on model simulation results lax-#dop mechanism was proposed to
explain how PINs establish and maintain the auradignt in the Arabidopsis root
(Grieneisen et al., 2007; 2012). The core of tllexdoop mechanism is that auxin is
transported from the vasculature to the root tigh daen PIN activity transports auxin laterally
from the quiescent centre. The modelling analfSiseneisen et al., 2007; 2012) suggests
that PIN transporters are sufficient to generageatlxin gradient and supports the hypothesis

that auxin gradients are sink-driven (Friml et 2002).

Also using a generalised rectangular root systeimgrva et al. (2010) developed a model
that only considers PIN1 protein localization. Thedel assumes that auxin promotes PIN1
biosynthesis at low concentration and PIN1 degradait high concentration. Therefore,
auxin is an activator of PIN1 protein at low conication and an inhibitor of PIN1 protein at
high concentration. Therefore, increasing auxinceoiration to a threshold increases PIN1
protein concentration, while, once auxin conceitrais increased over the threshold,
increasing auxin concentration decreases PIN1 iprotacentration. Based on the model
simulation, a reflected-flow mechanism for the fatian of the auxin maximum in the root
apical meristem was proposed to explain how PINdbéishes and maintains the auxin
gradient in Arabidopsis root (Mironova et al., 2D1@lthough the reflux-loop mechanism
(Grieneisen et al., 2007; 2012) and the reflecled-fnechanism (Mironova et al., 2010)
consider different aspects of PIN proteins, botbpsut the hypothesis that auxin gradients

are sink-driven (Friml et al., 2002).

Although the models that consider that PIN profamrction in transporting auxin (Grieneisen
et al., 2007; 2012; Mironova et al., 2010) canldsth auxin gradients in the Arabidopsis
root, a simple analysis of the relationship betwaexin influx and efflux suggests that
AUX1 influx must be at least equal to PIN effluxaaoid auxin depletion in the cells
(Kramer, 2004). Experimental measurements also shata majority of auxin influx into
protoplasts is mediated by the influx carrier AUR5%) and other saturable carriers (20%)
at pH 5.7 (Rutschow et al., 2014). This implied thd X1 influx is also important for
establishing auxin gradients. Band et al. (2014etged a model to investigate the role of
AUX1/LAX proteins in auxin gradients. A significaatlvance of this model is that
intercellular auxin flow is simulated in actual ta®ll geometries, rather than a generalised
rectangular root structure. By combining modellamglysis with experimental

measurements, they found that AUX1 activity is aksguired to create the auxin gradient at
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the root tip (Band et al., 2014). Specifically, titmnpolar AUX1/LAX proteins act to retain
cellular auxin and control which tissues have tagRin levels, whereas the polar PIN
proteins control the direction of auxin transpoithm these tissues (Band et al., 2014).
Therefore, modelling analysis supports the view bimh PIN proteins (Grieneisen et al.,
2007; 2012; Mironova et al., 2010) and AUX1/LAX prms (Band et al., 2014) are

important in generating auxin patterning in Aralgpdis root.

The ABCB transporters (Geisler and Murphy, 20069 @hd Cho, 2012) can reversibly
redirect auxin flux. There is no model specificalyalysing the role of the ABCB
transporters in root development. However, a recemtbined modelling and experimental
study shows that the less-polar transport acts/bieABCB proteins are also required to
explain auxin patterning for the growing shoot s plant (Bennett et al., 2016). Auxin
patterning depends not only on the high-polar frartsby PIN proteins, but also on the
widespread less-polar transport activities of AB@Bteins. A new mechanism for auxin
patterning, termed Connective Auxin Transport (CATs been formulated (Bennett et al.,
2016).

In addition, modelling of auxin patterning has begplied to study various aspects of root
development. For example, a combined experimenthhaodelling analysis suggested that
synchronous bursts of cell death in lateral ropt @alls release pulses of auxin to
surrounding root tissues, establishing the pafiarfateral root formation (Xuan et al.,
2016). A modelling analysis investigated how aegymmetry is generated during
halotropism and modelling results were confirmeckyerimental measurements (van den
Berg et al., 2016).

These modelling efforts unsurprisingly suggest eiats, AUX1/LAX, and ABCB proteins

all play their roles in auxin patterning. Howevierwhat extent each transporter class
contributes to auxin patterning remains an impareanstanding question. To address this
guestion, the auxin permeability of each classarigport proteins needs to be experimentally
measured. Modelling analysis needs to use theriexgetal data and integrate all
transporters into an integrative system. A recemdelling effort has explicitly integrated

PIN1, PIN2, PIN3, PIN4, PIN7, AUX1, LAX2, and LAX&s well as including the activities
of ABCB into the background activities of PINs alldX1/LAX (Moore et al., 2017). By

formulating a Recovery Principle, Moore et al. (ZP&howed that auxin patterning is
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468 potentially controlled by multiple combinationsioferlinked levels and localisation of influx
469 and efflux transporters. The corresponding relatgm of influx and efflux levels and

470 polarity, rather than the individual activitiesioflux or efflux transporters, controls the

471 formation of an auxin pattern (Moore et al., 201Therefore, these recent conceptual

472 developments, i.e., Connective Auxin Transport {CMennett et al., 2016) and the

473 Recovery Principle (Moore et al., 2017), shouldabke to further elucidate the role of each
474 class of transporters (PINs, AUX1/LAX, and ABCB)dnantitatively controlling auxin

475 patterning in root development in the future. ldli&idn, since most PIN proteins have a polar
476 cellular distribution and lead to directed auxanigport across only those plasma membranes
477 where PIN proteins are localised (Blilou et al.02)) the mechanisms of polar auxin

478 transport could also be further explored by examgithe established flux-based and

479 concentration-based models (van Berkel et al., 28fdna et al., 2008).

480

481 Modelling crosstalk between auxin and cytokinin

482  Sixty years ago, the importance of the interachietween auxin and cytokinin in root and
483 shoot development and the maintenance of cellfpration was shown through experiments
484 on cultured tobacco callus (Skoog and Miller, 195X)variety of experimental data support
485 the interaction between auxin and cytokinin to taguvarious aspects in patterning of root
486 development (Schaller et al., 2015). In particullae, interaction between auxin and cytokinin
487 plays a central role in regulating the size ofriteristem and root growth (Dello loio et al.,
488 2007; 2008; Ruzicka et al., 2009). Figure 1 andd &4 illustrate the complexity of these
489 interactions between auxin and cytokinin.

490

491 Muraro et al. (2011) developed models that conditercrosstalk between auxin and

492 cytokinin in a single cell, and in generalised ai@ensional or two-dimensional root

493  structures (Muraro et al., 2013; 2016). They usedmodels to study how cytokinin affects
494 auxin-regulated gene expression and how tissuafgpescillations in gene expression can
495 Dbe generated by the interaction between auxin gukioin (Muraro et al., 2011; 2013). In a
496 recent model, they extended the interaction betvaeem and cytokinin to include

497 gibberellin (Muraro et al., 2016). The model siatidn predicted that some unknown

498 components are required for regulating meristem, sind they experimentally searched for
499 candidates for these components.
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In addition, modelling of auxin and cytokinin crtak& has also been used to elucidate root
vascular patterning. Muraro et al. (2014) cong&d@ cross-sectional multicellular root
geometry to study how a gene regulatory netwomdgleged by both auxin and cytokinin, can
establish and maintain vascular patterning. DeeRgbal. (2014) studied how the interaction
between auxin and cytokinin regulates vasculaepatig during embryogenesis. el-Showk
et al. (2015) developed a parsimonious model ofwas patterning to link transverse auxin
fluxes to lateral root initiation. These three ralsdall included PIN functionality and
crosstalk between auxin and cytokinin, to demotestize importance of the interaction
between auxin and cytokinin in elucidating rootatdar patterning. Mellor et al. (2017)
further analysed these models and highlightedalwnsensus on whether or not there is a

meaningful gradient of cytokinin in the root canbetestablished by the three models.

The measurement of cytokinin levels in the rootigpected an intracellular gradient of
cytokinin in the apical part of the primary rootifRivmaximum concentrations in the lateral
root cap, columella, columella initials, and quessiccentre cells (Antoniadi et al., 2015).
However, the modelling results for the gradientytbkinin in the root (Mellor et al., 2017)
were not compared to these experimental measursnt&nte an intracellular gradient of
cytokinin does exist in the root (Antoniadi et @015), future modelling analysis should
explore how this gradient is established in the esml how the interaction between auxin and

cytokinin regulates this gradient.

Modelling crosstalk between auxin, cytokinin andhgtene

The crosstalk between auxin, cytokinin and ethyieneot development includes the
interplay of different layers of complexity in geagpression, signal transduction and
metabolic conversions (Figure 1, Table S1). Tha Btep in developing a model for crosstalk
between auxin, cytokinin and ethylene is to extkast information from a range of

experimental data.

A hormonal interaction network for a single Araljdcs cell in the root was developed by
iteratively combining modelling with experimentadadysis (Liu et al., 2010b; 2013). It was
described how such a network regulates auxin cdret@n in the Arabidopsis root by
controlling the relative contribution of auxin ioR, biosynthesis and efflux, and by
integrating auxin, ethylene and cytokinin signalas well as PIN and POLARIS (PLS)
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peptide function. Th@LS gene of Arabidopsis transcribes a short mMRNA eimgpd 36-
amino-acid peptide that is required for correct igrowth and vascular development (Casson
et al., 2002). A model that integrates the actibauxin, ethylene, cytokinin, PINs and the
PLS gene reveals that the interaction between PL3P4Nd are important for the crosstalk
between auxin, ethylene and cytokinin (Liu et2013). Since this is a single cell model,
essentially it can only study the average actioallaells in the root and is unable to examine

the spatial patterning of any hormone.

Subsequently, a model was developed to study ttterpang of auxin, cytokinin and
ethylene PIN1 andPIN2 expression, as well &S expression through a generalised
rectangular root structure (Moore et al., 2015¢)e Todel reproduces auxin patterning and
trends in wild-typepls mutant,etr1 mutant, angls andetr1l double mutants. It reveals that
coordinated PIN and AUX1 activities are requiredjémerate correct auxin patterning; and it
also correctly predicts shoot to root auxin flanxin patterning in thauxl mutant, the
amounts of cytokinin, ethylene and PIN protein, &t protein patterning in wild-type and
mutant roots. Importantly, the modelling analysigter reveals how PIN protein patterning
is related to the PLS protein through ethyleneaigrg (Moore et al., 2015c). Modelling
predictions ofPLS expression patterning are confirmed experimentalys study
established how auxin and gene expression pattemitne Arabidopsis root can emerge in
the context of gene expression, signal transdueti@hmetabolic conversions.

Modelling crosstalk regulation of auxin, cytokirand ethylene patterning in root
development requires the integration of a variétgxperimental data (Figure 1 and Table
S1) within a root structure. A schematic descriptixd a methodology on how to combine

experimental and modelling analysis is describegiguire 2.

---Figure 2 here---

A generalised rectangular root structure for mangltrosstalk regulation of auxin, cytokinin
and ethylene patterning in root development (Gisareet al., 2007; Moore et al., 2015c) has
several drawbacks that may hinder the analysi®ohbnal crosstalk. Firstly, it does not
consider the actual size and geometrical shapelisfia the root. Secondly, it does not
include all cell types. Thirdly, it cannot propedgscribe cell wall structure, and fourthly, it

cannot describe the extracellular matrix. Thusethod was developed to digitise a root
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structure (Moore et al., 2017) that is constructeithg experimental imaging (from Band et
al., 2014). Significant advances of the realistiatrgeometry are that each cell has its own
cell wall, and the extracellular matrix is realtstily related to the shape of each cell, as
shown in Figure 3. These important features wetenatuded in other modelling analysis
(Band et al., 2014; Grieneisen et al., 2007; Miranet al., 2010; Moore et al., 2015c).

---Figure 3 here---

In each cell, auxin, cytokinin and ethylene, adl we other molecules involved in gene
expression, signal transduction and metabolic csiwe processes form a crosstalk network.
To analyse such a complex system (Figure 1 andeTab), it is necessary to decide how to
simplify the network to study specific biological@stions and how to validate the simplified
network using experimental measurements. By itegbticombining modelling and
experimental measurements, we have constructeakatatk network between auxin,
cytokinin and ethylene (Liu et al., 2010b; 2013;dvi®et al., 2015c; 2017; Figure 4). This
network was computationally examined to elucidate lauxin, cytokinin and ethylene
interact within the root.

---Figure 4 here---
After parameterising the model (Liu et al., 201Btmore et al., 2015c, 2017), the model
makes various predictions that can be validatedtbgr independent experiments or that can
be used to design novel experiments, as summandgddure 5. Figure 5a shows that, after
parameter fitting using experimentally derived imagMoore et al., 2015c; 2017), modelled
auxin patterning is similar to its experimental otmrpart (Moore et al., 2015c; 2017).

Predictions about the rate of auxin biosynthesuifiierent areas of the root (Figure 5b),
percentage changes in PIN1, 2 patterning relatiweld-type after 100% loss of PIN3
activity (Figure 5c¢), and percentage changes inlRINd PIN 2 patterning relative to wild-
type after 100% loss of the activity of PINs 3aAd 7 (Figure 5d) are validated by
independent experiments shown in Petersson 2@9), Omelyanchuk et al. (2016) and
Blilou et al. (2005), respectively.

Specifically, Figure 5b predicts that auxin bio$)etis increases towards the Arabidopsis
root apex. In the QC and columella, auxin biosysitheates are high. In the epidermal cells
of the elongation zone, auxin biosynthesis ratesatmo relatively high. These modelling
predictions for auxin biosynthesis rate patterrang similar to those found by experimental

observations (Figure 5 in Petersson et al., 208i8ure 5c¢ predicts that the PIN1 expression
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domain extends further to the elongation zone @)% loss of PIN3. This prediction is
similar to experimental observations (Figure 6 mé&yanchuk et al., 2016). Figure 5d
predicts that PIN1 and PIN2 concentrations increasiee plasma membrane of vascular
cells for the combined 100% loss of PIN3, PIN4 &hd7. This is similar to experimental

observations for thpin3pindpin7 triple mutant (Blilou et al., 2005).

These similarities imply that the model has colyeictegrated the experimental knowledge
available in the literature (Figure 1 and Table. hey also point to novel experimental
directions. For example, novel experiments neeatittress how auxin biosynthesis pathways
(Zhao 2010; 2014) are regulated by auxin, cytokamd ethylene to generate the auxin
biosynthesis pattern in Figure 5b. Figures 5c ahde§uire further experimental
measurements to establish whether patterning ceasfg@iN1 and in PIN2 in the mutants

are regulated at gene expression or at other levels

Predictions of percentage changes in auxin corgtgonrpatterning relative to wild-type after
20% loss of AUX1 and LAX2, 3 activity (Figure 5&nd after 20% gain of AUX1 and
LAX2, 3 activity (Figure 5f), and percentage chasigeauxin concentration patterning
relative to wild-type (auxin apoplastic diffusioate: 220um? s*) after reducing auxin
apoplastic diffusion rate to 20m? s* (Figure 5g), require novel experimental design for
validation. The prediction about patterning of éytin concentration (Figure 5h) is largely
different from experimental observations (Antoniatal. 2015) and therefore raises further
guestions for future research. For example, whiold kf regulatory relationships in Figure 4
should be further explored to generate cytokinitigpaing that is in agreement with
experimental observation? What are the roles tkoyin transporters (Zurcher et al., 2016),
metabolism (biosynthesis and degradation), andsldh in controlling cytokinin patterning?
How is auxin and cytokinin patterning regulatedelagh other?

---Figure 5 here---
The development of a systems model, as summandéegires 2-5, establishes the causal
guantitative relationships for the crosstalk betvaaxin, ethylene and cytokinin. Due to the
predictive nature of systems modelling, auxin, kthg and cytokinin crosstalk can be
rationally studied by cycling between experimemtd modelling, and then back to
experiments (Figures 2-5).
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The importance of developing a systems modellimy@gech has been further demonstrated
by elucidating how the metabolism and/or signalligne hormone affects the metabolism
and/or signalling of another hormone. Figure 6 samses how modifying ethylene
signalling affects auxin concentration.

--- Figure 6 here ---
Experimental data have demonstrated that manipulatiPLS gene or the ethylene receptor
protein ETR1 alters ethylene signalling responses§0n et al. 2002; Chilley et al., 2006; Liu
et al., 2010b). Figure 6 shows that modelling prealns of the trend in average auxin
concentration fopls, etr1 mutant pls-etrl double mutant, and the PLS overexpressing
transgenic, PLSox, are in agreement with experiai@fitservations (Moore et al., 2015c). In
the pls mutant, auxin concentration is lower than thawilltype (Chilley et al., 2006). In the
plsetrl double mutant, auxin concentration is higher timgols mutant, but still slightly
lower than that in wildtype. In PLSox, auxin contration is higher than that in wildtype.
This example demonstrates that systems modelliagpm®werful tool for elucidating how

ethylene signalling regulates auxin concentratiothe root development.

Some important aspects of linking experimental datdh systems modelling

In principle, all links described in Figure 1 coldd integrated into a hormonal crosstalk
network and such a network could be combined vath architecture (Figure 3), to develop

a systems model. This is because all links in [eduare associated with the actions of auxin,
cytokinin and ethylene. However, in practice, itisrently impossible to develop a model
that includes all experimentally determined linke anainly to the lack of experimental data
for formulating regulatory relationships and kigetquations suitable for modelling analysis.
As will be discussed below, whether or not theeesaufficient experimental data available

for formulating regulatory relationships and kietquations is an important consideration

when a systems model is developed.

First, a model for the crosstalk between auxingkiytin and ethylene should include links
describing the biosynthesis, degradation and tiahgh the three hormones. This is simply
because these links together control the levdi®tiiree hormones and therefore form the
core part of the model, Figures 3 and 4. The lareqjuations for these links should be
formulated using experimental data. For examplpegriental data show that exogenous
application of cytokinin may reduce the endogereuwsn concentration (Nordstrom et al.,

2004). The genes involved in auxin metabolismd#ferentially expressed in response to
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altered cytokinin levels and/or responsivenesg/tokinin in Arabidopsis (Jones and Ljung,
2011). Thus, we may consider that auxin concepimasi regulated by cytokinin via gene

expression and formulate the kinetic equation atingty (Moore et al., 2015b).

Second, whether other links should be included wegpen whether experimental data
indicate that these links are important for regnatoncentration or signalling of auxin,
cytokinin and ethylene. For example, the followagerimental observations indicate that
PLSgene is important for the crosstalk between awcyitgkinin and ethylene. In thgs

mutant, auxin concentration is reduced, cytokiminaentration is enhanced and ethylene
production remains approximately unchangeshpared to wild-typgCasson et al., 2002;
Chilley et al., 2006; Liu et al., 2010b). In tReSoverexpressing transgerit. Sox, auxin
concentration is increased, while ethylene prodaatemains approximately unchanged. In
the ethylene resistapts etr1 double mutant, auxin concentration is approxinyatetovered

to the same level as that in wild-type seedlingssgon et al., 2002; Chilley et al., 2006; Liu
et al., 2010b). In addition, expression of BieS gene ofArabidopsisis repressed by ethylene
and induced by auxin (Casson et al., 2002; Chélegl., 2006). Furthermore,
immunolocalization studies reveal that both PINiy@Fe 1) and PIN2 protein levels increase
in thepls mutant, and decreasePb.Sox (Liu et al., 2013). In the ethylene-insensitatel
mutant, PIN1 and PIN2 levels are lower than thosgiid-type. The double mutapts etrl
exhibits reduced PIN1 and PINZ2 levels comparead@nd slightly lower PIN1 and PIN2
levels compared to wild-type (Liu et al., 2013).eféfore, experimental data have shown that
thePLS gene plays important roles in the crosstalk betvaexin, ethylene and cytokinin.
Thus, the links describing the actionRi{S gene are included in the model (Figures 3 and 4).

Third, linking experimental data with systems mdidglneeds to consider different
developmental processes. The digital root, Figurehich was constructed using an
experimental image of Arabidopsis root (Moore et2017), includes a fixed number of cells
(Figure 3a). Strictly speaking, a combination ajufe 3 and Figure 4 can only study the
crosstalk described in Figure 4 in the spatiairsgtf Figure 3. In other words, the model,
Figures 3 and 4, can only be applied to study thestalk between auxin, cytokinin and
ethylene at the developmental stage as describ&tye 3. For a different developmental
stage, a different digital root should be cons&datsing the experimental images for that
stage. The regulatory relationships such as theseritbed in Figure 4 should be established

by examining experimental data for the developniestémge. In Figure 4, a negative
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regulation of auxin biosynthesis by cytokinin isdebed based on experimental results
(Nordstrom et al., 2004). However, Jones et all®2®ave shown that cytokinin positively
regulates auxin biosynthesis in young developisguies. Therefore, for young developing
tissues, an alternative network, in which a positegulation of auxin biosynthesis by
cytokinin is described with all other regulatoryateonships remaining unchanged, can be
constructed. Interesting future work will be to quare modelling predictions from this
alternative network with those for the existingwetk, Figure 4, using modelling analysis.
The outcomes should be able to further elucidaestfects of regulation of auxin
biosynthesis by cytokinin on root development. Thdefining a model for a developmental

process should carefully link experimental datattiat process with model development.

Finally, whether or not an experimental image stemdy-state image should be further
explored. Combination of Figures 3 and 4 is ablsttmly how any component in Figure 4
temporally evolves from its initial spatial settimgFigure 3. Thus, the spatiotemporal
dynamics of all components in Figure 4 can be stidror example, the steady-state auxin
patterning, Figure 5a, is established from a unmifaritial auxin distribution after the

transient period has died out (Moore et al., 20284;7). The final steady-state image, Figure
5a, is compared with experimental images. Howenvkether or not an experimental image
is a steady-state image is an open question tddressed. In principle, two auxin images,
which are experimentally measured at different §inoeuld be compared and their
similarities could inform whether or not an expegimal image has established a steady state.
On the other hand, based on Figure 3, further niindelevelopment should explore the

possibility in developing a root structure, whi@naemporally evolve.

In summary, with a careful combination of experita¢ata and model development,
modelling auxin patterning, crosstalk between aaxid cytokinin, and crosstalk between
auxin, cytokinin and ethylene has exemplified #hatems modelling is becoming a powerful
tool for elucidating the complexity of root deveiognt.

FUTURE CHALLENGES FROM A COMBINED EXPERIMENTAL AND

MODELLING PERSPECTIVE

In this review, we have critically analysed the essmental data accumulated in the literature
over many years and discussed how they can beatéehinto a hormonal crosstalk network

for auxin, ethylene and cytokinin. In particular have demonstrated the complex nature of
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these hormonal signalling pathways and how crodsIbetween different pathways
significantly increase complexity. We further revexd the development of modelling auxin
patterning, crosstalk between auxin and cytokiang crosstalk between auxin, cytokinin

and ethylene. We discussed how modelling can peowisight into the action of auxin,
cytokinin and ethylene in root development andaaity analysed some the possible
limitations of existing models in the literature eMiliscussed how to formulate a methodology
that iteratively combines experiments with systenaslelling analysis and emphasised why
such a methodology is essential for tackling the@exity of crosstalk between auxin,

cytokinin and ethylene in root development.

Here we further discuss some possible future amgdle for investigating hormonal crosstalk
from a combined experimental and modelling perspect

Crosstalk with other hormones and beyond

Crosstalk between auxin, ethylene and cytokininlmafurther expanded to include
additional hormones. For example, DELLA proteins @entral regulators in gibberellin
(GA) signalling and growth. They interact with sassteroids (Chaiwanon et al., 2016),
ethylene (An et al., 2012) and jasmonate (Son¢,e2@l4). It is known that brassinosteroids
and auxin have opposite patterns and effects ¢rloglgation in the root tip, where they
antagonistically regulate growth dynamics (Chaiwaabal., 2015). It is also known that
abscisic acid (ABA) regulates root elongation tlglothe activities of auxin and ethylene in
Arabidopsis (Thole et al., 2014; Rowe et al., 20I®refore, regulation of root
development by brassinosteroids, GA, jasmonateAd8#l can also be integrated into
crosstalk between auxin, ethylene and cytokinideeelop a combined experimental and
modelling study. The combined actions of these loo@s can be analysed as an integrated

system for root development in the future.

In addition to multiple hormones, there are ottegutators that influence root development.
For example, it is shown that boron deficiency lnitsi root cell elongation via an auxin,
ethylene or ROS-dependent pathway in Arabidopsdls®s (Camacho-Cristébal et al.,
2015). Boron deficiency results in early repressiba cytokinin receptor gene (Abreu et al.,
2014). A mathematical model has been developetlitty she spatial distribution of boron in
the root of Arabidopsis (Shimotohno et al., 2015)addition, it is also shown that
polyamines are able to affect Arabidopsis root dgyeent (Gao et al., 2014). Therefore,
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future research could also try to integrate bommh @olyamines with auxin, cytokinin and

ethylene crosstalk.

The role of hormonal crosstalk under differentsdreonditions can also be explored. By
integrating experimental data into hormonal crdkstatworks to formulate a systems view

of root growth regulation by multiple hormones, Roet al. (2016) revealed that ABA
regulates root growth under osmotic stress conditlny acting in a hormonal network with
auxin, cytokinin and ethylene. It was shown th&iPlevels are reduced under osmotic stress
in an ABA-dependent manner, overriding ethylened#; and that the interplay among

ABA, auxin, cytokinin and ethylene is tissue-spiecifis evidenced by differential responses
of PIN1 and PIN2 to osmotic stress. These resmlfdyi that a combined experimental and
modelling study, as exemplified in Figures 2-5histreview, could be further developed to

study plant stress responses in the future.

Different downstream responses of each hormone

It is well established that each hormone is abletulate a wide range of responses. For
example, genome-wide transcriptional responseaxmédnave a broad range of tissue
specificity. Auxin can enhance or repress geneesgion in a cell-type specific manner
(Bargmann et al., 2013; Birnbaum et al., 2003paddition, transcriptional responses to auxin
in root development are involved in a complex medra (Salehin et al., 2015; Weijers and
Wagner, 2016). Therefore, how to establish thdioglahip between the auxin gradient, that
emerges from crosstalk between auxin, cytokininethglene in root development (Figure
5a), and various auxin responses is a challengitugd research problem. Similarly, how
crosstalk between auxin, cytokinin and ethyleneot development interplays with

cytokinin and ethylene responses should also bedg

Hormonal crosstalk in a growing root

In a growing root, the interaction of hormones witbt architecture is dynamic. Cell
elongation and division can change cell shape ahdne, which in turn, may affect
hormone concentration, patterning and responseul&&mn of root growth by auxin was
previously modelled by considering both cell digisiand expansion, using a parsimonious
model (Grieneisen et al., 2007). It is shown thek division in the postembryonic plant
follows certain rules (von Wangenheim et al., 20416J that auxin can override a geometric

division rule for some cells in root developmenbétiida et al., 2014). Therefore, coupling
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the auxin gradient to a cell division rule to exploegulation of root development by
hormonal crosstalk, which in turn regulates auxedgent, is an important aspect of future

research.

Experimental evidence also indicates that modetlmggenetic control of cell division in
plant morphogenesis needs to address various asfreah intrinsic growth properties such
as tensile stress (Louveaux et al., 2016) and mamebextensibility (Cosgrove, 2016), to
mechanical constraints from neighbouring regionsefCand Rebocho, 2016). Moreover,
modelling genetic control of cell division in plambrphogenesis also needs to consider
complexity in form and shape (Reuille et al., 2018)us, a grand challenge in analysing how
root development is regulated by hormonal crosstedkds to comprehensively integrate the
actions of hormonal crosstalk with plant morphogeneAn important initial step is to
establish how hormonal crosstalk in root developmegulates the genetic control of cell
division. Previously, regulation of the rate oflaglision by auxin, cytokinin and ethylene
was modelled by considering that cell divisionevgrned by both auxin and a division
factor that combines the actions of cytokinin atit/lene (Mironova et al., 2010).
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1104 Figure and Table Legends
1105
1106 Figure 1. Integration of experimental data reveals multipigers of complexity in auxin,

1107 cytokinin and ethylene crosstalk in Arabidopsistrdevelopment. Upper pane (green
1108 coloured links) schematically describes ethylegeaiing pathways. Middle pane (black
1109 coloured links) schematically describes cytokingnalling pathways. Lower pane (red
1110 coloured links) schematically describes auxin digrgpathways. A number by a link

1111 describes the link as summarised in Table S1. lifke connecting the three panes are the
1112 main crosstalk links between auxin, cytokinin atftykene. The three hormones are

1113 highlighted in yellow, and they are placed in diffiet locations in the three panes, further

1114 showing their crosstalk— stands for positive regulatior;| stands for negative regulation.

1115

1116 Figure 2. A schematic description of a methodology shows howariety of experiments
1117 and systems modelling can iteratively combine ¢&lathe complexity in auxin, cytokinin
1118 and ethylene crosstalk in Arabidopsis root develepimTop pane: a variety of experimental
1119 data can be used as model inputs. Middle paneateotsgmporal model can be developed
1120 using experimental images and the crosstalk relships between auxin, cytokinin and
1121 ethylene. The model can be parametrised using exeetal auxin images. Lower pane:
1122 modelling predictions can be used to design noxeéements and to further revise the
1123 model.

1124

1125 Figure 3. Construction of a digital root. a) A realistiotanap showing the individual cells,
1126 based on confocal imaging. LRC 1 to 4: lateratcap 1 to 4; COL S1 to S5: columella S1
1127 to S5; CE initials: cortical endodermis initialsQC initials: columella initials; QC: quiescent
1128 centre. b) Localisation of efflux (PIN3) carridrthe combined plasma membrane and cell
1129 wall entity of selected cells, with extra-cellugrace between the cell walls of adjacent cells.
1130 COL S2 and S3: columella tier 2 and 3 cells. c)dlisation of influx (AUX1) carrier at the
1131 combined plasma membrane and cell wall entity l&cded cells, with extra-cellular space
1132 between the cell walls of adjacent cells. COL SAaBd S3: columella tier 1, 2 and 3 cells.
1133 LRC 3 and 4: lateral root cap tier 3 and 4 cel)sA magnified part of the root to show an
1134 example of how to digitise the root. The root (K& 3a) can be discretised into grid points
1135 with any resolution (e.g. a grid point can be digésd by 2am multiplied by 2um in a 2-

1136 dimensional space). A number is assigned to eadlpgint to describe the identity of this
1137 grid point. For the details of constructing a digitoot, see Moore et al. (2015c, 2017).
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1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

Number 132, 133, 142 and 143 are the grid poingsrileing the cytosolic space of 182
133", 142 or 143" cell in the root, respectively. 1,5, 6, 7 anar8 used as “identifiers” to
define grid points of the combined plasma membeartecell wall entity or extracellular
space, and they are also used to define distribatitooth auxin efflux and influx carriers.
Computational codes are used to calculate condemiseof all components in the hormonal
crosstalk network (Figure 4) at all grid pointsioé root (Moore et al. 2015c; 2017).

Figure 4. A hormonal crosstalk network that has been caostd by iteratively combining
experiments with modelling (with permission frone tBupplementary Materials in Moore et
al. (2017).) Symbols: Auxin: Auxin hormone, ET: @#me, CK: Cytokinin,

PINm: PIN mRNA, PINp: PIN protein, PLSm: POLARIS iR, PLSp: POLARIS protein,
X: Downstream ethylene signalling, Ra*: Active foohauxin receptor, Ra: Inactive form of
auxin receptor, Re*: Active form of ethylene reagpETR1. Re: Inactive form of ethylene
receptor, ETR1, CTR1*: Active form of CTR1, CTRhaktive form of CTR1.

Figure 5. Various modelling predictions, which can be useddsign novel experiments and
to further revise the model (see text for detady)Modelled auxin concentration patterning.
b) Modelled auxin biosynthesis rate. ¢) Modelledcpatage changes in PIN1, 2 patterning
relative to wild-type after 100% loss of PIN3 adfyvd) Modelled percentage changes in
PIN1, 2 patterning relative to wild-type after 10086s of PIN3, 4, 7 activity. e) Modelled
percentage changes in auxin concentration pattereiative to wild-type after 20% loss of
AUX1 and LAX2, 3 activity. f) Modelled percentagkanges in auxin concentration
patterning relative to wild-type after 20% gainAd#X1 and LAX2, 3 activity. g) Modelled
percentage changes in auxin concentration patgereiative to wild-type (auxin apoplastic
diffusion rate: 22Qum? s*) after reducing auxin apoplastic diffusion rat@@um?s*. h)
Modelled cytokinin concentration patterning. Foe thetails of how to perform modelling

analysis, see Moore et al. (2015c; 2017).

Figure 6. Modelling predictions of the average awaoncentration fopls, etr1 mutant,pls-
etrl double mutant, and the PLS overexpressing tramsgeLSox, are in agreement with
experimental observations (adapted with permiskmm the Supplementary Materials in
Moore et al. (2015c).). a) Experimental measuremdntModelling predictions. x-axis:

different mutants. y-axis: average auxin concéianan the root.
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Experimental data as model inputs

>t Experimental images A variety of experimental data for Experimental auxin
: of wild type root constructing crosstalk network images in wild type root
:  Model
Divital S Hormonal crosstalk network
& F,lglta 3r00t. ee of auxin, ethylene and
: lgure cytokinin. See Figure 4.
A spatiotemporal model of A parameterised model
hormonal crosstalk
:  Model predictions and back to experiments
Predictions already validated by independent
experiments, Figures 5b, 5c, and 5d. Require
| novel experiments to establish deeper
understanding. \ L

Model outputs and

Predictions to be validated by novel .. )
<——— | predictions. See Figure 5.

experiments, Figures Se, 51, 5¢g.

Predictions that indicate requirement for /

model revision, Figure Sh.
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