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Abstract

To meet the general requirement for transparency in EFSA’s work, all its scientific assessments must
consider uncertainty. Assessments must say clearly and unambiguously what sources of uncertainty
have been identified and what is their impact on the assessment conclusion. This applies to all EFSA’s
areas, all types of scientific assessment and all types of uncertainty affecting assessment. This current
Opinion describes the principles and methods supporting a concise Guidance Document on Uncertainty
in EFSA’s Scientific Assessment, published separately. These documents do not prescribe specific
methods for uncertainty analysis but rather provide a flexible framework within which different
methods may be selected, according to the needs of each assessment. Assessors should systematically
identify sources of uncertainty, checking each part of their assessment to minimise the risk of
overlooking important uncertainties. Uncertainty may be expressed qualitatively or quantitatively. It is
neither necessary nor possible to quantify separately every source of uncertainty affecting an
assessment. However, assessors should express in quantitative terms the combined effect of as many
as possible of identified sources of uncertainty. The guidance describes practical approaches.
Uncertainty analysis should be conducted in a flexible, iterative manner, starting at a level appropriate
to the assessment and refining the analysis as far as is needed or possible within the time available.
The methods and results of the uncertainty analysis should be reported fully and transparently. Every
EFSA Panel and Unit applied the draft Guidance to at least one assessment in their work area during a
trial period of one year. Experience gained in this period resulted in improved guidance. The Scientific
Committee considers that uncertainty analysis will be unconditional for EFSA Panels and staff and must
be embedded into scientific assessment in all areas of EFSA’s work.
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Summary

EFSA’s role is to provide scientific advice on risks and other issues relating to food safety, to inform
decision-making by the relevant authorities. A fundamental principle of EFSA’s work is the requirement
for transparency in the scientific basis for its advice, including scientific uncertainty. The Scientific
Committee considers that all EFSA scientific assessments must include consideration of uncertainties
and that application of the Guidance on uncertainty analysis should be unconditional for the European
Food Safety Authority (EFSA). Assessments must say clearly and unambiguously what uncertainties
have been identified and what is their impact on the overall assessment outcome.

This Opinion presents the principles and methods behind EFSA’s Guidance on Uncertainty Analysis
in Scientific Assessments, which is published separately. The Guidance and this Opinion should be used
together as EFSA’s approach to addressing uncertainty. EFSA’s earlier guidance on uncertainty in
exposure assessment (EFSA, 2006, 2007) continues to be relevant but, where there are differences
(e.g. regarding characterisation of overall uncertainty, for the assessment as a whole), this document
and the new Guidance (REF GD) take priority.

Uncertainty is defined as referring to all types of limitations in the knowledge available to assessors
at the time an assessment is conducted and within the time and resources available for the
assessment. The Guidance is applicable to all areas of EFSA and all types of scientific assessment,
including risk assessment and all its constituent parts (hazard identification and characterisation,
exposure assessment and risk characterisation). ‘Assessor’ is used as a general term for those
providing scientific advice, including risk assessment, and ‘decision-maker’ for the recipients of the
scientific advice, including risk managers.

The Guidance does not prescribe specific methods for uncertainty analysis but rather provides a
harmonised and flexible framework within which different methods may be selected, according to the
needs of each assessment. A range of methods are summarised in this Opinion and described in more
detail in its Annexes, together with simple worked examples. The examples were produced during the
development of the Opinion, before the Guidance document was drafted, and therefore do not
illustrate application of the final Guidance. The final Guidance will be applied in future EFSA outputs,
and readers are encouraged to refer to those for more relevant examples.

As a general principle, assessors are responsible for characterising uncertainty, while decision-
makers are responsible for resolving the impact of uncertainty on decisions. Resolving the impact on
decisions means deciding whether and in what way decision-making should take account of the
uncertainty. Therefore, assessors need to inform decision-makers about scientific uncertainty when
providing their advice.

In all types of assessment, the primary information on uncertainty needed by decision-makers is:
what is the range of possible answers, and how likely are they? Assessors should also describe the
nature and causes of the main sources of uncertainty, for use in communication with stakeholders and
the public, and, when needed, to inform targeting of further work to reduce uncertainty.

The time and resources available for scientific assessment vary from days or weeks for urgent
requests to months or years for complex opinions. Therefore, the Guidance provides a flexible
framework for uncertainty analysis, so that assessors can select methods that are fit for purpose in
each case.

Uncertainty may be expressed qualitatively (descriptive expression or ordinal scales) or
quantitatively (individual values, bounds, ranges, probabilities or distributions). It is neither necessary
nor possible to quantify separately every uncertainty affecting an assessment. However, assessors
should aim to express overall uncertainty in quantitative terms to the extent that is scientifically
achievable, as is also stated in EFSA Guidance on Transparency and the Codex Working Principles for
Risk Analysis. The principal reasons for this are the ambiguity of qualitative expressions, their tendency
to imply value judgements outside the remit of assessors, and the fact that many decisions inherently
imply quantitative comparisons (e.g. between exposure and hazard) and therefore require quantitative
information on uncertainty.

During the trial period of the Guidance, various concerns were raised about quantifying uncertainty,
many of them relating to the role of expert judgement in this. Having considered the advantages of
quantitative expression, and addressed the concerns, the Scientific Committee concludes that
assessors should express in quantitative terms the combined effect of as many as possible of the
identified sources of uncertainty, while recognising that how this is reported must be compatible with
the requirements of decision-makers and legislation.
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Any sources of uncertainty that assessors are unable to include in their quantitative expression of
overall uncertainty, for whatever reason, must be documented qualitatively and reported alongside it,
because they will have significant implications for decision-making.

During the trial period for this Guidance, it was suggested that uncertainty analysis might not be
relevant for some types of EFSA scientific assessment. Having considered the suggested examples, the
Scientific Committee confirms that the Guidance applies to all EFSA scientific assessments. There are
five key reasons for this: scientific conclusions must be based on evidence, which requires
consideration of uncertainties affecting the evidence; decision-makers need to understand the degree
of certainty or uncertainty affecting each assessment, as this determines how much they should rely
on it when making decisions; EFSA’s Founding Regulation states that risk assessments should be
undertaken in a transparent manner, which implies transparency about uncertainty and its impact on
conclusions; in some areas, risk managers or legislation require an unqualified positive or negative
conclusion, but this can be addressed by agreeing appropriate criteria; and concerns about time and
resources have been addressed by making the Guidance scalable to any situation.

Key concepts for uncertainty analysis are introduced:

• Questions and quantities of interest must be well defined, to avoid ambiguity in the scientific
assessment and allow uncertainties to be identified and characterised.

• Uncertainty is personal and temporal. The task of uncertainty analysis is to express the
uncertainty of the assessors, at the time they conduct the assessment: there is no single ‘true’
uncertainty.

• It is important to distinguish uncertainty and variability and analyse them appropriately,
because they have differing implications for decisions about options for managing risk and
reducing uncertainty.

• Dependencies between different sources of uncertainty can greatly affect the overall
uncertainty of the assessment outcome, so it is important to identify them and take them into
account.

• All scientific assessment involves models, which may be qualitative or quantitative, and account
must be taken of uncertainties about model structure as well as the evidence that goes into
them.

• Evidence, weight of evidence, agreement, confidence and conservatism are distinct concepts,
related to uncertainty. Measures of evidence and agreement may be useful in assessing
uncertainty but are not sufficient alone. Confidence and conservatism are partial measures of
uncertainty, and useful if adequately defined.

• Prioritisation of uncertainties is useful in assessment and decision-making and can be informed
by influence or sensitivity analysis using various methods.

• Conservative approaches are useful in many areas of EFSA’s work, but the coverage they
provide for uncertainty should be quantified; probability bounds analysis may be helpful for
this.

• Expert judgements are essential in scientific assessment and uncertainty analysis; they should
be elicited in a rigorous way and, when appropriate, using formal methodology.

• Probability is the preferred measure for expressing uncertainty, as it quantifies the relative
likelihood of alternative outcomes, which is what decision-makers need to know. Uncertainty
can be quantified for all well-defined questions and quantities, using subjective probability,
which enables rigorous calculation of their combined impact.

• Overall uncertainty is what matters for decision-making. Uncertainty analysis should
characterise the collective impact of all uncertainties identified by the assessors; unknown
unknowns cannot be included.

• When assessors are unable to quantify some uncertainties, those uncertainties cannot be
included in quantitative characterisation of overall uncertainty. The quantitative characterisation
is then conditional on assumptions made for the uncertainties that could not be quantified, and
it should be made clear that the likelihood of other conditions and outcomes is unknown.

• Approaches for uncertainty analysis depend on the type of assessment: four main types are
distinguished in the Guidance: standardised assessments (which are especially common for
regulated products), case-specific assessments, urgent assessments and the development or
revision of guidance documents.

Uncertainty in Scientific Assessment
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The following main elements of uncertainty analysis are distinguished: dividing the uncertainty
analysis into parts, ensuring the questions or quantities of interest are well defined, identifying
uncertainties, prioritising uncertainties, characterising uncertainty for parts of the uncertainty analysis,
combining uncertainty from different parts of the uncertainty analysis, characterising overall
uncertainty and reporting. Most of these are always required, but others depend on the needs of the
assessment. Furthermore, the approach to each element varies between assessments. The Guidance
starts by identifying the type of assessment in hand and then uses a series of flow charts to describe
the sequence of elements that is recommended for each type.

Assessors should be systematic in identifying uncertainties, checking each part of their assessment
for different types of uncertainty to minimise the risk of overlooking important uncertainties. Existing
frameworks for evidence appraisal are designed to identify uncertainties and should be used where
they are suitable for the assessment in hand. All identified uncertainties should be documented when
reporting the assessment, either in the main report or in an annex, together with any initial
assessment that is made to prioritise them for further analysis.

The Guidance describes a selection of qualitative and quantitative methods that can contribute to
one or more elements of uncertainty analysis and evaluates their suitability for use in EFSA’s
assessments. The qualitative methods are:

• Descriptive approaches, using narrative phrases or text to describe uncertainties.
• Ordinal scales, characterising uncertainties using an ordered scale of categories with qualitative

definitions (e.g. high, medium or low uncertainty).
• Uncertainty matrices, providing standardised rules for combining two or more ordinal scales

describing different aspects or dimensions of uncertainty.
• NUSAP method, using a set of ordinal scales to characterise different dimensions of each

source of uncertainty, and its influence on the assessment outcome, and plotting these
together to indicate which uncertainties contribute most to the uncertainty of the assessment
outcome.

• Uncertainty tables for quantitative questions, listing sources of uncertainty affecting a
quantitative question and assessing their individual and combined impacts on the uncertainty
of the assessment outcome on an ordinal scale.

• Uncertainty tables for categorical questions, listing lines of evidence contributing to answering
a categorical question, identifying their strengths and weaknesses, and expressing the
uncertainty of the answer to the question.

• Structured tools for evidence appraisal assess risk of bias in individual studies and the overall
body of evidence when using data from literature, and can also be applied to studies
submitted for regulated products.

The quantitative methods reviewed are:

• Quantitative uncertainty tables, similar to the qualitative versions but expressing uncertainty on
scales with quantitative definitions.

• Interval analysis, computing a range of values for the output of a calculation or quantitative
model based on specified ranges for the individual inputs.

• Expert knowledge elicitation (EKE), a collection of formal and informal methods for
quantification of expert judgements of uncertainty, about an assessment input or output, using
subjective probability.

• Confidence intervals quantifying uncertainty about parameters in a statistical model based on
data.

• The bootstrap, quantifying uncertainty about parameters in a statistical model on the basis of
data.

• Bayesian inference, quantifying uncertainty about parameters in a statistical model on the basis
of data and expert judgements about the values of the parameters.

• Probability bounds analysis, a method for combining probability bounds (partial expressions of
uncertainty) about inputs in order to deduce a probability bound for the output of a calculation
or quantitative model.

• Monte Carlo simulation, taking random samples from probability distributions representing
uncertainty and/or variability to: (i) calculate combined uncertainty about the output of a
calculation or quantitative model deriving from uncertainties about inputs expressed using
probability distributions; (ii) carry out certain kinds of sensitivity analysis.
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• Deterministic calculations with conservative assumptions are a common approach to
uncertainty and variability in EFSA assessments. They include default values, assessment
factors and decision criteria (‘trigger values’) which are generic and applicable to many
assessments, as well as conservative assumptions and adjustments that are specific to
particular cases.

• Approximate probability calculations replacing probability distributions obtained by EKE or
statistical analysis of data with approximations that make probability calculations for combining
uncertainties straightforward to carry out using a calculator or spreadsheet.

• Probability calculations for logic models, quantifying uncertainty about a logical argument
comprising a series or network of yes/no questions.

• Other quantitative methods described more briefly: uncertainty expressed in terms of
possibilities, imprecise probabilities and Bayesian modelling.

• Sensitivity Analysis, a suite of methods for assessing sensitivity, of the output (or an
intermediate value) of a calculation or quantitative model, to the inputs and to choices made
when expressing uncertainty about inputs. It has multiple objectives: (i) to help prioritise
uncertainties for quantification: (ii) to help prioritise uncertainties for collecting additional data;
(iii) to investigate sensitivity of final output to assumptions made; (iv) to investigate sensitivity
of final uncertainty to assumptions made.

All of the methods reviewed have stronger and weaker aspects. Qualitative methods score better
on criteria related to simplicity and ease of use but less well on criteria related to technical rigour and
meaning of the output, while the reverse tends to apply to quantitative methods.

The final output of uncertainty analysis should be an overall characterisation of uncertainty that
takes all identified uncertainties into account. The methods and results of all steps of the uncertainty
analysis should be reported fully and transparently, in keeping with EFSA (2012a,b,c) Guidance on
Transparency. Wherever statistical methods have been used, reporting of these should follow EFSA
(2014a,b) Guidance on Statistical Reporting.

Various arguments have been made both for and against communicating uncertainty to the general
public, but there is little empirical evidence to support either view or to define best practice. From
EFSA’s perspective, communicating scientific uncertainties is of fundamental importance to its core
mandate, reaffirming EFSA’s role in the Risk Analysis process. Therefore, EFSA has conducted a focus
group study and a web survey to test approaches for handling uncertainty in public communications,
and is reviewing the literature on this subject. The results of this work are being used to develop a
separate guidance document on communication of uncertainty, and to update EFSA’s Handbook on
Risk Communication.
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1. Introduction

‘Open EFSA’ aspires both to improve the overall quality of the available information and data used
for its scientific outputs and to comply with normative and societal expectations of openness and
transparency (EFSA, 2009, 2014a). In line with this, the European Food Safety Authority (EFSA) is
publishing three separate but closely related guidance documents to guide its expert Panels for use in
their scientific assessments (EFSA Scientific Committee, 2015). These documents address three key
elements of the scientific assessment: the analyses of Uncertainty, Weight of Evidence and Biological
Relevance.

The first topic is the analysis of uncertainty. This current opinion provides the scientific principles,
background and methods to guide how to identify, characterise, document and explain all types of
uncertainty arising within an individual assessment for all areas of EFSA’s remit. This is a supporting
document for the concise, practical guidance document which is published separately (EFSA Scientific
Committee, 2018). Neither document prescribes which specific methods should be used from the
toolbox but rather provide a harmonised and flexible framework within which different described
qualitative and quantitative methods may be selected according to the needs of each assessment.

The second topic concerns the weight of evidence approach (EFSA Scientific Committee, 2017a)
which provides a general framework for considering and documenting the approach used to evaluate
and weigh the assembled evidence when answering the main question of each scientific assessment or
questions that need to be answered in order to provide, in conjunction, an overall answer. This
includes assessing the relevance, reliability and consistency of the evidence. The guidance document
further indicates the types of qualitative and quantitative methods that can be used to weigh and
integrate evidence and points to where details of the listed individual methods can be found. The
weight of evidence approach carries elements of uncertainty analysis that part of uncertainty which is
addressed by weight of evidence analysis does not need to be reanalysed in the overall uncertainty
analysis, but may be added to.

The third guidance document (EFSA Scientific Committee, 2017b) provides a general framework to
addresses the question of biological relevance at various stages of the assessment: the collection,
identification and appraisal of relevant data for the specific assessment question to be answered. It
identifies generic issues related to biological relevance in the appraisal of pieces of evidence, in
particular, and specific criteria to consider when deciding on whether or not an observed effect is
biologically relevant, i.e. adverse (or shows a positive health effect). A decision tree is developed to aid
the collection, identification and appraisal of relevant data for the specific assessment question to be
answered. The reliability of the various pieces of evidence used and how they should be integrated
with other pieces of evidence is considered by the weight of evidence guidance document.

EFSA will continue to strengthen links between the three distinct but related topics to ensure the
transparency and consistency of its various scientific outputs while keeping them fit for purpose.

1.1. Background and Terms of Reference as provided by EFSA

Background

The EFSA Science Strategy for the period 2012–2016 identifies four strategic objectives: (i) further
develop excellence of EFSA’s scientific advice, (ii) optimise the use of risk assessment capacity in the
EU, (iii) develop and harmonise methodologies and approaches to assess risks associated with the
food chain, and (iv) strengthen the scientific evidence for risk assessment and risk monitoring.
The first and third of these objectives underline the importance of characterising in a harmonised way
the uncertainties underlying in EFSA risk assessments, and communicating these uncertainties and
their potential impact on the decisions to be made in a transparent manner.

In December 2006, the EFSA Scientific Committee adopted its opinion related to uncertainties
in dietary exposure assessment, recommending a tiered approach to analysing uncertainties
(1/qualitative, 2/deterministic, 3/probabilistic) and proposing a tabular format to facilitate qualitative
evaluation and communication of uncertainties. At that time, the Scientific Committee ‘strongly
encouraged’ EFSA Panels to incorporate the systematic evaluation of uncertainties in their risk
assessment and to communicate it clearly in their opinions.

During its inaugural Plenary meeting on 23–24 July 2012, the Scientific Committee set as one of its
priorities to continue working on uncertainty and expand the scope of the previously published
guidance to cover the whole risk assessment process.

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 9 EFSA Journal 2018;16(1):5122



Terms of reference

The European Food Safety Authority requests the Scientific Committee to establish an overarching
working group to develop guidance on how to characterise, document and explain uncertainties in
risk assessment. The guidance should cover uncertainties related to the various steps of the risk
assessment, i.e. hazard identification and characterisation, exposure assessment and risk
characterisation. The working group will aim as far as possible at developing a harmonised framework
applicable to all relevant working areas of EFSA. The Scientific Committee is requested to demonstrate
the applicability of the proposed framework with case studies.

When preparing its guidance, the Scientific Committee is requested to consider the work already
done by the EFSA Panels and other organisations, e.g. WHO, OIE.

1.2. Interpretation of Terms of Reference

The Terms of Reference (ToR) require a framework applicable to all relevant working areas of EFSA.
As some areas of EFSA conduct types of assessment other than risk assessment, e.g. benefit and
efficacy assessments, the Scientific Committee decided to develop guidance applicable to all types of
scientific assessment in EFSA.

In this document, the Scientific Committee reviews the general applicability of principles and
methods for uncertainty analysis to EFSA’s work, in order to establish a general framework for
addressing uncertainty in EFSA. The Scientific Committee’s recommendations for practical application
of the principles and methods in EFSA’s work are set out in a more concise Guidance document, which
is published separately (EFSA Scientific Committee, 2018).

1.3. Definitions of uncertainty and uncertainty analysis

Uncertainty is a familiar concept in everyday language, and may be used as a noun to refer to the
state of being uncertain, or to something that makes one feel uncertain. The adjective ‘uncertain’ may
be used to indicate that something is unknown, not definite or not able to be relied on or, when
applied to a person, that they are not completely sure or confident of something (Oxford Dictionaries,
2015). Its meaning in everyday language is generally understood: for example, the weather tomorrow
is uncertain, because we are not sure how it will turn out. In science and statistics, we are familiar
with concepts such as measurement uncertainty and sampling uncertainty, and that weaknesses in
methodological quality of studies used in assessments can be important sources of uncertainty.
Uncertainties in how evidence is used and combined in assessment – e.g. model uncertainty, or
uncertainty in weighing different lines of evidence in a reasoned argument – are also important
sources of uncertainty. General types of uncertainty that are common in EFSA assessments are
outlined in Section 8.

In the context of risk assessment, various formal definitions have been offered for the word
‘uncertainty’. For chemical risk assessment, IPCS (2004) defined uncertainty as ‘imperfect knowledge
concerning the present or future state of an organism, system, or (sub) population under
consideration’. Similarly, EFSA PLH Panel (2011) guidance on environmental risk assessment of plant
pests defines uncertainty as ‘inability to determine the true state of affairs of a system’. In EFSA’s
previous guidance on uncertainties in chemical exposure assessment, uncertainty was described as
resulting from limitations in scientific knowledge (EFSA, 2007) while EFSA’s BIOHAZ Panel has defined
uncertainty as ‘the expression of lack of knowledge that can be reduced by additional data or
information’ (EFSA BIOHAZ Panel, 2012). The US National Research Council’s Committee on Improving
Risk Analysis Approaches defines uncertainty as ‘lack or incompleteness of information’ (NRC, 2009).
The EU non-food scientific committees SCHER, SCENIHR and SCCS (2013) described uncertainty as
‘the expression of inadequate knowledge’. The common theme emerging from these and other
definitions is that uncertainty refers to limitations of knowledge. It is also implicit in these definitions
that uncertainty relates to the state of knowledge for a particular assessment, conducted at a
particular time (the conditional nature of uncertainty is discussed further in Section 5.2).

Therefore, wherever this document refers to scientific assessment, risk assessment is included, and ‘assessors’
is used as a general term including risk assessors. Similarly, wherever this document refers to ‘decision-
making’, risk management is included, and ‘decision-makers’ should be understood as including risk managers
and others involved in the decision-making process.
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The nature of uncertainty and its relationship to variability are discussed in Sections 5.2 and 5.3.
There are many types of uncertainty in scientific assessment. Referring to these may be helpful when
identifying the sources of uncertainty affecting a particular assessment, and is discussed further in
Section 8.

Uncertainty analysis is defined in this document as the process of identifying and characterising
uncertainty about questions of interest and/or quantities of interest in a scientific assessment. A
question or quantity of interest may be the subject of the assessment as a whole, i.e. that which is
required by the ToR for the assessment, or it may be the subject of a subsidiary part of the
assessment which contributes to addressing the ToR (e.g. exposure and hazard assessment are
subsidiary parts of risk assessment).

1.4. Scope, audience and degree of obligation

The ToR require the provision of guidance on how to characterise, document and explain all types
of uncertainty arising in EFSA’s scientific assessments. This document and the accompanying Guidance
(EFSA Scientific Committee, 2018) are aimed at all those assessors contributing to EFSA assessments
and provides a harmonised, but flexible framework that is applicable to all areas of EFSA, all types of
scientific assessment, including risk assessment, and all types of uncertainty affecting scientific
assessment. These two documents should be used as EFSA’s primary guidance on addressing
uncertainty. EFSA’s earlier guidance on uncertainty in exposure assessment (EFSA, 2006, 2007)
continues to be relevant but, where there are differences (e.g. regarding characterisation of overall
uncertainty, for the assessment as a whole), this document and the new Guidance (EFSA Scientific
Committee, 2018) take priority.

The guidance on uncertainty should be used alongside other cross-cutting guidance on EFSA’s
approaches to scientific assessment including, but not limited to, existing guidance on transparency,
systematic review, expert knowledge elicitation (EKE), weight-of-evidence assessment, biological
relevance and statistical reporting (EFSA, 2009, 2010a, 2014a,b; EFSA Scientific Committee, 2017a,b)
and also EFSA’s Prometheus project (EFSA, 2015a,b,c).

The Scientific Committee is of the view that all EFSA scientific assessments must include
consideration of uncertainties. Therefore, application of the guidance document is unconditional for
EFSA. For reasons of transparency and in line with EFSA (2007, 2009), assessments must say what
sources of uncertainty have been identified and characterise their overall impact on the assessment
conclusion. This must be reported clearly and unambiguously, in a form compatible with the
requirements of decision-makers and any legislation applicable to the assessment in hand.

During the trial period for this Guidance, it was suggested that uncertainty analysis might not be
relevant for some types of EFSA scientific assessment. Having considered the suggested examples, the
Scientific Committee confirms that the Guidance applies to all EFSA scientific assessments. There are
five fundamental reasons for this. First, the conclusions of EFSA’s scientific assessments must be based
on evidence: this requires evaluation of the evidence, which necessarily involves assessment of
uncertainties affecting the evidence and of their implications for the conclusions. Second, EFSA’s
scientific assessments are used, or may be used in the future, to inform risk management and other
types of decision-making by the Commission and/or other parties. Decision-makers need to understand
the degree of certainty or uncertainty affecting each assessment, as this determines how much they
should rely on it when making their decisions (this is discussed in more detail in Section 3.1). Third,
the EFSA Founding Regulation (EC No 178/2002) states that risk assessments should be undertaken in
a transparent manner: this implies a requirement for transparency about scientific uncertainty and its
impact on scientific conclusions (EFSA, 2009); this and the two preceding points apply to all types of
scientific assessment and conclusions including self-tasking by EFSA and assessments prepared in
response to open questions, such as reviews of the literature. Fourth, although in some areas of
EFSA’s work risk managers or legislation require an unqualified positive or negative conclusion, this is
not incompatible with the Guidance. The conclusions should still be evidence-based and therefore still
require an uncertainty analysis, but they can be expressed in unqualified form if appropriate criteria for
this are defined (Section 3.5). Finally, EFSA sometimes receives urgent requests which limit the time

In this document, uncertainty is used as a general term referring to all types of limitations in available
knowledge that affect the range and probability of possible answers to an assessment question. Available
knowledge refers here to the knowledge (evidence, data, etc.) available to assessors at the time the
assessment is conducted and within the time and resources agreed for the assessment.
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available for scientific assessment; however, the Guidance contains specific approaches for this, which
are scalable to whatever time is available. This document considers general principles and reviews
different approaches and methods which can be used to help assessors to systematically identify,
characterise, explain and account for sources of uncertainty at different stages of the assessment
process. For brevity, we refer to these processes collectively as ‘uncertainty analysis’. The reader is
referred to other sources for technical details on the implementation and use of each method.

The Scientific Committee emphasises that assessors do not have to use or be familiar with every
method described in this document. Practical advice on how to select suitable methods for particular
assessments is provided in the accompanying Guidance document (EFSA Scientific Committee, 2018).

Uncertainties in decision-making, and specifically in risk management, are outside the scope of
EFSA, as are uncertainties in the framing of the question for scientific assessment. When uncertainties
about the meaning of an assessment question are detected, they should be referred to the decision-
makers for clarification, which is likely to be an iterative process requiring discussion between
assessors and decision-makers.

The primary audience for this document and the accompanying Guidance comprises all those
contributing to EFSA’s scientific assessments. It is anticipated that assessors will use the Guidance
document in their day-to-day work, and refer to specific sections of the current document when
needed. For this reason, some information is repeated in different sections, where cross-referencing
would not suffice. Some sections will be of particular interest to other readers, for example, Sections 3
and 16 are especially relevant for decision-makers and Section 16 for communications specialists.

2. Approach taken to develop the Guidance

The approach taken to developing the Guidance was as follows. A Working Group was established,
comprising members of EFSA’s Scientific Committee and its supporting staff, a Panel member or staff
member nominated by each area of EFSA’s work, some additional experts with experience in
uncertainty analysis (identified and invited in accordance with EFSA procedures), and an EFSA
communications specialist. Activities carried out by the Scientific Committee and its Working Group
included: a survey of sources of uncertainty encountered by different EFSA Panels and Units and their
approaches for dealing with them (which were taken into account when reviewing applicable
methods); consideration of approaches that deal with uncertainty described in existing guidance
documents of EFSA, of other bodies and in the scientific literature; meetings with selected risk
managers in the European Commission and communications specialists from EFSA’s Advisory Forum;
and a public consultation on a Draft of the Guidance Document. These activities informed three main
strands of work by the Scientific Committee: development of the harmonised framework and guidance
contained in the main sections of this document; development of annex sections focussed on different
methods that can be used in uncertainty analysis; and development of illustrative examples using a
common case study.

While preparing the Guidance, the Scientific Committee has taken account of existing guidance and
related publications by EFSA and other relevant organisations, including (but not limited to) EFSA’s
guidances on uncertainty in dietary exposure assessment, transparency in risk assessment, selection of
default values, probabilistic exposure assessment, expert elicitation and statistical reporting (EFSA,
2006, 2007, 2009, 2012a,b, 2014a,b); the Scientific Committee’s opinion on risk terminology (EFSA
Scientific Committee, 2012); specific guidance and procedures of different EFSA Panels (e.g. EFSA PLH
Panel, 2011); Guidance document on uncertainty analysis in exposure assessment of the German
Federal Institute for Risk Assessment (BfR, 2015); opinion on uncertainty in risk assessment of the
French Agency for Food, Environmental and Occupational Health & Safety (ANSES, 2016); the
European Commission’s communication on the precautionary principle (European Commission, 2000);
the Opinion of the European Commission’s non-food Scientific Committees on making risk assessment
more relevant for decision-makers (SCHER, SCENIHR, SCCS, 2013); the chapter on uncertainty in the
Guidance on Information requirements and safety assessment (ECHA, 2012); the US Environmental
Protection Agency’s guiding principles for Monte Carlo analysis and risk characterisation handbook (US
EPA, 1997, 2000), as well as guidance on science integration for decision making (US EPA, 2012); the
US National Research Council publications on science and risk (NRC, 1983, 1996, 2009), the USDA
guideline on microbial risk assessment (US DA, 2012); the Codex Working Principles for Risk Analysis
(Codex, 2016); the OIE guidance on measurement uncertainty (OIE Validation Guidelines, 2014); the
IPCS guidance documents on uncertainty in exposure and hazard characterisation (IPCS, 2004, 2014);
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the FAO/WHO guidance on microbial hazard characterisation (FAO/WHO, 2009); and the guidance of
the Intergovernmental Panel on Climate Change (Mastrandrea et al., 2010).

When evaluating the potential of different methods of uncertainty analysis for use in EFSA’s work,
the Scientific Committee considered two primary aspects. First, the Scientific Committee identified
which of the main elements of uncertainty analysis (introduced in Section 6) each method can
contribute to. Second, the Scientific Committee assessed each method against a set of criteria which it
established for describing the nature of each method and evaluating the contribution it could make.
The criteria used to evaluate the methods were as follows:

• Evidence of current acceptance
• Expertise needed to conduct
• Time needed
• Theoretical basis
• Degree/extent of subjectivity
• Method of propagation
• Treatment of uncertainty and variability
• Meaning of output
• Transparency and reproducibility
• Ease of understanding for non-specialist

Definitions for these criteria are shown in Section 13 where the different methods are reviewed.
A single draft version of the Guidance was published for public consultation in June 2014.1 The

document was then revised in the light of comments received and published as a revised draft for
testing by EFSA Panels and Units during a trial period. At the end of the trial period, an internal
workshop was held in EFSA to review lessons learned and advice on improvements to the draft
Guidance. As part of this, it was agreed to produce a much more concise and standalone Guidance
document, focussed on providing specific practical advice, and to publish a revised version of the
previous draft as an accompanying document, to provide more detailed information to support the
application of the Guidance. The current document comprises that detailed material, and the concise
Guidance is published separately (EFSA Scientific Committee, 2018). The main factors considered when
selecting approaches to include in the Guidance are summarised in Section 7 of the current document.

2.1. Case study

Worked examples are provided in Annexes to this document to illustrate different elements of
uncertainty analysis and different methods for addressing them. To increase the coherence of the
document a single case study was selected to enable comparison of the different methods, based on
an EFSA Statement on melamine that was published in 2008 (EFSA, 2008). While this is an example
from chemical risk assessment for human health, the principles and methodologies illustrated by the
examples are general and could in principle be applied to any other area of EFSA’s work, although the
details of implementation would vary.

The EFSA (2008) statement was selected for the case study in this document because it is short,
which facilitates extraction of the key information and identification of the sources of uncertainty and
makes it accessible for readers who would like more details, and also because it incorporates a range
of types of uncertainty.

An introduction to the melamine case study is provided in Annex A, together with examples of
output from different methods used in uncertainty analysis. Details of how the example outputs were
generated are presented in Annex B, together with short descriptions of each method.

It is emphasised that the case study is provided for the purpose of illustration only, is limited to the
information that was available in 2008, and should not be interpreted as contradicting the subsequent
full risk assessment of melamine in food and feed (EFSA, 2010b). Furthermore, the examples were
conducted only at the level needed to illustrate the principles of the approaches and the general
nature of their outputs. They are not representative of the level of consideration that would be needed
in a real assessment and must not be interpreted as examples of good practice.

The melamine case study was produced for an earlier version of this document, before the concise
Guidance was developed, and therefore does not illustrate the application of the final Guidance. The

1 Public consultation on Draft Guidance Document on Uncertainty in Scientific Assessment, EFSA-Q-2015-00368.
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final Guidance will be applied in future EFSA outputs, and readers are encouraged to refer to those for
more relevant examples.

3. Roles of assessors and decision-makers in addressing uncertainty

Some of the literature that is cited in this section refers to risk assessment, risk assessors and risk
managers, but the principles apply equally to other types of scientific assessment and other types of
assessors and decision-makers. Both terms are used in the plural: generally assessment is conducted
by a group of experts and multiple parties contribute to decision-making (e.g. officials and committees
at EU and/or national level).

Risk analysis is the general framework for most of EFSA’s work including food safety, import risk
analysis and pest risk analysis, all of which consider risk analysis as comprising three distinct but
closely linked and interacting parts: risk assessment, risk management and risk communication (EFSA
Scientific Committee, 2012). Basic principles for addressing uncertainty in risk analysis are stated in the
Codex Working Principles for Risk Analysis:

• ‘Constraints, uncertainties and assumptions having an impact on the risk assessment should be
explicitly considered at each step in the risk assessment and documented in a transparent
manner’

• ‘Responsibility for resolving the impact of uncertainty on the risk management decision lies
with the risk manager, not the risk assessors’ (Codex, 2016).

These principles apply equally to the treatment of uncertainty in all areas of science and decision-
making. In general, assessors are responsible for characterising uncertainty2 and decision-makers are
responsible for resolving the impact of uncertainty on decisions. Resolving the impact on decisions
means deciding whether and in what way decision-making should be altered to take account of the
uncertainty.

This division of roles is rational: assessing scientific uncertainty requires scientific expertise, while
resolving the impact of uncertainty on decision-making involves weighing the scientific assessment
against other considerations, such as economics, law and societal values, which require different
expertise and are also subject to uncertainty. The weighing of these different considerations is defined
in Article 3 of the EU Food Regulation 178/20023 as risk management. The Food Regulation
establishes EFSA with responsibility for scientific assessment on food safety, and for communication on
risks, while the Commission and Member States are responsible for risk management and for
communicating on risk management measures. In more general terms, assessing and communicating
about scientific uncertainty is the responsibility of EFSA, while decision-making and communicating on
management measures is the responsibility of others.

Although risk assessment and risk management are conceptually distinct activities (NRC, 1983, p. 7),
they should not be isolated – two-way interaction between them is essential (NRC, 1996, p. 6) and
needs to be conducted efficiently. Discussions with risk managers during the preparation of this
document identified opportunities for improving this interaction, particularly with regard to specification
of the question for assessment and expression of uncertainty in conclusions (see below), and indicated
a need for closer interaction in future.

3.1. Information required for decision-making

Given the division of responsibilities between assessors and decision-makers, it is important to
consider what information decision-makers need about uncertainty. Scientific assessment is aimed at
answering questions about risks and other issues, to inform decisions on how to manage them.
Uncertainty refers to limitations in knowledge, which are always present to some degree. This means
scientific knowledge about the answer to a decision-maker’s question will be limited, so in general a
range of answers will be possible. In principle, therefore, decision-makers need to know the range of
possible answers, so they can consider whether any of them would imply risk of undesirable
management consequences (e.g. adverse effects).

Decision-maker’s questions relate to real-world problems that they have responsibility for
managing. Therefore, when the range of possible answers includes undesirable consequences, the

2 OECD (2015, p. 6) states that ‘As a general rule, scientific advice should include assessment and clear communication of
uncertainties (or probabilities)’.

3 Official Journal of the European Communities, 2002, L31: 1–24.
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decision-makers need information on how likely they are, so they can weigh options for management
action against other relevant considerations (economic, legal, etc.). This includes the option of
provisional measures when adverse consequences are possible but uncertain (the precautionary
principle, as described in Article 7 of the Food Regulation; see also European Commission, 2000).

In principle, then, decision-makers need assessors to provide information on the range and
probability of possible answers to questions submitted for scientific assessment. In practice, partial
information on this may be sufficient: for example, an approximate probability (see Section 5.10) or
appropriate ‘conservative’ assessment (see Section 5.8) may indicate a sufficiently low probability of
adverse consequences, without characterising the full distribution of possible consequences. In some
cases a range for a quantity of interest may be sufficient, for example, if all values within the range
are considered acceptable by the decision-makers.

For some types of assessment, e.g. for regulated products, decision-makers need EFSA to provide
an unqualified positive or negative conclusion to comply with the requirements of legislation, or of
procedures established to implement legislation. In general, the underlying assessment will be subject
to at least some uncertainty, as is all scientific assessment. In such cases, therefore, the positive or
negative conclusion refers to whether the level of certainty is sufficient for the purpose of decision-
making, i.e. whether the assessment provides ‘practical certainty’ (see Section 3.4).

Information on the magnitude of uncertainty and the main sources of uncertainty is also important
to inform decisions about whether it would be worthwhile to invest in obtaining further data or
conducting more analysis, with the aim of reducing uncertainty. Information on the relative importance
of different sources of uncertainty may also be useful when communicating with stakeholders and the
public about the reasons for uncertainty.

Some EFSA work comprises forms of scientific assessment that do not directly address specific risks
or benefits. For example, EFSA is sometimes asked to review the state of scientific knowledge in a
particular area. Conclusions from such a review may influence the subsequent actions of decision-
makers. Scientific knowledge is never complete, so the conclusions are always uncertain to some
degree and other conclusions might be possible. Therefore, again, managers need information about
how different the alternative conclusions might be, and how probable they are, as this may have
implications for decision-making.

All EFSA scientific assessments require at least a basic analysis of uncertainty, for the following
reasons. Questions are posed to EFSA because the requestor does not know or is uncertain of the
answer and that the amount of uncertainty affects decisions or actions they need to take. The
requestor seeks scientific advice from EFSA because they anticipate that this may reduce
the uncertainty, or at least provide a more expert assessment of it. If the uncertainty of the answer
did not matter, then it would not be rational or economically justified for the requestor to pose the
question to EFSA – the requestor would simply use their own judgement, or even a random guess. So
the fact that the question was asked implies that the amount of uncertainty matters for decision-
making, and it follows that information about uncertainty is a necessary part of EFSA’s response. This
logic applies regardless of the nature or subject of the question, therefore providing information on
uncertainty is relevant in all cases. It follows that uncertainty analysis is needed in all EFSA scientific
assessments, though the form and extent of that analysis and the form in which the conclusions are
expressed should be adapted to the needs of each case, in consultation with decision-makers, as is
provided for in the Guidance accompanying this document.

3.2. Time and resource constraints

Decision-makers generally need information within specified limits of resources and time, including
the extreme case of urgent situations where advice might be required within weeks, days or even
hours. To be fit for purpose, therefore, EFSA’s guidance on uncertainty analysis includes options for
different levels of resource and different timescales, and methods that can be implemented at different
levels of detail/refinement, to fit different timescales and levels of resource. Consideration of
uncertainty is always required, even in urgent situations, because reduced time and resource for
scientific assessment increases uncertainty and its potential implications for decision-making.

Decisions on how far to refine the assessment and whether to obtain additional data may be taken
by assessors when they fall within the time and resources agreed for the assessment. Actions that
require additional time or resources should be decided in consultation between assessors and decision-
makers. Ultimately, it is for decision-makers to decide when the characterisation of uncertainty is
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sufficient for decision-making and when further refinement is needed, taking into account the time and
costs involved.

3.3. Questions for assessment by EFSA

Questions for assessment by EFSA may be posed by the European Commission, the European
Parliament, and EU Member State or by EFSA itself.4 Many questions to EFSA request assessment of
consequences (risks, benefits, etc.) of current policy, conditions or practice. They may also request
scientific assessment of consequences in alternative scenarios, e.g. under different risk management
options. It is important that the scenarios and consequences of interest are well-defined (see
Section 5.1). This should be achieved through the normal procedures for initiation of EFSA
assessments, including agreement and interpretation of the ToR. Occasionally, decision-makers pose
open questions to EFSA, where the scenarios or consequences of interest are not known in advance,
e.g. a request to review the state of scientific knowledge on a particular subject. In such cases,
assessors should ensure instead that their conclusions refer to well-defined scenarios and
consequences.

3.4. Acceptable level of uncertainty

The Food Regulation and other EU law relating to risks of different types frequently refer to the
need to ‘ensure’ protection from adverse effects. The word ‘ensure’ implies a societal requirement for
some degree of certainty that adverse effects will not occur, or be managed within acceptable limits.
Complete certainty is never possible, however. Deciding how much certainty is required or,
equivalently, what level of uncertainty would warrant precautionary action, is the responsibility of
decision-makers, not assessors. This level of certainty could be described as ‘practical certainty’, as it is
sufficient for the practical purpose at hand: this concept may be helpful in situations where decision-
makers need an unqualified positive or negative conclusion (see Sections 3.1 and 3.5). It may be
helpful if the decision-makers can specify in advance how much uncertainty is acceptable for a
particular question, e.g. about whether a quantity of interest will exceed a given level. This is because
the required level of certainty has implications for what outputs should be produced from uncertainty
analysis, e.g. what probability levels should be used for confidence intervals. Also, it may reduce the
need for the assessors to consult with the decision-makers during the assessment, when considering
how far to refine the assessment. Often, however, the decision-makers may not be able to specify in
advance the level of certainty that is sought or the level of uncertainty that is acceptable, e.g. because
this may vary from case to case depending on the costs and benefits involved. Another option is for
assessors to provide results for multiple levels of certainty, e.g. confidence intervals with a range of
confidence levels, so that decision-makers can consider at a later stage what level of uncertainty to
accept. Alternatively, as stated in Section 3.1 above, partial information on uncertainty may be
sufficient for the decision-makers provided it meets or exceeds their required level of certainty: e.g. an
approximate probability (see Section 5.10) or appropriate ‘conservative’ assessment (see Section 5.8).

3.5. Expression of uncertainty in assessment conclusions

In its Opinion on risk terminology, the EFSA Scientific Committee recommended that ‘Scientific
Panels should work towards more quantitative expressions of risk and uncertainty whenever possible,
i.e. quantitative expression of the probability of the adverse effect and of any quantitative descriptors
of that effect (e.g. frequency and duration), or the use of verbal terms with quantitative definitions.
The associated uncertainties should always be made clear, to reduce the risk of over-precise
interpretation’ (EFSA Scientific Committee, 2012). The reasons for quantifying uncertainty are
discussed in Section 4, together with an overview of different forms of qualitative and quantitative
expression. This section considers the implications for interaction between assessors and decision-
makers in relation to the assessment conclusions.

Ranges and probabilities are the natural metric for quantifying uncertainty and can be applied to
any well-defined question or quantity of interest (see Section 5.1). This means that the question for
assessment, or at least the eventual conclusion, needs to be well-defined, in order for its uncertainty
to be assessed. For example, in order to say whether an estimate might be an over- or under-
estimate, and to what degree, it is necessary to specify what the assessment is required to estimate.

4 Official Journal of the European Communities, 2002, L31: 1–24.
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Therefore, if this has not been specified precisely in the ToR (see Section 3.1), assessors should
provide a series of alternative estimates (e.g. for different percentiles of the population), each with a
characterisation of uncertainty, so that the decision-makers can choose which to act on.

If qualitative terms are used to describe the degree of uncertainty, they should be clearly defined
with objective scientific criteria (EFSA Scientific Committee, 2012). Specifically, the definition should
identify the quantitative expression of uncertainty associated with the qualitative term as is done, for
example, in the approximate probability scale shown in Table 3 (Section 11.3.3).

The Scientific Committee recognises, however, that while the impact of uncertainty must be
reported clearly and unambiguously, this must be done in a form that is compatible with the
requirements of decision-makers and any legislation applicable to the assessment in hand
(Section 1.4). For some types of assessment, decision-makers need EFSA to provide an unqualified
positive or negative conclusion, for reasons explained in Section 3.1. The positive or negative
conclusion does not imply that there is complete certainty, since this is never achieved, but that the
level of certainty is sufficient for the purpose of decision-making (‘practical certainty’, see Section 3.4).
In such cases, the assessment conclusion and summary may simply report the positive or negative
conclusion but, for transparency, the justification for the conclusion should be documented
somewhere, e.g. in the body of the assessment or an annex. In some cases, justification would
comprise a quantitative expression of the uncertainty that is present and confirmation that this reaches
the level of practical certainty set by, or agreed with, decision-makers. However, in cases where a
standardised procedure has been used, and no non-standard uncertainties have been identified, this is
sufficient to justify practical certainty without further analysis (see Section 7.1.2). In all cases, if the
criteria for practical certainty are not met, then either the uncertainty should be expressed
quantitatively, or assessors should report that their assessment is inconclusive and that they ‘cannot
conclude’ on the question.

Sometimes it may not be possible to quantify uncertainty (Section 5.12). In such cases, assessors
must report that the probability of different answers is unknown and avoid using any language that
could be interpreted as implying a probability statement (e.g. ‘likely’, ‘unlikely’), as this would be
misleading. In addition, as stated previously by the Scientific Committee (EFSA Scientific Committee,
2012b), the assessors should avoid any verbal expressions that have risk management connotations in
everyday language, such us ‘negligible’ and ‘concern’. When used without further definition, such
expressions imply two simultaneous judgements: a judgement about the probability (or approximate
probability) of adverse effects, and a judgement about the acceptability of that probability. The first of
these judgements is within the remit of assessors, but the latter is not.

In all cases, it is essential that there should be no incompatibility between the detailed reporting of
the uncertainty analysis and the assessment conclusions or summary. In principle, no such
incompatibility should occur, because sound scientific conclusions will take account of relevant
uncertainties, and therefore, should be compatible with an appropriate analysis of those uncertainties.
If, for example, an unqualified positive or negative conclusion is reported, implying practical certainty,
the supporting analysis should justify this. If there appears to be any incompatibility, assessors should
review and if necessary revise both the uncertainty analysis and the conclusion to ensure that they are
compatible with one another and with what the science supports.

The remainder of this document sets out a framework and principles for assessing uncertainty
using methods and procedures that address the needs identified above, including the need to
distinguish appropriately between risk assessment and risk management, and the requirement for
flexibility to operate within varying limitations on timescale and resource so that each individual
assessment can be fit for purpose.

4. Qualitative and quantitative approaches to expressing uncertainty

This section considers the role of qualitative and quantitative approaches to expressing uncertainty.
The role of qualitative and quantitative approaches in other parts of scientific assessment, and their
implications for uncertainty analysis, are discussed in Section 5.14.

4.1. Types of qualitative and quantitative expression

Expression of uncertainty requires two components: expression of the range of possible true
answers to a question of interest, or a range of possible true values for a quantity of interest, and
some expression of the probabilities of the different answers or values. Quantitative approaches
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express one or both of these components on a numerical scale. Qualitative approaches express them
using words, categories or labels. They may rank the magnitudes of different uncertainties, and are
sometimes given numeric labels, but they do not quantify the magnitudes of the uncertainties nor their
impact on an assessment conclusion.

It is useful to distinguish descriptive expression and ordinal scales as different categories of
qualitative expression: descriptive expression allows free choice of language to characterise
uncertainty, while ordinal scales provide a standardised and ordered scale of qualitative expressions
facilitating comparison of different uncertainties. It is also useful to distinguish different categories of
quantitative expression, which differ in the extent to which they quantify uncertainty. A complete
quantitative expression of uncertainty would specify all the answers or values that are considered
possible and probabilities for them all. Partial quantitative expression provides only partial information
on the probabilities and in some cases partial information on the possibilities (specifying a selection of
possible answers or values). Partial quantitative expression requires less information or judgements but
may be sufficient for decision-making in some assessments, whereas other cases may require fuller
quantitative expression.

Different types of qualitative and quantitative expression of uncertainty are described in Box 1
below. Note that when the answer to a question is expressed qualitatively uncertainty about it can still
be expressed quantitatively, provided the question is well-defined (see Section 5.1). Methods that can
provide the different forms of qualitative and quantitative expression are summarised in Section 11.

When using bounds or ranges it is important to specify whether the limits are absolute, i.e. contain
all possible values, or contain the ‘true’ value with a specified probability (e.g. 95%), or contain the
true value with at least a specified probability (e.g. 95% or more). When an assessment factor (e.g.
for species differences in toxicity) is said to be ‘conservative’, this implies that it is a bound that is
considered or assumed to have sufficient probability of covering the uncertainty (and, in many cases,
variability) which the factor is supposed to address. What level of probability is considered sufficient
involves a risk management judgement and should, for transparency, be specified.

As well as differing in the amount of information or judgements they require, the different
categories of quantitative expression differ in the information they provide to decision-makers.

Box 1: Differing ways of expressing uncertainty

Qualitative expression

Descriptive expression: Uncertainty described in narrative text or characterised using verbal terms without
any quantitative definition.

Ordinal scale: Uncertainty described by ordered categories, where the magnitude of the difference between
categories is not quantified.

Quantitative expression

Individual values: Uncertainty partially quantified by specifying some possible values, without specifying what
other values are possible or setting upper or lower limits.

Bound: Uncertainty partially quantified by specifying either an upper limit or a lower limit on a quantitative
scale, but not both.

Range: Uncertainty partially quantified by specifying both a lower and upper limit on a quantitative scale,
without expressing the probabilities of different values within the limits.

Probability: Uncertainty about a binary outcome (including the answer to a yes/no question) fully quantified
by specifying the probability or approximate probability of both possible outcomes.

Probability bound: Uncertainty about a non-variable quantity partially quantified by specifying a bound or
range with an accompanying probability or approximate probability.

Distribution: Uncertainty about a non-variable quantity fully quantified by specifying the probability of all
possible values on a quantitative scale.
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Individual values give only examples of possible values, although often accompanied by a qualitative
expression of where they lie in the possible range (e.g. ‘conservative’). A bound for a quantity can
provide a conservative estimate, while a range provides both a conservative estimate and an indication
of the potential for less adverse values, and therefore, the potential benefits of reducing uncertainty. A
distribution provides information on the probabilities of all possible values of a quantity: this is useful
when decision-makers need information on the probabilities of multiple values with differing levels of
adversity.

Assessments using probability distributions to characterise variability and/or uncertainty are often
referred to as ‘probabilistic’. The term ‘deterministic’ is often applied to assessments using individual
values without probabilities (e.g. IPCS, 2005, 2014; EFSA, 2007; ECHA, 2008).

The term ‘semi-quantitative’ is not used in this document. Elsewhere in the literature it is
sometimes applied to methods that are, in some sense, intermediate between fully qualitative and fully
quantitative approaches. This might be considered to include ordinal scales with qualitative definitions,
since the categories have a defined order but the magnitude of differences between categories and
their probabilities are not quantified. Sometimes, ‘semi-quantitative’ is used to describe an assessment
that comprises a mixture of qualitative and quantitative approaches.

4.2. The role of quantitative expression in uncertainty analysis

The Codex Working Principles on Risk Analysis (Codex, 2016) state that ‘Expression of uncertainty
or variability in risk estimates may be qualitative or quantitative, but should be quantified to the extent
that is scientifically achievable’. A similar statement is included in EFSA’s (2009) guidance on
transparency. Advantages and disadvantages of qualitative and quantitative expression are discussed
in the EFSA Scientific Committee (2012) Scientific Committee Opinion on risk terminology, which
recommends that EFSA should work towards more quantitative expression of both risk and uncertainty.

The principal reasons for preferring quantitative expressions of uncertainty are as follows:

• Qualitative expressions are ambiguous. The same word or phrase can mean different things to
different people as has been demonstrated repeatedly (e.g. Theil, 2002; Morgan, 2014). As a
result, decision-makers may misinterpret the assessors’ assessment of uncertainty, which may
result in suboptimal decisions. Stakeholders may also misinterpret qualitative expressions of
uncertainty, which may result in overconfidence or unnecessary alarm.

• Decision-making often depends on quantitative comparisons, for example, whether a risk
exceeds some acceptable level, or whether benefits outweigh costs. Therefore, decision-
makers need to know whether the uncertainty affecting an assessment is large enough to alter
the comparison in question, e.g. whether the uncertainties around an estimated exposure of
10 and an estimated safe dose of 20 are large enough that the exposure could in reality
exceed the safe dose. This requires uncertainty to be expressed in terms of how different each
estimate might be, and how probable that is.

• If assessors provide only a single answer or estimate and a qualitative expression of the
uncertainty, decision-makers will have to make their own quantitative interpretation of how
different the real answer or value might be. Even if this is not intended or explicit, such a
judgement will be implied when the decision is made. Therefore, at least an implicit quantitative
judgement is, in effect, unavoidable, and this is better made by assessors, since they are better
placed to understand the sources of uncertainty affecting the assessment and judge their effect
on its conclusion.

• Qualitative expressions often imply, or may be interpreted as implying, judgements about the
implications of uncertainty for decision-making, which are outside the remit of EFSA. For
example, ‘low uncertainty’ tends to imply that the uncertainty is too small to influence decision-
making, and ‘no concern’ implies firmly that this is the case. Qualitative terms can be used if
they are based on scientific criteria agreed with decision-makers, so that assessors are not
making risk management judgements (see Section 3.5). However, for transparency they need to
be accompanied by quantitative expression of uncertainty, to make clear what range and
probability of consequences is being accepted.

• When different assessors work on the same assessment, e.g. in a Working Group, they cannot
reliably understand each other’s assessment of uncertainty if it is expressed qualitatively.
Assessors may assess uncertainty differently yet agree on a single qualitative expression, because
they interpret it differently.
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• Expressing uncertainties in terms of their quantitative impact on the assessment conclusion will
reveal differences of opinion between experts working together on an assessment, enabling a
more rigorous discussion and hence improving the quality of the final conclusion.

• It has been demonstrated that people often perform poorly at judging combinations of
probabilities (Gigerenzer, 2002). This implies they may perform poorly at judging how multiple
uncertainties in an assessment combine. It may therefore be more reliable to divide the
uncertainty analysis into parts and quantify uncertainty separately for those parts containing
important sources of uncertainty, so that they can be combined by calculation (see Section 7.2).

• Quantifying uncertainty enables decision-makers to weigh the probabilities of different
consequences against other relevant considerations (e.g. cost, benefit). Unquantified
uncertainties cannot be weighed in this way and make decision-making more difficult
(Section 5.13). It is therefore important to quantify the overall impact of as many as possible
of the identified uncertainties, and identify any that cannot be quantified. The most direct way
to achieve this is to try to quantify the overall impact of all identified uncertainties, as this will
reveal any that cannot be quantified.

Many concerns and objections to quantitative expression of uncertainty have been raised by various
parties during the public consultation and trial period for this document and in the literature. These are
listed in Box 2; many, not all, relate to the role of expert judgement in quantifying uncertainty. The
Scientific Committee has considered these concerns carefully and concludes that all of them can be
addressed, either by improved explanation of the principles involved or through the use of appropriate
methods for obtaining and using quantitative expressions. These are also summarised in Box 2.

Having considered the advantages of quantitative expression, and addressed the concerns, the
Scientific Committee concludes that assessors should express in quantitative terms the combined effect
of as many as possible of the identified sources of uncertainty, while recognising that how this is
reported must be compatible with the requirements of decision-makers and legislation (Section 3.5).
Any sources of uncertainty that assessors are unable to include in their quantitative expression, for
whatever reason, must be documented qualitatively and reported alongside it, because they will have
significant implications for decision-making (see Section 5.13). Together, the quantified uncertainty and
the description of unquantified uncertainties provide the overall characterisation of uncertainty, and
express it as unambiguously as is possible. The role of qualitative approaches in this is discussed in
Section 4.3.

This recommended approach is thus consistent with the requirement of the Codex Working
Principles for Risk Analysis (Codex, 2016) and the EFSA Guidance on Transparency (EFSA, 2010a,b),
which state that uncertainty be ‘quantified to the extent that is scientifically achievable’. However, the
phrase ‘scientifically achievable’ requires careful interpretation. It does not mean that uncertainties
should be quantified using the most sophisticated scientific methods available (e.g. a fully probabilistic
analysis); this would be inefficient in cases where simpler methods of quantification would provide
sufficient information on uncertainty for decision-making. Rather, scientifically achievable should be
interpreted as referring to including as many as possible of the identified sources of uncertainty within
the quantitative assessment of overall uncertainty, and omitting only those which the assessors are
unable to quantify.

The recommended approach does not imply a requirement to quantify ‘unknown unknowns’ or
ignorance. These are always potentially present, but cannot be included in assessment, as the
assessors are unaware of them (see Section 5.13). The recommended approach refers to the
immediate output of the assessment, and does not imply that all communications of that output
should also be quantitative. It is recognised that quantitative information may raise issues for
communication with stakeholders and the public. These issues and options for addressing them are
discussed in Section 16.
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Box 2: Common concerns and objections to quantitative expression of uncertainty, and how they are
addressed by the approach developed in this document and the accompanying Guidance.

1) Quantifying uncertainty requires complex computations, or excessive time or resource: most of the
options in the Guidance do not require complex computations, and the methods are scalable to any
time and resource limitation, including urgent situations.

2) Quantifying uncertainty requires extensive data: uncertainty can be quantified by expert judgement for
any well-defined question or quantity (Section 5.1), provided there is at least some relevant evidence.

3) Data are preferable to expert judgement: the Guidance recommends use of relevant data where
available (see Section 5.9).

4) Subjectivity is unscientific: All judgement is subjective, and judgement is a necessary part of all
scientific assessment. Even when good data are available, expert judgement is involved in evaluating
and analysing them, and when using them in risk assessment.

5) Subjective judgements are guesswork and speculation: all judgements in EFSA assessments will be
based on evidence and reasoning, which will be documented transparently (Section 5.9).

6) Expert judgement is subject to psychological biases: EFSA’s guidance on uncertainty analysis and
expert knowledge elicitation use methods designed to counter those biases (EFSA, 2014a; EFSA
Scientific Committee, 2018).

7) Quantitative judgements are over-precise: EFSA’s methods produce judgements that reflect the
experts’ uncertainty – if they feel they are over-precise, they should adjust them accordingly.

8) Uncertainty is exaggerated: identify your reasons for thinking the uncertainty is exaggerated, and
revise your judgements to take them into account.

9) There are too many uncertainties: whenever experts draw conclusions, they are necessarily making
judgements about all the uncertainties they are aware of. The Guidance provides methods for assessing
uncertainties collectively that increase the rigour and transparency of those judgements (Section 14).

10) Probability judgements are themselves uncertain: take the uncertainty of your judgement into account
as part of the judgement, e.g. by giving a range, or making it wider (Section 14.4).

11) Giving precise quantiles for uncertainty is over-confident: the quantiles will not be treated as precise,
but as a step in deriving a distribution for you to review and adjust. If there is concern about the
choice of distribution, its impact on the analysis can be assessed by sensitivity analysis (EFSA, 2014a,
b). Alternatively, approximate probabilities could be used (Section 11.1, 11.3.3).

12) There are some uncertainties I cannot make a probability judgement for: in principle, probability
judgements can be given for all well-defined questions or quantities (Section 5.1). However, the
Guidance recognises that experts may be unable to make probability judgements for some
uncertainties, and provides options for dealing with this (Sections 5.12 and 14).

13) Different experts will make different judgements: this is expected and inevitable, whether the
judgements are quantitative or not. An advantage of quantitative expression is that those differences
are made explicit and can be discussed, leading to better conclusions. These points apply to experts
working on the same assessment, and also to different assessments of the same question by different
experts or institutions.

14) I cannot give a probability for whether a model is correct: no model is entirely correct. Model
uncertainty is better expressed by making a probability judgement for how different the model result
might be from the real value (Section 5.5).

15) Uncertainty should be addressed by conservative assumptions: choosing a conservative assumption
involves two judgements – the probability that the assumption is valid, and the acceptability of that
probability. The Guidance improves the rigour and transparency of the first judgement, providing a
better basis for the second (which is part of risk management).

16) Probabilities cannot be given for qualitative conclusions: Probability judgements can be made for any
well-defined conclusion (Section 5.1), and all EFSA conclusions should be well-defined.

17) You cannot make judgements about unknown unknowns: no such judgements are implied
(Section 5.13). All scientific advice is conditional on assumptions about unknown unknowns.

18) Uncertainty is unquantifiable by definition: this is the Knightian view (Stirling, 2010). The Guidance
uses subjective probability, which Knight recognised as an option (Section 5.12).

19) Probabilities cannot be given unless all the possibilities can be specified (Stirling, 2010): provided an
answer to a question is well-defined, a probability judgement can be made for it without specifying or
knowing all possible alternative answers. However, assessors should guard against a tendency to
underestimate the probability of other answers when they are not differentiated.
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4.3. The role of qualitative expression in uncertainty analysis

The requirement for assessors to express in quantitative terms the overall impact of as many as
possible of the identified sources of uncertainty does not mean there is no role for qualitative methods
in uncertainty analysis. On the contrary, they have an important role. Specifically, they are
recommended for the following purposes:

1) As a simple approach for prioritising uncertainties (Section 5.7).
2) At intermediate points in an uncertainty analysis, to characterise individual sources of

uncertainty qualitatively, as an aid to quantifying their combined impact by probability
judgement. This may be useful either for individual parts of the uncertainty analysis, or as a
preliminary step when characterising the overall uncertainty of the conclusion (Section 14).

3) When quantifying uncertainty by expert judgement, and when communicating the results of
that, it may in some cases be helpful to use an approximate probability scale with
accompanying qualitative descriptors (Section 11.3.3).

4) At the end of uncertainty analysis, for describing uncertainties that the assessors are unable
to include in their quantitative evaluation (Section 15).

5) When reporting the assessment, for expressing the assessment conclusion in qualitative
terms when this is required by decision-makers or legislation (Section 3.5).

5. Key concepts for uncertainty analysis

5.1. Well-defined questions and quantities of interest

The purpose of most EFSA scientific assessments is to determine what science can say about a
quantity, event, proposition or state of the world that is of interest for decision-makers. Examples from
different areas of EFSA’s work include adverse or beneficial effects on human health or animal welfare;
entry of pests and diseases of plants and animals into the EU, and the economic and environmental
impacts of that; and adverse effects of genetically modified organisms. In most cases, the question or
quantity of interest is identified in the ToR for assessment. In some cases, the ToR are more open, e.g.
when they request a review of an area of science without posing a specific question. In those cases,
however, the conclusions of the assessment will still refer to questions or quantities of interest, or at
least potential interest, to decision-makers.

20) None of the ranges in the approximate probability scale properly represent my judgement: specify a
range that does (Section 11.3.3).

21) Lack of evidence: if there really is no evidence, no probability judgement can be made – and no
scientific conclusion can be drawn.

22) It is not valid to combine probabilities derived from data with probabilities derived by expert
judgement: there is a well-established theoretical basis for using probability calculations to combine
probability judgements elicited from experts (including probability judgements informed by non-
Bayesian statistical analysis) with probabilities obtained from Bayesian statistical analysis of data (see
Section 5.10).

23) The result of the uncertainty analysis is incompatible with, or undermines, our conclusion: reconsider
both the uncertainty analysis and the conclusion, and revise one or both so they (a) match and (b)
properly represent what the science supports. A justifiable conclusion takes account of uncertainty, so
there should be no inconsistency (Section 3.5).

24) Decision-makers require us to say whether a thing is safe or not safe, not give a probability for being safe:
‘safe’ implies some acceptable level of certainty, so if that is defined then positive or negative conclusion
may be given without qualification (Section 3.5).

25) Risk managers and the public do not want to know about uncertainty: actually many do, and as a
matter of principle, decision-makers need information on uncertainty to make rational decisions (EFSA,
2018b, in prep.).

26) Communicating uncertainty will undermine public confidence in scientific assessment: some evidence
supports this, but other evidence suggests communicating uncertainty can increase confidence. EFSA’s
approach on communicating uncertainty (EFSA, 2018b, in prep.) is designed to achieve the latter.
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Many scientific assessments are divided into smaller parts, e.g. a chemical risk assessment is
divided into exposure and hazard assessment. Each of these may then be further divided, e.g.
exposure is divided into different routes, and dietary exposure into occurrence, consumption and other
factors. Each part of an assessment will also address a question or quantity of interest. In this case,
the question or quantity is of interest to the assessor, because an assessment of it is a necessary part
of assessing the question or quantity of interest for the assessment as whole.

In order to express uncertainty about a question or quantity of interest in a clear and unambiguous
way, it is necessary that the question or quantity itself is well-defined, so that it is interpreted in the
same way by different people. This applies both to the uncertainty analysis as a whole and to its parts.
If questions or quantities of interest are not well-defined, different assessors may interpret them in
different ways, causing confusion in the assessment, increasing uncertainty in the overall conclusion,
and possibly leading to inappropriate conclusions.

In practice, it is difficult to ensure that different people understand a question or quantity of
interest in precisely the same way. However, it is sufficient if each question or quantity is defined in
terms of the result of an experiment or study that those involved agree would determine the question
or quantity with certainty. For the question or quantity of interest for the assessment as a whole,
agreement is needed between assessors and decision-makers while, for the questions or quantities of
subsidiary parts of the uncertainty analysis, agreement amongst the assessors is sufficient.

The experiment or study used to define a question or quantity of interest is a hypothetical one, of
sufficiently large size that it would determine the question or quantity with certainty. It is not
necessary that the experiment or study should be feasible in practice, but it should be feasible in
principle, at least conceptually. For example, the mean body weight of the human population of the EU
at a specified point in time is a well-defined quantity, even though it would not be feasible to weigh
every member of the EU population at the same point in time. Note that variable quantities should be
defined in terms of non-variable quantities such as the mean, as in the above example of body weight,
or other quantities that describe the variability such as the variance or a specified percentile.

The questions or quantities of interest in some EFSA assessments refer to things that may seem
challenging to define in terms of the result of a hypothetical experiment or study. Examples include the
condition or property of being genotoxic, and calculated quantities such as a Margin of Exposure (EFSA,
2012c), neither of which can be directly measured or observed. In practice, however, such questions or
quantities can be defined by the procedures for determining them, as established in legislation or
official guidance, i.e. the data that are required, and the criteria for interpreting those data.

Having well-defined questions or quantities of interest is important for uncertainty analysis because
uncertainty can, in principle, be quantified using subjective probabilities for any well-defined question
or quantity (Section 5.10). If assessors are unable to specify a question or quantity in a well-defined
manner, then use of subjective probability is not appropriate. However, in such cases, it is doubtful
whether scientific assessment of any kind is appropriate, since the scientific method relies on working
with well-defined concepts. Hence, the emphasis placed by the guidance on ensuring questions and
quantities of interest are well-defined.

Questions or quantities of interest must be defined in terms specific to each assessment, but will
generally take one of four general forms. These general forms have implications for the way
uncertainty can be quantified, and are therefore referred to repeatedly in later parts of this document
and also in the accompanying Guidance.

• Quantities of interest can take one of two forms:

� Non-variable quantities that have a single real value, e.g. the total number of animals
infected with a specified disease entering the EU in a given year. Many non-variable
quantities in scientific assessment are parameters that describe variable quantities, which
is potentially confusing. A common example of this is the mean body weight for a
specified population at a specified time. The term non-variable is used in preference to
‘fixed’, to avoid giving the impression that the value is known with certainty.

� Variable quantities that take multiple values, such the body weights in a population.

• Categorical questions of interest: it is useful to distinguish between:

� Yes/no questions – e.g. questions referring to the presence or absence of some
condition or state of the world, the occurrence or not of some event, or the exceedance
or not of some quantitative threshold.

� Questions with more than two categories of answer, e.g. different types of effect.
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Readers may be surprised that the list of types of questions of interest does not include
‘qualitative’. This is because if a question of interest is well-defined, which it should always be for the
reasons discussed above, then it can be treated as a yes/no question. This is very important, because
it makes uncertainty analysis possible for all types of scientific assessment, including those regarded as
‘qualitative’ (see Section 5.10).

Questions that relate to quantities can also be defined as categorical questions, when appropriate
for the needs of the assessment; for example, whether the quantity exceeds a specified value of
interest for decision-making. A common example in chemical risk assessment is whether a specified
measure of exposure exceeds a specified reference dose: a yes/no question.

Distinguishing these different types of question and quantity of interest is useful because different
forms of expression are required to quantify their uncertainty. The uncertainty of a yes/no question
can be expressed by a probability for the answer being yes, since this determines also the probability
for the answer being no. Expressing the uncertainty of a question with more than two categories
requires probabilities for all of its categories. Probability calculations for yes/no questions are simpler
than those for questions with more categories, so it may be convenient to define questions with more
than two categories as a series of yes/no questions for the purpose of assessment, or to focus on one
category of particular interest for decision-making. The uncertainty of a non-variable quantity can be
expressed by a probability distribution. Expressing the uncertainty of a variable quantity requires a
statistical model for the variability. The parameters in the statistical model are then non-variable
quantities and uncertainty about them can be quantified using probability distributions. Uncertainty can
also be quantified using approximate probability expressions, for all four types of question and
quantity. Different types of probability expression are discussed in more detail in Section 11.1.

5.2. Conditional nature of uncertainty

The uncertainty affecting a scientific assessment is a function of the knowledge that is relevant to
the assessment and available to those conducting the assessment, at the time that it is conducted
(Section 1.3). Limits in the information that exists are a major part of this; however, if relevant
information exists elsewhere but is not accessible, or cannot be evaluated within the time and
resources permitted for assessment, those limitations are also part of the uncertainty of the
assessment, even though more information may be known to others. This is one of the reasons why
uncertainty tends to be higher when a rapid assessment is required, e.g. in urgent situations. With
more time and resources, more knowledge may be generated, accessed and analysed, so that if the
assessment is repeated the uncertainty would be different.

Expressions of uncertainty are also conditional on the assessors involved. The task of uncertainty
analysis is to express the uncertainty of the assessors regarding the question under assessment, at the
time they conduct the assessment: there is no single ‘true’ uncertainty. Even a form of uncertainty for
which there is a widely accepted statistical model, such as measurement or sampling uncertainty, is
ultimately conditional because different individuals may prefer different models.

The uncertainty of an assessment is conditional not only on the knowledge, time and resources that
are available, and the expert judgements that are made, but also on the specific question being
addressed. The same data may give rise to differing levels of uncertainty for different questions, e.g. if
they require different extrapolations or involve different dependencies.

Individuals within a group of assessors will have different expertise and experience. They will also
have different social contexts (Nowotny et al., 2001; Jasanoff, 2004). EFSA establishes Panels and
Working Groups consisting of experts selected for the complementary contributions they make to the
assessments they conduct (see Section 5.9). However, the conditional nature of knowledge and
uncertainty means it is legitimate, and to be expected, that different experts within a group may give
differing judgements of uncertainty for the same assessment question. Some structured approaches to
eliciting judgements and characterising uncertainty elicit the judgement of the individual experts,
explore the reasons for differing views and provide opportunities for convergence. A similar process
occurs in reaching the consensus conclusion that is generally produced by an EFSA Panel. Where
significant differences of view remain, EFSA procedures provide for the expression of Minority
Opinions. Expert elicitation methodology offers a variety of techniques to elicit and aggregate the
judgements of experts, and mitigate the social and psychological biases that can affect expert
judgement (see Section 5.9). Either way, remaining variation between experts is part of their collective
uncertainty and relevant information for decision-making.
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The conditional nature of knowledge and uncertainty also contributes to cases where different
groups of assessors reach diverging opinions on the same issue; again this is relevant information for
decision-making. Where differences in opinion arise between EFSA and other EU or Member State
bodies, Article 30 of the Food Regulation includes provision for resolving or clarifying them and
identifying the uncertainties involved.

5.3. Uncertainty and variability

It is important to take account of the distinction between uncertainty and variability, and also how
they are related. Uncertainty refers to the state of knowledge, whereas variability refers to actual
variation or heterogeneity in the real world. Both can be represented by probability distributions, as
illustrated in the left and central graphs in Figure 1. Uncertainty may be altered (either reduced or
increased) by further research, because it results from limitations in knowledge, whereas variability
cannot, because it refers to real differences that will not be altered by obtaining more knowledge.
Therefore, it is important that assessors distinguish uncertainty and variability because they have
different implications for decision-making, informing decisions about whether to invest resources in
research aimed at reducing uncertainty or in management options aimed at influencing variability (e.g.
to change exposures). This applies whether the assessment is qualitative or quantitative.

Variability is a property of the real world, referring to real differences between the members of a
population of real-world entities. Although the term population is commonly used in relation to
biological organisms (e.g. humans), the same concepts apply to populations of other types of entity
(e.g. a class of related chemicals). Our knowledge of variability is generally incomplete, so there is
uncertainty about variability (see graph on right side of Figure 1). Some types of variability, for
example, the variation in human body weight, are much less uncertain than others, e.g. the variation
of chemical concentrations in a type of food for which few measurements are available. When dealing
with variability in scientific assessment, it is important to define clearly the population involved, and
identify any relevant subpopulations. If the population, or individual values changes over time, it is
necessary also to specify the time period of interest.

Although distinct, variability and uncertainty are also related, because some types of uncertainty
are caused by variability. Variability in a population causes uncertainty about parameters such as the
mean when they are estimated by measuring samples from that population (sampling uncertainty).
The more variability there is in the population, the larger the sample that is needed to measure it with
a given degree of precision. Imprecision is a form of measurement uncertainty, due to variability in
repeated measurements of the same quantity. Uncertainty caused by variability is sometimes referred
to as ‘aleatory’ uncertainty and distinguished from ‘epistemic’ uncertainty, which refers to other types
of limitations in knowledge (e.g. Vose, 2008).

How variability and uncertainty for each component of an assessment should be treated depends
on whether the assessment question refers to the population or to a particular member of that
population, how each component of the assessment contributes to that, and how those contributions
are represented in the assessment model. Many assessment questions refer to populations, e.g. what
proportion of a population will experience a given level of exposure. Whether it is appropriate to
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Figure 1: Illustration of the distinction between uncertainty and variability (left and central graphs),
and that both can affect the same quantity (right hand graph)
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quantify variability in a particular input depends on the question to be addressed. For example,
variability in chemical concentrations needs to be quantified in assessments of acute exposure to
chemicals, but mean concentrations are generally used when assessing long-term exposure. An
important example of a risk assessment component relating to a particular instance of a variable
quantity is provided by the default assessment factors used in chemical risk assessment, as discussed
in Annex B.16. The actual difference between animals and humans will vary between chemicals, and
the extent of this variation is uncertain, so a default assessment factor needs to address both the
variability and the uncertainty (as can be seen from the right graph of Figure 1). In an assessment for
a single chemical, the variability should be treated as part of the uncertainty, whereas in an
assessment of cumulative risk for multiple chemicals, the variability and uncertainty should be
separated. Care is needed to determine when variability and uncertainty should be separated and
when they should be combined, as inappropriate treatment may give misleading results.

5.4. Dependencies

Variables are often interdependent. In some cases, this is explicitly represented by models used in
scientific assessment, e.g. dose–response models. But it can also apply to other variables: for example,
body weight tends to be positively correlated with height and both are correlated with age. It is
important to take account of dependencies between variables in assessment, because they can have a
large effect on the result. This means that different combinations of values must be considered in
proportion to their expected frequency, taking account of any dependencies, and excluding unrealistic
or impossible combinations.

Sources of uncertainty can also be interdependent. This happens when learning more about one
question or quantity in an assessment would alter the assessor’s uncertainty about another question or
quantity. For example, given two previously untested chemicals with similar structures, obtaining
information about the toxicity of one of them might alter one’s expectation about the toxicity of the
other. Another example, which may be surprising, is that while it is well known that the means and
variances of repeated samples from a normal distribution vary independently, the uncertainties of the
population mean and variance for a normal distribution are interdependent, when estimated from a
measured sample. This is because, if one discovered that the population mean was a long way from
the sample mean, this would change the uncertainty of the variance, because high variances would
become more likely. Where learning more about one source of uncertainty would not alter uncertainty
about another and vice versa, they may be treated as independent; for example, information on the
toxicity of one chemical may not alter one’s expectation about the toxicity of other chemicals if they
have very different structures.

Dependencies between sources of uncertainty can greatly alter the overall uncertainty, so it is
important to identify them and take them into account. This is true not only when using distributions
to take account of uncertainty. For example, in a deterministic assessment using conservative
assumptions, it is important to consider dependencies between the assumptions when assessing the
overall conservatism of the assessment (Section 11.6.3). It is very difficult to make reliable expert
judgements about the effect of dependencies, whether for variability or uncertainty, and it is therefore
preferable to assess them by probabilistic calculations than by expert judgement when possible (see
Section 11.4.6). A simpler alternative is to use probability bounds methods, which do not require
information or assumptions about dependencies (see Section 11.4.5).

Dependencies are not limited to assessments using quantitative methods. In assessments using
qualitative methods, the assessors should also consider whether learning more about each element of
the assessment would affect their uncertainty about other elements, and take this into account when
evaluating the uncertainty of the assessment conclusions. For example, if ordinal scales are used to
assess the uncertainty of different assessment inputs, it is important to consider the potential
dependencies between those sources of uncertainty when assessing the uncertainty of the assessment
as a whole. Again, this is difficult to do by expert judgement, and may be a reason to reformulate the
assessment and/or uncertainty analysis in quantitative terms.

5.5. Models and model uncertainty

All scientific assessments involve some form of model, which may be qualitative or quantitative, and
most assessments are based on specialised models relevant to the type of assessment. Many
assessments combine models of different kinds.
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Examples of types of model used by EFSA:

• Conceptual models representing fundamental scientific understanding of physical, chemical and
biological processes and their interactions in organisms, environment and ecology.

• Models that do not estimate real observable quantities, but give structure to assessments and
are useful for decision-making. For example, hazard/exposure ratios in human and
environmental risk assessment.

• Deterministic and probabilistic models of specific processes relevant to assessments. For
example, chemical kinetics and dynamics, exposure, environmental fate, introduction and
spread of species, agricultural practices, microbial contamination, cumulative effects of multiple
stressors.

• Individual-based probabilistic models. For example, individual based dietary exposure
modelling, individual animals in the landscape.

• Statistical models. For example, standard statistical models of experimental measurements and
sampling processes, regression and dose–response models, models of absorption/excretion of
nutrients, and models of interchemical, interspecies and intraspecies variability of toxicity.

• Logic models: models expressing a yes/no conclusion as a logical deduction from the answers
to a series of yes/no questions. The logic is represented using logical operators such as ‘AND’,
‘OR’ and ‘NOT’, e.g. if a AND b then c.

Types of uncertainties affecting the structure and inputs of models are discussed in Section 8.1. If
uncertainties affecting inputs to quantitative models (including logic models) are quantified, they can
be ‘propagated’ through the models to calculate the impact of those uncertainties on the model
outputs.

Some types of uncertainty about model structure can be quantified statistically, e.g. by model
averaging (Section 11.5.2). Other types of uncertainty about model structure must be assessed by
expert judgement, and taken into account when characterising overall uncertainty (see Section 14). As
is commonly said, all models are wrong but some are useful (Box, 1976). Therefore, judgements
about model uncertainties should be expressed not as a probability that the model is correct, but as
probability distributions or probability bounds for the difference between the model output and the real
quantity it is intended to represent. While this is challenging for assessors, it should be possible
because the decision to use a model already implies a judgement that the output will be reliable
enough to provide a justifiable basis for scientific advice; if the assessors cannot make that judgement
explicit then it is difficult to justify using the model.

All models are simplified abstractions of the real world. Nevertheless, some models directly address
the scenario and question or quantity of interest to decision-makers, for example, it is possible to
model the proportion of people experiencing a specified effect in the EU population (IPCS, 2014). In
other cases, to simplify the assessment, assessors develop models addressing simplified scenarios and/or
surrogate questions or quantities. For example, they might assess the same effect only for a subset of EU
countries, or (commonly) the proportion of people exceeding a specified exposure (e.g. a Health-Based
Guidance Value) rather than the proportion who experience effects. Ideally, extrapolation from the
output of such a simplified model to the scenario and question or quantity of interest should be
considered as a model uncertainty, and included in the characterisation of overall uncertainty
(Section 14). However, this is not necessary if the decision-makers and assessors agree that the model
output can be used as the basis for decision-making without such extrapolation. In effect, they have
then agreed, or are willing to assume, that the difference between the model output and the scenario
and question or quantity of interest will be too small to impact decision-making. When a simplified
model is used repeatedly for different assessments, the assumed extrapolation should be tested
through an appropriate analysis: this is the reason for ‘calibration’ of standardised assessment
procedures, which are a type of simplified model and common in many areas of EFSA’s work (see
Section 7.1.3).

5.6. Evidence, agreement, confidence and weight of evidence

Evidence, weight of evidence, agreement (e.g. between studies or between experts) and
confidence are all concepts that are related to uncertainty. Increasing the amount, quality, consistency
and relevance of evidence or the degree of agreement between experts tends to increase confidence
and decrease uncertainty. Therefore, scales for evidence, agreement, etc. are sometimes used as
measures of uncertainty. However, the relationship between these concepts is complex and variable.
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For example, obtaining more evidence or consulting more experts may reveal new issues that were
previously not considered, and if so confidence decreases and uncertainty increases. As another
example, two experimental studies may provide the same amount and quality of evidence for the
same measurement, but differing confidence intervals. Furthermore, measures of evidence and
agreement do not, on their own, provide information on the range and probability of possible answers
or values, which is what matters for decision-making (Section 3.1). Therefore, they are insufficient and
may be misleading if used alone as measures of uncertainty. This is why EFSA Scientific Committee
(2017a) recommends expressing the conclusions of weight of evidence assessment in terms of the
relative support for possible answers to a question.

Nevertheless, because the amount, quality, consistency and relevance of evidence and the degree
of agreement are related to the degree of uncertainty, consideration of evidence and agreement is
useful as part of the process for assessing weight of evidence (EFSA Scientific Committee, 2017a,b)
and in uncertainty analysis. Expressing evidence and agreement on defined qualitative scales can be
helpful in structuring the assessment, facilitating discussion between experts and increasing
consistency in the expression of their judgements (Section 10). Such scales also provide a summary of
evidence and agreement that may be helpful to assessors when they are making judgements about
the range and probability of possible answers or values for a question or quantity. An example of this
is provided by Mastrandrea et al. (2010), who use categorical scales for evidence and agreement to
inform judgements about the level of confidence in a conclusion and (when confidence is high) its
probability.

The term `confidence’ is used in different ways, both quantitative and qualitative. The familiar
quantitative use is in statistical analysis, where a confidence interval for a statistical estimate (e.g. a
mean) provides a measure of its uncertainty. The level of confidence for the interval is specified as a
(frequentist) probability, and quantifies only that part of uncertainty that is reflected in the sampling
scheme and the variability of the data being analysed (see Section 5.10). The use of confidence
intervals in uncertainty analysis is discussed in Section 5.10 and 11.2.1.

The term `confidence’ has also been used as a qualitative measure of trust in a conclusion,
expressed on a qualitative scale. Such scales are subject to the same limitations as other qualitative
expressions of uncertainty, but again may be useful as an aid to assessors when making more
quantitative judgements. For example, Mastrandrea et al. (2010) propose an ordinal scale for
confidence with five levels (‘very low’, ‘low’, ‘medium’, ‘high’ and ‘very high’). They emphasise that this
is different from statistical confidence, and describe it as synthesising assessors’ judgements about the
validity of findings as determined through evaluation of evidence and agreement (see Section 11.3.3
and Annex B.3 for further aspects of their approach, and Section 10.2 and Annex B.2 for more on
ordinal scales in general).

The term ‘weight of evidence’ is often used in situations where there are multiple studies on the
same topic, or multiple lines of evidence for the same question, which may be of differing relevance
and reliability or show contrasting results. A weight of evidence approach involves weighing the
different studies or lines of evidence against each other, taking account of their reliability and their
relevance to the question being assessed, and assessing the balance of evidence for or against
different conclusions. Methods for weight of evidence assessment are the subject of a separate
guidance document (EFSA Scientific Committee, 2017a,b). Weight of evidence assessment and
uncertainty analysis are closely related: the former characterises part of the uncertainty affecting the
conclusion but not all. In particular, it does not include uncertainties affecting the selection of evidence
to include, and the choice of methods for evaluating and integrating the evidence, which must
therefore be taken into account by uncertainty analysis (see Sections 2.6 and 4.5 in EFSA Scientific
Committee, 2017a,b).

5.7. Influence, sensitivity and prioritisation of uncertainties

Influence and sensitivity are terms used to refer to the extent to which plausible changes in the
overall structure, parameters and assumptions used in an assessment produce a change in the results.
Analysis of sensitivity and influence has several uses in uncertainty analysis. It can be used to evaluate
the overall robustness of the conclusion with respect to choices made in the assessment (including
methods used to assess the uncertainty). As such, it can help to inform judgements about the
contribution of these choices to uncertainty of the question or quantity of interest. It also plays an
important role in prioritising the most important uncertainties for additional analysis or data collection.
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In various fields, these terms are given specific technical meanings which however are not universal.
In this document, they are used with specific meanings described below.

In general, and specifically in the context of uncertainty analysis (Saltelli et al., 2008), the term
sensitivity analysis is used in the context of a quantitative model. There it refers to the quantitative
measurement of the impact, on the output of the model, of changes to the values of inputs to the
model. For consistency with this usage, in this document, the concept of sensitivity is restricted to the
quantitative influence of uncertainty about inputs on uncertainty about the output of a mathematical
model. The results of a sensitivity analysis can quantify the relative contribution of different input
uncertainties to the uncertainty of the assessment output.

The term `influence’ is used in the Guidance in a broader sense and for all types of assessment,
not just mathematical models. It refers to any possible change in the assessment output resulting not
just from uncertainties about inputs to the assessment but also from uncertainties about choices made
in the assessment. The latter might include the structure to use for the assessment, structure of
models, choice of factors to include in models, etc. Quantitative assessment of influence is more
complex than assessment of sensitivity and cannot be carried out using only the methods described in
the annex on Sensitivity Analysis (B.17). It often requires replicating the assessment with different
assumptions, models, etc. (e.g. what-if calculations or scenario analysis). If time and resource
constraints do not permit such replication, this needs to be taken into account in the characterisation
of overall uncertainty (see Section 14). Influence can also be assessed qualitatively, e.g. using ordinal
scales to express qualitative judgements about the relative influence of different uncertainties on the
assessment output.

Prioritisation of uncertainties is useful both during an assessment and at its end. Early in the
assessment, after identifying sources of uncertainty and before commencing quantitative analysis,
qualitative assessment of influence can help assessors to decide which uncertainties to analyse in
detail and which will be evaluated collectively later in the analysis, when characterising overall
uncertainty. The initial prioritisation of sources of uncertainty is necessarily an approximate exercise,
but this is sufficient because the contribution of the sources of uncertainty that are prioritised will be
considered again when characterising overall uncertainty (Section 14). They can then be selected for
further evaluation in a subsequent iteration of the uncertainty analysis if needed. During the course of
the analysis, either influence or sensitivity analysis may be used to target the use of more refined and
rigorous methods on the most important uncertainties. A specific example of this is the combination of
‘minimal assessment’ and sensitivity analysis, which was described by EFSA (2014a,b) as an approach
to prioritising uncertainties for formal EKE. Sensitivity and influence analysis have therefore a key role
to play in the iterative refinement of an assessment. Finally, at the end of the assessment, sensitivity
and influence analysis can provide the basis for recommendations on priorities for future monitoring,
data collection or research.

5.8. Conservative assessments

Many areas of EFSA’s work use deterministic assessments that are designed to be ‘conservative’.
The meaning of being conservative is discussed in detail by IPCS (2014) in the context of chemical
hazard characterisation, but the same principles apply to all types of conservative assessment.

IPCS (2014) state that the word ‘conservative’ is generally used in the sense of being ‘on the safe
side’ and can be applied either to the choice of protection goals, and hence to the question for
assessment, or to dealing with uncertainty in the assessment itself.

The question for assessment might be framed in a conservative way (e.g. focussing on conservative
scenario or subpopulation or on a mild level of effect) for various reasons. A common reason is to
simplify the assessment of a complex set of conditions by focussing it on a conservative subset, which
is protective of the rest. Another possible reason would be to deal with uncertainty in risk
management considerations influencing the setting of protection goals, which causes uncertainty in the
framing of the assessment question.

When used to deal with uncertainty in the scientific assessment, the term ‘conservative’ can refer to
two different but related concepts. It can be used to mean that there is a high probability that the
assessment result is ‘on the safe side’, i.e. more adverse than the real answer or value. On the other
hand, ‘conservative’ can also be used to mean it is possible that a real value is much less adverse than
the assessors’ estimate. IPCS (2014) refer to these two concepts of conservatism as ‘coverage’ and
‘degree of uncertainty’, respectively. When applied to a conservative estimate of a quantity, coverage
refers to the probability that the real value is less adverse and degree of uncertainty to the amount by

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 29 EFSA Journal 2018;16(1):5122



which the real value might be less adverse, measured by the width of a suitable credible interval for it.
The concepts are related, but distinct: point estimates for two quantities might have the same
coverage, but very different degrees of uncertainty (see Figure 2). IPCS (2014) illustrates these
concepts in relation to the estimation of a point of departure in chemical hazard characterisation,
which is intended to provide a conservative estimate of the dose of chemical required to cause an
adverse effect. IPCS (2014) also explains why both concepts are of interest for decision-making:
coverage expresses the probability of less adverse values, while degree of uncertainty indicates how
much the estimate might be reduced by further analysis or investigation. If coverage is low, decision-
makers may consider the assessment to be insufficiently conservative. On the other hand, if the real
value could be much less adverse (high degree of uncertainty), decision-makers may consider the
assessment to be over-conservative.

Describing a quantitative estimate as conservative requires or implies three elements: specification
of the quantity of interest and the management objective or protection goal, e.g. what is the
maximum acceptable value; what maximum probability of more adverse values is acceptable; and
derivation of a point estimate such that real values more adverse than the acceptable maximum are
expected with no more than the specified probability. The first two elements involve risk management
judgements that should ultimately be made by decision-makers, although they may need help from
assessors to interpret information on adversity, while the third element requires assessment of the
uncertainty of the quantity of interest and should be done by assessors. Asserting that an estimate is
conservative without specifying the target quantity and probability conflates the roles of decision-
makers and assessors and is not transparent, because it implies acceptance of some probability of
more adverse values without making clear either what is meant by adverse or what the probability is.
Therefore, if the decision-makers wish to receive a single conservative estimate, they should specify
the quantity of interest, an acceptable limit for the value, and the maximum acceptable probability of
breaching that limit when setting the ToR for the assessment, as has been proposed by IPCS (2014)
for chemical hazard characterisation. Alternatively, the assessors could provide a range of estimates for
different levels of adversity and probability, so that the final choice remains with the decision-maker.

Similar considerations apply to qualitative assessments and assessments of categorical questions
(e.g. yes/no questions), which may also be designed to be ‘conservative’. Uncertainty about what
category or qualitative descriptor should apply may be dealt with by assigning a more adverse
category or descriptor. As for quantitative assessments, asserting that a categorical assessment is
conservative implies both a scientific judgement (what is the probability that the adverse category
actually applies) and a value judgement (what probability would justify assigning the adverse category
for management purposes). If the decision-maker wishes the assessor to assign a single category, they

Uncertainty distribution 
for parameter P

Uncertainty distribution 
for parameter Q

Point 
estimate 

P*

Point 
estimate 

Q*
Degree of uncertainty 
(width of probability 

interval) for P

Degree of uncertainty 
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Coverage for P* 
(shaded area)

Coverage is the 
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Figure 2: Illustration of the distinction between ‘coverage’ and ‘degree of uncertainty’ as measures of
degree of conservatism. The distributions show uncertainty for two parameters P and Q.
The point estimates P* and Q* have equal coverage (probability of lower values) but
different degrees of uncertainty
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should specify the level of probability required. Otherwise, the assessor should report their assessment
of the probability of each category, and leave value judgements to the decision-maker.

Deterministic assessments with conservative assumptions are simple and quick to use and provide
an important tool for EFSA, provided that the required level of conservatism is defined and that the
assessment procedure has been demonstrated to provide it. These requirements are discussed in more
detail for quantitative assessments in Section 11.6.3 and Annex B.16. If the same set of conservative
assumptions will be used repeatedly in different assessments, as is common in standardised
procedures, it becomes especially important to calibrate the degree of conservatism they provide, as
described in Section 7.1.3.

It is not necessary for the assessor to express estimates or their probability as precise values, nor
for the decision-maker to express the required level of conservatism precisely. For example, if the
purpose is to be conservative, then it may be sufficient to give a bound for the estimate and/or a
lower bound for probability, providing information on coverage but not degree of uncertainty (as
defined above). However, decision-makers may also wish to place an upper limit on the degree of
conservatism, to avoid disproportionate precaution in decision-making. This requires information on
degree of uncertainty as well as coverage, although again bounded values might be sufficient for this.
Approximate probabilities are discussed further in Section 5.10 (below) and probability bounds
(approximate probabilities for ranges) in Section 11.1 (below). If a probability bound is elicited for
each input to a deterministic assessment, probability bounds analysis can be used to calculate a
probability bound for the assessment output. This is much simpler than a fully probabilistic calculation
and much more rigorous than a direct expert judgement about the conservatism of the assessment as
a whole. It is therefore recommended that consideration be given to increased use of probability
bounds analysis in case-specific assessments and when calibrating standardised procedures.

5.9. Expert judgement

Assessing uncertainty relies on expert judgement, which includes an element of subjectivity
because different people have different knowledge and experience and therefore different uncertainty
(Section 5.2). Indeed, this is true of science in general. Choosing a model or chain of reasoning for the
assessment involves expert judgements. The choice of assessment scenarios requires judgement, as
does the decision to use a default assessment factor or the choice of a non-standard factor specific to
the case in hand. In probabilistic assessments, the choice of distributions and assumptions about their
dependence or independence are subjective. Even when working with ‘hard’ data, assessing the
reliability and relevance (internal and external validity) of those data is subjective. Even ideal data are
rarely truly representative, so implicit or explicit judgements about extrapolation are needed (e.g. from
one country to another or the EU as a whole, between age groups or sexes, and from the past to the
present or future). And when using a confidence interval, or other representation of uncertainty
deriving from statistical analysis of data, assessors must consider, explicitly or implicitly, if it accounts
for all uncertainties that affect its use in the assessment, or whether some adjustment is required (see
Section 11.2.1). When these various types of choices are made, the assessors implicitly consider the
range of alternatives for each choice and how well they represent what is known about the problem in
hand: in other words, their uncertainty. Thus, the subjective judgement of uncertainty is fundamental,
ubiquitous and unavoidable in scientific assessment.

The Scientific Committee emphasises that expert judgement is not guesswork or a substitute for
evidence. On the contrary, expert judgement must always be based on reasoned consideration of
relevant evidence and expertise, which must be documented transparently, and experts should be
knowledgeable or skilled in the topics on which they advise.

Well-reasoned judgements are an essential ingredient of good science. However, judgements are
made by psychological processes that are vulnerable to various cognitive biases (Kahneman et al.,
1982). These include anchoring and adjustment, availability, range-frequency compromise,
representativeness and others. Additional psychological and social factors operate when experts work
in groups, such as disproportionate influence of some individuals within the group and a tendency for
over-confidence in consensus judgements. An overview of these issues and references to more
detailed literature are provided by EFSA (2014a). In addition, the judgements of individuals could be
influenced, intentionally or unintentionally, by any personal interests they have in the issue under
assessment: to guard against this, EFSA has stringent procedures which require experts to declare
potential interests and exclude them from discussion of topics where conflicts of interest are identified.

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 31 EFSA Journal 2018;16(1):5122



Formal approaches for ‘expert knowledge elicitation’ have been developed to counter the
psychological biases affecting expert judgement and to manage the sharing and aggregation of
judgements between experts (see Section 11.3). EFSA has published guidance on the application of
these approaches to eliciting judgements for quantitative parameters (EFSA, 2014a). This includes
guidance on the selection and number of experts, and is designed to enable participation of individuals
who would not normally be members of EFSA Panels and Working Groups when appropriate to the
needs of the question, including people with practical knowledge of relevant processes such as food
production. Some approaches to addressing uncertainty favour extending participation in the
assessment beyond scientific experts, to include stakeholders and the public, especially when the limits
to knowledge are severe (e.g. Stirling, 2010; IRGC 2012). This is discussed further in Section 5.12.

EFSA (2014a) describes procedures for formal EKE, which require significant time and resources. It
is recognised that more streamlined approaches will be needed in many cases. Furthermore, in some
parts of EFSA’s work, legal deadlines and resource limitations require that some judgements will be
made by small groups or even a single expert. Modified EKE procedures to deal with these issues are
described in Section 11.3.1. In all cases, the basic principles for eliciting expert judgements should be
respected.

Experts often have differing views on the same question. This is natural, because they have
different experience, knowledge and expertise, and is beneficial because it broadens the evidence base
for assessment. Where a wide range of scientific opinion exists, the experts should be selected to
represent it. Interaction between experts may produce a degree of consensus, as information is
shared and interpretations are discussed. However, consensus should not imply compromise (EFSA,
2014a): where differences of opinion remain between experts this is part of scientific uncertainty and
should be reflected in the assessment report, either within the uncertainty analysis or, when
appropriate, through EFSA’s procedure for minority opinions, so it can be taken into account by
decision-makers.

The Scientific Committee stresses that where suitable data provide most of the available
information on an issue and are amenable to statistical analysis, this should be used in preference to
relying solely on expert judgement. However, as noted above, most data are subject to some
limitations in reliability or relevance, and further uncertainties arise in the choice of statistical model;
the greater these limitations and uncertainties, the more the results of statistical analysis will need to
be interpreted and/or augmented by expert judgement (Section 11.2.1).

The Scientific Committee recognises that some assessors have concerns about quantifying
uncertainty using expert judgement, for various reasons. Those concerns have been considered and
addressed in developing this document and the accompanying Guidance, as summarised in Section 4.2
(Box 2). When making probability judgements in EFSA assessments, suitable training should be
provided to the experts involved (EFSA, 2014a), and any concerns they may have should be discussed.

It has been demonstrated that people often perform poorly at judging combinations of probabilities
(Gigerenzer, 2002). This implies they may perform poorly at judging how multiple sources of
uncertainty in an assessment combine. Therefore, the Guidance recommends that uncertainties should
be combined by calculation when possible, even if the calculation is very simple (e.g. a series of what-
if calculations with alternative assumptions, or approximate probability calculations (see
Section 11.4.7)), to help inform judgements about the overall uncertainty from the identified sources.
When doing this, assessors should take account of the additional uncertainties associated with
choosing the calculation model, and avoid using combinations of inputs that could not occur together
in reality. If sources of uncertainty are combined by expert judgement, then the assessors should try
to take account of the added uncertainty that this introduces (e.g. widen their range or distribution for
the overall uncertainty until they judge that it represents the range of results they consider plausible).

5.10. Probability

When dealing with uncertainty, decision-makers need to know the range and probability of possible
answers for questions or quantities they submit for scientific assessment (Section 3.1). There are two
major views about the scope of probability as a measure for quantifying uncertainty. One, sometimes
known as the frequentist view, considers that the use of probability should be restricted to
uncertainties caused by variability and should not be applied to uncertainties caused by limitations in
knowledge. As a result, it offers no solution for characterising the many other types of uncertainty that
are not caused by variability (e.g. data quality, extrapolation), which are frequently important in EFSA
assessments.
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The other, subjectivist (Bayesian), view asserts that a probability is a direct personal statement of
uncertainty and that the uncertainty of any well-defined question or quantity (see Section 5.1) can be
quantified using probability. It can therefore represent uncertainties caused by limitations in knowledge
as well as those caused by variability.

A key advantage of subjective probability as a quantitative measure of uncertainty is that there are
ways to enhance comparability when probabilities are expressed by different individuals. Informally, an
individual can compare any particular uncertainty to situations where there is a shared understanding
of what different levels of probability mean: tossing a fair coin, rolling fair dice, etc. Formally, an
operational definition of subjective probability was developed by de Finetti (1937) and Savage (1954),
in part to ensure comparability. An important consequence of this is that subjective probabilities or
approximate probabilities can be given for any well-defined quantity or categorical question (de Finetti,
1937; Walley, 1991). In everyday language, it is possible to give a subjective probability for anything
that one could bet on, that is, if it would be possible in principle to determine without ambiguity
whether the bet was won or lost. For example, one can bet on the final score of a sports event, but
not on whether it will be a ‘good game’ because different people will interpret that in different ways.

The operational definition of subjective probability leads to a second key advantage. It shows that
the extensive mathematical and computational tools of probability can legitimately be applied to
subjective probabilities. In particular, those tools aid expression of judgements about combinations of
sources of uncertainty (e.g. in different parts of an uncertainty analysis) which the human mind would
otherwise find difficult. In other words, it can help the assessors make more rational judgements about
questions such as: if I can express my uncertainty about hazard and exposure, then what should my
uncertainty be about risk? For these reasons, the Guidance encourages the use of subjective
probability to express uncertainty, except when assessors find it too difficult to quantify uncertainty
(see Section 5.12).

The subjectivist interpretation of probability does not exclude the frequentist interpretation.
However, it is necessary to reinterpret a frequentist probability as a subjective probability before it can
properly be combined with subjective probabilities in calculations involving multiple sources of
uncertainty. This has implications for how probabilities based on statistical analysis of data are
combined with probabilities derived directly from expert judgement. If the statistical analysis is
Bayesian, the result is already a subjective probability. However, if the analysis results in a confidence
interval, reinterpretation would be needed, since the associated confidence level is a frequentist
probability. For more details of how such reinterpretation works, and when it is appropriate, see the
discussion of confidence intervals in Section 11.2.1. Any probability arising from a statistical analysis is
likely to be subject to additional uncertainties, not addressed by the analysis, which need to be taken
into account and which must be addressed by expert judgement.

It is not necessary to express probabilities fully or precisely, and in practice they will always be
approximate to some degree (assessors will not specify them to an infinite number of decimal places).
An approximate probability, specified as a range for the probability, may be easier for assessors to
provide, and may be more acceptable to those who consider that giving an exact probability
exaggerates the precision of subjective judgement. For example, it may be simpler for assessors to
judge that an adverse consequence has less than a given probability, rather than giving a specific
probability, and if that probability is low enough it may be sufficient for decision-making. This type of
judgement is implicit in many conservative assessment procedures: they do not provide a precise
probability, but they indicate at least a sufficient probability of avoiding adverse consequences.
Approximate probabilities can also be used by assessors to express their confidence in their probability
judgements: for example, a wider range of probability might be given when the evidence is weaker, or
when the assessors’ expertise is less directly relevant to the question (this would be acceptable to
proponents of imprecise probability such as Walley (1991), though not to traditional subjectivist
Bayesians who use only precise probabilities). Thus, assessors might give an approximate probability
either because it is simple and sufficient, or because they are unable to provide a more complete
probability statement. Although the reasons for specifying approximate probabilities may vary, the
mathematics for computing with them are the same.

5.11. Overall uncertainty

The recommendation to express uncertainty quantitatively applies specifically to overall uncertainty
(Section 4.2). It is important to be clear what is meant by the term overall uncertainty, when used in
this document and the accompanying Guidance. It refers to the assessors’ uncertainty about the
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assessment conclusion at the time of reporting, taking account of the combined effect of all sources of
uncertainty identified by the assessors as being relevant to the assessment.

Assessors should try to express the overall impact of all identified uncertainties in quantitative
terms. Where this is not possible, they should document qualitatively those uncertainties they were
unable to include in the quantitative expression. Taken together, the quantitative and (if any)
qualitative expressions constitute the assessors’ characterisation of their overall uncertainty.

In some areas of EFSA’s work, decision-makers or legislation may require that conclusions be
reported qualitatively, or require unqualified positive or negative conclusions. This should be dealt with
as described in Section 3.5. However, quantitative evaluation of overall uncertainty is still needed in
such cases, to determine what conclusion is justified, even though the conclusion itself will be in
qualitative form (see Section 3.5). The exception to this is in standardised assessments where no non-
standard uncertainties are identified.

It is important to note that overall uncertainty cannot and does not include any information about
unknown unknowns, i.e. uncertainties not known to the assessors. Since these are unknown, they
cannot be either quantified or described. Furthermore, it must be remembered that the
characterisation of uncertainty is conditional on the assessors who provide it, and on the evidence,
time and resources available to them (Section 5.2). These things should be understood by decision-
makers and taken into account by them when interpreting and using the assessment conclusions (see
Section 5.13).

5.12. Unquantified uncertainties

The term unquantified uncertainties is used in this document and the accompanying Guidance to
refer to uncertainties which the assessors have identified as relevant to their assessment, but are
unable to include in their quantitative expression of overall uncertainty. This section discusses different
perspectives on the limits to what can be quantified, including what makes an uncertainty literally
unquantifiable, and what can be done about those uncertainties that assessors are unable to quantify.

Assessors should seek to ensure that all questions or quantities considered in their assessments are
well-defined. If they are unable to achieve this, then the uncertainty of those questions or quantities is
literally unquantifiable (Section 5.10). However, even when a question or quantity is well-defined, an
assessor may sometimes be unable to quantify one or more uncertainties affecting it, if they cannot
make any quantitative judgement of the magnitude of a source of uncertainty or its impact on the
assessment. In such cases it is, for that assessor, not possible to quantify those uncertainties, with the
evidence available to them at the time of the assessment. Sources of uncertainty that are not
quantified for either reason (inability to define or inability to quantify) are sometimes referred to as
‘deep’ uncertainties and are most likely to arise in problems that are novel or complex (Stirling, 2010).

A number of authors including Stirling, especially in social science, economics and some in
environmental science, give precedence to a concept of uncertainty based on the work of the
economist Frank Knight (1921). They regard uncertainty as unquantifiable by definition and distinguish
it from quantifiable incertitude, which they term ‘risk’. This tends to be linked to a frequentist view of
probability, and to a view that uncertainty can only be quantified when all possibilities can be
enumerated. However, as noted by Cooke (2015), Knight said ‘We can also employ the terms
‘objective’ and ‘subjective’ probability to designate the risk and uncertainty, respectively, as these
expressions are already in general use with a signification akin to that proposed’. The Guidance uses
subjective probability, for the reasons explained in Section 5.10. Subjective probability can be used to
express any type of uncertainty, including that caused by variability, provided the question or quantity
of interest is well defined. It does not require enumeration of all possibilities, only that the possibilities
considered are well defined (e.g. the occurrence or non-occurrence of a well-defined consequence).
However, the Scientific Committee acknowledges that assessors may not be able to quantify some
sources of uncertainty, even when the questions or quantities of interest are well defined.

Stirling (2010) presents a matrix which defines 4 conditions of incertitude (risk, uncertainty,
ambiguity and ignorance), relates them to the extent of understanding about possibilities and
probabilities. In practice, these conditions relate to individual sources of uncertainty, rather than to the
assessment as a whole. Some uncertainties are well defined, and some of those are quantifiable.
Other uncertainties are poorly defined (ambiguous), and some relate to unidentified, unknown or novel
possibilities (ignorance or ‘unknown unknowns’). Most assessments are affected by multiple sources of
uncertainty, some of which can be assigned to one condition and some to others. For this reason, the
Guidance emphasises the need to identify, within each assessment, which sources of uncertainty are
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quantified and which are not. It recommends seeking to include as many as possible of the identified
sources of uncertainty in a quantitative expression of overall uncertainty, for the reasons explained in
Section 4.2; in addition, trying to quantify sources of uncertainty is a practical way for assessors to
identify which uncertainties they cannot quantify. Stirling’s (2010) matrix indicates different methods
for dealing with each of the 4 conditions of incertitude. Some of these methods involve participation of
stakeholders or other parties, some include consideration of values as well as scientific considerations,
and some are strategies for managing uncertainty and risk rather than assessing it. Other authors also
recommend involving stakeholders in dealing with uncertain and ambiguous risks (e.g. IRGC, 2012).
Such approaches are outside the remit of EFSA, which is restricted to scientific assessment, produced
by a Scientific Committee and Panels constituted of independent scientific experts (with the option to
hold public hearings). The role EFSA can serve is to identify scientific sources of uncertainty, quantify
them where possible, identify and describe uncertainties it cannot quantify, and report these in a
transparent way to those requesting the assessment. It is then for others to decide whether to submit
the uncertainties to additional processes or consultation to assist decision-making.

When assessors are unable to quantify some of the identified uncertainties affecting an
assessment, it is essential that they describe them qualitatively and report this together with their
quantitative expression of overall uncertainty, as the latter will then be conditional on assumptions
made in the assessment regarding the sources of uncertainty that were not quantified. This has
important implications for reporting and decision-making, which are considered in Section 5.13.

5.13. Conditionality of assessments

Assessments are conditional on any sources of uncertainty that have not been included in the
quantitative assessment of overall uncertainty. This is because the assessment will necessarily imply
assumptions about those sources of uncertainty, and therefore, the output of the assessment is that
which would apply if the assumptions were true.

It is important to recognise that all assessments are conditional to some extent. They are
conditional on the current state of scientific knowledge, on that part of existing knowledge that is
available to the assessors at the time of assessment, and on their judgements about the question
under assessment (Section 5.2). Therefore, all assessments refer to what would apply if the assessors
had identified all relevant sources of uncertainty, and if there were no ‘unknown unknowns’ affecting
the question under assessment. These sources of conditionality are general, in the sense that they
apply to all assessments.

In addition to this general conditionality, further, case-specific conditionality is added when one or
more of the identified sources of uncertainty in a particular assessment are not included in the
quantitative expression of overall uncertainty. That quantitative expression then becomes conditional
also on the assumptions made for those identified sources of uncertainty that remain unquantified. In
effect, these assumptions define a scenario, on which the assessment is conditional. Since the
assumptions relate to sources of uncertainty that the assessors could not quantify, they will be unable
to say anything about the probability that the scenario will actually occur, although they may be able
to say it is possible. An example of explicit reporting of the conditionality of an assessment is provided
by EFSA’s (2008) statement on melamine, summarised in Annex A.2, which reported that exposure
estimates for a high exposure scenario exceeded the tolerable daily intake (TDI), but stated that it was
unknown whether such a scenario may occur in Europe.

Conditionality has important implications for decision-making, because it means the assessment
conclusion is valid only if the assumptions on which it is conditional are valid, and provides no
information about the probability those assumptions are valid, nor about what might happen if they
are invalid. In such cases, therefore, assessors should consider whether it is justified to offer the
conditional conclusion as scientific advice or, instead, report that the assessment is inconclusive. If
they do report a conclusion, it is essential that decision-makers are made aware of the assumptions on
which it depends.

Decision-makers should understand that all assessments are conditional on the current state of
scientific knowledge, and do not take account of ‘unknown unknowns’, and take this into account in
decision-making (e.g. they might treat novel issues differently from those with a long history of
scientific research). Similarly, they should understand that assessments are conditional on the experts
who provide them, and the time and resources allocated for assessment, and take these into account
(e.g. by giving more time and resource to assessments of more critical issues). However, they cannot
be expected to identify for themselves which of the identified sources of uncertainty the assessors
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have not included in their quantitative assessment of overall uncertainty, nor what assumptions have
been made about them.

Every assessment report must therefore include a list of those identified sources of uncertainty that
the assessors have not included in their quantitative assessment of overall uncertainty. These sources
of uncertainty will need to be described in detail, since the decision-makers must decide how to deal
with them, e.g. whether to ignore them, commission further research, or take precautionary action.
These decisions will necessarily imply judgements about the potential magnitude of the unquantified
uncertainties, which generally would be better made by assessors (if they are scientific uncertainties).
This underlines the need for assessors to include them in their quantitative expression of overall
uncertainty. If this is not possible, assessors should state the locations of the sources of unquantified
uncertainty within the assessment, describe as far as possible the cause and nature of each one,
explain why the assessors were unable to include it in the quantitative assessment and, most
importantly, state what assumptions about each uncertainty have been made or implied in the
assessment. In addition, they should identify any further analysis or research that might make it
possible to quantify these sources of uncertainty, so that decision-makers can consider whether to
invest in it.

The assessor should communicate clearly to the decision-maker – as was done in the 2008
melamine statement (see above) – that they are unable to say anything about the probability of
assumptions about unquantified sources of uncertainty being true, or about how different the real
consequences might be from what is indicated by the assessment. They must not use any language
that implies a quantitative judgement about the probability of other conditions or their effect on the
conclusion (e.g. ‘unlikely’, ‘negligible difference’). If the assessor feels able to use such language, this
implies that they are in fact able to make a quantitative judgement. If so, they should express it
quantitatively or use words with quantitative definitions (e.g. Table 3, Section 11.3.3) – for
transparency, to avoid ambiguity, and to avoid the risk management connotations that verbal
expressions often imply (Section 4.2).

Although assessors can provide only limited information about the sources of uncertainty they
cannot quantify, it is still important information for decision-makers. It makes clear what science can
and cannot contribute to informing their decisions, and assists them in targeting further analysis or
research. In some cases, the unquantified sources of uncertainty may relate to factors the decision-
makers can influence, e.g. uptake or enforcement of particular practices.

5.14. Types of assessment distinguished for uncertainty analysis

It is useful for later parts of this document to introduce some terms and concepts that will be used
to distinguish different types of scientific assessment, which require different approaches to
uncertainty analysis as outlined below and discussed in more detail in Section 7.1. Four main types of
EFSA assessment are distinguished, described below. The boundaries between the four types are not
sharply defined: for example, there are varying degrees of urgency. However, the purpose of the types
is not to classify assessments, but to aid assessors in deciding what approach to take to uncertainty
analysis, as set out in different sections of the accompanying Guidance. It is expected that most
assessments will be readily assigned to one of the four types. In cases where more than one type
could apply, assessors should consider directly which of the approaches in the Guidance is most
suitable for the needs of their assessment. The four types are as follows:

• Standardised procedures with accepted provision for uncertainty. These include
standardised elements to take account of uncertainty (e.g. assessment factors, default values,
conservative assumptions), which are accepted by assessors and decision-makers as
appropriate and sufficient to address the sources of uncertainty affecting the class of
assessments they are used in. Such procedures can be regarded as part of risk assessment
policy in the sense of Codex (2016),5 and are commonly used in the assessment of regulated
products. In many cases, these approaches have developed over time and are accepted as a
matter of convention (see Section 7.1.2). In assessments using standardised procedures, a
minimal uncertainty analysis may be sufficient to confirm that the standard provision is

5 Codex (2016) defines risk assessment policy as ‘Documented guidelines on the choice of options and associated judgements
for their application at appropriate decision points in the risk assessment such that the scientific integrity of the process is
maintained’, and says this should be should be established by risk managers in advance of risk assessment, in consultation with
risk assessors and all other interested parties.
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appropriate for the case in hand. This should include a check for any case-specific
uncertainties that are not adequately covered by the standardised procedure; if any are found,
case-specific assessment will be needed instead (see below).

• Case-specific assessments. These are needed in the following situations:

� there is no standardised procedure for the type of assessment in hand;
� there is a standardised procedure, but there are case-specific sources of uncertainty that

are not included, or not adequately covered, by the standardised procedure;
� a standardised procedure has identified a potential concern, which is being addressed by

a refined assessment involving data, methods or assumptions that are not covered by the
standardised procedure;

� assessments where elements of a standardised procedure are being used but other
aspects are case-specific.

• In such assessments, a case-specific uncertainty analysis is needed, following the general
approach outlined in Section 7.1.1 of this document.

• Review of an existing standardised procedure or development of a new one, for
example, when reviewing existing guidance documents or developing new ones. This will
require a case-specific uncertainty analysis of the procedure to support the acceptance of a
new procedure or continued acceptance of an established one. This will ensure that it provides
an appropriate level of coverage for the sources of uncertainty that will be encountered in the
assessments for which it is used (see Section 7.1.3).

• Urgent assessments, for which there are exceptional limitations on time and resources. For
such assessments, a minimal uncertainty analysis is still essential but can be scaled to fit within
the time and resources available (see Section 7.1.4).

In some areas of EFSA’s work, the result of a standardised assessment may indicate the need for a
‘refined’ or ‘higher tier’ assessment in which one or more standardised elements are replaced by
case-specific approaches. In principle, the assessment becomes case-specific at this point for the
purpose of uncertainty analysis, although it may be possible to treat it as a standardised assessment
with some non-standard uncertainties; both options are included in the accompanying Guidance.

Assessors often distinguish between quantitative and qualitative assessments. This
sometimes refers to the form in which the conclusion of the assessment is expressed: either as an
estimate of a quantity of interest (quantitative), or as a verbal response to a question of interest
(qualitative). In other cases, an assessment may be described as qualitative because the methods
used to reach the conclusion do not involve calculations; e.g. when the conclusions are based on a
combination of literature review and narrative reasoning. In all cases, the conclusions of qualitative
assessments must be expressed in a well-defined manner, for the reasons explained in Section 5.1.
Any well-defined qualitative conclusion can therefore be considered as an answer to a yes/no question;
this is important for uncertainty analysis, because uncertainty about a well-defined yes/no question
can be expressed quantitatively, using probability. This is very important for uncertainty analysis,
because it means uncertainty can be quantified using probability for qualitative assessments as well as
for quantitative ones. In general, therefore, the fact that an assessment uses qualitative methods or its
conclusion is expressed in qualitative terms does not imply that the uncertainty analysis must be
qualitative: on the contrary, assessors should try to express uncertainty quantitatively, for the reasons
discussed in Section 4.2. Qualitative methods of expressing uncertainty also have important uses in
uncertainty analysis, however (Section 4.3).

6. Main elements of uncertainty analysis

The main elements of uncertainty analysis are listed in Box 3. As indicated in Box 2, some of the
elements are required in every assessment, while others are needed in some assessments but not
others. What is needed depends in part on the general type of the assessment (standardised
assessment, case-specific assessment, development or review of a standardised procedure, urgent
assessment) as discussed in Sections 5.14 and 7.1, and partly on the specific needs of the individual
assessment, which need to be decided by assessors. Some elements are only needed when the
uncertainty analysis is divided into parts, the motivation and approaches for which are discussed in
Section 7.2. Furthermore, there are multiple options and methods available for implementing each
element, the choice of which also depends on the needs of each assessment. Assessors therefore need
first to identify which type of assessment they have in hand and what its specific needs are, decide
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which elements of uncertainty analysis are required and, within each element, choose which methods
or options to apply. Detailed advice on these choices is provided in the form of flow charts in the
accompanying Guidance (EFSA Scientific Committee, 2018). By following the flow charts, assessors
should be able to construct an appropriate uncertainty analysis for each assessment, comprising the
relevant elements and appropriate options and methods. Some of the major factors considered when
developing the flow charts are discussed in Section 7.

7. Scaling uncertainty analysis to the needs of the assessment

All aspects of scientific assessment, including uncertainty analysis, must be conducted at a level of
scale and complexity that is proportionate to the needs of the problem and within the time and
resources agreed with the decision-makers: achieving this is a fundamental practical requirement in
EFSA’s work. An important role of guidance documents is to advise on the options and methods that
are available, and what factors to consider when deciding which options and methods are relevant for
each assessment.

Box 3: Main elements of uncertainty analysis. Some assessments require only some elements, and each
element can be implemented in various ways with various methods. Flow charts in the accompanying Guidance
(EFSA Scientific Committee, 2018) provide guidance on the choice of elements, options and methods for
different types of assessment.

Identifying uncertainties affecting the assessment. This is necessary in every assessment, and should
be done in a structured way to minimise the chance of overlooking relevant uncertainties, as described in
Section 8. In assessments that follow standardised procedures, it is only necessary to identify non-standard
uncertainties (examples of these are given in Section 7.1.2).

Prioritising uncertainties within the assessment plays an important role in the planning the
uncertainty analysis, enabling the assessor to focus detailed analysis on the most important uncertainties and
address others collectively when evaluating overall uncertainty. Often prioritisation will be done by expert
judgement during the planning process, but in more complex assessments it may be done explicitly, using
influence or sensitivity analysis (see Section 5.7 and 12).

Dividing the uncertainty analysis into parts (when appropriate). In some assessments, it may be
sufficient to characterise overall uncertainty for the whole assessment directly, by expert judgement. In other
cases, it may be preferable to evaluate uncertainty for some or all parts of the assessment separately and
then combine them, either by calculation or expert judgement. These options are discussed in more detail in
Section 7.2.

Ensuring the questions or quantities of interest are well-defined. This is necessary in every
assessment, for reasons discussed in Section 5.1. Some assessments follow standardised procedures, within
which the questions and/or quantities of interest should be predefined. In other assessments, the assessors
will need to identify and define the questions and/or quantities of interest case by case, as described in
Section 5.1.

Characterising uncertainty for parts of the uncertainty analysis. This is needed for assessments
where the assessors choose to divide the uncertainty analysis into parts, but may only be done for some of
the parts, with the other parts being considered when characterising overall uncertainty (see Section 8).
Methods for expressing uncertainty are reviewed in Sections 10 and 11.1.

Combining uncertainty from different parts of the uncertainty analysis. This is needed for
assessments where the assessors quantify uncertainty separately for two or more parts of the uncertainty
analysis. Methods for combining uncertainties are reviewed in Section 11.4.

Characterising overall uncertainty. Expressing quantitatively the overall impact of as many as possible of
the identified uncertainties, and describing qualitatively any that remain unquantified. This is necessary in all
assessments except standardised assessments where no non-standard uncertainties are identified. See
Section 14.

Prioritising uncertainties for future investigation. This is implicit or explicit in any assessment where
recommendations are made for future data collection or research, and may be informed by influence or
sensitivity analysis (see Section 12).

Reporting uncertainty analysis. Required for all assessments, but extremely brief in standardised
assessments where no non-standard uncertainties are identified. See Section 15.
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As explained in the preceding section, there are a number of elements to uncertainty analysis, not
all of which are needed for every assessment. Furthermore, there is a wide variety of methods
available for implementing those elements: these are critically reviewed in Sections 10–12 and the
associated annexes. This section discusses some of the key considerations that are relevant for
deciding which elements to include, and which methods to use, to construct an appropriate and
efficient uncertainty analysis for each assessment. A primary consideration is the type of scientific
assessment in hand: the implications of this are discussed first, in Section 7.1. A second important
consideration is whether to evaluate uncertainty for the assessment as a whole, or to first evaluate
uncertainty in subsidiary parts of the uncertainty analysis and then combine them: this is discussed in
Section 7.2. Section 7.3 discusses more specific considerations, including the degree of uncertainty
that is present, which affect more detailed choices of options and methods and how far to refine the
uncertainty analysis. The considerations in Sections 7.1–7.3 were all taken into account, together with
experience and feedback during the trial period of the guidance, when developing the practical
approaches and flow charts in the guidance document (EFSA Scientific Committee, 2018).

7.1. Influence of assessment type on approach to uncertainty analysis

As explained in Section 5.14, it is useful to distinguish between assessments using standardised
procedures, case-specific assessments, review of an existing standardised procedure or development of
a new one, and situations where urgent assessment is required. It is efficient to describe first the
approach to uncertainty analysis for case-specific assessments, as the other types are variations of this.

7.1.1. Case-specific assessments

A case-specific assessment is needed when there is no standardised procedure for the type of
assessment in hand, and when parts of the assessment use standardised procedure but other parts
are case-specific or deviate from the standardised procedure (e.g. for refinement or urgency), and for
calibrating standardised procedures when they are first established or revised (see Section 7.1.3).

Key principles when conducting case-specific assessments are as follows:

1) The uncertainty analysis should start at a level that is appropriate to the assessment in
hand. For assessments where data to quantify uncertainty is available and/or where suitable
quantitative methods are already established, this may be included in the initial assessment.
In other assessments, it may be best to start with a simple approach, unless it is evident at
the outset that more complex approaches are needed.

2) Uncertainty analysis should be refined as far as is needed to inform decision-making. This
point is reached either when there is sufficient certainty about the question or quantity of
interest for the decision-makers to make a decision with the level of certainty they require,
or if it becomes apparent that achieving the desired level of uncertainty is unfeasible or too
costly and the decision-makers decide instead to manage the uncertainty without further
refinement of the analysis.

3) Refinements of the uncertainty analysis using more complex or resource-intensive methods
and options should be targeted on those sources of uncertainty where they will contribute
most efficiently to improving the characterisation of uncertainty, taking account of their
influence on the assessment conclusion and the cost and feasibility of the refinement. This
targeting of refinement means that, in many case-specific assessments, different sources of
uncertainty will be analysed at different levels of refinement. Strategies for combining the
contributions of sources of uncertainty treated at different levels of quantification are
described in Section 11.4.

4) The characterisation of overall uncertainty must integrate the contributions of identified
sources of uncertainties that have been expressed in different ways (e.g. qualitatively, with
ranges, or with distributions). This key element of uncertainty analysis is discussed in
Section 14.

When refinement is needed, the options include refining the uncertainty analysis, obtaining
additional data, refining other aspects of the scientific assessment (e.g. considering additional factors,
or using more sophisticated models), or a combination of these. Options for refining the uncertainty
analysis include dividing it into smaller parts (Section 7.2) and/or using more refined methods
(Section 7.3). Although the aim of refinement is to reduce uncertainty, assessors and decision-makers
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should be aware that additional data or analysis sometimes increases uncertainty, e.g. by uncovering
new issues or requiring additional assumptions. The choice of refinement option should take account
of the expected contribution of each option to informing decision-making and also its cost in terms of
time and resources. If the preferred refinement option would involve exceeding the agreed time or
resources, the assessors will need to consult with the decision-makers before proceeding.

It can be seen from this discussion that uncertainty analysis plays an important role in decisions
about whether and how far to refine the overall assessment, and in what way. Therefore, uncertainty
analysis should be an integral part of the overall assessment from its beginning, not added at the end
of the process. It is also apparent that there may be a need for interaction between assessors and
decision-makers at key decision points during the assessment, to decide when refinement is needed,
as well as at the start and end of the process.

7.1.2. Assessments using standardised procedures

Standardised assessment procedures with accepted provision for uncertainty were briefly
introduced in Section 5.14. They are common in many areas of EFSA’s work, especially for regulated
products, and are subject to periodic review. Some, such as the International Estimate of Short-Term
Intake used in pesticides regulation (WHO/FAO 2013), are agreed at international level. Most
standardised procedures involve deterministic calculations using a combination of standard study data,
default assessment factors and default values (see Annex B.16): for example, choice of test species or
system, conduct of studies following standard guidelines, default assessment factors for inter- and
intraspecies differences in toxicity, default values for body weight, default values for consumption, and
a legal limit or proposed level of use for concentration. These procedures are considered appropriate
for routine use on multiple assessments because it is judged (implicitly or explicitly) that they are
sufficiently conservative, providing adequate cover for the uncertainties affecting the assessment. This
does not mean they will never underestimate risk, but that they will do so sufficiently rarely to be
acceptable. This implies that, for each individual assessment, the probability of the standardised
procedure underestimating the risk is considered to be acceptably low, at least implicitly, by both
assessors and decision-makers.

Using a standardised procedure can greatly simplify uncertainty analysis in routine assessments.
The documentation or guidance for a standardised procedure should specify the question or quantity
of interest, the standardised elements of the procedure (equation and default inputs), the type and
quality of case-specific data to be provided and the generic sources of uncertainty considered when
calibrating the level of conservatism. It is then the responsibility of assessors to check the applicability
of all these elements to each new assessment and check for any non-standard aspects, such as
required studies not performed to the appropriate standard, or the availability of non-standard studies
or other information relevant to the question under assessment. Any deviations that would increase
the uncertainties considered in the calibration or introduce additional sources of uncertainty, will mean
that it cannot be assumed that the calibrated level of conservatism and certainty will be achieved for
that assessment. Therefore, assessors should check for non-standard uncertainties in every
assessment using a standardised procedure. In assessments where none are identified, it is sufficient
to record that a check was made and none were found. When non-standard uncertainties are present,
a simple evaluation of their impact may be sufficient for decision-making, depending on how much
scope was left for non-standard uncertainties when calibrating the standardised procedure (see
Section 7.1.3 below). In other cases, where the non-standard uncertainties are substantial or the
standardised assessment procedure is not applicable, the assessors may need to carry out a case-
specific assessment and uncertainty analysis, as described in Section 7.1.1.

Experience in the trial period for the uncertainty guidance suggests that assessors may find it
helpful to develop a list of the standard uncertainties that are covered by each standardised
procedure, and a list of non-standard uncertainties frequently encountered when using it. This may
help them to identify non-standard uncertainties and distinguish them from those that are covered by
the procedure.

7.1.3. Development or review of a standardised procedure

The use of standardised procedures in the manner described above is compatible with the
principles of uncertainty analysis described in the present Guidance, provided that the basis for using
them is justified and transparent. This requires that the level of conservatism provided by each
standardised procedure should be assessed by an appropriate uncertainty analysis, to ensure they
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provide an appropriate degree of coverage for the sources of uncertainty that are generally associated
with the class of assessments to which they apply (which should be specified). Consultation with
decision-makers will be required to confirm that the level of conservatism is appropriate. These steps
can be regarded as ‘calibrating’ the level of conservatism for standardised procedures, and as a logical
part of quality assurance in EFSA’s work. This should consider all relevant uncertainties, including
uncertainties about how the standard study designs used to generate data, and any default factors,
assumptions, scenarios and calculations used in the assessment, relate to conditions and processes in
the real world. Such an analysis requires a full, case-specific scientific assessment, following the
general process described in Section 7.1.1, should make use of any available data that can help to
quantify the sources of uncertainty involved, and should be conducted to an appropriate level of
refinement. However, some additional elements are required when calibrating a standardised
procedure, as described in Section 6 of the accompanying guidance (EFSA Scientific Committee, 2018).
These include defining the management objective for the procedure, and how often and/or to what
extent that objective should be achieved in the future standardised assessments where the procedure
will be used. A case-specific assessment and uncertainty analysis are then conducted to evaluate the
probability of meeting the defined requirements, and the procedure is adjusted if necessary to achieve
an appropriate level of probability. This calibrates the procedure to achieve an appropriate degree of
conservatism. Note that, if the procedure is calibrated so as to achieve exactly the desired probability
of achieving the defined requirements (e.g. by including an assessment factor just large enough to
achieve this), this implies that the presence of non-negligible non-standard uncertainties in a particular
assessment may result in not achieving the desired probability. Although if the procedure was
calibrated to be somewhat more conservative than required (e.g. by rounding up the assessment
factor), this would leave more scope to accommodate non-standard uncertainties in individual
assessments.

Where a standardised procedure has not previously been calibrated by an appropriate uncertainty
analysis, providing this may require significant work. However, existing standardised procedures are
currently accepted by assessors and decision-makers. Therefore, a practical strategy may be to start
by quantifying specific sources of uncertainty affecting data used in individual assessments, conditional
on the assumptions implied by the existing standardised procedure (see Section 5.13), and move
towards fuller quantification of the uncertainties and calibration of the procedure over a longer period,
when guidance documents containing standardised procedures are reviewed (EFSA Scientific
Committee, 2015). Alternatively, use of existing standardised procedures could continue unchanged
until the guidance for each procedure is revised and the procedure is calibrated: this would imply a
more gradual implementation of uncertainty analysis, especially in those areas of EFSA’s work involving
multiple procedures and guidance documents (e.g. assessment of plant protection products).

Where an existing procedure is used in more than one area of EFSA’s work, e.g. by more than one
Panel, its calibration and, if necessary, revision should be undertaken jointly by those involved.
Similarly, where a standardised procedure is part of an internationally agreed protocol, any changes to
it would need to be made in consultation with relevant international partners and the broader scientific
community.

7.1.4. Urgent assessments

In some situations, e.g. emergencies, EFSA may be required to provide an urgent assessment in
very limited time and the approach taken must be adapted accordingly. Uncertainty is generally
increased in such situations, and may be a major driver for decision-making. Characterisation of
uncertainty is therefore still necessary, despite the urgency of the assessment. However, the approach
to providing it must be scaled to fit within the time and resources available.

Even in urgent situations, some time should be reserved for identifying sources of uncertainty, to
reduce the risk of missing a major source of uncertainty that could be important for decision-making.
Assessors should decide how much time can be spent on this task, and use it in a manner that is most
conducive to identifying the most important sources of uncertainty, e.g. ‘brainstorming’ the main parts
of the assessment in turn.

Every uncertainty analysis should express in quantitative terms the combined effect of as many as
possible of the identified sources of uncertainty affecting each assessment (Section 4.2). When time is
severely limited, this may have to be done by a streamlined expert judgement procedure in which the
contributions of all identified sources of uncertainty are evaluated and combined collectively, without
dividing the uncertainty analysis into parts. This initial assessment may need to be followed by more
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refined assessment and uncertainty analysis, including more detailed consideration of the most
important sources of uncertainty, after the initial assessment has been delivered to decision-makers.

7.2. Dividing the uncertainty analysis into parts

This section repeats what is written on this topic in the guidance document (EFSA Scientific
Committee, 2018) and is included here for completeness. Questions addressed by EFSA assessments
are specified in ToR. Initial steps of a scientific assessment include interpretation (and if necessary
clarification) of the ToR and planning of the assessment strategy, including the data or evidence and
methods to be used (EFSA, 2015a,b,c). Often an assessment will comprise a number of main parts
(e.g. exposure and hazard in a chemical risk assessment) and smaller, subsidiary parts (e.g. individual
parameters, studies, or lines of evidence within the exposure or hazard assessment). Assessors must
choose at which of these levels of granularity to conduct the uncertainty analysis. Options include:

• Evaluate all uncertainties collectively, for the assessment as a whole.
• Divide the uncertainty analysis into parts, which evaluate uncertainties separately in some or

all main parts of the scientific assessment (e.g. exposure and hazard in a risk assessment),
assessing collectively the uncertainties within each part. Then combine the parts of the
uncertainty analysis and include also any other identified uncertainties that relate to other
parts of the scientific assessment as a whole, so as to characterise the overall uncertainty.

• Divide the uncertainty analysis into still smaller parts, corresponding to still smaller parts of the
scientific assessment (e.g. every input of a calculation or model). Evaluate uncertainty
collectively within each of the smaller parts, combine them into the main parts, and combine
those to characterise overall uncertainty for the whole assessment.

Note that the concept of dividing into parts applies to both the scientific assessment and the
uncertainty analysis. In some cases, the division into parts is the same for both, if uncertainty is
evaluated separately for every assessment input before being combined (an extreme case of the third
option above). If the uncertainty analysis will be divided into parts, assessors will need to combine
them to characterise overall uncertainty. Assessors should define in advance how the parts will be
combined, as this will increase transparency and rigour. It is recommended to use a conceptual model
diagram to show how the parts will be combined. The parts may be combined by expert judgement,
or by calculation if assessors quantify the uncertainty for each part and can specify an appropriate
quantitative or logical model to combine them. Calculation is likely to give more reliable results, but
must be weighed against the additional work involved.

Assessors must judge what is best suited to the needs of each assessment. For example, it may be
more efficient to evaluate uncertainty for different parts separately if they require different expertise
(e.g. toxicity and exposure). Evaluating all uncertainties collectively (first option) is generally quicker
and superficially simpler but requires integrating them all subjectively by expert judgement, which may
be less reliable than evaluating different parts of the uncertainty analysis separately, if they are then
combined by calculation. For this reason, it is recommended to treat separately those parts of the
assessment that are affected by larger uncertainties.

When a part of the scientific assessment is treated separately in the uncertainty analysis, it is not
necessary to evaluate immediately all of the uncertainties affecting it; some of them can be set to one
side and considered later as part of the overall characterisation of uncertainty, if this is more
convenient for the assessor. However, it is recommended that only the lesser uncertainties are deferred
to the overall characterisation, since it will be more reliable to combine the larger uncertainties by
calculation.

When the scientific assessment comprises a mathematical model, assessors may find it convenient
to quantify uncertainty separately for every parameter of the model. In such cases, it will still be
necessary to identify additional uncertainties that are not quantified within the model, e.g.
uncertainties relating to the structure of the model (see Section 8) and take them into account in the
characterisation of overall uncertainty (Section 14). In other cases, assessors might find it sufficient to
analyse all the uncertainties affecting a model collectively (simplest option), or for major parts of the
model without separating the individual parameters (intermediate option).
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7.3. General considerations affecting the choice of methods and options
for uncertainty analysis

The Scientific Committee identified a number of general considerations, listed below, which it would
be relevant to take into account when deciding how to conduct uncertainty analysis to suit the needs
of specific assessments. These were taken into account when developing the accompanying Guidance,
and are also relevant for assessors when designing individual assessments.

1) The time and resources agreed for uncertainty analysis should always be respected, and
the methods chosen for uncertainty analysis should be proportionate to the needs of the
assessment.

2) Assessors will need to consider whether and where separation of variability and uncertainty
is needed (Section 5.3), and identify practical options for doing this.

3) In practice, the choice of methods for uncertainty analysis will usually be influenced by the
methods that are being used for the scientific assessment as a whole. For example, if the
main assessment uses a probabilistic model for variability, assessors may choose to
represent uncertainty in the probabilistic model as well. Although if the scientific
assessment is conducted using a deterministic calculation, it may be more convenient to
use probability bounds for the uncertainty analysis.

4) Combining uncertainties by calculation is more reliable than using expert judgement or
qualitative approaches (Section 5.9).

5) Where data provide most of the information to quantify uncertainty and are amenable to
statistical analysis this is generally preferable to relying solely on expert judgement
(Section 5.9). However, the choices made when using data and statistical analysis also
involve expert judgements, which need to be considered when using statistical estimates in
the uncertainty analysis (Section 11.2.3).

6) Probability distributions provide the most complete description of uncertainty. In many
assessments, however, partial uncertainty quantification such as ranges, approximate
probabilities or probability bounds may be sufficient to support decision-making and
simpler for assessors to provide (Section 5.10).

7) Qualitative expressions of uncertainty are ambiguous (Section 4.2) and a general
theoretical basis for combining them is lacking (Section 10). Nevertheless, they are useful
to prioritise sources of uncertainty for quantitative evaluation (Section 5.7), as a structured
way of characterising sources of uncertainty to support quantitative expert judgements
about them (Section 5.9), and to describe any unquantified uncertainties (Section 5.12).

8) More complex methods may be considered as options for later iterations of the uncertainty
analysis, when this is needed to refine the assessment. Refinement should be targeted on
those sources of uncertainty where it will most cost effectively improve the usefulness of
the analysis for decision-making.

9) A range of methods are described briefly in Sections 10–12, and in more detail with
examples in Annexes B.1–B.17. Assessors are free to consider other methods that they
consider suitable. An overview of all the methods is provided in Section 13. Table 4 in
Section 13 indicates which of these methods can be used for which types of assessment
subject (questions or quantities of interest) and what types of uncertainty expression they
provide. Table 5 shows which methods are applicable to which elements of uncertainty
analysis, and Table 6 evaluates each method against 10 criteria that the Scientific
Committee considers important in EFSA uncertainty analysis.

10) The choices of methods for different sources of uncertainty and different elements of the
uncertainty analysis will depend on each other to some extent. For example, methods for
combining uncertainties place constraints on the methods which can be used to assess
individual sources of uncertainty, and vice versa. Both of these also constrain what
methods can be chosen for investigating influence.

11) In practice, the choice of methods will also be influenced in part by which methods the
assessors are familiar with and which they can readily obtain expert assistance for,
especially in refined assessments.

How far it is useful to refine the uncertainty analysis depends on whether the overall uncertainty is
large enough to make a difference in decision-making. When it is clear from a simple and approximate
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uncertainty analysis (e.g. quantifying all uncertainties collectively by expert judgement) that the
uncertainty is too small to influence decision-making, no refinement of the analysis is required. In
other cases, assessors and decision-makers need to consider together whether refined uncertainty
analysis is likely to be helpful for decision-making, and how much time and resource it will require.

8. Identification of potentially relevant sources of uncertainty

Sources of uncertainty can affect scientific assessment at different levels. An obvious component of
this is uncertainties affecting the inputs used in the scientific assessment. These are normally identified
during the process of appraising the evidence, which is an intrinsic part of scientific assessment (EFSA
2015a). Structured approaches to appraising evidence have been established in many areas of science
and are increasingly used in EFSA’s work, and provide useful frameworks for identifying uncertainties
affecting assessment inputs.

Besides the uncertainty in the inputs other sources of uncertainties can be identified in relation to
how the evidence is used in the assessment, including any models or reasoning that are used to draw
conclusions. This section provides an overview of general types of uncertainty that may be
encountered and discusses how existing approaches to appraising evidence can be expanded to
consider all sources of uncertainty and tailored to the varying needs of EFSA assessments.

Some areas of EFSA undertake multiple assessments of similar nature, with similar structure and
types of inputs but differing data. This applies especially, but not only, to assessments of regulated
products using standardised procedures, where the types of data and method of assessment are
prescribed by regulations or formal guidance. It is therefore recommended that EFSA Panels should
consider establishing generic lists of standard and non-standard uncertainties which they encounter
regularly in their work, and use these in conjunction with the approaches described below (e.g.
incorporate them into evidence appraisal tools for their area of work). However, assessors should
always check whether the case in hand is affected by any additional sources of uncertainty, which
would need to be added to the generic list.

8.1. Identification of sources of uncertainty

Although it will often be efficient to concentrate detailed analysis on the most important sources of
uncertainty, the identification of uncertainties needs to be as comprehensive as possible, including all
types of uncertainty with potential to alter the assessment conclusion, to minimise the risk that
important sources of uncertainty will be overlooked. It is therefore recommended that, in general, a
structured approach is taken to identifying sources of uncertainty. This can be facilitated by having
a structured classification of general types of uncertainty according to their characteristics, that is, a
typology of uncertainties. When using such a typology, it may sometimes be difficult to decide which
of the listed types some sources of uncertainty belong to. However, this is less important than
identifying as many as possible of the potential sources of uncertainty that are present.

Various approaches to classify uncertainties into a typology exist, ranging from practically oriented
lists of types of uncertainties encountered in a particular domain (e.g. EFSA, 2007; IPCS, 2014) to
more theoretically based typologies (e.g. Regan et al., 2002; Walker et al., 2003; Knol et al., 2009;
Hayes, 2011). Others include Morgan and Henrion (1990), IPCS (2014) and many more. The main
purposes of using a typology of uncertainties in risk assessment are to help identify, classify and
describe the different sources of uncertainty that may be relevant. Another important role of a
typology is that it provides a structured, common framework and language for describing sources of
uncertainty. This facilitates effective communication during the assessment process, when reporting
the finished assessment and when communicating it to decision-makers and stakeholders, and
therefore contributes to increasing both the transparency and reproducibility of the risk assessment.

It is recommended to take a practical approach to identifying sources of uncertainty in EFSA’s work,
rather than seek a theoretical classification. It is therefore recommended that assessors should be
systematic in searching for sources of uncertainty affecting their assessment, by considering every part
or component of their assessment in turn and checking whether different types of uncertainty are
present. This is intended to minimise the risk of overlooking important sources of uncertainty. It is
consistent with the Codex Working Principles for Risk Analysis (2016), which state that ‘Constraints,
uncertainties and assumptions having an impact on the risk assessment should be explicitly considered
at each step in the risk assessment’.
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Tables 1 and 2 list general types of uncertainty which are thought to be applicable to most areas of
EFSA’s work. Table 1 lists types of uncertainty that commonly affect assessment inputs, while Table 2
lists types of uncertainty that commonly arise in relation to the methodology of the assessment
(including uncertainties about how the assessment inputs should be combined to generate the
assessment output, and about any missing inputs). Tables 1 and 2 are not intended to be exhaustive,
and assessors should check for any other types or sources of uncertainty that may be specific to
particular assessments.

Some types of uncertainty affecting inputs (Table 1) apply generally to all types of input, but others
depend on the way inputs are generated. In particular, they can vary according to whether assessment
inputs are collected in a primary study, elicited via EKE or retrieved in the literature. These three
sources of inputs are therefore discussed separately in the following sections.

Some frameworks for evidence appraisal distinguish between internal and external validity of
studies. Some of the types of uncertainty listed in Table 1 relate to internal validity, others to external
validity, and some (e.g. assumptions) contain elements of both.

Note that Tables 1 and 2 are applicable to both quantitative and qualitative assessments. In
quantitative assessments, assessment inputs (Table 1) include variables and parameters, and the
evidence and expert judgement on which they are based, while assessment methodology (Table 2)
generally refers to a statistical or mathematical model or calculation. In qualitative assessments,
assessment inputs (Table 1) will again derive from evidence and expert judgement but may be
expressed in qualitative form, while assessment methodology (Table 2) might refer to a reasoned
argument or an algorithm or set of rules for combining scores.

Table 1: General types of uncertainty affecting inputs to scientific assessment, together
with questions that may help to identify them in specific assessments

Type/source of
uncertainty

Questions that may help to identify sources of uncertainty

1. Ambiguity Are all necessary aspects of any data, evidence, assumptions or scenarios used in the
assessment (including the quantities measured, the subjects or objects on which
measurements are made, and the time and location of measurements) adequately
described, or are multiple interpretations possible?

2. Accuracy and
precision of the
measures

How accurate and precise are methods/tools used to measure data (e.g. analytical
methods, questionnaire). How adequate are any data quality assurance procedures and
data validation that were followed?

3. Sampling
uncertainty

Is the input based on measurements or observations on a sample from a larger
population? If yes: How was the sample collected? Was stratification needed or applied?
Was the sampling biased in any way, e.g. by intentional or unintentional targeting of
sampling? How large was the sample? How does this affect the uncertainty of the
estimates used in the assessment?

4. Missing data
within studies

What is the frequency of missing data within the studies that are available? Is the
mechanism causing the missing data random, or may it have introduced bias or imbalance
among experimental groups (if any)? Was imputation of missing data performed, and did it
use sound methodologies?

5. Missing studies Is all the evidence needed to answer the assessment question available? Are the published
studies reflecting all the available evidence? Where required studies are specified in
guidance or legislation, are they all provided?

6. Assumptions
about inputs

Is the input partly or wholly based on assumptions, such standard scenarios or default
values? If so, what is the nature, quantity, relevance, reliability and quality of data or
evidence available to support those assumptions?

7. Statistical
estimates

Does the input include a statistical measure of uncertainty (e.g. confidence interval)? If so,
what uncertainties does this quantify, and what other uncertainties need to be considered?
Is the statistical analysis used to produce the evidence appropriate and adequate? Are the
implicit and explicit assumptions done in the statistical analysis expected to influence the
results. See Sections 5.10 and 11.2.1 for further information on this
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Table 2: General types of uncertainty affecting assessment methodology, including how the
assessment inputs are combined, together with questions that may help to identify them
in specific assessments

Type/source of
uncertainty

Questions that may help to identify sources of uncertainty

1. Ambiguity If the assessment combines inputs using mathematical or statistical model(s) that were
developed by others, are all aspects of them adequately described, or are multiple
interpretations possible?

2. Excluded factors Are any potentially relevant factors or processes excluded? (e.g. excluded modifying
factors, omitted sources of additional exposure or risk)

3. Distribution choice Are distributions used to represent variable quantities? If so, how closely does the chosen
form of distribution (normal, lognormal, etc.) represent the real pattern of variation? What
alternative distributions could be considered?

4. Use of fixed
values

Does the assessment include fixed values representing quantities that are variable or
uncertain, e.g. default values or conservative assumptions? If so, are the chosen values
appropriate for the needs of the assessment, such that when considered together they
provide an appropriate and known degree of conservatism in the overall assessment?

5. Relationship
between parts of
the assessment

If the assessment model or reasoning represents a real process, how well does it
represent it? If it is a reasoned argument, how strong is the reasoning? Are there
alternative structures that could be considered? Are there dependencies between variables
affecting the question or quantity of interest? How different might they be from what is
assumed in the assessment?

6. Evidence for the
structure of the
assessment

What is the nature, quantity, relevance, reliability and quality of data or evidence available
to support the structure of the model or reasoning used in the assessment? Where the
assessment or uncertainty analysis is divided into parts, is the division into parts and the
way they are subsequently combined appropriate?

7. Uncertainties
relating to the
process for
dealing with
evidence from the
literature

Was a structured approach used to identify relevant literature? How appropriate were the
search criteria and the list of sources examined? Was a structured approach used to
appraise evidence? How appropriate were the criteria used for this? How consistently were
they applied? Were studies filtered or prioritised for detailed appraisal? Was any potentially
relevant evidence set aside or excluded? If so, its potential contribution should be
considered as part of the characterisation of overall uncertainty (EFSA, 2015a; EFSA
Scientific Committee, 2017a)

8. Expert judgement Identify where expert judgement was used: in obtaining and interpreting estimates based
on statistical analysis of data, in obtaining estimates by expert elicitation, in choices about
assessment methods, models and reasoning? How many experts participated, how
relevant and extensive was their expertise and experience for making them, and to what
extent did they agree? Was a structured elicitation methodology used and, if so, how
formal and rigorous was the procedure?

Type/source of
uncertainty

Questions that may help to identify sources of uncertainty

8. Extrapolation
uncertainty (e.g.
limitations in
external validity)

Are any data, evidence, assumptions and scenarios used in the assessment (including the
quantities they address, and the subjects or objects, time and location to which that
quantity refers) directly relevant to what is needed for the assessment, or is some
extrapolation or read across required? If the input is based on measurements or
observations on a sample from a population, how closely relevant is the sampled
population to the population or subpopulation of interest for the assessment? Is some
extrapolation implied?

9. Other
uncertainties

Is the input affected by any other sources of uncertainty that you can identify, or other
reasons why the input might differ from the real quantity or effect it represents?
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8.2. Uncertainty that affects assessment inputs: primary data collection

The sources of uncertainty that can affect inputs from a primary data collection by EFSA (e.g.
surveys designed and overseen by EFSA) are mainly related to the methods used to perform the study.
For instance, these uncertainties can result from the use of analytical methods that have a limit of
detection or of an instrument that is not well calibrated (i.e. measurement errors) or from a missing
data mechanism that introduces unbalance among groups to be compared. Studies designed by EFSA
will be highly relevant for their intended purpose, but some degree of extrapolation may still be
required when using the results in an assessment. In observational studies, missing information about
important confounders could make the assessment of the causal relationship between exposure and
risk more uncertain. Sampling uncertainty always arises, no matter how perfect the study, when using
a random sample to infer values in a population. In most cases, primary data will be accompanied by a
statistical estimate and a measure of its uncertainty, such as a confidence interval: it is important to
identify what uncertainties this includes, and what other uncertainties need to be taken into account
(see Section 11.2.1).

8.3. Uncertainty in the assessment inputs: use of evidence retrieved
from literature

When the scientific assessment is performed using studies retrieved from the literature, or studies
submitted to EFSA for the assessment of regulated products, uncertainties affecting them must be
appraised in a systematic and consistent manner. Appraisal of the risk of bias in the individual studies
and the overall body of evidence is a standard step when using data from literature (Higgins and
Green, 2011, updated 2017). Structured frameworks have been developed for this purpose, sometimes
referred to as Critical Appraisal Tools (CATs), and these approaches can be applied to submitted
studies for regulated products as well as studies retrieved from the literature. These tools and
frameworks are reviewed in more detail in section 10.1.7 and Annex B.19.

The scientific community is gradually establishing and validating CATs tailored to the various study
designs (reviewed in Annex B.19). Assessors should consider whether any of the appraisal tools
tailored for the specific study design listed in Annex B.19 is applicable or can be adapted for the type
(s) of evidence in hand. Studies of the same type should be appraised using the same tool. Where no
existing CAT or published framework is appropriate for a particular type of study, Table 1 should be
used as an aid for identifying uncertainties when appraising those studies.

8.4. Uncertainty in the assessment inputs: use of evidence from expert
elicitation

When evidence is limited in quantity, relevance or reliability, expert elicitation can be used to
estimate the assessment inputs, taking account of the evidence that is available. Uncertainty in these
cases stems from the process used for the elicitation that can include different levels of formalism
(from semi-formal to formal), a variable number of experts, choice of a methodological approach (e.g.
Sheffield, Cooke, Delphi or other method), and the details of how that is implemented.

Type/source of
uncertainty

Questions that may help to identify sources of uncertainty

9. Calibration or
validation with
independent data

Has the assessment, or any component of it, been calibrated or validated by comparison
with independent information? If so, consider the following:
What uncertainties affect the independent information? Assess this by considering all the
questions listed above for assessing the uncertainty of inputs
How closely does the independent information agree with the assessment output or
component to which it pertains, taking account of the uncertainty of each? What are the
implications of this for your uncertainty about the assessment?

10. Dependency
between sources
of uncertainty

Are there dependencies between any of the sources of uncertainty affecting the
assessment and/or its inputs, or regarding factors that are excluded? If you learned more
about any of them, would it alter your uncertainty about one or more of the others?

11. Other
uncertainties

Are there any uncertainties about assessment methods or structure, due to lack of data or
knowledge gaps, which are not covered by other categories above?
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8.5. Structured approach to identifying uncertainties

It is recommended to use a systematic approach for identifying uncertainties, to minimise the risk
of overlooking important ones.

For assessment inputs derived from the literature, it is recommended that EFSA Panels and Units
should use validated Critical Appraisal Tools and related approaches to evaluate uncertainty in the
studies and whole body of evidence (Tables B.45 and B.46 in Annex B.19). Assessors should where
possible select and adapt an appropriate appraisal tool from the literature (based on the study design)
or (if no appropriate tool is available) use Table 1 above.

For assessment inputs derived from primary studies or expert elicitation, it is recommended that
assessors use the generic list in Table 1 as starting point, and adapt it as appropriate to the needs of
their work.

For uncertainties affecting assessment methodology, all Panels and Units will need to use Table 2 as
a starting point, since existing CATs are focussed mainly or entirely on validity of the assessment
inputs. Again, assessors should adapt Table 2 as appropriate to the needs of their area of work.

With these considerations in mind, it is recommended to proceed in the following manner:

1) List any major parts into which the scientific assessment is divided (e.g. exposure and
hazard).

2) List all the inputs (data, estimates, default values, expert judgements, etc.) that are used in
each part of the scientific assessment, or the assessment as a whole if it is not divided into
parts.

3) Identify uncertainties affecting each assessment input, using an appropriate appraisal tool or
list of uncertainties:

a) In case of primary data collection and EKE, refer to the list of uncertainties in Table 1
(or a modified version adapted to your area of work). For each assessment input,
identify and list which types of uncertainties it may be affected by. Be aware that a
single input may be affected by multiple types of uncertainty, and a single type of
uncertainty may affect multiple inputs. To be systematic, consider all the inputs, and all
the types of uncertainty shown in Table 1, and any other types that may be relevant.

b) When using evidence from studies retrieved in the literature and/or studies submitted
by an applicant, identify an appropriate evidence appraisal tool (see Annex B.19), adapt
it if necessary to the needs of your assessment. Check the list of uncertainties in the
appraisal tool and add any relevant ones that are missing. Specialist advice on evidence
appraisal methodology is available internally in EFSA, to help choose the most
appropriate appraisal tool and framework and to adequately adapt them to the domain
at hand as appropriate. Appraise all uncertainties, including additional ones, consistently
across all studies with the same design, using the same tool.

4) Identify which types of uncertainty affect the structure of the assessment (Table 2) for each
part of the scientific assessment and also the assessment as a whole (i.e. how the parts of
the assessment are combined), and add these to the list from steps 1–3 above. To be
systematic, consider all the types shown in Table 2 and also any other types that may be
relevant.

When using Tables 1 and 2, or any other appraisal tool, it may sometimes be difficult to decide
which of the listed types some sources of uncertainty belong to. However, this is less important than
identifying as many as possible of the potential sources of uncertainty that are present. Assessors
should focus on identifying the uncertainties, and avoid spending too long trying to classify the
uncertainties.

8.6. Relevance of identified sources of uncertainty

The identification of sources of uncertainty involves judgements about what might give rise to
uncertainty and whether it is potentially relevant to the assessment, i.e. whether it could potentially
affect the assessment conclusion; in effect, an initial subjective assessment of their impact on the
assessment. These judgements require expertise on the issue under assessment, the scientific
disciplines relevant to it, and the assessment inputs and structure chosen to address it. Identifying
sources of uncertainty will therefore require multidisciplinary expertise and all the assessors and
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experts involved in the assessment may need to contribute to it. Usually, the initial judgements
involved in identifying potentially relevant sources of uncertainty will themselves be subject to
uncertainty. This is addressed here by requiring inclusion of all potentially relevant sources of
uncertainty, i.e. including those for which relevance is uncertain. In other words, assessors should
initially include all sources of uncertainty that might be relevant, not only those they are sure are
relevant. This is necessary to minimise the risk of overlooking sources of uncertainty which, while
initially of doubtful significance, may prove on further analysis to be important.

In many assessments, the number of potentially relevant sources of uncertainty identified may be
large. All the sources of uncertainty that are identified must be recorded in a list. This is necessary to
inform the assessors’ judgement of the overall uncertainty (which should take all identified sources of
uncertainty into account, see Section 14) and ensure a transparent record of the assessment.
However, a long list of sources of uncertainty will not automatically lead to a large or complex
uncertainty analysis: the flexible described in the accompanying Guidance will enable assessors to
ensure the analysis is proportionate and fit for purpose. Furthermore, if the full list of sources of
uncertainty is long, assessors may list only those with most impact on the assessment conclusion in
the main report or Opinion, provided readers are given access to a full list elsewhere, e.g. in an annex
or appendix.

In case of evidence retrieved from literature the relevance of the sources of uncertainty is implicitly
addressed by the critical appraisal tool, that includes by definition only sources of bias that are
expected to affect the results, and the appraisal process that aims to conclude on the certainty in the
whole body of evidence.

9. Methods for obtaining expert judgements

This section provides an overview of selected methods for use of expert judgement in uncertainty
analysis. Details of selected methods are reviewed in Section 11.3 and Annexes B.8 and B.9.

All scientific assessment involves the use of expert judgement (Section 5.9). The Scientific
Committee stresses that where suitable data are available, this should be used in preference to relying
solely on expert judgement. When data are strong, uncertainty may be quantified by statistical analysis,
and any additional extrapolation or uncertainty addressed by ‘minimal assessment’ (EFSA, 2014a), or
collectively as part of the assessment of overall uncertainty (Section 14). When data are weak or
diverse, it may be better to quantify uncertainty by expert judgement, supported by consideration of
the data.

Expert judgement is subject to a variety of psychological biases (Section 5.9). Formal approaches
for ‘expert knowledge elicitation’ (EKE) have been developed to counter these biases and to
manage the sharing and aggregation of judgements between experts. EFSA has published guidance on
the application of these approaches to eliciting judgements for quantitative parameters (EFSA, 2014a).
Some parts of EFSA’s guidance, such as the approaches to identification and selection of experts, are also
applicable to qualitative elicitation, but other parts including the detailed elicitation protocols are not.
Methods have been described for the use of structured workshops to elicit qualitative judgements in the
NUSAP approach (e.g. van der Sluijs et al., 2005 and 2008; Bouwknegt and Havelaar, 2015) and these
could also be adapted for use with other qualitative methods.

The detailed protocols in EFSA (2014a) can be applied to judgements about uncertain variables, as
well as parameters, if the questions are framed appropriately (e.g. eliciting judgements on the median
and the ratio of a higher quantile to the median). EFSA (2014a) does not address other types of
judgements needed in EFSA assessments, including prioritising uncertainties and judgements about
dependencies, model uncertainty, categorical questions, approximate probabilities or probability
bounds. More guidance on these topics, and on the elicitation of uncertain variables, would be
desirable in future.

Formal elicitation requires significant time and resources, so it is not feasible to apply it to every
source of uncertainty affecting an assessment. This is recognised in the EFSA (2014a) guidance, which
includes an approach for prioritising parameters for formal EKE and ‘minimal assessment’ for more
approximate elicitation of less important parameters. Therefore, in the present guidance, the Scientific
Committee describes an additional, intermediate process for ‘semi-formal’ expert elicitation
(Section 11.3.1 and Annex B.8).

It is important also to recognise that generally, further scientific judgements will be made, usually
by a Working Group of experts preparing the assessment: these are referred to in this document as
judgements by ‘expert group judgement’. Normal Working Group procedures include formal
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processes for selecting relevant experts, and for the conduct, recording and review of discussions.
These processes address some of the principles for EKE. Chairs of Working Groups should be aware of
the potential for psychological biases, mentioned above, and seek to mitigate them when managing
the discussion (e.g. discuss ranges before central estimates, encourage consideration of alternative
views).

In practice, there is not a dichotomy between more and less formal approaches to EKE, but rather
a continuum. Individual EKE exercises should be conducted at the level of formality appropriate to the
needs of the assessment, considering the importance of the assessment, the potential impact of the
uncertainty on decision-making, and the time and resources available.

10. Qualitative methods for analysing uncertainty

This section provides an overview of qualitative methods for analysing uncertainty. More details on
each method are provided in Annex B.

Qualitative methods characterise uncertainty using descriptive expression or ordinal scales, without
quantitative definitions (Section 4.1). They range from informal description of uncertainty to formal,
structured approaches, aimed at facilitating consistency of approach between and within both
assessors and assessments. In contrast to quantitative methods (see Section 11), the Scientific
Committee is unaware of any well-developed or rigorous theoretical basis for qualitative approaches,
which rely instead on careful use of language and expert judgement. Qualitative methods may also
provide a useful aid for experts when making quantitative judgements.

The Scientific Committee identified the following broad types of qualitative methods that can be
used in uncertainty analysis:

• Descriptive methods, using narrative phrases or text to describe uncertainties.
• Ordinal scales, characterising uncertainties using an ordered scale of categories with

qualitative definitions (e.g. high, medium or low uncertainty).
• Uncertainty matrices, providing standardised rules for combining two or more ordinal scales

describing different aspects or dimensions of uncertainty.
• NUSAP method, using a set of ordinal scales to characterise different dimensions of each

source of uncertainty, and its influence on the assessment conclusion, and plotting these
together to indicate which sources of uncertainty contribute most to the uncertainty of the
assessment conclusion.

• Uncertainty tables for quantitative questions, a template for listing sources of
uncertainty affecting a quantitative question and assessing their individual and combined
impacts on the uncertainty of the assessment conclusion.

• Uncertainty tables for categorical questions, a template for listing lines of evidence
contributing to answering categorical questions (including yes/no questions), identifying their
strengths and weaknesses, and expressing the uncertainty of answers to the questions.

• Structured tools for evidence appraisal, which include templates for identifying and
evaluating sources of uncertainty affecting validity of a single study and the whole body of
evidence retrieved from the literature, and can also be adapted to evaluate studies submitted
to EFSA for the assessment regulated products.

The first four methods could be applied to either quantitative or categorical questions of interest,
whereas the fifth is specific to quantitative questions and the sixth to categorical questions. The
seventh is a family of structured tools for evidence appraisal. These seven methods are described
briefly in the following sections, and in more detail in Annexes B.1–B.6 and B.19.

10.1. Descriptive methods (Annex B.1)

Descriptive expression is currently the main approach to characterising uncertainty in EFSA
assessments. Descriptive methods characterise uncertainty using verbal expressions only, without any
defined ordinal scale, and without any quantitative definitions of the words. Whenever a descriptive
expression of uncertainty is used, the inherent ambiguity of language means that care is needed to
avoid misinterpretation. Dialogue between risk assessors and the risk managers could reduce
ambiguity.
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Even when uncertainty is quantified, the intuitive nature and general acceptance of descriptive
expression make it a useful part of the overall communication. Where quantification is not possible,
descriptive expression of the nature and causes of uncertainty is essential.

Verbal descriptions are important for expressing the nature or causes of uncertainty. They may also
be used to describe the magnitude of an individual uncertainty, the impact of an individual uncertainty
on the assessment conclusion, or the collective impact of multiple sources of uncertainty on the
assessment conclusion.

Descriptive expression of uncertainty may be explicit or implicit. Explicit descriptions refer directly to
the presence, magnitude or impact of the uncertainty, for example, ‘the estimate of exposure is highly
uncertain’. In implicit descriptions, the uncertainty is not directly expressed but instead implied by the
use of words such as ‘may’, ‘possible’ or ‘unlikely’ that qualify, weaken or strengthen statements about
data or conclusions in a scientific assessment, for example, ‘it is unlikely that the exposure exceeds the
ADI’.

Special care is required to avoid using language that implies risk management judgements, such as
‘negligible’, unless accompanied by objective scientific definitions (EFSA Scientific Committee, 2012).

Potential role in main elements of uncertainty analysis: descriptive expression can contribute to
qualitative characterisation of the nature and cause of uncertainties, their individual and combined
magnitude, and their relative contribution to combined uncertainty.

Form of uncertainty expression: descriptive.
Principal strengths: intuitive, requiring no special skills from assessors and accessible to audience.
Principal weaknesses: verbal expressions are ambiguous and mean different things to different

people, leading to miscommunication, reduced transparency and decision-makers having to make
quantitative inferences for themselves.

10.2. Ordinal scales (Annex B.2)

An ordinal scale is a scale that comprises two or more categories in a specified order without
specifying anything about the degree of difference between the categories. For example, an ordinal
scale of low – medium – high has a clear order but does not specify the magnitude of the differences
between the categories (e.g. whether moving from low to medium is the same as moving from
medium to high).

Categories in an ordinal scale should be defined, so that they can be used and interpreted in a
consistent manner. Often the definitions refer to the causes of uncertainty (e.g. amount, quality and
consistency of evidence, degree of agreement among experts), rather than degree of uncertainty,
although the two are related: e.g. limited, poor quality evidence is likely to lead to larger uncertainty.

Ideally, ordinal scales for degree of uncertainty should represent the magnitude of uncertainty (an
ordinal expression of the range and probability of different answers to the question or quantity of
interest). Scales of this type are used in uncertainty tables (see Sections 10.5 and 10.6 below).

Potential role in main elements of uncertainty analysis: can contribute to describing and assessing
individual sources of uncertainty and/or combined uncertainty, and inform judgements about the
relative contributions of different sources of uncertainty.

Form of uncertainty expression: ordinal.
Principal strengths: provides a structured approach to rating sources of uncertainty which forces

assessors to discuss and agree the ratings (what is meant by, e.g. low, medium and high).
Principal weaknesses: does not express how different the assessment conclusion could be and how

likely that is, or does so only in ambiguous qualitative terms.

10.3. Uncertainty matrices (Annex B.3)

‘Risk matrices’ are widely used as a tool for combining ordinal scales for different aspects of risk
(e.g. probability and severity) into an ordinal scale for level of risk. Matrices have also been proposed
by a number of authors as a means of combining two or more ordinal scales representing different
sources or types of confidence or uncertainty into a third scale representing a combined measure of
confidence or uncertainty. The matrix defines what level of the output scale should be assigned for
each combination of the two input scales. Ordinal scales themselves are introduced in the preceding
section; here the focus is on the use of matrices to combine them.

Matrices can be used to combine ordinal scales for different sources of uncertainty affecting the
same assessment component. When used to combine ordinal scales for uncertainty in different parts
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of an uncertainty analysis, the output expresses their combined contribution to the overall uncertainty
of the assessment as a whole.

The matrix shows how the uncertainties represented by the input scales contribute to the overall
uncertainty represented by the output scale, but does not identify any individual contributions within
each input.

Potential role in main elements of uncertainty analysis: matrices can be used to assess how (usually
two) different uncertainties combine, but suffer from significant weaknesses that are likely to limit their
usefulness as a tool for assessing uncertainty in EFSA’s work (see Annex B.3).

Form of uncertainty expression: ordinal.
Principal strength: conceptually appealing and simple to use, aiding consistency in how pairs of

uncertainties are combined.
Principal weakness: shares the weaknesses of ordinal scales (see preceding section) and lacks

theoretical justification for how it combines uncertainties.

10.4. NUSAP approach (Annex B.4)

NUSAP stands for Numeral, Unit, Spread, Assessment and Pedigree. The first three dimensions are
related to commonly applied quantitative approaches to uncertainty, expressed in numbers (N) with
appropriate units (U) and a measure of spread (S) such as a range or standard deviation. Methods to
address spread include statistical methods, sensitivity analysis and expert elicitation. The last two
dimensions are specific to NUSAP and are related to aspects of uncertainty than can less readily be
analysed by quantitative methods. Assessment (A) expresses qualitative expert judgements about the
quality of the information used in the model by applying a Pedigree (P) matrix, which involves a multi-
criteria evaluation of the process by which the information was produced.

A Pedigree matrix typically has four dimensions for assessing the strength of parameters or
assumptions, and one dimension for the influence on results. The method is flexible, in that
customised scales can be developed. In comparison to using single ordinal scales, the multicriteria
evaluation provides a more detailed and formalised description of uncertainty. The median scores over
all experts for the strength and influence are combined for all uncertainty sources in a diagnostic
diagram, which will help to identify the key sources of uncertainty in the assessment, i.e. those
sources with a low strength and a large influence on the model output. The NUSAP approach therefore
can be used to evaluate sources of uncertainty that are not quantified, but can also be useful in
identifying the most important sources of uncertainty for further quantitative evaluation and/or
additional work to strengthen the evidence base of the assessment.

The NUSAP method is typically applied in a workshop involving multiple experts but in principle can
also be carried out less formally with fewer experts.

Potential role in main elements of uncertainty analysis: contributes to describing sources of
uncertainty, assessing their individual magnitudes and relative influence on the assessment conclusion,
but does not assess their combined impact.

Form of uncertainty expression: ordinal.
Principal strength: systematic approach using expert workshop to describe the strength and

influence of different elements in an assessment, even when these are not quantified, thus informing
prioritisation of further analysis.

Principal weakness: qualitative definition of pedigree criteria is abstract and ambiguous and may be
interpreted in different ways by different people. It is questionable whether taking the median across
multiple ordinal scales leads to an appropriate indication of uncertainty.

10.5. Uncertainty tables for quantitative questions (Annex B.5)

EFSA (2007) suggested using a tabular approach to list and describe sources of uncertainty and
evaluate their individual and combined impacts on the assessment conclusion, using plus and minus
symbols to indicate the direction and magnitude of the impacts. In early examples of the approach,
the meaning of different numbers of plus and minus symbols was described qualitatively (e.g. small,
medium, large impacts), but in some later examples they have quantitative definitions (e.g. +/�20%,
< 2x, 2x–5x). The quantitative version is discussed further in Section 11.6.1.

The purpose of the table is threefold: to provide an initial qualitative evaluation of the uncertainty
that helps in deciding whether a quantitative assessment is needed; to assist in targeting quantitative

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 52 EFSA Journal 2018;16(1):5122



assessment (when needed) on the most important sources of uncertainty; and to provide a qualitative
assessment of those sources of uncertainty that remain unquantified.

The approach is very general in nature and can be applied to uncertainties affecting any type of
quantitative estimate. It is flexible and can be adapted to fit within the time available, including urgent
situations. The most up-to-date detailed description of the approach is included in a paper by Edler
et al. (2013).

The table documents expert judgements about uncertainties and makes them transparent. It is
generally used for semi-formal expert judgements (see Annex B.8), but formal elicitation (see
Annex B.9) could be incorporated where appropriate, e.g. when the uncertainties considered are
critical to decision-making.

The method uses expert judgement to combine multiple sources of uncertainty. The results of this
will be less reliable than calculation, which can be done by applying interval analysis or probability
bounds to the intervals represented by the +/� symbols. Calculations should be preferred when time
permits and especially if the result is critical to decision-making. However, the method without
calculation provides a useful option for two important needs: the need for an initial screening of
sources of uncertainty to decide which to include in calculations, and the need for a method to assess
those sources of uncertainty that are not included in calculations so that they can be included in the
final characterisation of uncertainty.

Potential role in main elements of uncertainty analysis: structured format for describing sources of
uncertainty, evaluating their individual and combined magnitudes, and identifying the largest
contributors to overall uncertainty.

Form of uncertainty expression: ordinal (when used with a qualitative scale). For use with
quantitative scales see Section 11.6.1.

Principal strength: provides a concise, structured summary of sources of uncertainty and their
impact on the conclusion of the assessment, which facilitates and documents expert judgements,
increases transparency and aids decisions about whether to accept uncertainties or try to reduce them.

Principal weakness: less informative than quantifying uncertainties on a continuous scale and less
reliable than combining them by calculation.

10.6. Uncertainty tables for categorical questions (Annex B.6)

This method provides a structured approach for addressing uncertainty in weight of evidence
assessment of categorical questions and expressing the uncertainty of the conclusion.

The method uses a tabular format to summarise the lines of evidence that are relevant for
answering the question, their strengths, weaknesses, uncertainties and relative influence on the
conclusion, and the probability of the conclusion.

The tabular format provides a structured framework, which is intended to help the assessors
develop the assessment and improve its transparency. The expression of conclusions as probabilities is
intended to avoid the ambiguity of narrative forms. The approach relies heavily on expert judgement,
which can be conducted informally (expert group judgement) or using semi-formal or formal elicitation
techniques.

This approach is relatively new and would benefit from further case studies to evaluate its
usefulness and identify improvements.

Potential role in main elements of uncertainty analysis: this approach addresses all elements of
uncertainty analysis for categorical questions and could be the starting point for more quantitative
assessment.

Form of uncertainty expression: ordinal (for individual lines of evidence) and probability (for
conclusion).

Principal strength: promotes a structured approach to weighing multiple lines of evidence and
taking account of their uncertainties, and avoids the ambiguity of narrative terms by expressing the
conclusion as a probability.

Principal weakness: relatively new method; very few examples and little experience of application
so far.

10.7. Structured approaches for evidence appraisal (Annex B.19)

Appraisal of the risk of bias in the individual studies and the overall body of evidence is a standard
step when using data from literature (Higgins and Green, 2011, updated 2017). Structured frameworks
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have been developed for this purpose, sometimes referred to as CATs, and these approaches can be
applied to submitted studies for regulated products as well as studies retrieved from the literature.

CATs take the form of check lists and are tailored by study design (e.g. randomised controlled
trials). These include a standardised list of items representing potential sources of uncertainty (e.g.
lack of randomisation in a randomised controlled trial) that need to be evaluated in the light of the
potential bias they could have introduced in the results. Generally these tools include items related to
the internal validity only (i.e. extent to which systematic error is minimised). External validity or
directness (i.e. the extent to which the results are generalisable to a target question) and precision
(i.e. measurement of the variability in the sampling estimate of a parameter) are generally assessed
when looking at the whole body of evidence.

Sometimes the tools are part of a broader framework aimed at evaluating the uncertainty in the
whole body of evidence (i.e. the set of studies used for the assessment), as in a weight of evidence
approach (EFSA Scientific Committee, 2017a). These frameworks include considerations of a set of
criteria to evaluate the overall risk of bias and other sources of uncertainties potentially affecting
several studies and lines of evidence across the body of evidence.

Potential role in main elements of uncertainty analysis: can be used to identify and evaluate
uncertainties affecting studies retrieved from the literature or submitted for assessment of regulated
products, and to evaluate the combination of these uncertainties within a study and across multiple
studies in a body of evidence.

Form of uncertainty expression: qualitative or ordinal.
Principal strength: provide a structured approach for consistent identification and evaluation of

uncertainties in multiple studies of the same type, or different studies comprising a body of evidence.
Principal weakness: do not express the impact of uncertainties in terms of how different the

assessment conclusion could be and how likely that is.

11. Methods for quantifying uncertainty

This section discusses probabilistic and deterministic approaches to quantifying uncertainty. An
overview is provided of methods of both kinds and suggestions are made for how to use the methods
to quantify sources of uncertainty and to combine uncertainties by calculation using models. More
details of each method are given in Annex B.

If uncertainty is to be quantified in a way which makes it possible to express a judgement that
some answers to questions, or values of quantities, are more likely than others, then probability is the
natural language to use. As discussed in Section 5.10, the subjectivist view of probability is particularly
well suited to EFSA scientific assessment. In what follows, probability means subjective probability
unless explicitly indicated otherwise. The use of subjective probability does not mean that data are
somehow less important; data provide most of the available information on an issue and when they
are amenable to statistical analysis, this should be used in preference to relying solely on expert
judgement (see Section 5.9).

A key principle of the guidance is that probability is the best measure to use to quantify
uncertainty. A major benefit of using probability is that it offers a well-defined scale for quantifying
uncertainty, and provides comparability between uncertainties of different kinds. A second major
benefit is that the mathematics of probability shows how to arrive at an expression of uncertainty for
the output of a model when uncertainty about inputs to a model is expressed using probability. When
a model is used together with probability in this way, the effect is to quantify the combined uncertainty
about the output of the model resulting from the quantified uncertainties about the inputs to the
model. This process is discussed in detail in Section 11.4 and applies to all three kinds of model which
are considered below: logic models, deterministic models (calculations) and probabilistic models. A
logic model represents a reasoning process leading to a yes/no conclusion (output) on the basis of the
answers (inputs) to a sequence of yes/no questions. A deterministic model (or calculation) calculates
one quantity (output) from the values of other quantities (inputs). A probabilistic model calculates a
random output quantity using random values for other (input) quantities. All three kinds of model can
arise within a part of a scientific assessment or uncertainty analysis, or as the connection between
parts leading to the final question or quantity of interest. A third benefit of using probability is that the
results of Bayesian statistical analysis of data are expressed using subjective probability and the results
of non-Bayesian statistical methods can often be a sound basis for subjective probabilities, enabling
outputs from Bayesian and non-Bayesian methods to be combined in uncertainty analysis.
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Assessments where the quantity of interest is a variable are more challenging. The first step is to
decide how the variability will be addressed in the assessment. This is in part a management
judgement to be exercised in the framing of the assessment: when the quantity of interest is a
variable, the decision-maker(s) should state what aspect of the variability is of interest. The decision-
maker(s) may be interested in the entire distribution of variability or want an estimate of some
particular aspect of interest, for example, the true worst case or a specified percentile or other
summary of variability. The best way to quantify uncertainty about the quantity of interest then
depends on what aspect is of interest and on any model which is used to relate the quantity of
interest for the assessment as a whole to other quantities and variables. This is discussed further in
Section 11.4.

11.1. Expressing uncertainty using probability and alternatives to
probability

For yes/no questions (and for binary quantities in general), uncertainty can be expressed
quantitatively by specifying a probability for one of the two answers; this determines the probability for
the other answer since the two probabilities must sum to 100%.

For an uncertain non-variable quantity, uncertainty may be fully quantified by specifying a
probability distribution for the quantity; the distribution then determines the probability that any
specified range of values includes the true value of the quantity. Uncertainty may be partially
quantified by specifying a credible interval: a range of values of interest, which might consist of all
values above or below some limit, and the probability that the true value lies in the range. In doing so,
no indication is made of judgements about the relative likelihood of different values in the range. If
additional ranges and associated probabilities are specified the quantification becomes more complete.
Making partial specifications is potentially much less onerous for experts but it also severely limits the
scope of subsequent calculations.

Probabilities and probability distributions may be specified directly by expert judgement or may
arise from statistical analysis of data or from calculations involving other probabilities or probability
distributions. When a probability is being specified directly by expert judgement, it may be simpler and
quicker to specify an approximate probability, i.e. to specify a range of values which is judged to
include the probability which would result from taking more time to specify it exactly. There is a formal
philosophical and mathematical framework for such approximate probabilities and this is discussed in
more depth in Section 11.5.1. The approximate probability scale in Section 11.3.3 offers some verbal
terms which can be used to indicate particular ranges of probabilities.

A probability bound for an uncertain non-variable quantity is a probability or approximate
probability for a specified range of values. A probability bound generalises the notion of credible
interval to allow the probability associated with the range to be approximate. Probability bounds have
a special role in what follows because it is possible to combine probability bounds for multiple
uncertain quantities which are inputs to a deterministic model in order to arrive at a probability bound
for the output of the model (see Sections 11.4.2 and 11.4.5). It is also possible to combine probability
bounds for specified percentiles of multiple variables which are inputs to a deterministic model in order
to arrive at a probability bound for a percentile of the variable output of the model.

Probabilities and probability distributions are expressions of expert judgement about uncertainty.
Methods to obtain them directly from expert judgement are discussed in Sections 9 and 11.3. Where
data amenable to statistical analysis are available, it is usually preferable to use statistical analysis to
quantify relevant uncertainties (see Section 11.2) and then to combine the results of statistical
analyses with expert judgements about other uncertainties. Section 11.4 discusses calculations, based
on models, to combine uncertainties expressed using probability.

11.1.1. Addressing variability

Quantifying uncertainty about a variable quantity is more difficult than quantifying uncertainty
about a quantity which has a single uncertain true value (see Section 5.3). The first step is to ensure
that the variable itself is well-defined and also to specify the context/scope of the variability:
population, time-period, etc.

A full quantification of uncertainty about a variable involves modelling the variability. This requires
some form of statistical model; in simple cases, this will be a family of probability distributions chosen
to represent the variability; in more complex cases, it may be a model of relationships between
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variables. Uncertainty about the variability can then be expressed by using probability distributions to
make a full expression of uncertainty about parameters in the statistical model. There will always be
some uncertainty about the choice of statistical model and this should be taken into account at some
point in the uncertainty analysis. As an illustration, consider a simple linear regression model. It
describes the dependence of a response variable on another predictor variable (the covariate) and also
describes variability of the response which is not explained by the covariate. The model has three
parameters: the slope and intercept of the regression line and the so-called error variance quantifying
variation away from the line. If the parameters are not uncertain, it is possible to calculate percentiles
of the response, or predict with uncertainty an individual response value, based on the corresponding
covariate value. Uncertainty about the parameters leads to uncertainty about percentiles of the
response and increases uncertainty about an individual response value. If uncertainty about the
parameters is expressed using a joint probability distribution, the result, for any percentile of interest
or for an individual response, is a probability distribution which represents uncertainty about the
percentile or individual response and which depends on the covariate. In case of predicting an
individual response, the distribution combines uncertainty and variability and this approach is the basis
of the so-called prediction interval for linear regression.

A slightly less complete quantification of uncertainty about a variable replaces the full expression of
uncertainty about parameters in the statistical model by partial expression. However, although in
principle possible using the mathematics of imprecise probability, the resulting computations for
combining uncertainties require very specialised knowledge, and therefore, this approach is not often
likely to be useful. Consequently, if the entire distribution of variability is of interest, this can only
practically be addressed by a full quantification.

Alternatively, a particular aspect, for example, a specified percentile, of the variability may be of
interest. That aspect is then an uncertain parameter about which uncertainty can be expressed fully
using a probability distribution or partially by specifying a probability bound.

The way in which uncertainty about variables is addressed has significant consequences for
calculating uncertainty about the output of a model when the output is a variable. This is discussed in
more detail in Section 11.4.

11.1.2. Deterministic alternatives to probability

If probability is not used to quantify uncertainty for a categorical question of interest, there is no
deterministic alternative; instead the expression of uncertainty must either be qualitative or be
included in a later expression of uncertainty for a combination of sources, for example, the final
expression of overall uncertainty (see Section 14).

For an uncertain quantity, the minimal quantitative expression of uncertainty is to specify a range of
values for the quantity; the range may be just an upper or lower bound for the quantity. A range by
itself makes no statement either about how probable it is that the range includes the true value of the
quantity or about the relative likelihood of different values within the range. An expression of this form
is fundamentally incomplete unless a probability, or approximate probability, is also provided for the
range. This means that if an uncertainty is quantified in this way, the missing probability information
must be provided later, for example, at the stage of quantifying overall uncertainty.

An absolute upper or lower limit for a variable or a parameter may sometimes derive from
theoretical considerations, for example, that a concentration cannot exceed 100%. A range where
both limits are absolute has an implied probability content of 100%. If such a range is used, the
probability judgement should be made explicit and the expression is then probabilistic.

Deterministic methods for working with bounds and ranges are discussed in section 11.6.

11.1.3. Expressing uncertainty using possibility

Possibility theory (Dubois and Prade, 1988; Zadeh and Lotfi, 1999) and the related theories of fuzzy
logic and fuzzy sets have been proposed as an alternative way to quantify uncertainty.

Fuzzy set theory has been applied to quantify uncertainty in risk assessment (Kentel and Aral,
2005; Arunraj et al., 2013). It has mostly been used in combination with probabilistic methods such as
Monte Carlo, often called hybrid approaches: Li et al. (2007) used an integrated fuzzy-probabilistic
approach in the assessment of the risk of groundwater contamination by hydrocarbons. Li et al. (2008)
applied a similar approach to assessing the health-impact risk from air pollution. Matbouli et al. (2014)
reported the use of fuzzy logic in the context of prospective assessment of cancer risks.
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However, it is not yet clear how much benefit there is from using fuzzy methods as compared to
methods that use the concept of probability. The IPCS (2014) Guidance Document on Characterizing
and Communicating Uncertainty in Exposure Assessment discussed fuzzy methods briefly, concluding
that they ‘can characterize non-random uncertainties arising from vagueness or incomplete information
and give an approximate estimate of the uncertainties’ but that they ‘cannot provide a precise
estimate of uncertainty’ and ‘might not work for situations involving uncertainty arising from random
sampling error’. Moreover, the fuzzy/possibility measure does not have an operational definition of the
kind provided by de Finetti (1937) and Savage (1954) for subjective probability. Therefore, these
methods are not covered in our overall assessment of methods.

11.2. Obtaining probabilities by statistical analysis of data

This section discusses three statistical inference methodologies (confidence intervals, the bootstrap
and Bayesian inference) for quantifying uncertainty about parameters in statistical models based on
analysis of data. Each methodology has its own strengths and weaknesses. Only Bayesian inference
directly quantifies parameter uncertainty using a subjective probability distribution which can then be
combined with other subjective probabilities using the mathematics of probability. However, in order to
do so, it requires that expert judgement is used to specify a probability distribution which represents
uncertainty about the parameters prior to observing the data. Confidence intervals and the bootstrap
require the use of expert judgement to translate the output into probability bounds or probability
distributions suitable for combining with other subjective probabilities (see Section 11.2.1).

All statistical methods require first that a statistical model be chosen which specifies the distribution
family or families to be used to describe variability. For regression, dose–response and other more
complex statistical models, the model also specifies the mathematical form of dependencies between
variables. The statistical model also depends on the experimental design and/or sampling scheme.

It should be recognised that any statistical analysis only addresses those uncertainties which are
explicitly included in the analysis; expert judgement is still required for selection of data, choice of
statistical model(s) and the method of statistical analysis. These judgements are themselves subject to
uncertainty regarding the relevance and reliability of the available data and the suitability of potential
models. This uncertainty needs to be taken into account either in relation to the specific analysis or as
part of the assessment of overall uncertainty (Section 14). If being addressed at the level of the
specific analysis, the mechanism depends on the nature of the expression of uncertainty. If the
expression is a probability bound, it will be necessary to consider whether the range needs to be
widened or the associated probability lowered. If this is too difficult to do by expert judgement or if
the expression is a distribution, it is more likely to be helpful to build a Bayesian graphical model which
incorporates the original statistical model and has components representing additional uncertainties
(see Sections 11.4.2 and 11.5.2 below). Note that uncertainty about choice of statistical model can be
addressed to some extent within the analysis by statistical model averaging (see Section 11.5.2).

11.2.1. Confidence intervals (Annex B.10)

Other than p-values and hypothesis tests, which do not quantify uncertainty, confidence intervals
are the most familiar form of statistical inference for most scientists. They are a method for quantifying
uncertainty about parameters in a statistical model on the basis of data. The ingredients are a
statistical model for some form of variability, data which may be considered to have arisen from the
model, and a defined procedure for calculating confidence intervals for parameters of the statistical
model from the data. The result is a range of values for a parameter, which has a specified level of
confidence. By varying the confidence level, it is possible to build a bigger picture of the uncertainty.
The so-called prediction interval in linear and multiple regression modelling is a confidence interval for
an individual value of the response.

For statistical models having more than one parameter, it is in principle possible to construct a
confidence region which addresses dependence in the uncertainties about parameters. However, such
methods are technically more challenging and are less familiar (see brief discussion in Annex B.10).

The probability associated with a confidence interval is a frequentist probability (see Section 5.10)
relating to hypothetical repetitions of an experiment or study. In order to combine a frequentist
probability with subjective probabilities for other sources of uncertainty, it is necessary to reinterpret
the frequentist probability as a subjective probability. The technically correct interpretation of a 95%
confidence interval is the frequency property: 95% of confidence intervals computed from repetitions
of the experiment or study would include the true value of the uncertain parameter. The common
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misinterpretation of a 95% confidence interval is that it means that the probability that the uncertain
parameter lies in the interval is 95%. However, it is often reasonable to reinterpret a reported
confidence interval in this way provided some conditions are met. The first is that assessors do not
have knowledge, from sources other than the data being analysed, which gives them significant
information about the value of the parameter; if they have such information, it should be used as the
basis for a prior distribution in a Bayesian inference (see Section 11.2.3). The second, related condition
is that the reported confidence interval does not itself convey information that would lead to a
different probability (e.g. it includes parameter values that assessors judge to be impossible or
extremely unlikely). The third is that other information reported along with the confidence interval
(e.g. concerning the reliability of the experiments or their relevance to the assessment) would not lead
assessors to assign a different probability. These reinterpretations require judgement and so the
resulting probability is subjective rather than frequentist. If assessors are aware of issues with
reliability or relevance, they may wish to adjust either the probability or the interval or conduct a
weight of evidence analysis (EFSA Scientific Committee, 2017a) of a form which delivers a probabilistic
expression of uncertainty. One approach to the latter is to embed the statistical model in a Bayesian
graphical model (see Section 11.5.2) which includes components representing additional uncertainties.

With the exception of a small number of special cases, confidence interval procedures are
approximate, in the sense that the actual success rate of a confidence procedure corresponds to the
nominal rate (often chosen to be 95%) when a large enough sample of data is being used. When this
is not the case, the direction and/or magnitude of the difference from the nominal rate are often
themselves uncertain unless they have been studied in the statistical literature. The mathematical
justification of the confidence interval procedure is usually based on assuming a large sample size (and
balanced experimental design in more complex models).

Potential role in main elements of uncertainty analysis: provides limited probabilistic information
about individual uncertainties relating to parameters in statistical models.

Form of uncertainty expression: range with confidence level (frequency property).
Principal strengths: very familiar method of statistical inference, often used to report uncertainty in

literature and often easy to apply.
Principal weaknesses: does not quantify uncertainty using a probability distribution; the confidence

level needs re-interpretation to arrive at a probability for the range; does not easily address
dependence between parameters.

11.2.2. The Bootstrap (Annex B.11)

The bootstrap is a method for quantifying uncertainty about parameters in a statistical model on
the basis of data. The ingredients are a statistical model based on random sampling, data which may
be considered to have arisen from the model, and a choice of statistical estimator(s) to be applied to
the data. The technical term ‘estimator’ means a statistical calculation which might be applied to a
data set of any size: it may be something simple, such as the sample mean or median, or something
complex such as a percentile of an elaborate Monte Carlo calculation based on the data.

The basic output of the bootstrap is a sample of possible values for the estimator(s) obtained by
applying the estimator(s) to hypothetical data sets, of the same size as the original data set, obtained
by resampling the original data with replacement. This provides a measure of the sensitivity of the
estimator(s) to the sampled data. It also provides a measure of uncertainty for estimators for which
standard confidence interval procedures are unavailable without requiring advanced mathematics. The
bootstrap is often easily implemented using Monte Carlo.

Various methods can be applied to the basic output to obtain a confidence interval for the ‘true’
value of an estimator: the value which would be obtained by applying the estimator to the whole
distribution of the variable. Each of the methods is approximate and makes some assumptions which
apply well in some situations and less well in others. As for all confidence intervals, they have the
weakness that the confidence interval probability needs reinterpretation before being used as a
subjective probability (see Section 11.2.1).

Although the basic output from the bootstrap is a sample from a probability distribution for the
estimator, that distribution does not directly represent uncertainty about the true value of
the estimator using subjective probability and is subject to a number of biases which depend on the
model, data and estimator used. However, in many cases, it may be reasonable for assessors to make
the judgement that the distribution does approximately represent uncertainty. In doing so, assessors
would be adopting the distribution as their own expression of uncertainty. In such situations, the
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bootstrap output might be used as an input to subsequent calculations to combine uncertainties, for
example, using either probability bounds analysis or Monte Carlo (see Section 11.4).

Potential role in main elements of uncertainty analysis: can be used to obtain limited probabilistic
information, and in some cases full probability distributions relevant to uncertainty, about general
summaries of variability.

Form of uncertainty expression: range with approximate confidence level or distribution
(represented by a sample) which does not directly represent uncertainty.

Principal strengths: can be used to evaluate uncertainty for non-standard estimators, even in non-
parametric models, and provides a probability distribution which assessors may judge to be an
adequate representation of uncertainty for an estimator.

Principal weaknesses: the distribution from which the output is sampled does not directly represent
uncertainty and expertise is required to decide whether or not it does adequately represent
uncertainty.

11.2.3. Bayesian inference (Annex B.12)

Bayesian inference is a method for quantifying uncertainty about parameters in a statistical model
on the basis of data and expert judgements about the values of the parameters. The ingredients are a
statistical model for some form of variability, a prior distribution for the parameters of the model, and
data which may be considered to have arisen from the model. The prior distribution represents
uncertainty about the values of the parameters in the model prior to observing the data. The prior
distribution should preferably be obtained by expert knowledge elicitation (see Section 11.3). For some
models, there exist standard choices of prior distribution which are intended to represent lack of
knowledge. If such a prior is used, it should be verified that the probability statements it makes are
acceptable to relevant experts for the parameter in question. The result of a Bayesian inference is a
(joint) probability distribution for the parameters of the statistical model. That distribution combines
the information provided by the prior distribution and the data and is called the posterior distribution.
It represents uncertainty about the values of the parameters and incorporates both the information
provided by the data and the prior knowledge of the experts expressed in the prior distribution. It is a
good idea in general to assess the sensitivity of the posterior distribution to the choice of prior
distribution. This is particularly important if a standard prior distribution was used, rather than a prior
elicited from experts.

The posterior distribution from a Bayesian inference is suitable for combination with subjective
probability distributions representing other uncertainties (see Section 11.4).

Potential role in main elements of uncertainty analysis: provides a quantitative assessment of
uncertainty, in the form of a probability distribution, about parameters in a statistical model.

Form of uncertainty expression: distribution (for a quantity of interest) or probability (for a question
of interest), often represented in practice by a large sample.

Principal strengths: output is a subjective probability distribution representing uncertainty and
which may incorporate information from both data and expert judgement.

Principal weakness: limited familiarity with Bayesian inference amongst EFSA assessors – likely to
need specialist support.

11.3. Obtaining probabilities by expert judgement

Concepts and principles relating to the use of expert judgement are discussed in Section 5.9, and
methods for expert judgement are discussed in general (not specific to quantitative judgements) in
Section 9. This section focusses on methods for obtaining probabilities by expert judgement.
Sections 11.3.1 and 11.3.2 summarise informal and formal EKE for non-variable quantities, based on
EFSA (2014a). These methods are described in more detail in Annexes B.8 and B.9, respectively, and
quantify expert judgements of uncertainty using subjective probability. Usually, the initial elicitation
provides a partial probability statement in the form of quantiles, instead of a full distribution.
Subsequently, the partial statement may be extended to a full probability distribution which provides
the probability of values between the quantiles.

The EFSA guidance on EKE does not describe elicitation methods for variable quantities, categorical
or yes/no questions, dependencies or approximate probabilities. It is recommended that EFSA develop
guidance for these in the future.

Section 11.3.3 describes an approximate probability scale that is recommended for harmonised use
in EFSA, and can be used to quantify uncertainty about both questions and quantities of interest.
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11.3.1. Semi-formal EKE (Annex B.8)

Annex B.8 describes a semi-formal protocol, which is a reduced and simplified version of the formal
protocols described by EFSA (2014a). It is intended for use when there is insufficient time/resource to
carry out a formal EKE.

Potential role in main elements of uncertainty analysis: provides probabilistic judgements about
individual sources of uncertainty and may also be applied to suitable combinations of uncertainties.

Form of uncertainty expression: Annex B.8 describes semi-formal EKE for quantitative expressions
of uncertainty, but many of the principles are also applicable to qualitative expressions.

Principal strength: less vulnerable to cognitive biases than expert group judgement and more
flexible and less resource intensive than formal EKE.

Principal weakness: more vulnerable than formal EKE to cognitive biases; and more subject to bias
from expert selection since this is less formal and structured.

11.3.2. Formal EKE (Annex B.9)

The EFSA (2014a) guidance on EKE specifies a protocol which provides procedures for: (i) choosing
experts, (ii) eliciting selected probability judgements from the experts; (iii) aggregating and/or
reconciling the different judgements provided by experts for the same question; (iv) feeding back the
distributions selected for parameter(s) on the basis of the aggregated/reconciled judgements.

The formal EKE procedure is designed to reduce the occurrence of a number of cognitive biases
affecting the elicitation of quantitative expert judgements.

Potential role in main elements of uncertainty analysis: provides probabilistic judgements about
individual sources of uncertainty and may also be applied to suitable combinations of uncertainties.

Form of uncertainty expression: Annex B.9 describes formal EKE for quantitative expressions of
uncertainty, but many of the principles are also applicable to qualitative expressions.

Principal strength: provides a structured way to elicit expert uncertainty in the form of a probability
distribution.

Principal weakness: doing it well is resource-intensive.

11.3.3. Approximate probability scale

In many situations, it may be sufficient for experts to express their judgement about the uncertainty
of a quantity or yes/no question using approximate probability, rather than as a precise probability or
distribution. These judgements may be further facilitated by using a standard scale of approximate
probabilities, similar to that used by the Intergovernmental Panel on Climate Change (IPCC)
(Mastrandrea et al., 2010). The Scientific Committee noted in a previous opinion that a scale of this type
might be useful for expressing uncertainty in EFSA opinions (EFSA Scientific Committee, 2012).

The IPCC scale as presented by Mastrandrea et al. (2010) was used in an opinion on bisphenol A,
to express uncertainties affecting hazard characterisation (EFSA, 2015b). In an earlier draft of the
present document, a modified version of the IPCC scale was proposed. This was used in some case
studies conducted during the trial period for this document. Based on experience and feedback from
those case studies, further modifications were made, resulting in the scale shown in Table 7. This
version is recommended as a harmonised scale for use in EFSA.

Table 7 remains closely similar to the IPCC scale but with several modifications. In Table 7, the
ranges have been changed to be non-overlapping. This was done because it is expected that experts
will sometimes be able to bound their probability on both sides, rather than only on one side as in the
IPCC scale. For example, when experts consider a conclusion to be ‘Likely’ (more than 66%
probability), they will sometimes be sure that the probability is not high enough to reach the ‘Very
likely’ category (> 90% probability). This was evident in the elicitation for the BPA opinion, and was
confirmed in the trial period of this document. The ranges in Table 7 overlap at the boundaries, but if
the expert was able to express their probability precisely enough for this to matter, then they could
express their probability directly without using a range from the Table.

Another change in Table 7, compared to the IPCC table, is that the title for the second column is
given as ‘Approximate probability’, as this describes the judgements more accurately than ‘Likelihood of
outcome’, and avoids any confusion with other uses of the word ‘likelihood’ (e.g. in statistics). The
terms for the first and last probability terms were revised in the preceding draft of this document,
because the Scientific Committee considered that the common language interpretation of the IPCC
terms ‘Virtually certain’ and ‘Exceptionally unlikely’ is too strong for probabilities of 99% and 1%,
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respectively. Those terms have now been revised again, to ‘Almost certain’ and ‘Almost impossible’, to
allow ‘Extremely likely’ and ‘Extremely unlikely’ to be used for the additional ranges of 95–99% and
1–5%, respectively. These additional ranges were in fact also identified as an option in a footnote to
the IPCC table (Mastrandrea et al., 2010). Furthermore, these ranges may have particular relevance if
the probability levels of 5% and 95%, which are conventionally used in many areas of science, are of
interest for decision-makers.

Further changes introduced in the current draft are the addition of two wider ranges in the right
hand half of Table 7. ‘More likely than not’ is another option that was listed in the footnote to the IPCC
table. Furthermore, this is the form of probability judgement that experts often find easier to make,
and which has been used in the past in some areas of EFSA’s work where it is stated that uncertainties
are more likely to cause overestimation than underestimation of risk, e.g. EFSA (2011). The second
addition is the full range of probability, from 0% to 100%. This is included to accommodate situations
where assessors are unable to exclude any of the ranges in the second column, and to make explicit
that this implies a range of 0–100% and corresponds to the terms ‘cannot conclude’, ‘inconclusive’ or
‘unknown’, which are used in some EFSA assessments.

Table 7 is intended as an aid to EKE, not an alternative to it: the principles of EKE should be
followed when using it. Judgements should be made by the experts conducting the assessment, who
should previously receive general training in making probability judgements (of the type described in
Section 5.2 of EFSA, 2014a). The question or quantity of interest must be well-defined (Section 5.1),
and the experts should review and discuss the relevant evidence and uncertainties before making their
judgements. If the experts are able to specify their judgements as a probability or range of
probabilities, without using Table 7, this is preferred. Otherwise, Table 7 may be used as an aid to
support the development of judgements. The experts should be asked to select one or more
categories from the table, to represent their probability judgement for the question or quantity of
interest. If they feel that choosing a single category would overstate what they can say about the
probability, then they should choose two or more categories to express their judgement appropriately.
If an expert finds it difficult to express a judgement, it may be helpful to ask them whether they would
like to select all nine ranges (i.e. give an approximate probability of 0–100%, in effect complete
uncertainty) or whether their judgement would be better represented by fewer of the individual
categories. The judgements of the experts might then be shared, discussed and aggregated to provide
a group conclusion, depending on what type of EKE procedure is considered appropriate for needs and
context of the assessment (see Section 9 and EFSA (2014a)).

It is not intended that experts should be restricted to using the approximate probabilities in Table 7.
On the contrary, they should be encouraged to specify other ranges, or precise probabilities, whenever
these express better their judgement for the question or quantity under assessment. However, care
should be taken if assessors use any of the words shown in the first column of Table 7 when reporting
their assessment, to avoid confusion with the harmonised use of those terms.

Table 7: Scale recommended by the Guidance for harmonised use in EFSA to express uncertainty
about questions or quantities of interest. See text for details and guidance on use

Probability
term

Approximate
probability

Additional options

Almost certain 99–100% More likely than not: > 50% Unable to give any probability: range is
0–100%

Report as ‘inconclusive’, ‘cannot conclude’
or ‘unknown’

Extremely likely 95–99%
Very likely 90–95%

Likely 66–90%
About as likely
as not

33–66%

Unlikely 10–33%

Very unlikely 5–10%
Extremely
unlikely

1–5%

Almost
impossible

0–1%
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In principle, all well-defined uncertainties can be quantified with subjective probability, as explained
in Section 5.10. Therefore, Table 7 can be used to express uncertainty for any well-defined question or
quantity. This contrasts with the view of Mastrandrea et al. (2010), who advise that uncertainty may
be quantified using the IPCC scale when there is either ‘robust evidence’ or ‘high agreement’ or both,
which they assess on ordinal scales. The present Guidance shares instead the position of Morgan et al.
(2009) who, when discussing the IPCC approach, state that all states of evidence and agreement can
be appropriately handled through the use of subjective probability, so long as the question to be
addressed is well-defined. However, as discussed in Section 5.12, assessors may not be able to
quantify some sources of uncertainty. In such cases, they should make a conditional assessment,
applying Table 7 to those sources of uncertainty they can quantify and describing those they cannot.

There are challenges in communicating probability judgements about uncertainty, including when
they are made using a standard scale such as Table 7. To avoid misinterpretation, it is important to
distinguish them from probabilities derived by statistical analysis of data (e.g. confidence intervals or
significance levels), and from probabilities used to express frequencies (e.g. the incidence of effects in
a population). Research has shown that presenting the numerical probabilities alongside verbal
expressions of probability, e.g. ‘Likely (> 66% probability)’, increases the consistency of interpretation
(Budescu et al., 2012, 2014). There is also evidence that communication can be improved by defining
the approximate probabilities for verbal terms based on analysis of how people interpret them (Ho
et al., 2015). However, this has to be weighed against the advantage of using approximate
probabilities about which judgements can more readily be made (e.g. < 33%, < or > 50%, > 66%).
Therefore, the Scientific Committee recommends that the ranges in Table 7 are used in EFSA
assessments, and that the verbal terms should always be accompanied by the corresponding
numerical ranges to aid correct interpretation (or use the ranges alone). The exception to this is where
decision-makers require unqualified positive or negative conclusions, which should be dealt with as
described in Section 3.5.

11.4. Combining uncertainties for model inputs by probability
calculations

As discussed at the start of Section 11, calculating uncertainty about the output of a model based
on uncertainty about inputs to the model is a process of combining uncertainties by calculation. In this
section, it is assumed for now that there is a model of interest and that uncertainty has been
expressed about inputs using probability. The first three subsections consider strategies for different
types of model and the following four subsections consider specific methods that are used by the
strategies. When combining uncertainties, dependence is always a potential issue and this is
considered as part of each strategy.

11.4.1. Logic models

If the model is a simple logic model (Section 11.4.4 and Annex B.18) expressing a yes/no
conclusion (output of model) as a logical deduction from the answers to a number of yes/no questions
(inputs to model), the probability that the conclusion is yes can be calculated straightforwardly by
hand from probabilities for the inputs, assuming independence (see Annex B.18). If any of the input
probabilities is approximate, the result is also approximate and Interval Analysis (Section 11.6.2) can
be used to calculate the range for the approximate probability for the conclusion. If there is
dependence between uncertainties about the inputs, the calculation is more complex.

For more complex logic models or situations involving dependence, hand calculations may be
challenging. Then, one-dimensional (1D) Monte Carlo (Section 11.4.6) could be used instead to do the
calculation. Bayesian Belief Nets (Section 11.5.2) are another approach to quantifying uncertainty for
categorical questions.

If a model combines logic and quantitative components it should be treated as a deterministic or
probabilistic model according to the treatment of quantitative components in the model.

11.4.2. Deterministic models (calculations)

The methods described in Sections 9, 11.2 and 11.3 can be used to quantify uncertainty about
inputs to the model in the form of probability distributions or probability bounds. The mathematics of
probability then leads in principle to an expression of uncertainty about the output using probability.
Calculating that expression is easier in some situations than others.
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Models having no variable inputs

There are three situations:

• If uncertainty about each input is fully quantified by a probability distribution and the inputs
are independent, uncertainty about the output can be calculated using 1D Monte Carlo
(Section 11.4.6). The result is full quantification by a probability distribution.

• In some special situations, analytical calculations are available but Monte Carlo can always be
used and is often the only practical tool for accurate computation. An approximate calculation
may be possible by replacing distributions specified for inputs by approximations which lead to
an analytical calculation (see Section 11.4.7) but the accuracy is usually difficult to establish
without carrying out a Monte Carlo calculation

• If there is dependence between uncertainties about two or more inputs, this needs to be
addressed by expressing the uncertainty for them using a joint probability distribution and 1D
Monte Carlo can then still be applied.

• If uncertainty about each input is partially quantified by a probability bound, uncertainty about
the output can be calculated using probability bounds analysis (Section 11.4.5). The result will
be a probability bound for the output. Dependence does not need to be considered as the
probability bound obtained by the output is valid for any form of dependence. Calculations are
more straightforward for some models than others (see Annex B.18 for details).

• When the probability bound for the output is calculated, it may be found that the limits on the
resulting approximate probability are too low or too high to be useful for decision-making. In
order to arrive at a useful probability bound for the output, it may be necessary to consider
alternative probability bounds, having different levels of associated probability, for inputs.
There is nothing wrong in doing so as long as the bounds are genuine expressions of expert
judgement and that different bounds for the same input are not inconsistent with each other,
i.e. they do not make conflicting probability statements. There would be conflict, for example,
if a probability bound for a quantity specified that there was a lower probability for a range
which included all values in the range for which another probability bound specified a higher
probability.

• However, it may not actually be possible to obtain a useful probability bound due to the fact
that probability bounds analysis makes no assumptions about dependence or distributions. If
so, it will be necessary to move to full quantification of uncertainty about inputs using
probability distributions, as described in the first bullet.

• If uncertainty about at least one input is partially quantified by a probability bound and about
other inputs is fully quantified by probability distributions, the theory of imprecise probability
(Section 11.5.1) determines the resulting uncertainty about the output. However, in practice,
such imprecise probability calculations are challenging. It is likely to be much easier, and more
useful, to deduce a suitable probability bound from each probability distribution and then to
combine the probability bounds as in the previous bullet point.

• There are infinitely many probability bounds implied by any probability distribution. In order to
arrive at a useful probability bound for the output, it may be necessary to experiment with
different choices of probability bounds for the inputs for which distributions were used to
express uncertainty. There is nothing wrong in doing so as long as all the probability bounds
used are consistent with the original probability distributions.

• In situations where the model includes a submodel for which uncertainties about all inputs are
fully quantified, it may be better first to use 1D Monte Carlo to arrive at a probability
distribution for the output of the submodel and then deduce probability bounds for the outputs
of the submodel to use in a probability bounds analysis of the model as a whole.

Models having one or more variable inputs

There are four situations:

• If uncertainty about each variable input is fully quantified as described in Section 11.1.1 and
uncertainties about any non-variable inputs are fully quantified using probability distributions,
then fully quantified uncertainty about the variable output may be calculated using two-
dimensional (2D) Monte Carlo (Section 11.4.6). Dependence between variables can be
addressed by specifying a joint statistical model for the dependent variables. Dependence
between parameters needs to be addressed by expressing the uncertainty using a joint
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probability distribution and then 2D Monte Carlo can still be applied. If the dependence arises
from a Bayesian statistical analysis of data, it will already be addressed by the posterior
distribution. For example, if two parameters are dependent, the dependence may be
represented by a Monte Carlo sample of pairs of values from the posterior distribution.

• If data are available for each variable and it is considered reasonable to treat each set of data
as though it was a random sample, the bootstrap may be applied to the model to estimate
uncertainty about variability of the output. The resulting estimate has the usual strengths and
weaknesses of the bootstrap (Section 11.2.2).

• If the model is suitable (see Annex B.18 for details), a probability bound for a percentile of the
variable output may be calculated, using probability bounds analysis (see Section 11.4.5) from
probability bounds specified for all non-variable inputs and for a chosen percentile of each
variable input. The percentile of the output to which the probability bound applies is itself
determined by a probability bounds analysis calculation using the percentiles chosen for the
variable inputs (see Annex B.13 for an example).

• if uncertainty is fully quantified for some inputs and using probability bounds for others, it will
in practice be easiest to deduce probability bounds from the full quantifications and then
proceed as in the third bullet point.

An important feature of most models with more than one variable input is that it is not possible to
say what percentile of the variable output corresponds to chosen percentiles of the variable inputs
without doing a full 2D Monte Carlo analysis as described in the first bullet point. Even when uncertain
parameters in statistical models are assumed known, a 1D Monte Carlo calculation, or equivalent
mathematical probability calculation, is needed. Consequently, when quantifying uncertainty about the
output of models with variable inputs and a specific percentile of the output is of interest, it is not
generally possible to obtain a full expression of uncertainty about that percentile without carrying out a
2D Monte Carlo analysis.

Additional sources of uncertainty

If additional sources of uncertainty are identified that do not directly affect inputs to the model, it is
better, if possible, to refine the model to include them rather than have to address them later in the
analysis. Bayesian graphical models (see Section 11.5.2) have the potential to help with this by
embedding the deterministic model in a larger probabilistic model of uncertainty. However, some
sources of uncertainty might not easily be addressed in this way, for example, the family of
distributions to use when modelling a variable statistically. Such uncertainties may be better addressed
by scenario or sensitivity analysis.

11.4.3. Probabilistic models

Some probabilistic models are really just deterministic models with variable inputs. They can be
handled as described in Section 11.4.2.

Other models are more innately probabilistic and Monte Carlo simulation has a fundamental role in
representing the processes involved, as well as quantifying variable inputs. Examples of this might
include models of disease transmission, infection and recovery in a mixed population of susceptible
and resistant individuals, or probabilistic modelling of cumulative exposures in a population of
individuals to multiple contaminants via multiple routes. While there may be possibilities for some
special form of Probability Bounds Analysis in such cases, it is likely to be easier to embed the model in
a 2D Monte Carlo analysis or a Bayesian graphical model (see Section 11.5.2) in order to calculate
uncertainty for the output of the model from uncertainties expressed about inputs using probability
distributions.

11.4.4. Probability calculations for logic models (Annex B.18)

A logic model is a representation of the reasoning process in situations where a yes/no conclusion
would be a logical deduction from the answers to a number of yes/no questions if there were no
uncertainty about the answers to the questions. In such situations, if the answers to the questions are
uncertain, the conclusion is consequently also uncertain.

Annex B.18 shows how to use diagrams to make transparent the structure of the reasoning and
also shows, assuming independence of uncertainties, how to calculate the probability that the
conclusion is yes from probabilities for the answers to the questions, thereby combining the
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uncertainties. Advice is given on how to proceed if some or all probabilities are approximate or if there
is judged to be dependence between uncertainties about answers to questions.

Potential role in main elements of uncertainty analysis: provides a way to combine uncertainties
relating to a series of yes/no questions in order to arrive at a probability for a yes/no conclusion.

Form of uncertainty expression: probability or approximate probability.
Principal strengths: relatively straightforward calculations which are based on a transparent

representation of a process of logical reasoning.
Principal weaknesses: only applicable to situations involving a yes/no conclusion which could in

principle be determined without uncertainty from the answers to a series of yes/no questions if those
answers were not uncertain.

11.4.5. Probability Bounds Analysis (Annex B.13)

Probability bounds analysis is a method for combining probability bounds for inputs in order to
obtain a probability bound for the output of a deterministic model. It is a special case of the general
theory of imprecise probability (Section 11.5.1) which provides more ways to obtain partial expressions
of uncertainty for the output based on more general partial expressions for inputs.

The simplest form of probability bounds analysis applies to models which do not involve variables
and where the output depends monotonically on each input: increasing a particular input either always
increases the output or always decreases the output. Suppose that the focus is on high values for the
output of the model. For each model input, the assessors specify a probability bound of the following
form: they specify a threshold for the input and an upper bound for the probability that the input
exceeds the threshold in the direction where the output of model increases. A threshold for the output
of the model is obtained by combining the threshold values for the inputs using the assessment
calculation. Probability bounds analysis then provides an upper bound on the probability that the
output of the model exceeds that threshold: the upper bound is the sum of the upper bounds specified
for probabilities relating to the individual inputs.

The method can also be applied more generally, using a range for each input rather than just
exceedance of a threshold value. The resulting version of probability bounds analysis includes interval
analysis (Section 11.6.2) as a special case if the probabilities for ranges are all specified to be 100%.

Probability bounds analysis can be extended to handle a limited range of situations where variability
is part of the assessment calculation (see Annex B.13 for details).

The calculation makes no assumptions about dependence or about distributions. Because no such
assumptions are made, the upper bound on the final probability may be much higher than would be
obtained by a more refined probabilistic analysis of uncertainty.

Potential role in main elements of uncertainty analysis: provides a way to combine probability
bounds for individual inputs to a model in order to obtain a probability bound for the combined
uncertainty about the output of a model. Potentially important to assist characterisation of overall
uncertainty (section 14).

Form of uncertainty expression: probability bound.
Principal strengths: relatively straightforward calculations which need only probability bounds for

inputs and which make no assumptions about dependence or distributions.
Principal weaknesses: provides only a probability bound for the output of the model and the range

for the approximate probability may not be tight compared to the result that would be obtained by a
refined analysis.

11.4.6. Monte Carlo simulation for uncertainty analysis (1D-MC and 2D-MC)
(Annex B.14)

Monte Carlo simulation can be used for: (i) combining uncertainty about inputs to a deterministic or
probabilistic quantitative model by numerical simulation when analytical solutions are not available; (ii)
carrying out certain kinds of sensitivity analysis. Random samples from probability distributions
representing uncertainty for non-variable quantities and variability for variables, are used as
approximations to those distributions. Monte Carlo calculations are governed by the laws of probability.
Distinction is often made between 2D Monte Carlo (2D-MC) and 1D Monte Carlo (1D-MC) (see below).

Potential role in main elements of uncertainty analysis: provides a way to combine uncertainties,
expressed as probability distributions, about inputs to a model in order to obtain a probability
distribution representing combined uncertainty about the model output. Also useful as part of a
method for quantifying contributions of individual sources of uncertainty to combined uncertainty.
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2D-MC separates distributions representing uncertainty from distributions representing variability
and allows the calculation of combined uncertainty about any summary of interest of variability (e.g. a
specified percentile of interest to decision-makers). The output from 2D-MC has two parts. The first is
a random sample of values for all non-variable quantities, including parameters in statistical models,
drawn from the joint distribution expressing uncertainty about them. The second part is, for each
value of the non-variable quantities, a random sample of values for all variables, including the output
of the model and any intermediate values arising from calculations. The first part of the output
represents combined uncertainty about the non-variable quantities. The second part represents
variability conditional on the parameter values. From the second part of the output, for each variability
sample, one can calculate any summary statistic of interest such as the mean, standard deviation,
specified percentile, fraction exceeding a specified threshold. The result is a sample of values
representing uncertainty about the summary. More than one summary can be considered
simultaneously if dependence is of interest.

Form of uncertainty expression: distribution (represented by a sample).
Principal strengths: rigorous probability calculations without advanced mathematics which provide a

probability distribution representing uncertainty about the output of the assessment calculation.
Principal weakness: requires understanding of when and how to separate variability and uncertainty

in probabilistic modelling. Results may be misleading if important dependencies are omitted.
1D-MC does not distinguish uncertainty from variability and is most useful if confined to either

variability or uncertainty alone. In the context of uncertainty analysis, it is most likely to be helpful
when variability is not part of the model. It then provides a random sample of values for all
parameters, representing combined uncertainty about the output of the model.

Form of uncertainty expression: distribution (represented by a sample).
Principal strengths (relative to 2D-MC): conceptually simpler and communication of results is more

straightforward.
Principal weakness (relative to 2D-MC): restricted in application to assessments where variability is

not part of the model.

11.4.7. Approximate probability calculations (Annex B.15)

Approximate probability calculations provide an alternative to Monte Carlo for combining
uncertainties for which probability distributions are available. They are based on replacing probability
distributions obtained by EKE or statistical analysis of data by approximations which make probability
calculations for combining uncertainties straightforward to carry out using a calculator or spreadsheet.
Details are provided in Annex B.15.

The distributions which are used in such approximations come from families having only two
parameters. A member of the family can be determined from a suitable partial probability specification
obtained by EKE (see Section 9). One such possibility is to elicit two percentiles of uncertainty, for
example, the median of uncertainty and a high percentile. However, it should be recognised that this
provides no information about the accuracy of the resulting approximation.

Potential role in main elements of uncertainty analysis: provides a way to combine uncertainties
expressed as probability distributions in order to obtain a probability distribution approximately
representing combined uncertainty from those sources.

Form of uncertainty expression: distribution.
Principal strengths: rigorous probability calculations without advanced mathematics which provide a

probability distribution approximately representing uncertainty about the output of the assessment
calculation.

Principal weakness: difficult to judge the accuracy of the approximations involved without carrying
out the full probability calculation it replaces. Results may be misleading if important dependencies are
omitted or if full probability distributions are not elicited.

11.5. Other probabilistic methods

11.5.1. Imprecisely specified probabilities

For all probabilistic methods, there is the possibility to specify probabilities imprecisely or
approximately, i.e. rather than specifying a single number as their probability for a question of interest
or for a range for a quantity of interest, the assessors specify an upper and a lower bound. The theory
of imprecise probability gives a precise meaning to the lower and upper bounds. Walley (1991) gives a
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detailed account of the foundational principles, which extend those of de Finetti (1937) and Savage
(1954) for precise subjective probabilities. The basis of the de Finetti approach was to define a
probability to be the value one would place on a contract which pays one unit (on some scale) if an
uncertain event happens and which pays nothing if the event does not happen. The basic idea of
Walley’s extension is that one does not have a single value for the contract but that there is both some
maximum amount one would be willing to pay to sign the contract and some minimum amount one
would be willing to accept as an alternative to signing the contract. These maximum and minimum
values, on the same scale as the contract’s unit value, are one’s lower and upper probabilities for the
event. The implication of Walley’s work is that the accepted mathematical theory of probability extends
to a rational theory for imprecise probabilities. Computationally, imprecise probabilities are more
complex to work with and so there is not yet a large body of applied work although there are clear
attractions to allowing experts to express judgements imprecisely.

The method of probability bounds analysis (Section 11.4.5) can be justified as a consequence of
the standard theory of probability applied in situations where the exact value of a probability has not
been provided but a range or bound for the probability has been. It can also be justified as a
consequence of the theory of imprecise probability where the range or bound is seen as an imprecise
probability specification.

11.5.2. Advanced statistical and probabilistic modelling methodologies

Statistical model averaging provides a partial solution to the problem of addressing model uncertainty.
Both Bayesian and non-Bayesian versions exist which have, respectively, many of the same strengths and
weaknesses identified above for Bayesian inference (Section 11.2.3) and confidence intervals
(Section 11.2.1). Examples of application include Bailer et al. (2005) and Wheeler and Bailer (2007).

There are several advanced statistical modelling approaches which are suitable for addressing more
complex situations. These include random effects models, Bayesian belief networks (BBNs) and
Bayesian graphical models (also known as Bayesian networks). Random effects models are suitable for
modelling sources of heterogeneity, random factors affecting multiple observations and multiple
clusters of correlated observations and were used by EFSA PPR Panel (2015) and EFSA (2017).

As well as modelling variability, BBNs and Bayesian graphical models can also incorporate
probabilistic modelling of uncertainty and provide a possible solution to the problem of dealing with
dependent uncertainties. They provide a framework for computation for both questions and quantities
of interest. There exist a number of software packages for both tools but they are not designed
specifically for scientific assessments of risk or benefit. These methods have considerable potential for
application in food-related scientific assessment in the future. Examples of applications of Bayesian
networks include EFSA Scientific Committee (2015), Paulo et al. (2005), Kennedy and Hart (2009),
Stein and van Bruggen (2003), Albert et al. (2011) and Teunis and Havelaar (2000). Graphical
representations of Bayesian models are used by EFSA Scientific Committee (2015), Albert et al. (2011)
and Garcia et al. (2013). BBNs are used by Smid et al. (2010, 2011).

A common application of random effects models and Bayesian graphical models is to the statistical
reasoning aspect of meta-analysis. Meta-analysis is a way of addressing the uncertainty arising from
the availability of multiple studies measuring the same parameter. Heterogeneity of studies due to
differing internal or external validity can be taken into account using methods for bias-adjusted meta-
analysis (Turner et al., 2009).

11.6. Deterministic methods for quantifying uncertainty

As discussed in Section 11.1.2, the methods described in this section result in fundamentally
incomplete quantifications of uncertainty. Nonetheless, they are widely used and can contribute to
quantifying uncertainty provided that the absence of probability information is addressed at later
stage. The method of interval analysis (Section 11.6.2) also has a potential role in applying probability
bounds analysis (Section 11.4.5).

11.6.1. Quantitative uncertainty tables (Annex B.5)

Uncertainty tables for quantitative questions were described earlier in Section 10.5. Here, more detail
is provided about the case where quantitative definitions are made for the ranges, corresponding to the
various +/� symbols, used in an uncertainty table. In practice, it will often be easiest to express each
such range relative to some nominal value for the corresponding input or output.
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In effect, judgements are being expressed as a range on an ordinal scale where each point on the
ordinal scale corresponds to a specified range on a suitable numerical scale for the corresponding
assessment input or output. The range on the ordinal scale translates directly into a range on the
numerical scale. As well as recording judgements about assessment inputs, the table may also record
ranges representing judgements about the combined effect of subgroups of sources of uncertainty
and/or the combined effect of all the sources of uncertainty considered in the table.

Judgements about the combined effect of multiple sources of uncertainty can be made directly by
assessors. However, calculation should in principle be more reliable if assessors can establish a
deterministic model which has uncertain inputs representing the sources of uncertainty and which has
as output a quantity of interest for the scientific assessment. Where the range for each input covers
100% of uncertainty, interval analysis (see below) can be used to find a range for the output which
also covers 100% of uncertainty. Alternatively, assessors might also assign a probability, or
approximate probability, for each input range. However, they would then be specifying probability
bounds and it would be more appropriate to apply probability bounds analysis (Section 11.4.5 and
Annex B.13) to calculate a probability bound for a quantity of interest for the scientific assessment.

Potential role in main elements of uncertainty analysis: As for uncertainty tables for quantitative
questions in general (Section 10.5).

Form of uncertainty expression: range (or probability bound, if probability or approximate
probability specified).

Principal strength (relative to non-quantitative uncertainty tables): provides numerical ranges for
uncertainties.

Principal weaknesses: As for uncertainty tables for quantitative questions in general (Section 10.5).

11.6.2. Interval analysis (Annex B.7)

Interval analysis is a method to compute a range of values for the output of an assessment
calculation based on specified ranges for the individual inputs.

The output range includes all values which could be obtained from the assessment calculation by
selecting a single value for each input from its specified range. Implicitly, any combination of values
from within individual ranges is allowed. If it was felt to be appropriate to make the range for one
parameter depend on the value of another parameter, the effect would be to specify a two-
dimensional set of values for the pair of parameters and a modified version of the interval analysis
calculation would be needed.

If the range for each individual input covers all possibilities, i.e. values outside the range are
considered impossible, then the resulting range for the output also covers all possibilities. The result
may well be a range which is so wide that it does not provide sufficient information to support
decision-making.

It is acceptable in such situations to narrow down the ranges if a probability is specified for each
input range. However in such cases, interval analysis does not provide a meaningful output range as it
does not provide a probability for the output range. Instead, probability bounds analysis
(Section 11.4.5 and Annex B.13) could be applied to calculate an approximate probability attached to
the range. If ranges are narrowed without specifying any probabilities, for example, using verbal
descriptions such as ‘reasonable’ or ‘realistic’, it is then not possible to state precisely what the output
range means.

One simplification which may sometimes have value is to avoid specifying both ends of the ranges,
restricting instead to specifying a suitable bound for each input. If high levels of the output are of
interest, one would specify the end of the input range, or intermediate point in more complex
situations, which corresponds to the highest level of the output. Deciding whether to specify the lower
limit or the upper limit of each input range requires an understanding of how the individual inputs
affect the output of the assessment calculation.

Potential role in main elements of uncertainty analysis: assesses the combined impact of multiple
sources of uncertainty and contributes to assessing the magnitudes of individual uncertainties and their
relative contributions.

Form of uncertainty expression: range.
Principal strength: simplicity in the representation of uncertainty and in calculation of uncertainty

for the output.
Principal weakness: provides no indication of the probability attached to the output range unless

inputs ranges cover all possibilities, in which case the output range may well be very wide.
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11.6.3. Calculations with conservative assumptions

Any assessment calculation, deterministic or probabilistic, can be carried out using conservative
assumptions. Conservative assumptions can relate to uncertainty or variability. For example, assessors
might:

• replace an uncertain variability distribution by a fixed distribution for variability which could be
shown/judged to be sufficiently conservative relative to the uncertainty; or

• replace a distribution representing uncertainty or variability by a constant which could be
shown/judged to be sufficiently conservative relative to the distribution. Examples of this kind
are common and are discussed in Section 11.6.3.1.

Making the judgement that such replacement is sufficiently conservative may well require input
from decision-makers. A more sophisticated analysis of uncertainty may be required in order to
establish the basis for such a judgement. If so, the approach may be better suited to situations where
the assessment, or similar assessments, will be repeated many times (standardised procedures, see
Section 7.1.2).

11.6.3.1. Deterministic calculations with conservative assumptions (Annex B.16)

A deterministic calculation uses fixed numbers as input and will always give the same answer, in
contrast to a probabilistic calculation where one or more inputs are distributions and repeated
calculations give different answers. Deterministic calculations for risk and benefit assessment are
usually designed to be conservative (see Section 5.8), in the sense of tending to overestimate risk or
underestimate benefit, and are among the most common approaches to uncertainty in EFSA’s work.

Various types of assumptions are used in such assessments, not all of which are conservative:

• default assessment factors such as those used for inter- and intraspecies extrapolation in
toxicology

• chemical-specific adjustment factors used for inter- or intraspecies differences when
suitable data are available

• default values for various parameters (e.g. body weight), including those reviewed by the
Scientific Committee (EFSA, 2012a)

• conservative assumptions specific to particular assessments, e.g. for various
parameters in the exposure assessment for bisphenol A (EFSA, 2015b)

• quantitative decision criteria with which the result of a deterministic calculation is
compared to determine whether refined assessment is required, such as the trigger values for
Toxicity Exposure Ratios in environmental risk assessment for pesticides (e.g. EFSA, 2009).

Some assumptions represent only uncertainty, but many represent a combination of variability and
uncertainty. Those described as default are intended for use as a standard tool in many assessments
in the absence of specific relevant data. Those described as specific are applied within a particular
assessment and are based on data or other information specific to that case. Default factors may be
replaced by specific factors in cases where suitable case-specific data exist.

What the different types of conservative assumptions have in common is that they use a single
number to represent something that in reality is uncertain and in many cases also variable, and that
the numbers are chosen in a one-sided way that is intended to make the assessment conservative.

Deterministic calculations generally involve a combination of several default and specific values,
each of which may be more or less conservative in themselves. Assessors need to use a combination
of values that results in an appropriate degree of conservatism for the assessment as a whole, since
that is what matters for decision-making. In order to be transparent and avoid implying risk
management judgements, the degree of conservatism needs to be quantified and agreed with
decision-makers. This can be done by providing a probability or approximate probability that the result
of the calculation is conservative relative to the quantity of interest. For deterministic calculations that
are part of a standardised procedure, this should be done when calibrating the procedure
(Section 7.1.3). Where deterministic calculations are used in case-specific or urgent assessments, their
conservatism could be quantified by expert judgement when characterising overall uncertainty, or the
deterministic calculation could be replaced by a probability bounds analysis.

Potential role in main elements of uncertainty analysis: provide a way to represent individual
sources of uncertainty and to account for their impact on the assessment conclusion.
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Form of uncertainty expression: bound which is considered to be appropriately conservative or, if
the degree of conservatism is quantified probabilistically, probability bound.

Principal strength: simple to use, especially default calculations and assumptions that can be
applied to multiple assessments of the same type.

Principal weakness: the difficulty of assessing the conservatism of individual assumptions, and the
overall conservatism of a calculation involving multiple assumptions, and lack of transparency when
this has not been done.

12. Investigating influence and sensitivity

As discussed in Section 5.7, this document uses the term influence to refer generally to the extent
to which plausible changes in the overall structure, parameters and assumptions used in an
assessment produce a change in the results. Sensitivity is restricted in meaning to the quantitative
influence, of uncertainty about inputs, on uncertainty about the output of a quantitative model.

Tools for investigating sensitivity are discussed in 12.1. Other forms of influence can be investigated
quantitatively by trying different scenarios and observing the effect on the assessment conclusion.
Influence can also be investigated using qualitative methods, such as the NUSAP approach
(Section 10.4) and uncertainty tables (Sections 10.5 and 10.6). In addition, influence can be assessed
by expert group judgement or by formal or semi-formal elicitation. Techniques such as these are
needed when deciding which parameters to subject to formal sensitivity analysis.

12.1. Sensitivity analysis (Annex B.17)

Sensitivity analysis (SA) comprises a suite of methods for assessing the sensitivity of the output of a
quantitative model (or an intermediate value) to the model inputs and to choices made expressing
uncertainty about inputs. It has multiple objectives: (i) to help prioritise sources of uncertainty for
refined quantification: (ii) to help prioritise sources of uncertainty for collecting additional data; (iii) to
investigate sensitivity of output to assumptions made; (iv) to investigate sensitivity of final uncertainty
to assumptions made. SA is most commonly performed for quantitative models, but can also be
applied to a logic model to investigate sensitivity of the conclusion to the probabilities specified for
inputs to the model.

All SA involves expert judgements, to specify the ranges of values to be investigated and to choose
the formal method for analysing their impact.

In the context of a quantitative model, SA allows the apportionment of uncertainty about the
output to sources of uncertainty about the inputs (Saltelli et al., 2008). Consequently, it is possible to
identify the inputs and assumptions making the main contributions to output uncertainty. In its
purpose, it complements uncertainty analysis whose objective is instead to provide probabilities for
output values, with those probabilities arising from uncertainty about input values. Two fundamental
approaches to SA have been developed in the literature. The first (local) approach looks at the effects
on the output of infinitesimal changes of default values of the inputs while the second (global)
approach investigates the influence on the output of changes of the inputs over their whole range of
values. Local SA is considered to be of limited relevance in the context of EFSA assessments, as it is
important to investigate the full range of possible values. Therefore, the following discussion will focus
only on methods for global SA.

The simplest form of a SA consists of changing one parameter at a time taking all other fixed at a
nominal value (Nominal Range SA, Annex B.17). However it is also crucial to consider methods
allowing the investigation of the combined effect of multiple changes, particularly in case of high
interactions between the effects of different inputs on the output.

SA cannot be used to inform choices about the initial design of the quantitative model, or what
sources of uncertainty to include in quantitative uncertainty analysis. These initial choices must
therefore be done by expert judgement, which should consider subjectively the same things that are
assessed in quantitative sensitivity analysis: the degree of uncertainty about each element, and its
influence on the assessment output. The same approach may also be required later in the assessment
process, to inform decisions about whether to expand the quantitative model to include additional
factors or sources of uncertainty that were initially omitted or which emerge during the analysis.
Although these subjective considerations of sensitivity are less formal than quantitative analysis, they
need to be done carefully and documented in the assessment report. Where they might have a
significant impact on the assessment, it may be appropriate to subject them to semi-formal expert
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elicitation. The EFSA (2014a,b) guidance on EKE describes a ‘minimal assessment’ approach which
uses Nominal Range SA.

Methods for assessing sensitivity of the output can be classified in various ways. Patil and Fray
(2004) suggest grouping the methodologies that can be used to perform SA in three categories:

• Mathematical (deterministic) methods: these methods involve evaluating the variability of the
output with respect to a range of variation of the input with no further consideration of the
probability of occurrence of its values.

• Statistical (probabilistic) methods: the input range of variation is addressed probabilistically so
that not only different values of the inputs but also the probability that they occur are
considered in the sensitivity analysis.

• Graphical methods: these methods are normally used to complement mathematical or
statistical methodology especially to represent complex dependence and to facilitate the
interpretation of the results of other methods.

Collectively, these methods have the capacity to reveal which data sets, assumptions or expert
judgements deserve closer scrutiny and/or the development of new knowledge. Simple methods can
be applied to assessment calculations to assess the relative sensitivity of the output to individual
variables and parameters.

A key issue in SA is clear separation of the contribution of uncertainty and variability. 2D Monte
Carlo sampling (see Section 11.4.6) makes it possible in principle to disentangle the influence of the
two components on output uncertainty. However, methodologies for SA in such situations are still
under development. Annex B.17 includes an example of SA for uncertainty about a specified percentile
of variability.

Potential role in main elements of uncertainty analysis: sensitivity analysis provides a collection of
methods for analysing the contributions of individual sources of uncertainty to uncertainty of the
assessment conclusion.

Form of uncertainty expression: expresses sensitivity of assessment output, quantitatively and/or
graphically, to changes in input.

Principal strengths: it provides a structured way to identify sources of uncertainty/variability which
are more influential on the output.

Principal weakness: assessment of the sensitivity of the output to sources of uncertainty and
variability separately is difficult and lacks well established methods.

13. Overview and evaluation of methods

The methods reviewed in this document are summarised and evaluated in the Annex B. Table 3
summarises the types of assessment subject (questions or quantities of interest) that the different
qualitative and quantitative methods can be applied to, and the types of uncertainty expression they
produce. The applicability of each method to the different elements of uncertainty analysis is
summarised in Table 4. Each method was also evaluated against performance criteria established by
the Scientific Committee and the results of this are summarised in Table 5. These tables may provide
some assistance to readers in considering which methods to use in particular assessments, but should
not be interpreted as definitive guidance. For a more detailed evaluation of each method, see the
respective Annex.

It can be seen from Table 4 that each method addresses only some of the main elements required
for a complete uncertainty analysis. Most quantitative methods address two or three elements:
evaluating and combining uncertainties and assessing their relative contributions. In general, therefore,
assessors will need to select two or more methods to construct a complete uncertainty analysis.

All of the approaches have stronger and weaker aspects, as can be seen from assessing them
against the evaluation criteria (Table 5). Broadly speaking, qualitative methods tend to score better on
criteria related to simplicity and ease of use but less well on criteria related to theoretical basis, degree
of subjectivity, method of propagation, treatment of variability and uncertainty and meaning of the
output, while the reverse tends to apply to quantitative methods.
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Table 3: Summary evaluation of which types of assessment subject (questions or quantities of
interest, see Section 5.1) each method can be applied to, and which forms of uncertainty
expression the provide (defined in Section 4.1)

Method
Types of assessment
subject

Forms of uncertainty expression
provided

Expert group judgement Questions and quantities All

Expert knowledge elicitation (EKE) Questions and quantities All
Descriptive expression Questions and quantities Descriptive

Ordinal scales Questions and quantities Ordinal
Matrices Questions and quantities Ordinal

NUSAP Questions and quantities Ordinal
Uncertainty table for quantities Quantities Ordinal, range or probability bound

Uncertainty table for questions Questions Ordinal and probability
Evidence appraisal tools Questions and quantities Descriptive and ordinal

Interval Analysis Quantities Range
Confidence Intervals Quantities Range (with confidence level)

The Bootstrap Quantities Distribution
Bayesian inference Questions and quantities Distribution/probability

Probability calculations for logic
models

Questions Probability

Probability bounds analysis Quantities Probability bound

Monte Carlo Questions and quantities Distribution/probability
Approximate probability calculations Quantities Distribution

Conservative assumptions Quantities Bound or probability bound

Sensitivity analysis Questions and quantities Sensitivity of output to input
uncertainty

Table 4: Summary evaluation of which methods can contribute to which elements of uncertainty
analysis. Yes/No = yes, with limitations, No/Yes = no, but some indirect or partial
contribution. Blank = no. Grey shading highlights the primary purpose(s) of each method.
See Annex B for detailed evaluations

Methods

Elements of uncertainty analysis

Q
u
al
it
at
iv
e
o
r

q
u
an

ti
ta
ti
ve

D
iv
id
in
g
th

e

an
al
ys

is

D
ef
in
e
q
u
es

ti
o
n

o
r
q
u
an

ti
ty

o
f

in
te
re

st

Id
en

ti
fy
in
g

u
n
ce

rt
ai
n
ti
es

C
h
ar

ac
te
ri
si
n
g

u
n
ce

rt
ai
n
ti
es

C
o
m
b
in
in
g

u
n
ce

rt
ai
n
ti
es

P
ri
o
ri
ti
se

u
n
ce

rt
ai
n
ti
es

C
h
ar

ac
te
ri
se

o
ve

ra
ll

u
n
ce

rt
ai
n
ti
es

D
es

cr
ib
e

u
n
q
u
an

ti
fi
ed

u
n
ce

rt
ai
n
ti
es

Expert group judgement Both Yes Yes Yes Yes Yes Yes Yes Yes

Semi-formal expert
knowledge elicitation

Both Yes Yes Yes Yes Yes

Formal expert
knowledge elicitation

Both Yes Yes Yes Yes

List of types of
uncertainty

Both Yes Yes

Descriptive expression Quali Yes Yes Yes Yes

Ordinal scales Quali Yes Yes No/Yes Yes
Matrices Quali Yes Yes/No

NUSAP Quali Yes Yes Yes Yes
Uncertainty table for
quantities

Both Yes Yes Yes Yes
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Methods

Elements of uncertainty analysis
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Uncertainty table for
questions

Both Yes Yes Yes Yes Yes

Evidence appraisal tools Quali Yes Yes Yes Yes Yes

Interval Analysis Quanti Yes Yes
Confidence Intervals Quanti Yes

The Bootstrap Quanti Yes No/Yes
Bayesian inference Quanti Yes

Logic models Quanti Yes
Probability bounds
analysis

Quanti Yes

Monte Carlo Quanti Yes Yes
Approx. probability
calculations

Quanti Yes

Conservative
assumptions

Quanti Yes Yes

Sensitivity analysis Quanti Yes

Table 5: Summary evaluation of methods against the performance criteria established by the
Scientific Committee. The entries A–E represent varying levels of performance, with A
representing stronger characteristics and E representing weaker characteristics. See
Table 6 for definition of criteria, Annexes B.1–B.17 for detailed evaluations. Hyphens
indicate a range or set of scores (e.g. C-E or C, E), depending on how the method is used
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Expert group
judgement

B A A E C-E C, E C, E A–E D–E A

Semi-formal
elicitation

B C B D C C A C C, D

Formal elicitation B D D C C E A A B B

Descriptive
expression

A A A E C, E E C, E E D, E A, B

Ordinal scales B A, B A E D C, D C E B D

Matrices A, D B A, B E C, D B, C C E B B
NUSAP C C A, B C D B, C C, E E B B

Uncertainty tables
for quantitative
questions

B, D B, C A, B D, E C, D B, C B, C C B B
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Uncertainty tables
for categorical
questions

D A, B A, B D, E C, D B, C E A B B

Evidence appraisal
tools

A B A–B C D C, E E E B B

Interval analysis C B A C B, C A E C B A

Confidence
intervals

A C A A A E B B A B

The Bootstrap C C–E A–B A A A, E B A A C

Bayesian inference C, D D, E A–E A A,B A A A A C
Logic models C, D B, C A A A A A A A B

Probability bounds
analysis

C, D C, D A A A A A A A B

1D Monte Carlo A D A A A A B A A C

2D Monte Carlo B E A A A A A A A D
Approx. prob. calcs. D B, C A A, B B, C A E A B, C B

Conservative
assumptions

A A, B A C B, C A, D C, E A B, C B

Sensitivity analysis
(deterministic)

B B A C B E E – A B

Sensitivity analysis
(probabilistic)

D D, E A, B A B E E – A C
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Table 6: Criteria used in Table 6 for assessing performance of methods

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and variability

Meaning
of output

Transparency
and
reproducibility

Ease of
understanding
for
non-specialist

Stronger
characteristics

A International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of
process and
reasoning fully
documented

All aspects fully
understandable

B EU level
guidelines or
widespread
in practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty and
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

C National
guidelines, or
well
established
in practice or
literature

Training
course
needed

Weeks Some
aspects
supported by
theory

Expert
judgement
on defined
quantitative
scales

Informal
expert
judgement

Uncertainty and
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited
explanation of
reasoning

Outputs and
principles of
process
understandable

D Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement
on defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited
explanation of
process and/or
basis for
conclusions

Outputs
understandable
but not process

Weaker
characteristics

E Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation
of process or
basis for
conclusions

Process and
outputs only
understandable
for specialists
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14. Characterisation of overall uncertainty

The final output of uncertainty analysis should be a characterisation of the overall uncertainty of
the question or quantity of interest that takes into account all identified sources of uncertainty, in all
parts of the assessment, and also any dependencies between different sources of uncertainty. This is
because decision-makers need as complete a picture as possible of the assessors’ overall uncertainty
to inform decision-making (Section 3.1).

Characterising overall uncertainty is simplest for assessments using standardised procedures where
the assessors find no case-specific sources of uncertainty. In such cases, assessors should simply
record that non-standard uncertainties were checked for but none were found. Standard uncertainties
will be present, but they are covered by the provisions of the standardised procedure (Section 7.1.2).

In all other assessments, when characterising overall uncertainty, assessors should try to quantify the
combined impact of as many as possible of the uncertainties on the question or quantity of interest. In
standardised assessments where non-standard uncertainties have been identified, only the non-standard
uncertainties need be considered, whereas in case-specific or urgent assessments and when developing
or reviewing a standardised procedure, all identified uncertainties must be considered.

There are three options for quantifying the overall uncertainty, depending on the context:

• Option 1: Make a single judgement of the overall impact of all the identified uncertainties.
• Option 2: Quantify uncertainty separately in some parts of the assessment, combine them by

calculation, and then adjust the result of the calculation by expert judgement to account for
the additional uncertainties that are not yet included.

• Option 3: Quantify uncertainty separately in some parts of the assessment and combine them
by calculation, as in Option 2. Then quantify the contribution of the additional uncertainties
separately, by expert judgement, and combine it with the previously quantified uncertainty by
calculation.

These three options are illustrated graphically in Figure 3. Options 2 and 3 are progressively more
rigorous because combining uncertainties by calculation is more reliable than doing so by expert
judgement, but are also progressively more complex. Option 1 is quicker to perform, but the
judgement required may be more challenging and the result is more approximate. It may be efficient
to start by using Option 1, and then proceed to Option 2 or 3 if a more refined evaluation of the
uncertainty is needed, e.g. if the result of Option 1 indicates that the degree of uncertainty may have
substantial implications for decision-making. Approaches for the three options are discussed in more
detail in the following sections.

In some assessments, there may be some identified sources of uncertainty that the assessors are
unable to include in their quantitative expression of overall uncertainty (Section 5.12): this is also
illustrated in Figure 3. When this happens, the unquantified uncertainties must be characterised
qualitatively and reported alongside the quantitative expression of uncertainty. The quantitative
expression will then be conditional on the assumptions that have been made about these unquantified
uncertainties. This has major implications for decision-making, so assessors should try to include as
many uncertainties as possible in their quantitative expression (see Section 5.13).
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14.1. Option 1 – quantifying all uncertainties by expert judgement

In assessments where the uncertainty analysis has not been divided into parts, assessors should
quantify the collective impact of as many as possible of the identified uncertainties directly, by expert
judgement. The judgements should be made as described in Section 14.4. If assessors find it too
challenging to express their judgement of the overall uncertainty as a distribution, it may be sufficient
to give an approximate probability, e.g. using the approximate probability scale (Section 11.3.3).

14.2. Option 2 – incorporating additional uncertainties by expert
judgement

Options 2 and 3 can be used in assessments where the uncertainty analysis has been divided into
parts, and the assessors have quantified and combined at least some of the uncertainties in at least
some parts of the assessment earlier in the uncertainty analysis. The task that remains is to
characterise the overall uncertainty, including those already quantified and the additional uncertainties
that are not yet quantified. Some of the additional uncertainties may be uncertainties that were not
included in the parts that were previously quantified, while others may relate to the model used for
combining the parts. In Option 2, the contribution of the additional uncertainties is combined with the
previously quantified uncertainties by expert judgement. Expert judgement is simpler, because it does
not require explicit specification of a model for combining the uncertainties by calculation, but is more
approximate because the combination must be done by subjective judgement.

If the assessors judge that all the additional sources of uncertainty are so unimportant that,
collectively, they would make no difference to the probability, probability bound or distribution obtained
for the sources of uncertainty that have been quantified previously, then the latter can be taken as
representing the overall uncertainty from all those sources that have been identified. This is the
simplest form of the option where the additional uncertainties are incorporated by expert judgement
rather than calculation. However, it should only be done if there is good reason to believe the
additional uncertainties make no difference, and the basis for this must be documented and justified.

In other cases, where the additional uncertainties are judged to contribute to the magnitude of
overall uncertainty, this contribution will need to be quantified. In Option 2, this is achieved by
adjusting the quantitative expression for uncertainties considered earlier in the assessment, in such a
way as is judged to take account of the contribution of the additional uncertainties. This can be done
by judging by how much the probability for a question of interest, or the probability in a probability
bound for a quantity of interest, needs to be changed to represent the contribution of the additional
uncertainties. For quantities of interest, an alternative is for assessors to judge by how much the
distribution accounting for the previously quantified sources of uncertainty should be changed to allow
for the effect of the additional sources of uncertainty. In all cases, account should be taken of any
dependencies involved. These judgements are challenging and necessarily approximate, but are much
better than ignoring the additional uncertainties, which would at best be untransparent and at worst
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Figure 3: Illustration of options for characterising overall uncertainty. See text for further explanation

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 77 EFSA Journal 2018;16(1):5122



negligent (if it caused a significant under/overestimation of risk). If assessors find it too challenging to
express their judgement of the adjusted uncertainty expression as a precise probability or distribution,
it may be sufficient to give an approximate probability, e.g. using the approximate probability scale
(Section 11.3.3).

14.3. Option 3 – incorporating additional uncertainties by calculation

This option involves judging the impact of the additional uncertainties as an additive or
multiplicative factor on the scale of the quantity being assessed, expressed as a distribution or
probability bound, and then combining this by calculation with the quantitative expression for
uncertainties that were quantified and combined earlier in the assessment. This is analogous to the
well-established practice of using additional assessment factors to allow for additional sources of
uncertainty. For example, EFSA (2012a) endorses the use of case-by-case expert judgement to assign
additional assessment factors to address uncertainties due to deficiencies in available data,
extrapolation for duration of exposure, extrapolation from lowest observed adverse effect level
(LOAEL) to no observed adverse effect level (NOAEL) and extrapolation from severe to less severe
effects. However, the approach proposed here is more rigorous and transparent because it makes
explicit the probability judgements that are implied when using such assessment factors.

Option 3 seems less useful when the subject of assessment is a yes/no question. This is because it
seems likely that experts would find it easiest to judge the necessary adjustment by thinking first
about what the calculated probability needs to be adjusted to and then back-calculating, so there is no
advantage over eliciting the adjusted probability directly.

14.4. Methods for expert judgement when characterising overall
uncertainty

All three options described above necessarily involve expert judgements. These expert judgements
should be made using a method appropriate to the case in hand. Where an approximate judgement of
the overall uncertainty is sufficient to show it is too small to make a difference to decision-making, it
may be obtained by the simpler method of expert group judgement, based on structured discussion
within a normal expert group meeting (see Section 9). Where the overall uncertainty is large enough
that it may make a difference to decision-making, then it would be advisable to use a semi-formal or
formal method of expert knowledge elicitation (Sections 11.3.1 and 11.3.2). It may be efficient to start
by using expert group judgement, and use this to decide whether a more formal approach is needed.

In all cases, information about the identified uncertainties needs to be provided to the experts in a
form that helps them to make careful and balanced judgements: this may be aided by structured
listing of the uncertainties (e.g. according to the parameter or part of the assessment each affects)
and a description or graphic of the conceptual model for the assessment, to help the experts judge
how the uncertainties combine. If any of the uncertainties have been evaluated qualitatively, e.g. using
ordinal scales, NUSAP or uncertainty tables (Sections 10.2 and 10.4–10.6), experts may find it helpful
to review this when making their quantitative judgement of the overall uncertainty.

All of the options discussed above involve inherently difficult and approximate judgements about
how multiple uncertainties combine, including the impact of any dependencies between them. This is
one of the reasons for prioritising the largest sources of uncertainty when dividing the uncertainty
analysis into parts, so that they can be combined by calculation which is more reliable. This reduces
the sensitivity of the final uncertainty analysis to the approximate nature of the collective quantification
of the additional uncertainties.

In principle, all three options introduce additional uncertainties, in the judgements made about the
additional uncertainties. This might be thought to lead to an ‘infinite regress’ in which each judgement
about additional uncertainties creates further additional uncertainties. The practical solution to this is
to take the uncertainty of judging the additional uncertainties into account as part of the judgement.
Although this sounds challenging, assessors can do this by first considering what range or distribution
would represent their judgement of the additional uncertainties, and then considering whether that
range or distribution needs to be changed to represent their uncertainty in (a) making that judgement
and (b) combining it with the previously quantified sources of uncertainty (whether by expert
judgement or calculation). When doing this, the assessors should also make one last check for any
further additional uncertainties that have not yet been included, and take them into account in the
final characterisation of overall uncertainty.
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15. Reporting uncertainty analysis in scientific assessments

This section repeats what is written in the guidance document (EFSA Scientific Committee, 2018)
and is included here for completeness.

For standardised assessments where no case-specific sources of uncertainty have been identified, the
EFSA output must at minimum state what standardised procedure was followed and report that non-
standard uncertainties were checked for and none were found. If the applicability of the standardised
procedure to the case in hand is not self-evident, then an explanation of this should be provided.

In all other assessments, the uncertainty analysis should be reported as described below, although
the level of detail may be reduced due to time constraints in urgent assessments.

In standardised assessments where non-standard uncertainties are found, the assessors should
report that standard uncertainties in the assessment are accepted to be covered by the standardised
procedure and the uncertainty analysis is therefore restricted to non-standard uncertainties that are
particular to this assessment, the analysis of which should then be reported as described below.

Uncertainty analysis is part of scientific assessment, so in all cases, it should be reported in a
manner consistent with EFSA’s general principles regarding transparency (EFSA, 2006b, 2009) and
reporting (EFSA, 2014b, 2015a). In particular, it is important to list the sources of uncertainty that
have been identified and document how they were identified, how each source of uncertainty has
been evaluated and how they have been combined, where and how data and expert judgement have
been used, what methodological approaches have been used (including models of any type) and the
rationale for choosing them, and what the results were. Where the assessment used methods that are
already described in other documents, it is sufficient to refer to those.

The location of information on the uncertainty analysis within the assessment report should be
chosen to maximise transparency and accessibility for readers. This may be facilitated by including one
or more separate sections on uncertainty analysis, which are identifiable in the table of contents.

The Scientific Committee has stated that EFSA’s scientific assessments must report clearly and
unambiguously what sources of uncertainty have been identified and characterise their overall impact
on the assessment conclusion, in a form compatible with the requirements of decision-makers and any
legislation applicable to the assessment in hand (Section 1.4). In some types of assessment, decision-
makers or legislation may stipulate a specified form for reporting assessment conclusions. In some
cases, this may comprise qualitative descriptors such as ‘safe’, ‘no concern’, ‘sufficient evidence’. To
enable these to be used by assessors without implying risk management judgements requires that
assessors and decision-makers have a shared understanding or definition of the question or quantity of
interest which the qualitative descriptor refers to, and the level of certainty associated with the
qualitative descriptor. In other cases, decision-makers or legislation may require that conclusions be
stated without qualification by probability expressions. This can be done if assessors and decision-
makers have a shared understanding or definition of the level of probability required for practical
certainty about a question of interest, i.e. a level of probability that would be close enough to 100%
(answer certainly yes) or 0% (answer certainly no) for decision-making purposes. On issues where
practical certainty is not achieved, the assessors would report that they cannot conclude, or that the
assessment is inconclusive.

In such cases, assessors should also comply with any requirements of decision-makers or legislation
regarding where and how to document the details of the uncertainty analysis that led to the
conclusion.

In other cases, where the form for reporting conclusions is not specified by decision-makers or
legislation, the assessment conclusion should include (a) a clear statement of the overall result for
those uncertainties that have been quantified and (b) a clear description of unquantified sources of
uncertainty, i.e. those that could not be included in the quantitative analysis. The former will generally
express the overall quantified uncertainty about the assessment conclusion using probabilities,
probability distributions, probability bounds, or ranges from the approximate probability scale (see
Sections 11.1 and 11.3.3). For each unquantified source of uncertainty, the assessors should describe
(either in the conclusion or another section, as appropriate) which part(s) of the assessment it arises
in, the nature of the uncertainty (e.g. whether it is an instance of ambiguity, complexity or lack of
knowledge), the cause or reason for it, how it affects the assessment (but not how much), why it is
difficult to quantify, what assumptions have been made about it in the assessment, and what could be
done to reduce or better characterise it. Assessors must avoid using any words that imply a judgement
about the magnitude or likelihood of the unquantified sources of uncertainty (Section 5.12).
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In addition to the detailed reporting of the methods and results of the uncertainty analysis, the
assessors should prepare a concise summary of the overall characterisation of uncertainty in format
and style suitable for inclusion in the executive summary of the assessment report. This should
present, in the simplest terms possible, a quantitative expression of the combined effect on the
assessment conclusion of those uncertainties that have been quantified, and a brief description of any
unquantified sources of uncertainty.

Assessors must check that there is no incompatibility between the reporting of the uncertainty
analysis and the assessment conclusions. In principle, no such incompatibility should occur, because
sound scientific conclusions will take account of relevant uncertainties, and therefore should be
compatible with an appropriate analysis of those uncertainties. If there appears to be any
incompatibility, assessors should review and if necessary revise both the uncertainty analysis and the
conclusion to ensure that they are compatible with one another and with what the science will
support.

In many assessments, information on the main contributors to the uncertainty of the question or
quantity of interest may be useful to decision-makers, to inform decisions about the need for further
work such as data gathering, to support refinement of the assessment. Such information may be
generated by methods for prioritising uncertainties (see Section 12).

16. Communicating scientific uncertainties

16.1. EFSA’s risk communication mandate

EFSA is mandated to ‘be an independent scientific source of advice, information and risk
communication in order to improve consumer confidence’. Creating and sustaining such confidence
requires coherence and co-ordination of all three outputs: advice, information and risk communication.
The quality, independence and transparency of EFSA’s scientific advice and information, supported by
the robustness of the working processes needed to develop them, are critical for effective risk
communication and for ensuring public confidence. Equally, clear and unambiguous communication of
assessment conclusions contextualises the scientific advice and information, aiding political decision-
makers to prioritise policy options and take informed decisions. Through multipliers (e.g. media, NGOs)
this also forms a basis for consumers’ greater confidence in their own choices and in risk management
action.

Therefore, EFSA communicates the results of its scientific assessments to decision-makers,
stakeholders (e.g. consumer/non-governmental organisations, media, food chain operators), and the
public at large. Besides the huge cultural, linguistic and social diversity in the EU, there is also a vast
spectrum of individual needs, values and technical knowledge among these target audiences. Decision-
makers and stakeholders are also responsive to the perceptions of the general public. Effective risk
communication, therefore, requires a commonly understood vocabulary, careful crafting of messages
and selection of tools keeping in mind the characteristics of the target audience and the perceived
sensitivities of the topic.

To be useful to decision-makers, ensure coherence and limit possible misinterpretation of its
scientific assessments, EFSA communicates its scientific results in a manner that aims to be both
meaningful to specialists and understandable to informed laypersons. Currently, EFSA does not usually
tailor different messages about the same scientific output to different audiences in a wholly structured
way. Instead, a variety of communications channels and media, ranging from the simple to the
complex, are used to highlight the same messages to different audiences, regardless of the levels of
scientific knowledge.

16.2. Risk perception and uncertainty

Perceptions of the risks or benefits for which EFSA is providing an assessment and the meaningful
expression of the identified sources of uncertainty, play paramount roles in how recipients of EFSA’s
communication act upon the results. This varies by target audience and their respective level of
technical knowledge.

Understanding of the type and degree of uncertainties identified in the assessment helps to
characterise the level of risk to the recipients and is therefore essential for informed decision-making.
Communication helps them to understand the range and likelihood of possible consequences. This is
especially useful for technical and political decision-makers. For audiences with less technical
understanding of the topic under assessment, increasing awareness of scientific uncertainties could in
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some cases reduce the individual’s confidence in their own decision-making or in decisions made by
public authorities. Yet, in some cultural contexts, communication of the uncertainties to non-technical
audiences is received positively because of the greater transparency of the process, even if it makes
decisions more difficult. The potential decrease in confidence is offset by an increase in trust.

The main roles of risk communication within this process are to contextualise the uncertainties in
relation to the perceived risks, to underline the transparency of the process and to explain how
scientists can address the information gaps in the future (for example, recommendations on data
collection, research priorities).

16.3. Challenges of communicating uncertainty in scientific assessments

Communicating scientific uncertainty requires both simplifying and complicating the normal
scientific discourse (Fischhoff and Davis, 2014). Various arguments have been made both for and
against communicating uncertainty to the general public (Johnson and Slovic, 1995, 1998). Yet, there
is little empirical evidence to support either view (Miles and Frewer, 2003).

In terms of the best methods, the literature is equivocal about the advantages and/or
disadvantages of communicating uncertainty to stakeholders in qualitative or quantitative terms.
Although the uncertainty analysis is preferably quantitative, quantification can give an exaggerated
impression of accuracy. Therefore, it is often expressed qualitatively in risk communication. However,
qualitative terms are understood differently by different people and always entail a judgement.

From EFSA’s perspective, communicating scientific uncertainties is crucial to its core mandate,
reaffirming its role in the Risk Analysis process. As a public institution, EFSA is obliged to be open and
transparent to the public. In addition the clear and unambiguous communication of scientific
uncertainty is an enabling mechanism, providing decision-makers with the scientific grounds for risk-
based decision-making. It increases transparency both of the assessments and of the resulting
decision-making, ensuring that confidence in the scientific assessment process is not undermined.

As a consequence decision-makers are better able to take account of the uncertainties in their risk
management strategies and to explain, as appropriate, how scientific advice is weighed against other
legitimate factors. Explaining how decisions or strategies take account of scientific uncertainties will
contribute to increased public confidence in the EU food safety system as well.

Although EFSA regularly communicates the scientific uncertainties related to its assessments in its
scientific outputs and in its non-technical communication activities, it has not applied a model
consistently across the organisation.

Overall, while developing this document, EFSA identified a need to differentiate more systematically
the level of scientific technicality in the communications messages on uncertainties intended for
different target audience. This more differentiated and structured approach marks a shift from the
current one described in 16.1 above.

16.4. Towards best practice for communicating uncertainty

As indicated above the literature is equivocal about the most effective strategies to communicate
scientific uncertainties. The IPCC recommends use of reciprocal statements to avoid value-laden
interpretations: ‘the way in which a statement is framed will have an effect on how it is interpreted
(e.g. a 10% chance of dying is interpreted more negatively than a 90% chance of surviving)’
(Mastrandrea et al., 2010). According to IPCS, ‘it would be valuable to have more systematic studies
on how risk communication of uncertainties, using the tools presented [. . .] functions in practice,
regarding both risk managers and other stakeholders, such as the general public’ (IPCS, 2014). Some
scientific assessment and industry bodies have compiled case study information to develop a body of
reference materials (BfR, 2013; ARASP, 2015). But, on the whole there is a lack of empirical data in
the literature on which to base a working model. In relation to food safety in Europe, more expertise is
needed for structured communication on uncertainty.

The development of effective communications messages requires an in-depth knowledge of target
audiences including: their level of awareness and understanding of food safety issues; their attitudes
to food in general and food safety in particular; the possible impact of communications on behaviour;
the appropriate channels for effective dissemination of messages; and – in relation to scientific
uncertainties – the appropriate language to understand and benefit from receiving uncertainty
information such as probabilities. Therefore, while EFSA’s scientific Panels piloted the draft Guidance
on uncertainty, EFSA conducted two target audience research projects on communicating scientific

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 81 EFSA Journal 2018;16(1):5122



uncertainty among its institutional partners (European Commission, European Parliament, Member
States) and its stakeholders (consumer organisations, non-governmental organisations, food chain
operators, scientists, media, the general public).

In a first pilot study using focus groups, the responses of and discussions among individuals directly
involved in using EFSA’s scientific advice – risk managers (i.e. technical decision-makers), political
decision-makers, non-governmental organisations, food chain operators – and members of the general
public, were evaluated to ascertain their understanding and use of different types of uncertainty
expressions (e.g. qualitative, quantitative, positively framed, negatively framed), and the effects this
information might have on their risk perceptions as well as on their trust in scientific advisory bodies
such as EFSA. A second follow-up study was conducted online, in six different European languages
and promoted by the communications departments of eight EU national risk assessment bodies
belonging to EFSA’s Communications Expert Network. With over 1,900 respondents taking part, the
results of this online survey broadened the sample pool, further tested the indications from the initial
study and provided insights on additional aspects, including how language/culture may influence
people’s preferences for uncertainty information.

The two studies resulting from this research (EFSA, 2018a; ICF, 2018) provided a rich source of
quantitative and qualitative data with which to complement the academic literature on best practices
for communicating scientific uncertainties to different audiences. As a consequence of these activities,
the Scientific Committee decided in March 2017 to develop a Companion Guidance document on
Communicating Uncertainty in Scientific Assessments (EFSA, 2018b),6 aimed at communications
practitioners at EFSA and in other organisations working in the food safety, public health and related
areas. The Companion Guidance provides practical advice and tools for communicators to explain the
significance of the different outputs (e.g. probability distribution, verbal statement) resulting from the
types of uncertainty analysis described above in this document, with different target audiences in
mind. The Companion Guidance will be applied to EFSA’s risk communication activities simultaneously
with the implementation of the Guidance document in EFSA’s scientific assessments.

17. Way forward and recommendations

This document presents the principles and methods behind the concise guidance document which
is intended to guide EFSA panels and staff on how to deal with sources of uncertainty in scientific
assessments. Together, the two documents provide a toolbox of methods, from which assessors can
select those methods which most appropriately fit the purpose of their individual assessment.

While leaving flexibility in the choice of methods, all EFSA scientific assessments must include
consideration of uncertainty. For reasons of transparency, all assessments must report clearly and
unambiguously the impact of uncertainty on the assessment conclusion. In assessments where the
impact of one or more uncertainties cannot be characterised it must be reported that this is the case
and that consequently, the assessment conclusion is conditional on assumptions about those
uncertainties, which should be specified.

It is expected that closer interaction will be needed between assessors and decision-makers both
during the assessment process and when communicating the conclusions.

It is recommended that a specific plan for the implementation of the Guidance should be drafted.
Furthermore, the following recommendations are made to support implementation of the Guidance:

1) EFSA should initiate further work to explore best practices and develop further guidance in
areas where this will benefit implementation of the Guidance, including types of expert
elicitation not covered by EFSA (2014a,b) (e.g. for variables, dependencies, yes/no
questions and approximate probabilities).

2) Panels should be encouraged to develop sector-specific uncertainty guidance document(s)
or incorporate relevant approaches from the Guidance into their existing sector-specific
guidance, where this would be helpful.

3) Panels should develop Panel-specific lists of standard and/or non-standard uncertainties
where this is helpful for use in their assessments. Listing standard uncertainties may also
help to prioritise standardised procedures for review and calibration.

6 The Companion Guidance document on Communicating Uncertainty in Scientific Assessments and the two related target
audience studies are scheduled for publication in The EFSA Journal in 2018.
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4) International collaboration will be needed to calibrate standardised procedures that use
internationally agreed approaches. Consideration could be given to initiating this by means
of an international workshop on uncertainty analysis.

5) It is recommended that at least one assessor in each Panel and Working Group should have
received Panel-specific training in the use of the Guidance, and that all assessors should
have basic training in probability judgements.

6) Some methods for uncertainty analysis require specialist expertise in statistics, modelling or
expert knowledge elicitation. This should be provided by including relevant experts in
Working Groups where needed, or as internal support from EFSA.

7) It is recommended that EFSA establish a Standing Working Group on uncertainty analysis to
provide advice, mentoring and support to Panels and Working Groups as they implement
the Guidance.

8) It is recommended that EFSA establish a central repository to collect examples of the
application of the Guidance to different types of assessment in different areas of EFSA’s
work, which will provide a helpful resource to assessors and facilitate sharing of lessons
learned.
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Abbreviations

ADI acceptable daily intake
AF assessment factor
AHAW EFSA Panel on Animal Health and Welfare
ANOVA analysis of variance
ANS EFSA panel on Food Additives and Nutrient Sources added to Food
ANSES French Agency for Food, Environmental and Occupational Health & Safety
ARASP Center for Advancing Risk Assessment Science and Policy
BBNs Bayesian belief networks
BEA break-even analysis
BfR Bundesinstitut f€ur Risikobewertung, Germany
BIOHAZ Panel EFSA Panel on Biological Hazards
BMDL benchmark dose modelling
BPA bisphenol A
BSE bovine spongiform encephalopathy
bw body weight
CAT Critical Appraisal Tool
CDC Centre for Disease Control and Prevention
CDF cumulative density function
CONTAM EFSA Panel on Contaminants
CSAF chemical-specific adjustment factor
ECHA European Chemicals Agency
EKE expert knowledge elicitation
EPA Environmental Protection Agency
FAO Food and Agriculture Organization of the United Nations
FAST Fourier amplitude sensitivity test
FDA Food and Drug Administration us
FERA Food and Environmental Research Agency UK
FOCUS FOrum for Co-ordination of pesticide fate models and their USe
GM genetically modified
HDMI Target human dose
IESTI International Estimate of Short-Term Intake
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IPCC Intergovernmental Panel on Climate Change
IPCS International Programme on Chemical Safety
IRGC International Risk Governance Council
JECFA Joint FAO/WHO Expert Committee on Food Additives
JEMRA Joint FAO/WHO Expert Meetings on Microbiological Risk Assessment
JMPR Joint FAO/WHO Meeting on Pesticide Residues
LOAEL lowest observed adverse effect level
LOD limit of detection
LoE lines of evidence
MC Monte Carlo
MCF Monte Carlo filtering
MOS margins of safety
NOAEL no observed adverse effect level
NQ not quantified
NRC National Research Council
NRSA nominal range sensitivity analysis
NUSAP Numeral, Unit, Spread, Assessment and Pedigree
OIE World Organisation for Animal Health
PCC partial correlation coefficient
PDF probability density function
PLH Panel EFSA Panel on Plant Health
PNEC predicted no effect concentration
POD point of departure
PPR Panel EFSA Panel on Plant Protection Products and their Residues
PRAS Unit EFSA Pesticides and Residues Unit
PRCC partial rank correlation coefficient
RA risk assessment
RIVM National Institute for Public Health and the Environment
RQ risk quotient
SA sensitivity analysis
SC Scientific Committee of EFSA
SCCS Scientific Committee on Consumer Safety
SCENIHR Scientific Committee on Emerging and Newly Identified Health Risks
SCHER Scientific Committee on Health and Environmental Risks
SCF Scientific Committee for Food
SF safety factor
SRC standardised regression coefficient
SRRC standardised rank regression coefficient
St.dev standard deviation
SU sampling for uniformity
TDI tolerable daily intake
TER toxicity–exposure ratio
ToR Terms of Reference
wc worst case
WHO World Health Organization

Glossary

Additional
uncertainties

Term used when some uncertainties have already been quantified, to refer to other
uncertainties that have not yet been quantified and need to be taken into account
in the characterisation of overall uncertainty.

Aleatory
uncertainty

Uncertainty caused by variability, e.g. uncertainty about a single toss of a coin, or
the exposure of a randomly selected member of a population.

Ambiguity The quality of being open to more than one interpretation. A type or cause of
uncertainty that may apply, for example, to questions for assessment, evidence,
models or concepts, and assessment conclusions.

Approximate
probability

A range or bound for a probability.
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Approximate
probability scale

A set of approximate probabilities with accompanying verbal probability terms,
shown in Section 12.3 of the Guidance and recommended for harmonised use in
EFSA scientific assessments.

Assessment
conclusion

The answer provided by a scientific assessment to the question it addresses,
including characterisation of the overall uncertainty (q.v.).

Assessment
factor

A numerical factor used in quantitative assessment, to represent or allow for
extrapolation or uncertainty. Related terms: safety factor, uncertainty factor.

Assessment
input

Inputs to a calculation or model, including any data, assessment factors, default
values, assumed values expert judgements.

Assessment
output

The output of a calculation or model.

Assessment
question

The question to be addressed by a scientific assessment. Assessment questions may
be quantitative (estimation of a quantity) or categorical (e.g. yes/no questions).

Assessor A person conducting a scientific assessment and/or uncertainty analysis.
Bayesian
inference

A form of statistical inference in which probability distributions are used to
represent uncertainty.

Bound The upper or lower limit of a range of possible numbers, or of an approximate
probability.

Calibration Used in the Guidance to refer to the process of evaluating whether a standardised
procedure is appropriately conservative and, if necessary, adjusting it to achieve
this. More specifically, the process of ensuring a standard procedure provides an
appropriate probability of achieving a specified management objective to an
acceptable extent.

Case-specific
assessment

Scientific assessments where there is no pre-established standardised procedure, so
the assessors have to develop an assessment plan that is specific to the case in
hand. Standardised elements (e.g. default values) may be used for some parts of
the assessment, but other parts require case-specific approaches. Both standardised
and case-specific assessments are used in Applications Management, one of the
core processes in EFSA’s Process Architecture.

Categorical
question

An assessment question that is expressed as a choice between two or more
categories, e.g. yes/no or low/medium/high. Many issues that are expressed as
categorical questions refer explicitly or implicitly to quantities (e.g. whether
exposure is below a threshold value).

Characterising
uncertainty

The process of making and expressing an evaluation of uncertainty either for an
assessment as a whole or for a specified part of an assessment. Can be performed
and expressed either qualitatively or quantitatively.

Chemical-
specific
adjustment
factor (CSAF)

A quantitative measurement or numerical parameter estimate that replaces a
default uncertainty subfactor.

Collective Used in this document to refer to evaluating the combined impact of two or more
uncertainties together.

Combine
uncertainties

The process of integrating separate characterisations of two or more uncertainties
to produce a characterisation of their combined impact on an assessment or part of
an assessment. Can be performed by calculation or expert judgement, and in the
latter case either quantitatively or qualitatively.

Combined
uncertainty

Expression of the combined impact of multiple sources of uncertainty on the
conclusion of an assessment or part of an assessment.

Conceptual
model

The reasoning developed by assessors in the course of a scientific assessment,
which is then implemented as a narrative argument, a logic model, a calculation or
a combination of these. Documenting the conceptual model, e.g. as a bullet list,
flow chart or graphic, may be helpful to assessors during the assessment and also
for readers, if included in the assessment report.

Conditional Used in the Guidance to refer to dependence of the quantitative result of an
assessment or uncertainty analysis on assumptions made about sources of
uncertainty that have not been quantified.
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Confidence
(interval)

Levels of confidence (e.g. high, low) are often used to express the probability that a
conclusion is correct. In frequentist statistics, a confidence interval is a range that
would include the true value of the parameter to be estimated in a specified
proportion of occasions if the experiment and/or statistical analysis that produced
the range was repeated an infinite number of times. In Bayesian statistics it is
replaced with credible interval, which is a range within which the true value would
lie with specified probability. In a social science context, confidence is the
expectation of an outcome based on prior knowledge or experience.

Conservative Term used to describe assessments, or parts of assessments (e.g. assumptions,
default factors), that tend to overestimate the severity and/or frequency of an
adverse consequence (e.g. overestimate exposure or hazard and consequently risk).
Can also be used to refer to underestimation of a beneficial consequence.
Conservatism is often introduced intentionally, as a method to allow for uncertainty.

Coverage Used in this document to refer to the probability that the real value of a quantity is
less adverse than a given estimate of that quantity. A conservative estimate is one
providing a level of coverage considered adequate by decision-makers. The term
coverage is used with a broader meaning in statistics.

Credible interval A range for a non-variable quantity which has a specified probability of including the
true value of the quantity. See also ‘confidence’ and ‘probability bound’.

Decision criteria Numerical criteria (sometimes called ‘trigger values’) used in some parts of EFSA for
deciding what conclusion can be made on risk and/or whether further assessment is
needed. In some cases (e.g. pesticides), provision for uncertainty is built into the
trigger value instead of, or as well as, being built into the assessment or its inputs.

Decision-maker A person with responsibility for making decisions; in the context of this document, a
person making decisions informed by EFSA’s scientific advice. Includes risk
managers but also people making decisions on other issues, e.g. health benefits,
efficacy.

Deep
uncertainty

A source or sources of uncertainty, the impact of which on the assessment the
assessor(s) is not able to quantify.

Default value or
factor

Pragmatic, fixed or standard value used in the absence of relevant data, implicitly or
explicitly regarded as accounting appropriately for the associated uncertainty.

Dependency Variable quantities are dependent when they are directly or indirectly related, such
that the probability of a given value for one quantity depends on the value(s) of
other quantities (e.g. food consumption and body weight). Sources of uncertainty
are dependent when learning more about one would alter the assessors’ uncertainty
about the other.

Deterministic A deterministic calculation uses fixed numbers as input and will always give the
same answer, in contrast to a probabilistic calculation where one or more inputs are
distributions and repeated calculations result in different output and different
uncertainty.

Distribution A probability distribution is a mathematical function that relates probabilities with
specified intervals of a continuous quantity or values of a discrete quantity.
Applicable both to random variables and uncertain parameters.

Distribution
parameters

Numbers which specify a particular distribution from a family of distributions.

Epistemic
uncertainty

Uncertainty due to limitations in knowledge.

Evidence
appraisal

The process of evaluating the internal validity of evidence and its external validity
for the question at hand, in addition to other sources of uncertainties such as
imprecision.

Expert A knowledgeable or skilled person.
Expert group
judgement

The process of eliciting a judgement or judgements from a group of experts without
using a formal or semi-formal elicitation procedure.

Expert
judgement

The judgement of a person with relevant knowledge or skills for making that
judgement.
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Expert
knowledge
elicitation (EKE)

A systematic, documented and reviewable process to retrieve expert judgements
from a group of experts, often in the form of a probability distribution.

External validity Extent to which the findings of a study can be generalised or extrapolated to the
assessment question at hand. It is not an inherent property of the evidence.

Frequency The number of occurrences of something, expressed either as the absolute number
or as a proportion or percentage of a larger population (which should be specified)

Identifying
uncertainties

The process of identifying sources of uncertainty affecting a scientific assessment.

Ignorance Absence of knowledge, including ‘unknown unknowns’.
Individual
expert
judgement

The process of eliciting a judgement or judgements from a single expert without
using a formal or semi-formal elicitation procedure.

Infinite regress In relation to uncertainty, refers to the problem that assessment of uncertainty is
itself uncertain, thus opening up the theoretical possibility of an infinite series of
assessments, each assessing the uncertainty of the preceding one. See Section 14.4
for proposed solution in the context of this document.

Influence
analysis

The extent to which plausible changes in the overall structure, parameters and
assumptions used in an assessment produce a change in the results.

Internal validity Extent to which systematic error is minimised by the study design. It is an inherent
property of evidence.

Likelihood In everyday language, refers to the chance or probability of a specific event
occurring: generally replaced with ‘probability’ in this document. In statistics,
maximum likelihood estimation is one option for obtaining confidence intervals
(Annex B.10). In Bayesian statistics, the likelihood function encapsulates the
information provided by the data (Annex B.12).

Line of evidence A set of evidence of similar type.
Logic model A model expressing a yes/no conclusion as a logical deduction from the answers to

two or more yes/no questions.
Management
objective

A well-defined expression of the outcome required by decision-makers from a
decision, policy or procedure, specifying the question or quantity of interest and the
temporal and spatial scale for which it should be assessed. Applied in the Guidance
to the calibration of standardised procedures.

Markov Chain
Monte Carlo

A form of Monte Carlo where values are not sampled independently but instead are
sampled from a Markov chain. In many situations where standard Monte Carlo is
difficult or impossible to apply, MCMC provides a practical alternative.

Model In scientific assessment, usually refers to a mathematical or statistical construct,
which is a simplified representation of data or of real world processes, and is used
for calculating estimates or predictions. Can also refer to the structure of a
reasoned argument or qualitative assessment.

Model
uncertainty

Bias or imprecision associated with compromises made or lack of adequate
knowledge in specifying the structure of a model, including choices of mathematical
equation or family of probability distributions. Can also refer to limitations in
knowledge affecting the construction of a reasoned argument or qualitative
assessment.

Monte Carlo A method for making probability calculations by random sampling from distributions.
Monte Carlo: 1D A method for making probability calculations by random sampling from one set of

distributions, all representing uncertainty about non-variable quantities or
categorical questions.

Monte Carlo: 2D A method for making probability calculations by random sampling from two sets of
distributions, one set describing the variability of variable quantities, and the second
set representing uncertainty, including uncertainty about the parameters of the
distributions describing variability.
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Non-standard
uncertainties

Any deviations from a standardised procedure or standardised assessment element
that lead to uncertainty regarding the result of the procedure. For example, studies
that deviate from the standard guidelines or are poorly reported, cases where there
is doubt about the applicability of default values, or the use of non-standard or
‘higher tier’ studies that are not part of the standard procedure.

Non-variable
quantity

A quantity that has a single real or true value.

Ordinal scale A scale of measurement comprised of ordered categories, where the magnitude of
the difference between categories is not quantified.

Overall
uncertainty

The assessors’ uncertainty about the question or quantity of interest at the time of
reporting, taking account of the combined effect of all sources of uncertainty
identified by the assessors as being relevant to the assessment.

Parameter Parameter is used in this document to refer to quantitative inputs to an assessment
or uncertainty analysis, without specifying whether they are variable or not. In most
places a non-variable quantity is implied, consistent with the use of parameter in
statistics. However, in some places parameter could refer to a variable quantity, as it
is sometimes used in biology (e.g. glucose level is referred to as a blood parameter).

Parts of the
scientific
assessment

Components of a scientific assessment that it is useful to distinguish for the purpose
of assessment, e.g. a risk assessment comprises hazard and exposure assessment,
and each of these can be subdivided further (e.g. to distinguish individual model
parameters, studies, or lines of evidence).

Parts of the
uncertainty
analysis

Parts of an uncertainty analysis that it is useful to distinguish, evaluating
uncertainties within each part collectively, and then combining the parts and any
additional uncertainties to characterise overall uncertainty. Not necessarily the same
as the parts into which the scientific assessment is divided (see text).

Practical
certainty

A level of probability that would be close enough to 100% (answer is certain to be
yes) or 0% (certain to be no) for the purpose of decision-making. What levels of
probability will comprise practical certainty will vary, depending on the context for
the decision including the decision options and their respective costs and benefits.

Prior
distribution

In Bayesian inference, a probability distribution representing uncertainty about
parameters in a statistical model prior to observing data. The distribution may be
derived from expert judgements based on other sources of information.

Prioritising
uncertainties

The process of evaluating the relative importance of different sources of
uncertainty, to guide decisions on how to treat them in uncertainty analysis or to
guide decisions on gathering further data with the aim of reducing uncertainty.
Prioritisation is informed by influence or sensitivity analysis.

Probabilistic (1) Representation of uncertainty and/or variability using probability distributions.
(2) Calculations where one or more inputs are probability distributions and repeated
calculations give different answers. Related term: deterministic.

Probability Defined depending on philosophical perspective: (1) the frequency with which
sampled values arise within a specified range or for a specified category; (2)
quantification of judgement regarding the likelihood of a particular range or
category.

Probability
bound

A probability or approximate probability for a specified range of values.

Probability
bounds analysis

A method for combining probability bounds for inputs in order to obtain a
probability bound for the output of a deterministic model. It is a special case of the
general theory of imprecise probability which provides more ways to obtain partial
expressions of uncertainty for the output based on more general partial expressions
for inputs.

Probability
judgement

A probability, approximate probability or probability bound obtained by expert
judgement.

Propagation of
uncertainty

Propagation refers to the process of carrying one or more uncertainties through an
assessment in order to evaluate their impact on the assessment conclusion. It may
be done by calculation or expert judgement.

Protection goal A management objective for protection of an entity of interest.
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Qualitative
assessment

Sometimes refers to the form in which the conclusion of an assessment is
expressed (e.g. a verbal response to a question of interest), or to the methods used
to reach the conclusion (not involving calculations), or both.

Qualitative
expression of
uncertainty

Expression of uncertainty using words or ordinal scales.

Quantitative
assessment

Sometimes refers to the form in which the conclusion of an assessment is
expressed (i.e. quantitatively), or to the methods used to reach the conclusion
(involving calculations), or both.

Quantitative
expression of
uncertainty

Expression of uncertainty using numeric measures of the range and relative
likelihood of alternative answers or values for a question or quantity of interest.

Quantitative
question

A question requiring estimation of a quantity. E.g. estimation of exposure or a
reference dose, the level of protein expression for a GM trait, the infective dose for
a pathogen, etc.

Quantity A property or characteristic having a numerical scale.
Quantity of
interest

A quantity that is the subject of a scientific assessment as a whole, or of a part of
such an assessment.

Question of
interest

A categorical question that is the subject of a scientific assessment as a whole, or
of a part of such an assessment.

Range A set of continuous values or categories, specified by an upper and lower bound
Real value A synonym for true value (q.v.).
Resolved The actual or hypothetical process of removing an uncertainty by making the

measurement or observation needed to obtain the true answer or value for the
question or quantity of interest.

Risk analysis A process consisting of three interconnected components: risk assessment, risk
management and risk communication.

Risk assessment A scientifically based process consisting of four steps: hazard identification, hazard
characterisation, exposure assessment and risk characterisation.

Risk
communication

The interactive exchange of information and opinions throughout the risk analysis
process as regards hazards and risks, risk-related factors and risk perceptions,
among risk assessors, risk managers, consumers, feed and food businesses, the
academic community and other interested parties, including the explanation of risk
assessment findings and the basis of risk management decisions.

Risk
management

The process, distinct from risk assessment, of weighing policy alternatives in
consultation with interested parties, considering risk assessment and other
legitimate factors, and, if need be, selecting appropriate prevention and control
options.

Risk
management
judgement

The process or result of weighing policy alternatives in consultation with interested
parties, considering risk assessment and other legitimate factors, and, if need be,
selecting appropriate prevention and control options.

Risk manager A type of decision-maker, responsible for making risk management judgements
Scientific
assessment

The process of using scientific evidence and reasoning to answer a question or
estimate a quantity.

Scope (for non-
standard
uncertainties)

The degree to which a standardised procedure was calibrated to be more
conservative than required (e.g. by rounding up an assessment factor), which
determines how much opportunity there will be to accommodate the presence of
non-standard uncertainties in individual assessments.

Semi-formal
expert
knowledge
elicitation

A structured and documented procedure for eliciting expert judgements that is
intermediate between fully formal elicitation and informal expert judgements.

Sensitivity
analysis

A study of how the variation in the outputs of a model can be attributed to,
qualitatively or quantitatively, different sources of uncertainty or variability.
Implemented by observing how model output changes when model inputs are
changed in a structured way.

Severity Description or measure of an effect in terms of its adversity or harmfulness.
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Source of
uncertainty

Used in this document to refer to an individual contribution to uncertainty, defined
by its location (e.g. a component of the assessment) and its type (e.g.
measurement uncertainty, sampling uncertainty). A single location may be affected
by multiple types of uncertainty, and a single type of uncertainty may occur in
multiple locations.

Standard
uncertainties

Sources of uncertainty that are considered (implicitly or explicitly) to be addressed
by the provisions of a standardised procedure or standardised assessment element.
For example, uncertainties due to within and between species differences in toxicity
are often addressed by a default factor of 100 in chemical risk assessment.

Standardised
assessment

An assessment that follows a standardised procedure (q.v.).

Standardised
procedure

A procedure that specifies every step of assessment for a specified class or products
or problems, and is accepted by assessors and decision-makers as providing an
appropriate basis for decision-making. Often (but not only) used in scientific
assessments for regulated products. Both standardised and case-specific
assessments are used in Applications Management, one of the core processes in
EFSA’s Process Architecture.

Statistical model A probabilistic model of variability, possibly modelling dependence between
variables or dependence of one variable on another, for example, a family of
probability distributions representing alternative possible distributions for a variable
or regression or dose–response models. Usually has parameters which control the
detail of distributions or dependence.

Target quantity A quantity which it is desired to estimate, e.g. what severity and frequency of
effects is of interest.

True value The actual value that would be obtained with perfect measuring instruments and
without committing any error of any type, both in collecting the primary data and in
carrying out mathematical operations. (OECD Glossary of Statistical Terms, https://
stats.oecd.org/glossary/detail.asp?ID=4557).

Trust (in social
science)

The expectation of an outcome taking place within a broad context and not based
on prior knowledge or experience.

Typology of
uncertainties

A structured classification of types of uncertainties defined according to their
characteristics.

Uncertainty In this document, uncertainty is used as a general term referring to all types of
limitations in available knowledge that affect the range and probability of possible
answers to an assessment question. Available knowledge refers here to the
knowledge (evidence, data, etc.) available to assessors at the time the assessment
is conducted and within the time and resources agreed for the assessment.
Sometimes ‘uncertainty’ is used to refer to a source of uncertainty (see separate
definition), and sometimes to its impact on the conclusion of an assessment.

Uncertainty
analysis

The process of identifying and characterising uncertainty about questions of interest
and/or quantities of interest in a scientific assessment.

Uncertainty
factor

A quantity used in a scientific assessment to account or allow for part or all of the
uncertainty affecting that assessment. This document uses the more general term
‘assessment factor’.

Unknown
unknowns

A limitation of knowledge that one is unaware of.

Unquantified
uncertainty

An identified source of uncertainty in a scientific assessment that the assessors are
unable to include, or choose not to include, in a quantitative expression of overall
uncertainty for that assessment.

Urgent
assessment

A scientific assessment requested to be completed within an unusually short period
of time. Part of Urgent Responses Management in EFSA’s Process Architecture

Variability Heterogeneity of values over time, space or different members of a population,
including stochastic variability and controllable variability. See Section 5.3 for
discussion of uncertainty and variability.

Variable
quantity

A quantity that has multiple true v/alues (e.g. body weight measured in different
individuals in a population, or in the same individual at different points in time).
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Weight of
evidence
assessment

A process in which evidence is integrated to determine the relative support for
possible answers to a scientific question.

Well defined A question or quantity of interest that has been defined by specifying an
experiment, study or procedure that could be undertaken, at least in principle, and
would determine the question or quantity with certainty.
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Annex A – The melamine case study

A.1. Purpose of case study

Worked examples are presented in annexes to the Guidance Document, to illustrate the different
approaches. To increase the coherence of the document and facilitate the comparison of different
methods, a single case study was selected, which is introduced in the following section.

A.2. Introduction to melamine example

The example used for the case study is based on an EFSA Statement on melamine that was
published in 2008 (EFSA, 2008). This Statement was selected for the case study in this document
because it is short, which facilitates extraction of the key information and identification of the sources
of uncertainty, and because it incorporates a range of types of uncertainties. However, it should be
noted that the risk assessment in this statement has been superseded by a subsequent full risk
assessment of melamine in food and feed (EFSA, 2010a,b).

While this is an example from chemical risk assessment for human health, the principles and
methodologies illustrated by the examples are general and could be applied to any other area of
EFSA’s work, although the details of implementation would vary.

The case study examples were developed using information contained in the EFSA (2008)
statement and other information cited therein, including a previous US FDA assessment (FDA, 2007).
Where needed for the purpose of the examples, additional information was taken from EFSA (2012a,b,
c) opinion on default values for risk assessment or from EFSA’s databases on body weight and
consumption, as similar information would have been available in other forms in 2008.

The EFSA (2008) statement was produced in response to a request from the European Commission
for urgent scientific advice on the risks to human health due to the possible presence of melamine in
composite food products imported from China into the EU. The context for this request was that high
levels of melamine in infant milk and other milk products had led to very severe health effects in
Chinese children. The import of milk and milk products originating from China is prohibited into the
EU; however, the request noted that ‘Even if for the time being there is no evidence that food
products containing melamine have been imported into the EU, it is appropriate to assess, based on
the information provided as regards the presence of melamine in milk and milk products, the possible
(worst-case) exposure of the European consumer from the consumption of composite food products
such as biscuits and confectionary (in particular chocolate) containing or made from milk and milk
products containing melamine’.

The statement identified a number of theoretical exposure scenarios for biscuits and chocolate
containing milk powder both for adults and children.

Presentation of the case study is arranged as follows:

• Introduction to the melamine example (this Annex, Section A.2)
• Definition of assessment questions for use in the case study (this Annex, Section A.3)
• Overview of outputs produced by the different methods (this Annex, Section A.4)
• Detailed description of how each method was applied to the example (subsections on ‘Melamine

example’ within the sections on each method, in Annex B (1–17))
• Description of models used when demonstrating the quantitative methods (Annex C)

It is emphasised that the examples on melamine in this document are provided for the purpose
of illustration only, and are based on information that existed when the EFSA statement was
prepared in 2008. The examples were conducted only at the level needed to illustrate the
principles of the approaches and the general nature of their outputs. They are not
representative of the level of consideration that would be needed in a real assessment and
must not be interpreted as examples of good practice. Also they must not be interpreted as a
definitive assessment of melamine or as contradicting anything in any published assessment of
melamine.
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In the absence of actual data for milk powder, the highest value of melamine (2,563 mg/kg)
reported in Chinese infant formula was used by EFSA (2008) as the basis for worst-case scenarios. The
available data related to 491 batches of infant formula produced by 109 companies producing infant
formula. Melamine at varying levels was detected in 69 batches produced by 22 companies. Positive
samples from companies other than the one with the highest value of 2,563 mg/kg, had maximum
values ranging from 0.09 to 619 mg/kg. The median for the reported maximum values was 29 mg/kg.
Tests conducted on liquid milk showed that 24 of the 1,202 batches tested were contaminated, with a
highest melamine concentration of 8.6 mg/kg.

Milk chocolate frequently contains 15–25% whole milk solid. Higher amounts of milk powder would
negatively influence the taste of the product and are unlikely in practice; therefore, the upper end of
this range (25%) was used in the worst-case scenario of EFSA (2008).

Data on consumption of Chinese chocolate were not available. The high level consumption of
chocolate used in the exposure estimates in the EFSA statement were based on the EU average annual
per capita consumption of chocolate confectionary of 5.2 kg (equivalent to an average EU daily per capita
consumption of 0.014 kg). The average daily consumption was extrapolated to an assumed 95th
percentile of 0.042 kg per day, based on information in the Concise European Food Consumption
Database. In estimating melamine intake expressed on a body weight basis, a body weight of 20 kg was
used for children.

Because the request was for urgent advice (published 5 days after receipt of the request), the
EFSA statement did not review the toxicity of melamine or establish a Tolerable Daily Intake (TDI).
Instead it adopted the TDI of 0.5 mg/kg bw set by the former Scientific Committee for Food (SCF) for
melamine in the context of food contact materials (European Commission, 1986). The primary target
organ for melamine toxicity is the kidney. Because there is uncertainty with respect to the time scale
for development of kidney damage, EFSA used the TDI in considering possible effects of exposure to
melamine over a relatively short period, such as might occur with repeated consumption of melamine
contaminated products.

The assessment in the EFSA (2008) statement used conservative deterministic calculations that
addressed uncertainty and variability in a number of ways: through assessment factors used by the
SCF in deriving the TDI (though documentation on this was lacking); assuming contaminated foods
were imported into the EU and focussing on consumers of those foods; using alternative scenarios for
consumers of individual foods or combinations of two contaminated foods; using mean/median and
high estimates for three exposure parameters; and comparing short-term exposure estimates with a
TDI that is protective for exposure over a lifetime.

The EFSA statement concluded that, for the scenarios considered, estimated exposure did not raise
concerns for the health of adults in Europe, nor for children with mean consumption of biscuits. In
worst-case scenarios with the highest level of contamination, children with high daily consumption of
milk toffee, chocolate or biscuits containing high levels of milk powder would exceed the TDI, and
children who consumed both such biscuits and chocolate could potentially exceed the TDI by more
than threefold. However, EFSA noted that it was unknown at that time whether such high level
exposure scenarios were occurring in Europe.

A.3. Defining assessment questions for the case study

When preparing the case study for this document, it was noted that the ToR for the EFSA (2008)
Statement included the phrase: ‘it is appropriate to assess. . .the possible (worst case) exposure of the
European consumer from the consumption of composite food products such as biscuits and
confectionary (in particular chocolate) containing or made from milk and milk products containing
melamine’. It appears from this that the decision-makers are interested in the actual worst-case
exposure, i.e. the most-exposed European consumer.

The 2008 Statement included separate assessments for adults and children, consuming biscuits
and/or chocolate. For the purpose of illustration, the following examples are restricted to children and
chocolate because, of the single-food scenarios considered in the original Statement, this one had the
highest estimated exposure.

On this basis, the first question for uncertainty analysis was defined as follows: does the possible
worst case exposure of high-consuming European children to melamine from consumption of chocolate
containing contaminated Chinese milk powder exceed the relevant health-based guidance value, and if
so by how much?
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In addition, a second question was specified, concerning a specified percentile of the exposed
population. This was added in order to illustrate the application of methods that quantify both
variability and uncertainty probabilistically. This second question was defined as follows: does the 95th
percentile of exposure for European children to melamine from consumption of chocolate containing
contaminated Chinese milk powder exceed the relevant health-based guidance value, and if so by how
much? This question might be of interest to decision-makers if the answer to the first question raised
concerns.

A.4. Identification of sources of uncertainty

Each part of the EFSA (2008) risk assessment was examined for potential sources of uncertainty.
Tables A.1 and A.2 below list the sources of uncertainty that were identified in the case study for this
document, numbered to show how they relate to the types of uncertainty listed in Tables 1 and 2 in
Section 8 of the guidance document.

A.5. Example output from each method described in Annex B

Table A.3 and the following subsections present a short summary of what each method contributes
to uncertainty analysis, illustrated by examples for the melamine case study. Some methods provide
inputs to the analysis (shown in italics in Table A.3), while others contribute to the output (shown in
quotes).

Each subsection begins with a short statement of the principle of the method and a short summary
statement of its contribution to the uncertainty analysis. Where the output of the method is a
contribution to the output of the uncertainty analysis, this is expressed in a summary form that might
be used as part of communication with decision-makers. Where the output of the method is an input
to other parts of uncertainty analysis, e.g. a distribution for an assessment input, this is briefly
described. These short summaries are presented together in Table A.3, to provide an overview of the
types of contributions the different methods can make.

The subsections following Table A.3 also include a limited version of the assessment output behind
the summary statement, such as might be provided as a first level of detail from the underpinning
assessment, if this was wanted by the decision-maker. More details of how the outputs were derived
are presented in the respective sections of Annex B, and the model of melamine exposure that was
used with the quantitative methods is described in Annex C.

It is important to note that while it is unlikely that any single assessment would use all the methods
listed in Table A.2, it will be common to use a combination of two or more methods to address
different sources of uncertainty affecting the same assessment. See Sections 11.4 and 14 of the main
document for further explanation of how the different methods can be combined to produce a
characterisation of overall uncertainty.

It should also be noted that some of the methods were only applied to the exposure calculations in
Annex B. For the purpose of comparison with other methods, the exposure estimates are expressed as
ratios to the TDI of 0.5 mg/kg bw per day in this Annex, without any consideration of uncertainty
about the TDI.

A number of observations may be made from Table A.3:

• Four of the methods (expert knowledge elicitation, confidence intervals, the bootstrap and
Bayesian inference) provide inputs to other parts of uncertainty analysis. Expert knowledge
elicitation can also be applied to the output of uncertainty analysis, as in the characterisation
of overall uncertainty (see Section 14 of guidance document).

Note: The results in Table A.3 and the remainder of Section A.5 are examples, the purpose of which is to
illustrate the forms of output that can be provided by the different methods. More details on each method
and example are provided in Annex B, from which these outputs are copied. The examples should not be
interpreted as real evaluations of uncertainty for the EFSA (2008) assessment nor any other assessment.
Apparent conflicts between results from different methods are due to differing assumptions that were made
in applying them, including differences in which sources of uncertainty were considered, and should not be
interpreted as indicators of the performance of the methods.
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• The other methods in Table A.3 contribute to the output of uncertainty analysis. It can be
observed from Table A.3 that those methods contributing to the output of the uncertainty
analysis differ markedly in the nature of the information they provide. The descriptive, ordinal
and matrix methods provide only qualitative information, and do not express how different the
exposure or risk might be or how likely that is. The quantitative methods do provide
information of that sort, but in different forms. Deterministic calculations with conservative
assumptions provide conservative (high end) estimates; the probability of those estimates was
not quantified in the case study, although this could be added (e.g. by expert judgement).
Interval analysis and the uncertainty table for quantities both provide a range of estimates, but
no indication of the probability of values outside that range. Probability bounds analysis
provides an upper estimate and also information on the probability of higher values. None of
the preceding methods provide information on where the most likely values might lie. The two
Monte Carlo methods do provide that information, as well as both lower and upper estimates
and the probability of lower or higher values. NUSAP provides ordinal information on the
relative influence of different assessment inputs to the uncertainty of the assessment output,
while sensitivity analysis provides quantitative information on this. Finally, the uncertainty table
for questions addresses a different aspect of the risk assessment, providing an expression of
the probability that a hazard exists, based on weight-of-evidence considerations.

• The examples in Table A.3 illustrate the general types of contribution that the different
methods can make to uncertainty analysis, and may be helpful in considering which methods
to select for particular assessments. However, the case study was necessarily limited in scope,
and does not illustrate the full potential of each method. Finally, it is emphasised again that
most assessments will include more than one method, addressing different sources of
uncertainty, and all should end with a characterisation of overall uncertainty that provides an
integrated evaluation of all the identified sources of uncertainty.

Table A.1: List of sources of uncertainty affecting assessment inputs for the EFSA (2008) statement
on melamine, as identified in the case study for this document. Note that in some
instances other assumptions were used in the different methods of uncertainty analysis
(Annex B) in order to explore their applicability. Numbering of uncertainty types as in
Table 1 in Section 8 of main document

Assessment components Types of uncertainty
(from Table 1 in the
main document)

Specific sources of uncertainty (and related
types of uncertainty)Assessment/

subassessment
Assessment
inputs

Hazard
identification

Identification
of toxic effects

Ambiguity (incomplete
information) (1)
Accuracy and precision
of measurements (2)
Sampling (e.g. with
respect to numbers of
animals, power of the
study) (3)

No details in the EFSA statement or SCF opinion on
the critical studies and what effects were tested
for (1)
Possibility of more sensitive effects than the
measure of kidney damage used in establishing the
TDI (2)
Lack of information on key study protocol (e.g.
numbers of animals, power of the study (1,3)

Hazard
characterisation

TDI Ambiguity (incomplete
information) (1)
Assumptions (6)
Extrapolation (8)

No details available on type of study or derivation
of TDI (1)
Assumed that TDI of 0.5 mg/kg appropriately
derived from adequate study (1,6)
Assumed that assessment factor of 100 was used
and is appropriate for inter- and intraspecies
differences (1,6,8)
Possibility that TDI would be lower if based on
more sensitive endpoints or higher if assessment
factor of less than 100 would be appropriate
(1,6,8)
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Assessment components Types of uncertainty
(from Table 1 in the
main document)

Specific sources of uncertainty (and related
types of uncertainty)Assessment/

subassessment
Assessment
inputs

Exposure
assessment

Maximum
concentration
of melamine in
milk powder

Ambiguity (missing
information) (1)
Accuracy and precision
of measurements (2)
Sampling (3)
Assumptions (6)
Extrapolation (8)

Unknown accuracy of the method used to measure
melamine (1,2)
491 batches from 109 companies (3)
Used maximum measured value 2,563 mg/kg as
proxy for the maximum actual value (6,8)
Extrapolation from infant formula to milk powder (8)

Maximum
concentration
of milk powder
in chocolate

Assumptions (6)
Extrapolation (8)

Assumed 25%, based on information about
industry practice for chocolate produced in EU (6)
Extrapolation from EU chocolate to Chinese
chocolate (8)

Maximum daily
consumption of
Chinese
chocolate

Ambiguity (1)
Accuracy and precision
of measurements (2)
Sampling (3)
Assumptions (6)
Extrapolation (8)

Estimates based on data for chocolate
confectionery (2,3,6)
Accuracy of per capita consumption data unknown
(1,2,6)
Representativeness of consumption data unknown (8)
Used an estimate of 95th percentile daily
consumption as proxy for maximum actual value (8)
Extrapolation from daily average to 95th percentile
based on a different database (6,8)
Extrapolation from chocolate overall to Chinese
chocolate (8)

Body weight Assumptions (6) Default value of 20 kg for children (6)

Table A.2: List of sources of uncertainty affecting the assessment methodology for the EFSA (2008)
statement on melamine, as identified in the case study for this document. Note that in
some instances other assumptions were used in the different methods of uncertainty
analysis (Annex B) in order to explore their applicability. Numbering of uncertainty types
as in Table 2 in Section 8 of main document

Assessment
output

Assessment
methodology

Types of uncertainty
(from Table 2 in
Guidance Document)

Specific sources of uncertainty (and
related types of uncertainty)

Risk characterisation Model for
estimating
exposure
as % of TDI

Ambiguity (1)
Use of fixed values (4)
Relationship between
components (5)
Evidence for the structure
of the assessment (6)
Dependency between
sources of uncertainty (10)

Used an estimate of 95th percentile daily
consumption as proxy for maximum actual
value (4)
Lack of information on duration of exposure
to melamine in chocolate, and how it
compares to the timescale required for kidney
damage to develop (1,6)
Uncertainty about the relation between age,
body weight and chocolate consumption
(whether the daily chocolate consumption
of 0.042 kg applies to children of 20 kg)
(3,5,10)
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Table A.3: Short summary of what each method contributes to uncertainty analysis, illustrated by
examples for the melamine case study. Some methods provide inputs to the analysis
(shown in italics), while others contribute to the output (shown in quotes). The right
hand column provides a link to more detail

Method
Short summary of contribution
Examples based on melamine case study. Apparent conflicts between
results are due to differing assumptions made for different methods.

Section no.

Descriptive expression Contribution to output: ‘Exposure of children could potentially exceed
the TDI by more than threefold, but it is currently unknown whether
such high level scenarios occur in Europe’

B.1.

Ordinal scale Contribution to output: ‘The conclusion of the risk assessment is
subject to “Medium to high” uncertainty’

B.2.

Matrices for confidence/
uncertainty

Contribution to output: ‘The conclusion of the risk assessment is
subject to “Low to medium” to “Medium to high” confidence’

B.3.

NUSAP Contribution to output: ‘Of three parameters considered, consumption
of Chinese chocolate contributes most to the uncertainty of the risk
assessment’

B.4.

Uncertainty tables for
quantitative questions

Contribution to output: ‘The worst case exposure is estimated at
269% of the TDI but could lie below 30% or up to 1,300%’

B.5.

Uncertainty tables for
categorical questions

Contribution to output: ‘It is Very likely (90–100% probability) that
melamine has the capability to cause adverse effects on kidney in
humans’ (Hazard assessment)

B.6.

Interval analysis Contribution to output: ‘The worst case exposure is estimated to lie
between 11 and 66 times the TDI’

B.7.

Expert knowledge
elicitation

Input to uncertainty analysis: A distribution for use in probabilistic
calculations, representing expert judgement about the uncertainty of
the maximum fraction of milk powder used in making milk chocolate

B.8. and B.9.

Confidence intervals Input to uncertainty analysis: 95% confidence intervals representing
uncertainty due to sampling variability for the geometric mean and
standard deviation of body weight were (10.67, 11.12) and (1.13,
1.17) respectively

B.10.

The bootstrap Input to uncertainty analysis: A bootstrap sample of values for mean
and standard deviation of log body-weight distribution, as an
approximate representation of sampling uncertainty for use in
probabilistic calculations

B.11.

Bayesian inference Input to uncertainty analysis: Distributions quantifying uncertainty due
to sampling variability about the mean and standard deviation of log
body weight, for use in probabilistic calculations

B.12.

Probability bounds Contribution to output: ‘There is at most a 10% chance that the
worst case exposure exceeds 37 times the TDI’

B.13.

1D Monte Carlo
(uncertainty only)

Contribution to output: ‘There is a 95% chance that the worst case
exposure lies between 14 and 30 times the TDI, with the most likely
values lying towards the middle of this range’

B.14.

2D Monte Carlo
(uncertainty and
variability)

Contribution to output: ‘There is a 95% chance that the percentage
of 1–2 year old children exceeding the TDI is between 0.4% and
5.5%, with the most likely values lying towards the middle of this
range’

B.14.

Deterministic
calculations with
conservative
assumptions

Contribution to output: ‘The highest estimate of adult exposure was
120% of the TDI, while for children consuming both biscuits and
chocolate could potentially exceed the TDI by more than threefold’

B.16.

Sensitivity analysis
(various methods)

Contribution to output: ‘Exposure is most sensitive to variations in
melamine concentration and to a lesser extent chocolate
consumption’

B.17.
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A.5.1. Descriptive expression of uncertainty

Descriptive methods characterise uncertainty using only verbal expressions, without any defined
ordinal scale, and without any quantitative definitions of the words that are used.

Short summary of contribution to uncertainty analysis: ‘Exposure of children could potentially
exceed the TDI by more than threefold, but it is currently unknown whether such high level scenarios
occur in Europe’ (Contribution to output of uncertainty analysis).

This is an abbreviated version of part of the conclusion of the EFSA (2008) statement:

‘Children who consume both such biscuits and chocolate could potentially exceed the TDI by more
than threefold. However, EFSA noted that it is presently unknown whether such high level exposure
scenarios may occur in Europe’.

The EFSA (2008) statement also includes descriptive expression of some individual sources of
uncertainty that contribute to the uncertainty of the assessment conclusion: ‘There is uncertainty with
respect to the time scale for the development of kidney damage’ and ‘In the absence of actual data for
milk powder, EFSA used the highest value of melamine’. The words expressing uncertainty are italicised.

For more details on descriptive expression, see Annex B.1.

A.5.2. Ordinal scale

An ordinal scale is a scale that comprises two or more categories in a specified order without
specifying anything about the degree of difference between the categories.

Short summary of contribution to uncertainty analysis: ‘The conclusion of the risk assessment is
subject to “Medium to high” uncertainty’ (Contribution to output of uncertainty analysis).

This is based on evaluation of three sources of uncertainty as follows:

Source of uncertainty Level of uncertainty

Hazard characterisation (TDI) ‘Low to medium’ to ‘Medium to high’
Concentration of melamine in milk powder ‘Medium to high’

Consumption of Chinese chocolate ‘Medium to high’ to ‘High’

Impact on risk assessment of these three sources of
uncertainty combined

‘Medium to high’*

*: The category ‘Medium to high’ uncertainty was defined as follows: ‘Some or only incomplete data available; evidence provided
in small number of references; authors’ or experts’ conclusions vary, or limited evidence from field observations, or moderate
data available from other species which can be extrapolated to the species being considered’.

For more details on ordinal scales, see Annex B.2.

A.5.3. Matrices for confidence and uncertainty

Matrices can be used to combine two ordinal scales representing different sources or types of
confidence or uncertainty into a third scale representing a combined measure of confidence or
uncertainty.

Short summary of contribution to uncertainty analysis: ‘The conclusion of the risk assessment is
subject to “Low to medium” to “Medium to high” confidence’ (Contribution to output of uncertainty
analysis).

This is based on evaluation of the level of evidence and agreement between experts supporting the
assessment, as follows:

• Level of evidence (type, amount, quality, consistency): Low to medium
• Level of agreement between experts: High
• Level of confidence: ‘Low to medium’ to ‘Medium to high’.

Each aspect was rated on a four point scale: Low, Low to medium, Medium to high, High.
For more details on matrices, see Annex B.3.

A.5.4. NUSAP

NUSAP stands for: Numeral, Unit, Spread, Assessment and Pedigree. A Pedigree matrix typically has
four ordinal scales for assessing the strength of parameters or assumptions, and one ordinal scale for
their influence on the assessment conclusion.
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Short summary of contribution to uncertainty analysis: ‘Of three parameters considered,
consumption of Chinese chocolate contributes most to the uncertainty of the risk assessment’
(Contribution to output of uncertainty analysis).

This is based on interpretation of the following ‘diagnostic plot’, showing that chocolate
consumption has both poor scientific strength and high influence on the assessment conclusion. Each
point is the median of judgements by seven assessors on a 5-point ordinal scale.

Low

High

hgiHwoL

For more details on NUSAP, see Annex B.4.

A.5.5. Uncertainty tables for quantitative questions

Uncertainty tables for quantitative questions list sources of uncertainty affecting the assessment
together with expert judgements of their individual and combined impacts on the assessment
conclusion, using plus and minus symbols to indicate the direction and magnitude of the impacts.

Short summary of contribution to uncertainty analysis: ‘The worst case exposure is estimated at
269% of the TDI but could lie below 30% or up to 1300%’. This should be accompanied by the same
caveat as in EFSA (2008): that it is unknown whether the exposure scenario occurs (Contribution to
output of uncertainty analysis).

This is based on expert judgement of uncertainties affecting three inputs to the assessment and
their impact on the assessment conclusion, using a defined scale of symbols, followed by conversion of
the symbols for the output to quantitative estimates using the same scale.

Parameters
Value in EFSA (2008)
assessment

Uncertainty
range

Assessment inputs TDI 0.5 mg/kg bw per day ���/++*
Highest concentration of melamine in
milk powder

2,563 mg/kg ���/+

Highest consumption of Chinese chocolate
by children

0.044 kg ���/++

Assessment output Ratio of the calculated exposure to the TDI 269% ����/++*
(< 30–1,300%)

*: One expert considered these uncertainties to be unquantifiable.

Scale for ranges shown in the table above (note scale is multiplicative as indicated by ‘x’):

• + ++ +++−− −− − −

+/-20%x 1/2 x5x25/1x x0101/1x

Real value higher than estimate
(underestimation)

Real value lower than estimate
(overestimation)

++++− − − −

>10x< x 1/10

24

For more details on uncertainty tables for quantitative questions, see Annex B.5.
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A.5.6. Uncertainty table for questions

This method provides a structured approach for addressing uncertainty in weight of evidence
assessment of categorical questions and expressing the uncertainty of the conclusion.

For the melamine case, it was applied to the question: does melamine have the capability to cause
adverse effects on kidney in humans?

Short summary of contribution to uncertainty analysis: ‘It is Very likely (90–100% probability) that
melamine has the capability to cause adverse effects on kidney in humans’ (Contribution to output of
uncertainty analysis).

This is based on four lines of evidence, as shown in the table below. Expert judgement was used to
assess the influence of each line of evidence on the conclusion to the question, expressed using arrow
symbols and the probability of a positive conclusion.

Lines of evidence Influence on conclusion*

Line of Evidence 1 – animal studies ↑↑↑
Line of Evidence 2 – information on effects in humans ↑/↑↑
Line of Evidence 3 – information on mode of action ↑/↑↑
Line of Evidence 4 – evidence of adverse effects in companion animals ↑/↑↑

CONCLUSION on whether melamine has the capability to cause
adverse effects on kidney in humans

Very likely (90–100% probability)

*: Key to symbols: ↑, ↑↑, ↑↑↑ represent minor, intermediate and strong upward influence on probability, respectively. Pairs of
symbols (↑/↑↑) represent variation of judgements between assessors.

For more details on uncertainty tables for categorical questions, see Annex B.6.

A.5.7. Interval analysis

Interval analysis is a method to compute a range of values for the output of a calculation or
quantitative model based on specified ranges for the individual inputs. The output range includes all
values which could be obtained from the calculation by selecting a single value from the specified
range for each input.

Short summary of contribution to uncertainty analysis: ‘The worst case exposure is estimated to lie
between 11 and 66 times the TDI’ (Contribution to output of uncertainty analysis).

This was derived by interval analysis from minimum and maximum possible values for each input to
the calculation, specified by expert judgement, as shown in the table below.

Parameters
Minimum
possible
value

Maximum
possible
value

Inputs Maximum concentration (mg/kg) of melamine in milk powder 2,563 6,100

Maximum fraction, by weight, of milk powder in milk chocolate 0.28 0.30
Maximum consumption (kg/day) of milk chocolate in a single day by a
child aged from 1 up to 2 years

0.05 0.1

Minimum body weight (kg) of child aged from 1 up to 2 years 5.5 6.5
Outputs Maximum intake (mg/kg bw per day) of melamine in a single day, via

consumption of milk chocolate, by a child aged from 1 up to 2 years
5.5 33.3

Ratio of maximum intake to TDI for melamine 11 66.6

For more details on interval analysis, see Annex B.7.

A.5.8. Expert Knowledge Elicitation (formal and semi-formal)

Expert knowledge elicitation (EKE) is a collection of methods for quantification of expert
judgements of uncertainty, about an assessment input or output, using subjective probability.

Short summary of contribution to uncertainty analysis: A distribution for use in probabilistic
calculations, representing expert judgement about the uncertainty of the maximum fraction of milk
powder used in making milk chocolate (Input to uncertainty analysis).
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For the purpose of the case study, an illustrative example was constructed, comprising judgements
of three fictional experts for minimum, maximum and quartiles, from which the following aggregate
distribution was derived (n.b. the vertical axis is probability density).

15.0% 20.0% 25.0% 30.0% 35.0%
Max frac�on milk powder

For more details on formal and semi-formal EKE, see Annex B.8 and B.9.

A.5.9. Statistical Inference from Data

Each of the methods in this section addresses uncertainty about the parameters of a statistical model
for variability based on data. Examples are given in relation to (i) variability of (base 10) logarithm of
body weight and (ii) variability of consumption of chocolate for children aged from 1 up to 2 years.

Confidence Intervals

Confidence intervals representing uncertainty about the parameters for a statistical model
describing variability are estimated from data. The result is a range of values for each parameter
having a specified level of confidence.

Short summary of contribution to uncertainty analysis: 95% confidence intervals representing
uncertainty due to sampling variability for the geometric mean and standard deviation of body weight
were (10.67, 11.12) and (1.13, 1.17) respectively (Input to uncertainty analysis).

This was calculated from the observed mean and standard deviation of a sample of body weights,
assuming they were a random sample from a lognormal distribution.

For more details on confidence intervals, see Annex B.10.

The Bootstrap

The bootstrap is a method for obtaining an approximation of uncertainty for one or more
estimates, in the form of a sample of possible values, by resampling data to create a number of
hypothetical data sets of the same size as the original one.

Short summary of contribution to uncertainty analysis: A bootstrap sample of values for mean and
standard deviation of log body-weight distribution, as an approximate representation of uncertainty
due to sampling for use in probabilistic calculations (Input to uncertainty analysis).

The means (llogbw) and standard deviations (rlogbw) for log body weight in the original data and
999 bootstrap samples are plotted in the following Figure.

For more details on the bootstrap, see Annex B.11.
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Bayesian Inference

Bayesian inference is a method for quantifying uncertainty about parameters in a statistical model
of variability on the basis of data and expert judgements about the values of the parameters.

Short summary of contribution to uncertainty analysis: Distributions quantifying uncertainty due to
sampling variability about the mean and standard deviation of log body weight, suitable for use in
probabilistic calculations (Input to uncertainty analysis).

The distributions for the uncertainty of the standard deviation (rlogbw) and mean (llogbw) of log
body weight are plotted in the following Figures. The distribution for the mean is conditional on the
standard deviation as indicated by the values on the horizontal axis, which are functions of r).

For more details on Bayesian inference, see Annex B.12.

A.5.10. Probability bounds analysis

Probability bounds analysis is general method for combining partial probability statements (i.e. not
complete probability distributions) about inputs in order to make a partial probability statement about
the output of a calculation or quantitative model.

Short summary of contribution to uncertainty analysis: ‘There is at most a 10% chance that the
worst case exposure exceeds 37 times the TDI’ (Contribution to output of uncertainty analysis).

This is one of the outputs produced by probability bounds analysis, shown in the Table below. Also
shown are the partial probability statements for each input to the calculation, which were specified by
expert judgement.

Parameters
Threshold

value

Probability parameter
exceeds threshold

value

Inputs Maximum concentration (mg/kg) of melamine in milk
powder

3,750 ≤ 3.5%

Maximum fraction, by weight, of milk powder in milk
chocolate

0.295 ≤ 2%

Maximum consumption (kg/day) of milk chocolate in a
single day by a child aged from 1 up to 2 years

0.095 ≤ 2.5%

Minimum body weight (kg) of child aged from 1 up to
2 years

1/(5.6) ≤ 2%

Outputs Maximum intake (mg/kg bw per day) of melamine in a
single day, via consumption of milk chocolate, by a child
aged from 1 to 2 years

18.6 ≤ 10%

Ratio of maximum intake to TDI for melamine 37.2 ≤ 10%

For more details on probability bounds analysis, see Annex B.13.

A.5.11. 1D Monte Carlo (uncertainty only)

One-dimensional (1D) Monte Carlo simulation can be used for combining uncertainty about several
inputs to a calculation or quantitative model by numerical simulation when analytical solutions are not
available.
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Short summary of contribution to uncertainty analysis: ‘There is a 95% chance that the worst case
exposure lies between 14 and 30 times the TDI, with the most likely values lying towards the middle
of this range’ (Contribution to output of uncertainty analysis).

This is based on a distribution for the uncertainty of the worst-case exposure (emax) produced by
1D Monte Carlo, shown in the following figure, calculated by sampling from distributions for the
exposure parameters and the TDI of 0.5 mg/kg bw per day.

For more details on Monte Carlo for uncertainty only, see Annex B.14.

A.5.12. 2D Monte Carlo (uncertainty and variability)

Two-dimensional (2D) Monte Carlo simulation separates distributions representing uncertainty from
distributions representing variability and provides an uncertainty distribution for any interesting
summary of variability, in this case the percentage of 1–2 years old children exceeding the TDI.

Short summary of contribution to uncertainty analysis: ‘The majority of 1 year old children
consuming chocolate from China contaminated with melamine will be exposed to levels well below the
TDI. There is a 95% chance that the percentage of 1–2 year old children exceeding the TDI is
between 0.4% and 5.5%, with the most likely values lying towards the middle of this range’
(Contribution to output of uncertainty analysis).

This is based on a 2D distribution quantifying variability and uncertainty of exposure for 1–2 years
old children produced by 2D Monte Carlo, shown in the following figure, based on 2D distributions for
the exposure parameters and the TDI of 0.5 mg/kg bw per day. The horizontal axis is the ratio (r) of
exposure to the TDI. The vertical line shows where exposure equals the TDI (r = 1), the light grey
band corresponds to 95% uncertainty range, and dark grey band corresponds to 50% uncertainty
range.

For more details on Monte Carlo for uncertainty and variability, see Annex B.14.
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A.5.13. Deterministic calculations with conservative assumptions

These methods deal with uncertainty by using deterministic calculations with assumptions that are
conservative, in the sense of tending to overestimate risk.

Short summary of contribution to uncertainty analysis: ‘The highest estimate of adult exposure was
120% of the TDI, while for children consuming both biscuits and chocolate could potentially exceed
the TDI by more than threefold’ (Contribution to output of uncertainty analysis).

For more details, see Annex B.16.

A.5.14. Sensitivity analysis

Sensitivity analysis is a suite of methods for assessing the sensitivity of the output of a calculation
or quantitative model to the inputs and to choices made expressing uncertainty about inputs.

Short summary of contribution to uncertainty analysis: ‘Exposure is most sensitive to variations in
melamine concentration and to a lesser extent chocolate consumption’ (Contribution to output of
uncertainty analysis).

This is based on outputs from several methods of sensitivity analysis for the melamine example,
two of which are shown below. For both the nominal range sensitivity analysis index and Sobol first-
order index, larger values indicated parameters with more influence on the exposure estimate:
melamine concentration and chocolate consumption are more influential than milk powder fraction or
body weight which hardly affects the model results.

Input parameters
Nominal range

sensitivity
analysis index

Sobol
first-order

index

Concentration (mg/kg) of melamine in milk powder 1.38 0.54

Fraction, by weight, of milk powder in milk chocolate 0.07 0.01
Consumption (kg/day) of milk chocolate in a single
day by a child aged from 1 up to 2 years

1 0.19

Body weight (kg) of child aged from 1 up to 2 years 0.17 0.00

For more details on sensitivity analysis, see Annex B.17.
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Annex B – Qualitative and quantitative methods to assess uncertainty

The individual methods are reviewed in detail in the following sections, as shown in the list below:

B.1. Descriptive expression of uncertainty
Purpose, origin and principal features

Descriptive expression of uncertainty in this document refers to a form of qualitative assessment of
uncertainty using verbal expressions only, without any defined ordinal scale, and without any
quantitative definitions of the words. It originates in everyday language rather than any formulated
system or theory of uncertainty analysis.

Verbal descriptions are important for expressing the nature or causes of uncertainty. They may also
be used to describe the magnitude of an individual uncertainty, the impact of an individual uncertainty
on the assessment conclusion or the collective impact of multiple sources of uncertainty on the
assessment conclusion.

Descriptive expression of uncertainty may be explicit or implicit. Explicit descriptions refer directly to
the presence, magnitude or impact of the uncertainty, for example, ‘the estimate of exposure is highly
uncertain’. In implicit descriptions, the uncertainty is not directly expressed but instead implied by the use
of words such as ‘may’, ‘possible’ or ‘unlikely’ that qualify, weaken or strengthen statements about data
or conclusions in a scientific assessment, for example, ‘it is unlikely that the exposure exceeds the ADI’.

Descriptive information on uncertainty may be presented at different points within a scientific
assessment, Report or Opinion. Individual sources of uncertainty may be described at the specific
points of the assessment, where they arise. They may also be summarised and/or discussed together,
as part of sections that discuss or interpret the assessment. In some cases, the assessment may
include a separate section that is specifically identified as dealing with uncertainty.

Applicability in areas relevant for EFSA

Descriptive phrases are the most commonly used method for expressing uncertainty in scientific
assessment, by EFSA as well as other authorities. In documents produced by EFSA’s Panels, such
phrases are produced through an iterative drafting process in a Working Group and in its parent
Panel or Scientific Committee. At each stage of this process, phrases that are regarded as important or
controversial may attract detailed discussion. The Opinion is finalised and adopted by consensus of the
Panel or Scientific Committee. If no consensus can be reached then the minority view(s) are recorded
in the Opinion, although this is uncommon (about 14 instances up to October 2014).
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In order to inform the development of an Opinion on risk assessment terminology (EFSA, 2012),
EFSA commissioned a review by external contractors of the language used in the concluding and
summary sections of 219 EFSA Opinions published between 2008 and the beginning of 2010. The
review found 1,199 descriptors which were interpreted by the review authors as expressing uncertainty,
of which 1,133 were qualitative and 66 quantitative (Table 4 in FERA, 2010). Separate sections
dedicated to a type of uncertainty analysis were included in 30 of the 219 documents reviewed.

EFSA’s guidance on transparency (EFSA, 2009) states that uncertainties and their relative
importance and influence on the assessment conclusion must be described. The Opinion of the EFSA
Scientific Committee on risk assessment terminology (EFSA, 2012) recommends the use of defined
terminology for risk and uncertainty. The Opinion also notes that some words (e.g. ‘negligible’,
‘concern’ and ‘unlikely’) have risk management connotations in everyday language and recommends
that, when used in EFSA Opinions, they should be used carefully with objective scientific definitions so
as to avoid the impression that assessors are making risk management judgements.

Selected examples from the review by FERA (2010) are presented in Table B.1 to provide an
indication of the types of words that were used in different contexts in EFSA Opinions at that time.
The five most frequent descriptors in each category are shown, taken from Tables 17.1–17.9 of FERA
(2010). The words that were interpreted as the review authors as expressing possibility or probability
are all referring to situations of uncertainty, since they all indicate the possibility of different
conclusions. Words expressing difficulty of assessment also imply uncertainty (about what the
conclusion of the assessment should be), as do words expressing lack of data or evidence. The data
presented in the report do not distinguish the use of words to describe uncertainty from their use to
describe benefit, efficacy or risk, therefore not all of the words in the Table B.1 refer exclusively to
uncertainty. Even so, many of the words are ambiguous, in that they provide a relative description
whose absolute magnitude is unspecified (e.g. High, Rare, Increase). Other words convey certainty,
e.g. some of those relating to comparisons (e.g. Higher), change (e.g. Exceed), agreement (e.g.
Agrees with) and absence (e.g. No/Not, which is the most frequent of all the descriptors reviewed).

Table B.1: Examples of descriptive terms used in EFSA Opinions

Context as perceived by authors of FERA
(2010)

Most frequent descriptors found by FERA (2010).
Numbers are frequency of occurrence, out of
3882 descriptors identified in 219 Opinions

Words perceived as expressing possibility or probability May 104, Potential 92, Unlikely 79, Can 47, Likely 46

Words perceived as expressing difficulty or inability to
assess or evaluate

Cannot 34, Not possible 30, Could not 18, Not
appropriate 9, No conclusion(s) 7

Words perceived as expressing magnitude of benefit
or efficacy or risk and/or uncertainty

High 105, Low 92, Safety concern(s) 78, Limit/Limited
52, Moderate 49

Words perceived as expressing comparison of benefit,
efficacy or risk or uncertainty

Higher 48, Below 32, Increase/Increased/Increasing 26,
Lower 25, Highest 23

Words perceived as expressing frequency relevant to
the assessment of benefit or efficacy or risk or
uncertainty

Rare/Rarely 15, Occasional/Occasionally/On occasion 5,
Often 5, Usually 5, Most frequently 3

Words perceived as expressing change or noChange Increase/Increased/Increasing 43, Reduce/Reduced 26,
Exceed/Exceeded/Exceeding 10, Not exceed/Not be
exceeded 8, No change/Not changed 5

Words perceived as expressing agreement or
disagreement usually referring to a previous assessment

Agrees with 8, Concurs with 4, Does not agree 4,
Confirm 3, Remain(s) valid 3

Words perceived as driving a definite yes/
noConclusion

No/Not 225, Contributes 11, Cause/Caused/Causing 10,
Demonstrated 8, Established 8

Words perceived as contributing in the
characterisation of benefit or efficacy or riskand/or
uncertainty, and did not belong to any of the above
defined categories

No indication/Do not indicate 45, Controlled 39, No
evidence 20, Associated with 12, No new data/
information 9

The table shows the five most frequently found descriptors found in nine different contexts, as perceived by the authors of the
FERA (2010) review. Note that several rows of the table refer to benefit, efficacy and risk as well as uncertainty, and the report
does not indicate what proportion of occurrences of descriptors relate to each.
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The FERA (2010) review considered Opinions published up to early 2010, and therefore, does not
indicate to what extent the recommendations of EFSA (2009, 2012a,b,c) have been implemented in
EFSA’s subsequent work.

Potential contribution to major elements of uncertainty analysis

Potential contribution of descriptive expression to major elements of uncertainty analysis, as
assessed by the Scientific Committee.

Elements in uncertainty analysis Potential contribution of this approach

Identifying uncertainties Not applicable
Characterising uncertainties Verbal description

Combining uncertainties Verbal description

Prioritising uncertainties Verbal description

Melamine example

Descriptive narrative is the main method that was used to express uncertainties in the EFSA (2008)
statement on melamine. The summary of the statement includes the following phrases, in which the
words indicating the presence of uncertainty have been italicised:

‘There is uncertainty with respect to the time scale for the development of kidney damage’.

‘In the absence of actual data for milk powder, EFSA used the highest value of melamine. . .’

‘Children who consume both such biscuits and chocolate could potentially exceed the TDI by more
than threefold. However, EFSA noted that it is presently unknown whether such high level exposure
scenarios may occur in Europe’.

Many further examples can be identified within the detailed text of the EFSA (2008) statement.

Strengths

1) Intuitive, requires no special skills (for assessors proficient in the language used for the
assessment).

2) Flexibility – language can in principle describe any uncertainty.
3) Single uncertainties and overall uncertainty and its rationale can be expressed in a narrative.
4) Requires less time than other approaches, except when the choice of words provokes

extensive discussion (sometimes revisited in multiple meetings).
5) Accepted (or at least not challenged) in most contexts by assessors, decision-makers and

stakeholders (but see below).

Weaknesses and possible approaches to reduce them

1) Verbal expressions without quantitative definitions are ambiguous: they are interpreted in
different ways by different people. This causes a range of problems, discussed in
Section 4.2 of the Guidance Document and by EFSA (2012a,b,c).; These problems were
recognised by some risk managers interviewed during the development of this document,
who said they would welcome a move to less ambiguous forms of expression. Ambiguity
could be reduced and consistency improved by providing precise (if possible, quantitative)
definitions.

2) Where descriptive expression refers to the magnitude of uncertainty, ambiguous wording
may leave the decision-makers to assess for themselves the range and probability of
conclusions – which is a scientific question that should be addressed by assessors. Again,
this can be avoided by providing precise definitions.

3) Some words that are used in situations of uncertainty imply risk management judgements,
unless accompanied by objective scientific definitions.

4) Lack of transparency of the basis for conclusions that are presented as following from a
combination of considerations involving descriptive expressions of uncertainty; this could be
partially addressed by describing the relative weight given to each uncertainty.

5) Lack of repeatability due to incomplete recording of the individual experts’ involvement and
of the chain of arguments leading to the expression of risk and the associated uncertainties;
this could in principle be addressed by appropriate recording.
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Assessment against evaluation criteria

This method is assessed against the criteria in Table B.2

Conclusions

1) Descriptive expression is currently the main approach to characterising uncertainty in EFSA
and elsewhere. However, there are reasons to move towards more quantitative forms of
expression, (see EFSA 2012 and Section 4 of Guidance Document).

2) When a descriptive expression of uncertainty is used, the inherent ambiguity of language
means that care is needed to avoid misinterpretation. Ambiguity can be reduced by
providing precise definitions that are consistently used across Panels, and by increased
dialogue between assessors and decision-makers.

3) When uncertainty is quantified, it may be useful to accompany it with descriptive
expression, as the intuitive nature and general acceptance of descriptive expression make it
a useful part of the overall communication.

4) Special care is required to avoid using language that implies value judgements, unless
accompanied by objective scientific definitions.

5) Descriptive expression should be used to communicate the nature and causes of
uncertainty. This is especially important for any uncertainties that are not included in the
quantitative assessment (see Sections 5.12, 5.13 and 14).
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Table B.2: Assessment of Descriptive expression of uncertainty (when applied well) against evaluation criteria

Criteria
Evidence of
current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and variability

Meaning of
output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of
process and
reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread in
practice

Can be used
with
guidelines
or literature

Days Most but not
all aspects
supported
by theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty and
variability
quantified
separately

Range and
relative
possibility
of answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well established
in practice or
literature

Training
course
needed

Weeks Some
aspects
supported
by theory

Expert
judgement
on defined
quantitative
scales

Informal
expert
judgement

Uncertainty and
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited explanation
of reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement
on defined
ordinal scales

Calculation
or matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.2. Ordinal scale
Purpose, origin and principal features

An ordinal scale is one that comprises two or more categories in a specified order without
specifying anything about the degree of difference between the categories. For example, an ordinal
scale of low – medium – high has a clear order, but does not specify the magnitude of the differences
between the categories (e.g. whether moving from low to medium is the same as moving from
medium to high). Ordinal scales provide more information than nominal scales (descriptive categories
with no specified order), but less than interval and ratio scales, which quantify the distance between
different values (Stevens, 1946). Ordinal scales may therefore be useful when the purpose is to
describe the degree of uncertainty in relative terms, e.g. low, medium or high, but should be
accompanied by quantitative expressions of uncertainty when possible.

Numerical values can be assigned to the categories as labels, but should then not be interpreted as
representing the magnitude of differences between categories. Ordinal scales can be used to rank a
set of elements, e.g. from lowest to highest; either with or without ties (i.e. some elements may have
the same rank).

Ordinal scales can be used to describe the degree of uncertainty in a qualitative or quantitative risk
assessment, e.g. low uncertainty, medium uncertainty. Clearly, it is desirable to provide a definition for
each category, so that they can be used and interpreted in a consistent manner. In many cases,
including the examples provided in the following section, the definitions refer to the causes of
uncertainty (e.g. amount, quality and consistency of evidence, degree of agreement amongst experts).
Strictly speaking, these are scales for the amount and quality of evidence rather than degree of
uncertainty, although they are related to the degree of uncertainty: e.g. limited, poor quality evidence
is likely to lead to larger uncertainty. This relationship is reflected in the approach used by IPCC
(Mastrandrea et al., 2010), where 3-point scales for ‘Evidence (type, amount, quality, consistency)’ and
‘Agreement’ are combined to derive the ‘Level of confidence’, which is assessed on a 5-point scale from
‘very low’ to ‘very high’. Level of confidence is inversely related to degree of uncertainty, as discussed
in Section 5.8.

Ordinal scales for degree of uncertainty should ideally represent the magnitude of uncertainty, e.g.
the degree to which the true value of a parameter could differ from its estimate. This could be
expressed ordinally with categories such as low, medium, high. However, it will usually be important
also to provide information on the direction of the uncertainty, e.g. whether the true value is more
likely to be higher or lower than the estimate. Perhaps the simplest way to represent this with ordinal
scales would be to use a pair of ordinal scales, one indicating how much lower the true value could be,
and the other indicating how much higher it could be. An example of this is the +/� scale suggested
by EFSA (2006, 2007), described in the following section. For categorical questions of interest (e.g.
whether an effect observed in animals can also occur in humans), uncertainty could be expressed on
an ordinal scale for probability (ideally with quantitative definitions, e.g. Mastrandrea et al., 2010).

Applicability in areas relevant for EFSA

Some EFSA Panels have used ordinal scales that are described as scales for uncertainty, but defined
in terms of evidence (e.g. type, amount, quality, consistency) and the level of agreement between
experts. In a joint opinion in 2010, the Animal Health and Animal Welfare Panel (AHAW) and the
BIOHAZ Panel defined three levels of uncertainty associated with the assessment of the effectiveness of
different disease control options of Coxiella burnetii, the causative agent of Q-fever (EFSA, 2010a,b).

• ‘Low: Solid and complete data available; strong evidence in multiple references with most
authors coming to the same conclusions, or considerable and consistent experience from field
observations’.

• ‘Medium: Some or only incomplete data available; evidence provided in small number of
references; authors’ or experts’ conclusions vary, or limited evidence from field observations, or
solid and complete data available from other species which can be extrapolated to the species
being considered’.

• ‘High: Scarce or no data available; evidence provided in unpublished reports, or few
observations and personal communications, and/or authors’/or experts’ conclusions vary
considerably’.
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As can be seen in this example, different emphasis may be given to the different descriptors used
in the definitions: some to the availability of data or the strength of evidence provided; and some to
the level of agreement, either in the published literature or in expert’s opinions.

The Plant Health (PLH) Panel uses ordinal scales for assessing both risk and uncertainty. Risk
assessments are considered in sequential components: entry, establishment, spread and impact of the
harmful organism. For each of these components, there may be multiple pathways to consider. At each
stage of the assessment, risk ratings are made on a 5-category ordinal scale (e.g. very unlikely –
unlikely – moderately likely – likely – very likely), where the descriptors for the categories must be
specified and justified in advance. For each rating, a rating of the associated uncertainty (i.e. the level
of confidence in the risk rating given) must also be made. Hence, for the risk assessment components –
entry, establishment, spread and impact – the level of uncertainty has to be rated separately, usually on
a 3-category scale with prespecified definitions similar to those in the AHAW/BIOHAZ example above.
An example of this approach is provided by the Opinion on the plant pest and virus vector Bemisia
(EFSA, 2013). For plants-for-planting, the risk of entry of Bemisia was rated as likely, for cut flowers and
branches moderately likely, and for fruits and vegetables unlikely. The uncertainty of each risk rating
was assessed on a 3-point scale (low, medium and high, defined in terms of quality of evidence and
degree of subjective judgement) and then consolidated across the three pathways by expert judgement
to give a combined uncertainty of ‘medium’ for entry of Bemisia into the EU. This was accompanied by a
narrative justification, summarising the rationale for the assessment of ‘medium’ uncertainty.

Ordinal scales defined in terms of the magnitude and direction of uncertainty, rather than amount
or quality of evidence, have been used with ‘uncertainty tables’ in some EFSA opinions. The categories
in these scales are often represented by different numbers of plus and minus symbols, e.g. +, ++, +++.
Early examples provided qualitative definitions for the categories such as small, medium or large over-
estimation of exposure (EFSA, 2006) and are therefore ordinal scales. Some later examples define the
symbols by mapping them on to a quantitative scale, as in the exposure assessment for bisphenol A
(EFSA, 2015). This makes the meaning of the categories less ambiguous, and opens the possibility of
converting them to intervals for use in quantitative calculations (interval analysis or sensitivity analysis,
see Sections B.1 and B.2). However, since a scale of such categories is no longer strictly ordinal, they
are not further discussed here (see instead Annex B.3).

Potential contribution to major elements of uncertainty analysis

Potential contribution of ordinal scales to major elements of uncertainty analysis, as assessed by
the Scientific Committee.

Elements in uncertainty
analysis

Potential contribution of this approach

Identifying uncertainties Not applicable
Characterising uncertainties Provides an ordered set of descriptors for expressing magnitude of uncertainty or

level of confidence. Can also be used to describe factors that contribute to
uncertainty, e.g. the type, amount, quality and consistency of evidence, or the
degree of agreement. Categories defined in terms of evidence or agreement may
provide indirect measures of magnitude of uncertainty. Assignation of individual
uncertainties to the defined categories is assessed by expert judgement.

Combining uncertainties Ordinal scales can be used to express expert judgements about the combined
impact of multiple uncertainties on the assessment output, but provide a more
limited expression than quantitative judgements. No theoretically justified methods
available for propagating ordinal categories with qualitative definitions.

Prioritising uncertainties Can be used to rank uncertainties on the ordinal scale that is used. Also, may
inform expert judgement of relative contributions to overall uncertainty.

Melamine example

Members of the Working Group applied an ordinal scale to assess three uncertainties affecting the
example assessment of melamine. They considered uncertainty of the answer to the following
question: does the possible worst-case exposure of high-consuming European children to melamine
from consumption of chocolate containing contaminated Chinese milk powder exceed the relevant
health-based guidance value, and if so by how much?
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The group first defined an ordinal scale for use in the example, based on the 3-level scale with
qualitative definitions in terms of level of evidence and agreement that is shown earlier in this section.
The group expanded this to a 4-point scale, on the grounds that this avoids a potential tendency for
assessors to pick the central category. For the purpose of illustration, the group retained wording
similar to that of the original categories. The four categories used for the example were as follows:

• Low uncertainty (L): Solid and complete data available; strong evidence in multiple references
with most authors coming to the same conclusions, or considerable and consistent experience
from field observations.

• Low to medium uncertainty (LM): Moderate amount of data available; evidence provided in
moderate number of references; moderate agreement between authors or experts, or
moderate evidence from field observations, or solid and complete data available from other
species which can be extrapolated to the species being considered.

• Medium to high uncertainty (MH): Some or only incomplete data available; evidence provided
in small number of references; authors’ or experts’ conclusions vary, or limited evidence from
field observations, or moderate data available from other species which can be extrapolated to
the species being considered.

• High uncertainty (H): Scarce or no data available; evidence provided in unpublished
(unverified) reports, or few observations and personal communications, and/or authors’/or
experts’ conclusions vary considerably.

The group members were asked to use the above scale to assess three selected sources of
uncertainty (content of melamine in milk powder, Chinese chocolate consumption of European children
and appropriate health guidance value for melamine), by expert judgement, and also to assess the
combined impact of these three sources of uncertainty on the uncertainty of the assessment
conclusion. The evaluation was conducted in two rounds, with the scores from the first round being
collated on-screen and discussed before the second round. This allowed assessors to adjust their
scores in the light of the discussion, if they wished. The results are shown in Table B.3. If it was
desired to arrive at a ‘group’ evaluation of uncertainty, this could be done either by seeking a
consensus view by discussion, or by ‘enveloping’ the range of categories assigned for each source of
uncertainty in the second round. In this example, the latter option would result in evaluations of
LM/MH, MH and MH/H for the three individual sources of uncertainty and MH for the combined
uncertainty in the second round.

Strengths

1) Guidelines exist and the method is already used by certain EFSA Panels.
2) Structured approach to rating uncertainties which forces assessors to discuss and agree the

ratings (what is meant by, e.g. low, medium and high).
3) Ordinal expressions for sources of uncertainty that are not individually quantified may

provide a useful summary to inform quantitative expert judgements about the overall
uncertainty of the assessment conclusion, and to help document the reasoning behind
them.

Table B.3: Example of the use of an ordinal scale (defined in the text above) to evaluate three
sources of uncertainty affecting the melamine example assessment

Assessor
Hazard
characterisation
(TDI)

Concentration of
melamine in
milk powder

Consumption of
Chinese chocolate

Combined

1 LM/LM MH/MH H/MH MH/MH

2 LM/LM MH/MH H/H MH/MH
3 MH/LM LM/MH MH/MH MH/MH

4 H/MH LM/MH MH/MH MH/MH
5 H/MH H/MH MH/MH MH/MH

6 LM/LM MH/MH MH/MH LM/MH

7 MH/LM MH/MH MH/H MH/MH

Pairs of scores (e.g. H/MH) show the first and second rounds of assessment, respectively.
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Weaknesses and possible approaches to reduce them

1) Ordinal categories without definitions or with qualitative definitions are subject to linguistic
ambiguity, and will be interpreted in different ways by different people. This can partly be
avoided by the use of ordinal categories with quantitative definitions such as the IPCC scale
for likelihood (Mastrandrea et al., 2010).

2) Ordinal categories with qualitative definitions are sometimes labelled with numbers rather
than words. This increases the chance that they will be interpreted as expressing a
quantitative definition of the degree of uncertainty, which is invalid.

3) Statistical approaches are sometimes used to combine and summate numerical ratings of
uncertainty made on an ordinal scale (e.g. mean and variance), for different experts or
different sources of uncertainty or both, but this is not valid. Use of the mode, median and
percentiles may be appropriate, but are better applied to verbal category descriptors (e.g.
the modal uncertainty category is ‘high’) to avoid invalid interpretation (see preceding
point).

4) Although it is possible to devise rules or calculations for combining ordinal measures of
uncertainty or propagating them through an assessment, there is no valid theoretical basis
for this.

5) Ordinal scales are often defined in terms of evidence and level of agreement: these are
measures of evidence and only an indirect indication of degree of uncertainty. Therefore,
interpreting such a scale as a measure of uncertainty is likely to be incomplete and
misleading.

6) Ordinal scales defined in terms of confidence are more directly related to uncertainty, but
generally lack a clear interpretation in terms of the range and probability of different
answers.

7) Use of three categories in an ordinal scale might lead to a bias towards assigning the middle
category. This can be avoided by using four categories.

Assessment against evaluation criteria

The use of ordinal scales for evaluating uncertainty is assessed against the Scientific Committee’s
criteria in Table B.4. The evaluation is based on ordinal scales with qualitative definitions, since a scale
with quantitative definitions is no longer ordinal and is closer to an interval approach (see Annex B.1).
For some criteria, a range of levels are ticked, as the assessment depends on how ordinal scales are
used (with qualitative or quantitative definitions for categories) and where they are applied (to
individual uncertainties or overall uncertainty).

Conclusions

1) Ordinal scales are often defined in terms of the nature, amount, quality and consistency of
evidence or the degree of agreement between experts. When used in this way, they should
be described as scales for evidence or agreement and not as scales for uncertainty, as they
do not describe uncertainty directly. However, they may help to inform subsequent
judgements about the degree of uncertainty.

2) Ordinal scales can also be used to describe the degree of uncertainty, if they are defined in
terms of the range or probability of different answers.

3) Calculations which treat ordinal scales as if they were quantitative are invalid and should not
be used.

4) Ordinal scales provide a useful way of summarising multiple sources of uncertainty to inform
quantitative judgements about their combined impact, e.g. when assessing the combined
effect of uncertainties which are for whatever reason not quantified individually in the
assessment.

References

EFSA, 2006. Guidance of the Scientific Committee on a request from EFSA related to Uncertainties in Dietary
Exposure Assessment. EFSA Journal 438, 1–54.

EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare), 2010. Scientific Opinion on Q Fever. EFSA Journal
2010;8(5):1595, 114 pp. https://doi.org/10.2903/j.efsa.2010.1595

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 117 EFSA Journal 2018;16(1):5122

https://doi.org/10.2903/j.efsa.2010.1595


EFSA PLH Panel (EFSA Panel on Plant Health), 2013. Scientific Opinion on the risks to plant health posed by
Bemisia tabaci species complex and viruses it transmits for the EU territory. EFSA Journal 2013;11(4):3162,
302 pp. https://doi.org/10.2903/j.efsa.2013.3162

EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015.
Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: Part I
– Exposure assessment. EFSA Journal 2015;13(1):3978, 396 pp. https://doi.org/10.2903/j.efsa.2015.3978

Mastrandrea MD, Field CB, Stocker TF, Edenhofer O, Ebi KL, Frame DJ, Held H, Kriegler E, Mach KJ, Matschoss PR,
Plattner G-K, Yohe GW, and Zwiers FW, 2010. Guidance Note for Lead Authors of the IPCC Fifth Assessment
Report on Consistent Treatment of Uncertainties. Intergovernmental Panel on Climate Change (IPCC). Available
at: http://www.ipcc.ch

Stevens SS, 1946. On the Theory of Scales of Measurement, Science 7 June 1946: 103 (2684), 677–680. https://doi.
org/10.1126/science.103.2684.677

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 118 EFSA Journal 2018;16(1):5122

https://doi.org/10.2903/j.efsa.2013.3162
https://doi.org/10.2903/j.efsa.2015.3978
http://www.ipcc.ch
https://doi.org/10.1126/science.103.2684.677
https://doi.org/10.1126/science.103.2684.677


Table B.4: Assessment of Ordinal scales with qualitative definitions for expression of uncertainty (when applied well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and variability

Meaning
of output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of process
and reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread
in practice

Can be
used with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty and
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines,
or well
established
in practice
or literature

Training
course
needed

Weeks Some
aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty and
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.3. Matrices for confidence and uncertainty
Purpose, origin and principal features

‘Risk matrices’ are widely used as a tool for combining ordinal scales for different aspects of risk
(e.g. probability and severity) into an ordinal scale for level of risk. Matrices have also been proposed
by a number of authors as a means of combining two or more ordinal scales representing different
sources or types of confidence or uncertainty into a third scale representing a combined measure of
confidence or uncertainty. The matrix defines what level of the output scale should be assigned for
each combination of the two input scales. Ordinal scales themselves are discussed in more detail in
Annex B.2; here the focus is on the use of matrices to combine them.

An example of a matrix used to combine two ordinal scales is provided by Figure B.1, used by the
Intergovernmental Panel on Climate Change (IPCC, Mastrandrea et al., 2010). The two input scales on
the axes of the matrix relate to different sources of confidence in a conclusion: one scale for amount
and quality of evidence and the other for degree of agreement (the latter refers to agreement across
the scientific community, Kunreuther et al. 2014). These are combined to draw conclusions about the
level of confidence in the conclusion. In this example, the relationship between the input and output
scales is flexible. IPCC state that, for a given combination of evidence and agreement, different
confidence levels could be assigned, but increasing levels of evidence and degrees of agreement are
correlated with increasing confidence (Mastrandrea et al., 2010). They also state that level of
confidence should be expressed using five qualifiers from ‘very low’ to ‘very high’, synthesising the
assessors’ judgements about the validity of findings as determined through evaluation of evidence and
agreement. IPCC also state that confidence cannot necessarily be assigned for all combinations of
evidence and agreement and, in such cases, the assessors should report only the individual
assessments for evidence and agreement.

Searching for ‘uncertainty matrix’ on the internet reveals a substantial number of similar structures
from other areas of application.

Applicability in areas relevant for EFSA

The concept of using a matrix to combine ordinal scales representing different sources or types of
uncertainty is a general one and could, in principle, be applied to any area of EFSA’s work. For
example, in an opinion on cattle welfare (EFSA, 2012), the EFSA Animal Health and Welfare
Panel expressed the degree of uncertainty in their assessments of exposure and probability using two
ordinal scales, and then used a matrix to derive a third ordinal scale for the uncertainty of the resulting
risk (Figure B.2).

Figure B.1: Confidence matrix used by IPCC (Mastrandrea et al., 2010). Confidence increases
towards the top-right corner as suggested by the increasing strength of shading.
Generally, evidence is most robust when there are multiple, consistent independent lines
of high-quality evidence
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Potential contribution to major elements of uncertainty analysis

Elements in uncertainty
analysis

Potential contribution of this approach

Identifying uncertainties Not applicable
Characterising uncertainties Not applicable

Combining uncertainties Can be used to combine ordinal scales for uncertainty in different parts of an
uncertainty analysis, the output expresses the uncertainty of the overall
assessment, but cumbersome for more than two sources and lacks a theoretical
basis (see below).

Prioritising uncertainties The matrix shows how the uncertainties represented by the input scales
contribute to the combined uncertainty represented by the output scale, but does
not identify individual contributions within each input.

Melamine example

The use of an confidence matrix is illustrated here using a modified version of the IPCC matrix
(Mastrandrea et al., 2010), in which each of the two input scales has been expanded from 3 to 4
ordinal categories (Table B.5). Note that, as discussed in Section 5.6 of the main text and in Annex B.2
of this annex on ordinal scales, confidence is only a partial measure of uncertainty: it expresses the
probability of a specified answer but provides no information on the range or probabilities of
alternative answers.

Figure B.2: Example of matrix used for combining two ordinal scales representing uncertainty. In this
example, the two input scales represent uncertainty in different parts of the uncertainty
analysis (uncertainty about exposure to welfare hazards, and uncertainty about the
probability of adverse effects given that exposure occurs) and their combination
expresses the uncertainty of the assessment as a whole

Table B.5: Confidence matrix combining ordinal scales for evidence and agreement, adapted from
Mastrandrea et al. (2010)

Confidence is considered to increase diagonally across the table from bottom left to top right in a graded way (see Figure B.1).
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The example considers the uncertainty of the ratio between the worst-case exposure of the
European children from contaminated chocolate and the TDI for melamine, as assessed in the EFSA
(2008) melamine statement where the reported estimate was 269%. For the example, six assessors
were asked to evaluate the levels Evidence and Agreement supporting the estimate of 269% and then
combine these using Table B.5 to assess level of Confidence on the following scale: ‘very low,’ ‘low,’
‘low to medium,’, ‘medium to high’, ‘high,’ ‘very high’. In doing this, they were invited to make use of
the assessment they had conducted immediately previously using a four-category ordinal scale
reported in Annex B.2, where the categories were defined mainly in terms of evidence and the degree
of agreement could be judged from the variation in scores between assessors. The assessors’
judgements were collected and displayed on screen for discussion, after which the assessors were
given the opportunity to amend their judgements if they wished. The results are shown in Table B.6.
Note that although all the assessors gave identical scores for Evidence and Agreement, their
assessments for Confidence varied. This is possible because, as in the IPCC matrix, the group did not
assign fixed outputs for each cell in their matrix but, instead, assigned the output by expert judgement
informed by the combination of inputs.

Strengths

1) Simplicity and ease of use: if the matrix gives defined outputs for each combination of
inputs (as in Figure B.2), it can be used as a look-up table. If the matrix gives flexible
outputs for each combination of inputs (as in Figure B.1), the user needs to make
judgements about what outputs to assign, but these may be informed and facilitated by the
matrix.

2) Using a matrix (of either type) provides structure for the assessment that should increase
the consistency of the uncertainty analysis and also its transparency (it is easy for others to
see what has been done, although not necessarily the reasons for it).

Weaknesses and possible approaches to reduce them

1) Using matrices becomes increasingly cumbersome when more than two inputs are involved.
2) The output of the matrix will only be useful if it has meaning. Bull and Watt. (2013) have

demonstrated vastly different evaluations of risk matrices by different individuals and
concluded that ‘It appears that risk matrices may be creating no more than an artificial and
even untrustworthy picture of the relative importance of hazards, which may be of little or
no benefit to those trying to manage risk effectively and rationally’. This requires that
unambiguous (preferably quantitative) definitions are provided for the meaning of the
output. Ideally, the meaning of each level of the output scale should be defined in terms of
its implications for the conclusion of the assessment that is being considered. For example,
in the melamine example above, how much higher might the true worst-case exposure be
relative to the relevant health based guidance value, given that confidence in the estimate
has been assessed as being in the range ‘Low to medium’ to ‘Medium to high’?

Table B.6: Evaluation of evidence, agreement and confidence for assessment of the ratio between
the worst-case exposure of the European children to melamine in contaminated
chocolate and the TDI for melamine

Assessor Evidence Agreement Confidence

1 LM H MH

2 LM H MH
3 LM H MH

4 LM H LM
5 LM H LM

6 LM H MH

Range for 6 assessors LM H LM/MH

Key: LM = Low to medium; MH = Medium to high; H = High.

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 122 EFSA Journal 2018;16(1):5122



3) Even when the meaning of the output is defined, its reliability will depend on whether the
matrix combines the inputs in an appropriate way. Therefore, it is essential that the
reasoning for the structure of the matrix should be carefully considered and documented,
and take account of the nature and relative importance of the inputs and how they should
properly be combined to generate the output. Ideally, it should have an appropriate
theoretical basis, e.g. in terms of probability theory. Alternatively, it could be based on
subjective judgements about how the inputs combine to produce a meaningful measure of
the degree of uncertainty. The latter is likely to be less reliable than the former, because of
limitations in human ability to make subjective judgements about probability combinations.
The IPCC state that the relation between the inputs and outputs of their matrix is flexible,
so the user has to judge it case by case.

4) Superficially, a matrix such as that in Figure B.2 could be applied to any problem, which would
be a major strength. However, defining the matrix structure and output scale sufficiently well
to have meaning is likely to limit its applicability to the particular problems and uncertainties
for which it was designed. The example in Figure B.1 is more generally applicable, but the
outputs are not precisely defined and have to be considered by the user, case by case.

5) Even if the matrix structure has a sound basis in probability theory, it will be subject to similar
problems to those demonstrated by Cox (2008) for risk matrices. Cox showed that the ordinal
input scales discretise the underlying continuous quantities in ways that will cause the matrix
outputs to differ, sometimes substantially, from the result that would be obtained by calculation.

6) A matrix does not provide information on the relevant importance of the different sources of
uncertainty affecting each of its inputs. If this is needed it should be used in conjunction
with other methods.

Assessment against evaluation criteria

The use of uncertainty matrices is assessed against the criteria in Table B.7.

Conclusions

1) Matrices with ordinal input and output scales that lack quantitative definitions are
ambiguous and will be interpreted in different ways by different users.

2) Matrices that specify a fixed relation between input and output should not be used unless a
clear justification, based on theory or expert judgement, can be provided for the
relationships involved.

3) Matrices that do not specify a fixed relation between input and output might be regarded as
a guide for expert judgement, reminding the user of the factors that should be considered
when making judgements. However, users may be tempted to apply them as if they
represented fixed rules, leading to inappropriate conclusions.

4) Even when the above issues are avoided, matrices become cumbersome when more than
two sources or aspects of uncertainty are involved, which is usual in EFSA assessment.

The issues in (1–4) above are likely to limit the usefulness of matrices as a tool for assessing
uncertainty in EFSA’s work.
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Table B.7: Assessment of Uncertainty matrices (when applied well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and variability

Meaning of
output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty &
variability.
quantified
separately

Range and
probability of
possible
answers

All aspects of process
and reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread
in practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty and
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well
established in
practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty and
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.4. NUSAP
Purpose, origin and principal features

The purpose of this method is to provide a structured approach to deal with uncertainties in model-
based health risk assessments. The NUSAP acronym stands for: Numeral, Unit, Spread, Assessment
and Pedigree. The first three dimensions are related to commonly applied quantitative approaches to
uncertainty, expressed in numbers (N) with appropriate units (U) and a measure of spread (S) such as
a range or standard deviation. Methods to address spread include statistical methods, sensitivity
analysis and expert elicitation. The last two dimensions are specific to NUSAP and are related to
aspects of uncertainty than can less readily be analysed by quantitative methods. Assessment (A)
expresses qualitative expert judgements about the quality of the information used in the model by
applying a Pedigree (P) matrix, implying a multicriteria evaluation of the process by which the
information was produced.

The method was first proposed by Funtowicz and Ravetz (1993) and further developed by van der
Sluijs et al. (2005) to evaluate the knowledge base in model-based assessment and foresight studies
of complex environmental problems. Such assessments are often characterised by uncertainties in the
knowledge base, differences in framing the problem, and high stakes involved in decisions based on
these assessments, often with conflicting views between different stakeholders.

The principal features of this method are to consider the background history by which the
information was produced, in combination with the underpinning and scientific status of the
information. Qualitative judgements about uncertainties are supported by so-called pedigree matrices,
which are then translated in a numerical, ordinal scale. Typically, a pedigree matrix has four
dimensions for assessing the strength of parameters or assumptions, and one dimension for their
influence on results (e.g. Table B.8).

Table B.8: Example of NUSAP pedigree matrix for scoring parameter strength and influence.

Strength Effect

Score Proxy Empirical basis
Methodological
rigor

Validation
Influence on
results

4 Exact measure of
the desired quantity
(e.g. from the same
geographical area)

Large sample,
direct
measurements
(recent data,
controlled
experiments)

Best available
practice (accredited
method for
sampling/diagnostic
test)

Compared with
independent
measurements of the
same variable (long
domain, rigorous
correction of errors)

3 Good fit or measure
(e.g. from another
but representative
area)

Small sample,
direct
measurements
(less recent data,
uncontrolled
experiments, low
non-response)

Reliable method
(common within
established
discipline)

Compared with
independent
measurements of
closely related variable
(shorter time periods)

No or negligible
impact on the
results

2 Well correlated
(e.g. large
geographical
differences, less
representative)

Very small
sample, modelled/
derived data
(indirect
measurements,
structured expert
opinion)

Acceptable method
(limited consensus
on reliability)

Compared with
measurements of non-
independent variable
(proxy variable, limited
domain)

Little impact on
the results

1 Weak correlation
(e.g. very large
geographical
differences, low
representativity)

One expert
opinion, rule of
thumb

Preliminary method
(unknown
reliability)

Weak, indirect
validation

Moderate impact
on the end
result

0 Not clearly
correlated

Crude speculation No discernible rigor No validation Important
impact on the
end result
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The NUSAP output is a score per uncertainty source for the scientific strength of the information
and its influence on the model output. In NUSAP, scientific strength expresses the methodological and
epistemological limitations of the underlying knowledge base (van der Sluijs et al., 2005). In
comparison to using single ordinal scales, the multicriteria evaluation provides a more detailed and
formalised description of uncertainty. The median scores over all experts for the strength and influence
are combined for all uncertainty sources in a diagnostic diagram, which will help to identify the key
uncertainties in the assessment, i.e. those sources with a low strength and a large influence on the
model output. The NUSAP approach therefore can be used to evaluate uncertainties that cannot be
quantified, but can also be useful in identifying the most important uncertainties for further
quantitative evaluation and/or additional work to strengthen the evidence base of the assessment.
Pedigree matrices have been developed to evaluate model parameters and input data as well as
assumptions. The method is flexible, in that customised scales can be developed.

The NUSAP method is typically applied in a workshop involving multiple experts with various
backgrounds in the subject matter of the assessment. The workshop would build on previous efforts to
identify and characterise uncertainties using an appropriate typology. An introductory session would
include presentations on the NUSAP methodology, the risk assessment to be evaluated and an open
discussion about the identified uncertainties, followed by an introduction to the evaluation
methodology and a discussion about the scoring methods. For each assumption, all experts would then
be asked to write down their scores on a score-card and to also describe their rationale. Scores and
rationales are then reported by all experts to the group and are the basis for a discussion. Experts are
then given the opportunity to adjust their scores and invited to submit their results. Computer-assisted
tools may help to show the key findings of the workshop directly after completing scoring of all
uncertainties. The group discussions and iterative process are an important characteristic of the NUSAP
process that helps to create a better and collective understanding of uncertainties. However, the
method can also be applied by a small number of experts, see e.g. Bouwknegt et al. (2014) in which
only two experts provided scores. Data analysis after the workshop involves developing diagnostic
diagrams and possibly other data analysis. Also in this respect, the method is flexible and can be
adapted to the needs of the risk assessment body.

Applicability in areas relevant for EFSA

The NUSAP methodology has been developed mainly in the environmental sciences, including
environmental health risk assessments but is in principle applicable in of EFSA’s work. Published
examples include an assessment of uncertainties in a Quantitative Microbial Risk Assessment (QMRA)
models for Salmonella in the pork chain (Boone et al., 2009) and comparing QMRA-based and
epidemiologic estimates of campylobacteriosis in the Netherlands (Bouwknegt et al., 2014). The
method has also been applied in two outsourced projects to support BIOHAZ opinions (Vose
Consulting, 2010; Vose Consulting, 2011).

The EFSA BIOHAZ Panel has performed a pilot study with the NUSAP methodology in the context of
a Scientific Opinion on risk ranking (EFSA, 2012a). The Panel concluded that ‘the combination of
uncertainty typology and NUSAP helped to systematically identify and evaluate the uncertainty sources
related to model outputs and to assess their impact on the end results’ and that ‘applying the NUSAP
method requires training of the experts involved to overcome ambiguity of language in the pedigree
scales’. The Panel recommended that ‘a framework encompassing uncertainty typology and evaluation
(for example, by NUSAP) should be part of each risk ranking process to formalise discussions on
uncertainties, considering practicality and feasibility aspects’.

Potential contribution to major elements of uncertainty analysis

Elements in uncertainty
analysis

Potential contribution of this approach

Identifying uncertainties Indirectly, by offering a standardised template
Characterising uncertainties Yes, by standardised pedigree matrices and diagnostic diagrams, qualitatively or

using ordinal numbers

Combining uncertainties No

Prioritising uncertainties Diagnostic diagrams show the strength and influence of different assumptions,
which can be used to judge the relative impact of different sources of
uncertainty.
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Melamine example

The NUSAP method was applied to evaluate three uncertain parameters in the melamine example.
These were: the relevant health-based guidance value for melamine (referred to below as parameter
1), Chinese chocolate consumption (parameter 2) and melamine concentration in milk powder
(parameter 3). The question of interest was defined as: does the possible worst-case exposure of
high-consuming European children to melamine from consumption of chocolate containing
contaminated Chinese milk powder exceed the relevant health-based guidance value, and if so by how
much?

When considering the results, it must be borne in mind that the main goal of this exercise was to
illustrate the methodology, and not to provide a full evaluation of all uncertainties in the melamine risk
assessment. Time to prepare and execute the NUSAP workshop was limited, and the results must be
considered indicative only. The strength of the three parameters is shown in Figure B.3. According to
the experts’ judgements, the median strength of the parameter health-based guidance value was
higher than that of melamine concentration in milk powder, which was higher than that for Chinese
chocolate consumption. 50% of all scores for the latter two parameters were between 1 and 2. In
particular, the strength of the parameter Chinese chocolate consumption was judged low on proxy and
validation (both median scores of 1). The strength and influence diagram (Figure B.4) shows that
according to the experts, among the two most uncertain parameters, the consumption of chocolate
was most influential on the assessment result.

Considering the group’s experience, there needs to be a common understanding of interpretation of
the risk management question before the NUSAP session starts. The four dimensions to evaluate
parameter strength reflected different aspects of the knowledge base, but were also related and
personal interpretations of the exact nature of these dimensions and their scales differed between
group members. Therefore, precise definitions and training of experts to understand these definitions
are prerequisites to a standardised application of the NUSAP methodology. The influence of a
parameter on the risk assessment conclusion can be evaluated by only considering the impact of
changes in the parameter value on the risk assessment conclusion (comparable to local sensitivity
analysis, see Annex B.17). Alternatively, the plausible range over which a parameter may vary and
parameter interactions can also be taken into account (comparable to global sensitivity analysis).
These two interpretations may lead to different conclusions about parameter influence, and experts
need to agree on the interpretation before scoring.

Figure B.3: Strength of the information for parameter estimation in the melamine risk assessment.
The diamond shows the median of scores of all seven experts on all four dimensions, the
black box the interquartile range and the error bars the range of all scores. Colour
shading ranges from green to reflect high parameter strength to red to reflect low
parameter strength
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Strengths

1) Pedigree criteria encourage systematic and consistent consideration of different aspects of
uncertainty for each element of an assessment, providing a relative measure of its scientific
strength.

2) Can inform the prioritisation of uncertain elements in the risk assessment by combining the
assessment of scientific strengths with an evaluation of the influence of each element on the
assessment conclusion using expert judgement.

3) As for other structured judgement approaches, when used in a workshop format NUSAP
provides a framework for involving additional experts in an iterative process which should
improve the quality of the uncertainty analysis.

4) The NUSAP method could in principle be applied in any area of EFSA’s work provided that
training is given.

Weaknesses and how to address them

1) The pedigree criteria may be interpreted in different ways by different participants due to
ambiguity of the verbal definitions.

2) The current pedigree matrices may not be fully applicable to EFSA’s work. However, users
are free to adapt it to their own purposes.

3) Applying the NUSAP method is more complex than working with ordinal scales.
4) The NUSAP method does not provide an evaluation of the combined effect of multiple

uncertainties and therefore needs to be used in conjunction with other methods.
5) Combining scores for different criteria and different experts by taking median lacks

theoretical basis and produces an ordinal scale for strengths without defined meaning. They
can nevertheless be used as relative measure of strength of evidence.

6) Holding workshops to apply the NUSAP method has costs and time implications. In principle,
this could be reduced (but not eliminated) by using pedigree matrices and diagnostic
diagrams within a normal Working Group procedure.

Assessment against evaluation criteria

This method is assessed against the criteria in Table B.9.

Conclusions

1) The NUSAP method can be used as a qualitative approach to help prioritise uncertain
elements in risk assessment for quantitative analysis by other methods.

2) NUSAP may be especially useful as a structured approach for qualitative characterisation of
uncertainties which are not included in quantitative assessment.

Low

High

hgiHwoL

Figure B.4: Strength and influence diagram for parameter uncertainty in the melamine risk
assessment. The diamond shows the median of scores of all seven experts on all four
dimensions for strength and the median score of all seven experts for influence. Colour
shading ranges from green to reflect high parameter strength and low influence to red to
reflect low parameter strength and high influence
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3) NUSAP practitioners encourage its use in a structured workshop format with groups of
experts. As for other formal approaches, this requires additional time and resources but
increases the chance of detecting relevant uncertainties and provides a more considered
characterisation of their impact on the assessment.

4) The NUSAP method should be further evaluated in a series of case studies for EFSA.
5) A common terminology should be developed for use in NUSAP assessments, which is

understood by all involved.
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Table B.9: Assessment of NUSAP approach (when applied well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
& variability

Meaning of
output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty
& variability
quantified
separately

Range and
probability of
possible
answers

All aspects of process
and reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread
in practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty &
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines,
or well
established
in practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty &
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
uncertainty &
variability

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.5. Uncertainty tables for quantities
Purpose, origin and principal features

An EFSA guidance document on dealing with uncertainty in exposure assessment (EFSA, 2006)
suggested using a tabular approach to identify and qualitatively evaluate uncertainties. Three types of
tables were proposed, serving complementary functions in the assessment. The first two tables were
designed to help assessors identify uncertainties in different parts of exposure assessment. The third
table provided a template for assessors to evaluate the individual and combined impacts of the
identified uncertainties on their assessment, using plus and minus symbols to indicate the direction
and magnitude of the impacts. This section is focussed on this last type of table.

The original purpose of the table was threefold: to provide an initial qualitative evaluation of the
uncertainty to assist in deciding whether a quantitative assessment is needed; to assist in targeting
quantitative assessment (when needed) on the most important sources of uncertainty; and to provide
a qualitative assessment of those uncertainties that remain unquantified. In practice, it has mostly
been applied for the latter purpose, at the end of the assessment.

The approach is very general in nature and can be applied to uncertainties affecting any type of
quantitative estimate. Therefore, although it was originally designed for evaluating uncertainties in
human dietary exposure assessment, it is equally applicable to quantitative estimates in any other area
of scientific assessment. It is less suitable for uncertainties affecting categorical questions, for which
different tabular approaches have been devised (see Annex B.6).

The principal features of the method are the listing of uncertainties and evaluation of their
individual and combined impacts on the quantitative estimate in question, presented in a table with
two or more columns. The impacts are usually expressed using plus and minus symbols, indicating the
direction and, in some cases, the magnitude of the impact. In early examples of the approach, the
meaning of the plus and minus symbols was described qualitatively (e.g. small, medium, large
impacts), but in some later examples a quantitative scale is provided (see below). The most up-to-date
detailed description of the approach is included in a paper by Edler et al. (2013, their Section 4.2).

Applicability in areas relevant for EFSA

EFSA (2006, 2007) introduced the tabular approach and provided an example, but no detailed
guidance. The most frequent user has been the CONTAM Panel, which has used a version of the third
type of table in almost all of their Opinions since 2008, and extended it to include uncertainties
affecting hazard and risk as well as exposure. CONTAM’s version of the table lists the uncertainties
affecting their assessment, and indicates the direction of the impact of each individual uncertainty on
the assessment conclusion: + for uncertainties that cause overestimation of exposure or risk, and – for
those that cause underestimation. CONTAM initially attempted to indicate the magnitude of the
uncertainty by using one, two or three + or – signs, but ultimately decided to use only one + or �, or a
combination of both (+/�), due to the difficulty in assigning magnitude. CONTAM provide a qualitative
(verbal) evaluation of the combined impact of the uncertainties in text accompanying the table.

The ANS Panel have for some years used uncertainty tables similar to those of EFSA (2006, 2007)
and the CONTAM Panel and the Scientific Committee have included an uncertainty table in one of their
Opinions (EFSA, 2014a). Variants of the tabular approach have been used in Opinions and Guidance
Documents by PPR Panel (e.g. EFSA, 2007, 2008, 2012), a CEF Panel Opinion on bisphenol A (EFSA,
2015) and an Opinion of the PLH Panel (EFSA, 2014b). Some of these included scales defining
quantitative ranges for the + and – symbols (see example below). In some cases, the meaning of the
+ and – symbols was reversed (+ meaning the real exposure or risk may be higher than the estimate,
rather than that the estimate is an overestimate).

The EFSA (2006, 2007) approach has been taken up in modified form by other EU risk assessment
authorities. The ECHA (2008) guidance on uncertainty analysis includes two types of uncertainty table,
adapted from those in EFSA (2006, 2007). One type of table is used for identifying uncertainties in
exposure and effect assessment, while the other is used for evaluating the individual and combined
impact of the identified uncertainties on exposure, hazard and risk. The latter table uses + symbols to
indicate over-estimation and – for underestimation. One, two or three symbols indicate low, moderate
and high magnitude, respectively. Similarly, a SCENIHR (2012) memorandum on weight of evidence
includes a table for evaluating uncertainty that is closely related to the EFSA (2006, 2007) tables.
Aspects of uncertainty are listed together with evaluations of their nature, their magnitude and
direction, and their importance for the risk assessment.
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Edler et al. (2013) describe the application of uncertainty tables for evaluating unquantified those
uncertainties that are not quantified by the BMDL in benchmark dose modelling for genotoxic
carcinogens. They use uncertainty tables similar to those of EFSA (2006, 2007), with + and – symbols
defined on a quantitative scale and expressing how much higher or lower the BMDL would be, if
adjusted to take account of the unquantified uncertainties that have not been quantified. Edler et al.
(2013) provide step-by-step guidance on both forms of uncertainty table. Their instructions emphasise
the importance of guarding against cognitive biases that tend to affect expert judgement, drawing on
ideas from expert elicitation methodology. Annexes to the paper include case studies for the dye
Sudan 1 and for PhIP, which is produced during the grilling and frying of meat and fish.

Potential contribution to major elements of uncertainty analysis

Potential contribution of the uncertainty tables approach described in this section to major elements
of uncertainty analysis.

Elements in uncertainty analysis Potential contribution of this approach

Identifying uncertainties Not applicable (provides a framework within which identified uncertainties
may be summarised)

Characterising uncertainties Ordinal scale for the impact of each uncertainty on the assessment
output, in some cases with quantitative definitions for the scale

Combining uncertainties May be assessed by expert judgement and expressed using the same
scale as for characterising uncertainties

Prioritising uncertainties The relative contribution of individual uncertainties can be assessed by
comparing their evaluations in the uncertainty table

Melamine example

Members of the Working Group used a modified form of uncertainty table to assess uncertainties
affecting three parameters in the example assessment of melamine, based on the context described in
Annex B.2. The group evaluated the individual and combined impacts of these parameters on the
uncertainty of the following question: does the possible worst-case exposure of high-consuming
European children to melamine from consumption of chocolate containing contaminated Chinese milk
powder exceed the relevant health-based guidance value, and if so by how much?

The group evaluated the uncertainties on a scale that was previously used in an opinion on BPA
(EFSA, 2015). This scale uses plus and minus symbols with quantitative definitions in terms of how
much lower or higher a real value might plausibly be compared to its estimate, as shown in Figure B.5.
Note that the size of the intervals can be adjusted for different assessments, depending on the scale
of uncertainties that are present (Edler et al., 2013).

The group members were asked to assess the uncertainty of each individual parameter, and also to
assess the combined impact of all three parameters on the uncertainty of the assessment output (ratio
of exposure to TDI). The evaluation was conducted in two rounds, with the results from the first round
being collated on-screen and discussed before the second round. This allowed assessors to adjust their
evaluations in the light of the discussion, if they wished. The results of the second round are shown in
Table B.10. The third column in Table B.10 shows the range of evaluations given by the assessors for
the extent to which the real value of each individual parameter could be lower than its estimate, while
the fourth column shows the range of evaluations for how much the real value of the assessment
output (ratio of exposure to TDI) could exceed its estimate based on the uncertainty of that parameter

• + ++ +++−− −− − −

+/-20%x 1/2 x5x25/1x x0101/1x

Real value higher than estimate
(underestimation)

Real value lower than estimate
(overestimation)

++++− − − −

>10x< x 1/10

24

Figure B.5: Scale used for assessing uncertainty in example evaluation (Table B.10)
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alone. In the bottom row, the fourth column shows the range of evaluations for how much the real
value of the assessment output (ratio of exposure to TDI) could exceed its estimate based on the
uncertainty of all three parameters considered together. Various methods could be considered for
aggregating the judgements of the individual experts. In this example, the overall range spans the set
of ranges provided by the individual assessors, and thus expresses the range of values that were
considered plausible by one or more of the assessors.

One assessor was unable to quantify the uncertainty of the TDI in either direction, and one was
able to quantify the upwards uncertainty but not the downwards uncertainty. These assessments are
shown in the Table B.10 as NQ (not quantified). The results affected by this show first the range
including all assessors, and then the range excluding the ‘NQ’ assessments.

The overall range for the output of the assessment (bottom right corner of Table B.10) can be
converted to numeric form, using the scale in Figure B.5 (note this conversion uses the full width of
each interval on the scale and may overstate the assessors’ actual uncertainty). One expert considered
that it was not possible to quantify how much higher the real ratio of exposure to TDI could be
compared to the EFSA (2008) estimate of 269%, because they were not able to quantify how different
the appropriate TDI could be than that used by EFSA (2008) based on the information available in the
EFSA statement. The range of uncertainty for the remaining experts was from more than 10x below
the estimated ratio to 5x above it, i.e. the real worst-case exposure for EU children eating
contaminated chocolate could be below 30% of the TDI at the lower bound (or even 0 if there was no
contamination), and about 13x the TDI at the upper bound (rounding to avoid over-precision).

In this example, the approach was modified to be feasible within the time reserved for it (1–2
hours). This illustrates how it can be adapted for situations when time is short. If more time were
available, it would be good practice to document briefly (in the table or in accompanying text) the
uncertainties that were considered for each parameter and the reasoning for the evaluation of their
impact. If a parameter was affected by several different uncertainties, it might be useful to evaluate
them separately and show them in separate rows of the table. In addition, it might be desirable for the
assessors to discuss the reasons for differences between their individual ranges, and if appropriate
seek a consensus on a joint range (which might be narrower than the range enveloping the individual
judgements).

One assessor preferred to express their judgement of the uncertainty for each parameter as a
quantitative range and then derive a range for the overall uncertainty by calculation: a form of interval
analysis (see Annex B.7). Interval analysis can also be applied when using the +/� scale, by
converting the scores to numeric form for calculation, as was done by EFSA (2015a,b,c) when
combining evaluations of uncertainty for different sources of internal BPA exposure. These examples
suggest that a tabular format similar to uncertainty tables could be used to facilitate and document
judgements on ranges for interval analysis.

Strengths

1) The uncertainty table makes transparent many subjective judgements that are unavoidably
present in risk assessment, thus improving the quality of group discussion and the reliability
of the resulting estimates, and making the judgements open to challenge by others.

Table B.10: Example of uncertainty table for the melamine case study

Parameter
Value in
EFSA (2008)
assessment

Range for uncertainty
of individual
parameters

Range for uncertainty
of assessment
output

TDI 0.5mg/kg bw per day NQ/NQ or ���/++ NQ/NQ or ��/+++

Highest concentration of
melamine in milk powder

2,563 mg/kg ���/+ ���/+

Highest consumption of Chinese
chocolate by children

0.044 kg ���/++ ���/++

Assessment output: ratio of the
calculated exposure to the TDI

269% ����/NQ or ����/++

NQ = not quantified. See Figure B.5 for definition of scale for plus and minus symbols. See text for further explanation. Note that
the results shown here differ from those in Annexes B.8 and B.9, as the latter were constructed as hypothetical examples and
not elicited from experts.
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2) Concise and structured summary of uncertainties facilitates evaluation of their combined
impact by the assessor, even though not based on theory.

3) The approach can be applied to any area of scientific assessment.
4) The approach can be applied to all types of uncertainty, including ambiguity and qualitative

issues such as study quality. Anything that the assessors identify as a factor or
consideration that might alter their answer to the assessment question can be entered in
the table.

5) The approach facilitates the identification of unquantifiable uncertainties, which can be
recorded in the table (a question mark or NQ for not quantifiable in the right hand
column).

6) The tabular format is highly flexible. It can be expanded when useful to document the
evaluation more fully, or abbreviated when time is short.

7) Using a quantitative scale reduces the ambiguity of purely score-based or narrative
approaches. The symbols for the combined assessment can be converted into an
approximate, quantitative uncertainty interval for use in interval analysis and to facilitate
interpretation by risk managers.

8) The combined assessment helps to inform decision-making, specifically whether the
combined effect of uncertainties is clearly too small to change the decision, or whether
more refined risk or uncertainty analysis is needed. But it may also suggest a false
precision.

9) The main contributors to overall uncertainty are identified in a structured way, enabling
their prioritisation for more quantitative assessment when required (e.g. sensitivity analysis
or probabilistic modelling).

10) Tabular format provides a concise summary of the evidence and reasoning behind the
assessment of overall uncertainty, increasing transparency for the reader when compared
to scoring systems and narrative discussion of uncertainties.

Weaknesses and possible solutions to them

1) For some people, the approach does not seem to be immediately intuitive. Therefore,
training should be provided.

2) Some users find it difficult to assess the magnitude of uncertainties. This can be mitigated
by providing training similar to that which is normally provided to experts taking part in
formal elicitation procedures (EFSA, 2014a,bc).

3) People are bad at making judgements about how uncertainties combine. For this reason, it
is better for users to assess plausible intervals for the individual uncertainties and derive
their impacts on the assessment output by interval analysis (Annex B.7).

4) The scales used to define the + and � symbols can be prone to misunderstanding.
Therefore, they should be designed and communicated carefully. An alternative is for the
assessors to express the magnitudes of the uncertainties as numerical intervals. This is also
beneficial when assessors are able to judge the uncertainty more finely than provided for in
the scale.

5) Transparency will be impaired if insufficient information is given about the reasoning for the
judgements in the table, or if readers cannot easily locate supporting information provided
outside the table. This can be addressed by providing more information within the table, if
necessary by adding extra columns, and by including cross-references in the table to
additional detail in accompanying text and ensuring that this is clearly signposted.

6) The approach relies on expert judgement, which is subject to various psychological biases
(see Section 5.9). Techniques from formal expert elicitation methodology can be used to
improve the robustness of the judgements that are made; optionally, fully formal expert
elicitation can be used to evaluate the overall uncertainty and/or the contribution of the
most important individual uncertainties (methods described in Annexes B.8 and B.9, with
hypothetical examples).

Assessment against evaluation criteria

This method is assessed against the evaluation criteria in Table B.11.
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Conclusions

1) This method is applicable to all types of uncertainty affecting quantities of interest, in all
areas of scientific assessment. It is flexible and can be adapted to fit within the time
available, including urgent situations.

2) The method is a framework for documenting expert judgements and making them
transparent. It is generally used for semi-formal expert judgements, but formal techniques
(see Annex B.9) could be incorporated where appropriate, e.g. when the uncertainties
considered are critical to decision-making.

3) The method uses expert judgement to combine multiple uncertainties. The results of this
will be less reliable than calculation, it would be better to use uncertainty tables as a
technique for facilitating and documenting expert judgement of quantitative ranges for
combination by interval analysis. However, uncertainty tables using +/� symbols are a
useful option for two important purposes: the need for an initial prioritisation of
uncertainties, and to inform probability judgements in the characterisation of overall
uncertainty (see Section 14 of main document).
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Table B.11: Assessment of Uncertainty tables for quantities (when applied well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
& variability

Meaning of
output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty
& variability
quantified
separately

Range and
probability of
possible
answers

All aspects of process
and reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread in
practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty &
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well
established in
practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty &
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
uncertainty &
variability

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.6. Uncertainty tables for questions
Purpose, origin and principal features

The purpose of this method is to provide a structured approach for addressing uncertainty in
weight of evidence assessment of a question of interest and expressing the uncertainty of the
conclusion. Weight of evidence as an overall process will be considered in more detail in a separate
mandate.7

The method described here was developed by Hart et al. (2010), who noted that uncertainty tables
of the type described by EFSA (2006, 2007) address uncertainty in quantitative estimates (e.g.
exposure, reference dose) and are not well suited to addressing uncertainty in categorical questions,
which involve choices between two or more categories.

The principal features of this method are the use of a tabular approach to summarise the
assessment of multiple lines of evidence and their associated uncertainties, and the expression of
conclusions in terms of the probability of alternative categories. The tabular approach provides a
structured framework, which is intended to help the assessors develop the assessment and improve its
transparency. The expression of conclusions as probabilities is intended to avoid the ambiguity of
narrative forms, and also opens up the possibility of using probability theory to help form overall
conclusions when an assessment comprises a series of linked categorical and/or quantitative questions.

The main steps of the approach can be summarised as follows:

1) Define clearly the question(s) to be answered.
2) Identify and describe relevant lines of evidence (LoE).
3) Organise the LoE into a logical sequence to address the question of interest.
4) Identify their strengths, weaknesses and uncertainties.
5) Evaluate the weight of each LoE and its contribution to answering the question.
6) Take account of any prior knowledge about the question.
7) Make an overall judgement about the balance of evidence, guarding against cognitive biases

associated with expert judgement, and use formal elicitation methods if appropriate.
8) Express the conclusion as a probability or range of probabilities, if possible, and explain the

reasoning that led to it.

Applicability in areas relevant for EFSA

The approach is, in principle, applicable to any two-category question in any area of EFSA’s work. It
would be possible to adapt it for questions with multiple categories (e.g. choices between 3 or more
modes of action), although this would be more complex. It provides a more structured approach to
weight of evidence than the traditional approach of a reasoned argument in narrative text, and a less
ambiguous way of expressing the conclusion. However, it is intended to complement those approaches
rather than completely replace them, because it will always be desirable to accompany the tabular
summary of the assessment with a detailed narrative description of the evidence and reasoning, and it
may aid communication to accompany numerical probabilities with narrative statements of the
conclusion.

The approach has so far been used in only a few assessments. The original research report
contains a simplified example of hazard identification for caffeine (Hart et al., 2010). Edler et al.
(2014) provide step-by-step instructions for applying the method to assess the probability that
chemicals are genotoxic carcinogens, and detailed case studies for Sudan 1 and PhIP. It was used for
hazard identification in the EFSA (2015a,b,c) Opinion on bisphenol A (BPA), assessing the probability
that BPA has the capability to cause specific types of effects in animals based on evidence from a wide
variety of studies. In the same Opinion, probability was also used to express judgements about the
relevance to humans of effects seen animals and whether, if they occurred in humans, they would be
adverse. Evidence for the judgements about relevance and adversity were discussed in the text of the
opinion, rather than by tabulated lines of evidence.

7 ‘Guidance on the use of the Weight of Evidence Approach in Scientific Assessments’, EFSA-Q-2015-00007.
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Potential contribution to major elements of uncertainty analysis

Elements in uncertainty
analysis

Potential contribution of this approach

Identifying uncertainties Structured approach promotes identification of uncertainties affecting individual
lines of evidence and overall conclusion

Characterising uncertainties Concise narrative description of each line of evidence including strengths,
weaknesses and uncertainties. Strengths, weaknesses and uncertainties of
individual lines of evidence and their impact on the conclusion are assessed by
expert judgement

Combining uncertainties The combined impact of all the lines of evidence and their uncertainties is
assessed by expert judgement and expressed as a probability or range of
probabilities for a positive conclusion

Prioritising uncertainties The relative importance of uncertainties affecting individual lines of evidence can
be assessed by considering the weaknesses identified in the table. The ordinal
scale for influence indicates what each line of evidence contributes to the balance
of probability (uncertainty) for the conclusion

Melamine example

The EFSA (2008) Statement states that ‘the primary target organ for melamine toxicity is the
kidney’. Here, the use of uncertainty tables for categorical questions is illustrated by applying the
approach to summarise the evidence that melamine causes kidney effects. Although the evidence in
this case is rather one-sided, it serves to illustrate the principles of the approach.

The first step is to specify in precise terms the question to be considered. In this case, the question
was defined as follows: does melamine have the capability to cause adverse effects on kidney in
humans? Note that the biological process underlying this is a dose–response relationship, so the
question could alternatively be framed as a quantitative question.

The assessment was carried out by three toxicologists in the Working Group. First, they were asked
to identify the main lines of evidence for assessing the potential for melamine to cause kidney effects,
which were available at the time of the EFSA (2008) statement. Four lines of evidence were identified,
as listed and briefly described in Table B.12. The assessors were then asked to consider the influence
of each line of evidence on their judgement about the answer to the question, and to express this
using a scale of arrow symbols which are defined in Table B.13. Upward arrows indicate an upward
influence on the likelihood that melamine causes kidney effects, and the number of arrows indicates
the strength of the influence. Next, the assessors were asked to make a judgement about the
probability that melamine causes kidney effects, considering all lines of evidence together. They were
asked to express this probability using another scale, defined in Table B.14. The assessors made their
judgements for both influence and probability individually. The judgements were then collected and
displayed on screen for discussion, and the assessors were given the opportunity to adjust their
judgements if they wished. Table B.12 shows the range of judgements between assessors. In this
case, there was little variation between assessors in their assessment of influence, and all three gave
the same conclusion: that it is very likely (probability 90–100%) that melamine has the potential to
cause adverse effects kidney in humans.

Due to the limited time that was set for developing this example, Table B.12 provides only very limited
explanation for the judgements made in assessing individual lines of evidence and the final conclusion.
More explanation should be provided in a real assessment, including an indication of the relevance and
reliability of each line of evidence, and the reasoning for the final conclusion. This may be done either
within the table (adding extra content and/or columns, e.g. Annex C of EFSA, 2015a,b,c), or in
accompanying text. However, more abbreviated formats may sometimes be justified (e.g. in urgent
situations).

The procedure adopted for making judgements in this example may be regarded as semi-formal, in
that a structured approach was used in which experts considered their judgements individually and
then reviewed them after group discussion. Ideally, it would be preferable to use a fully formal expert
elicitation procedure (see Annex B.9), especially for weight of evidence questions that have a large
impact on the assessment conclusion.
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Strengths

1) Promotes a structured approach to weighing multiple lines of evidence and taking account
of their uncertainties, which should help assessors in making their judgements and
potentially lead to better conclusions.

2) Expressing the (uncertainty of the) conclusion in terms of probability avoids the ambiguity of
narrative conclusions, although care is needed to avoid suggesting false precision.

3) Compatible with formal approaches to eliciting expert judgements on the probability of the
conclusion.

4) The judgements involved can be made by formal EKE, which would ideally be preferable.
When judgements are made less formally, the process can still be designed to encourage
assessors to guard against common cognitive biases.

5) Tabular structure is intended to make the evidence and reasoning more accessible,
understandable and transparent for scientific peers, risk managers and stakeholders.

Table B.12: Assessment of evidence and uncertainty for the question: does melamine have the
capability to cause adverse effects on kidney in humans?

Lines of evidence Influence on conclusion

Line of Evidence 1 – animal studiesSame effect on more than one species ↑↑↑
Line of Evidence 2 – information on effects in humansSevere health effect
in humans but unspecified in the EFSA statement

↑/↑↑

Line of Evidence 3 – information on mode of actionInformation on crystal
formation in kidneys. Effect not dependent on metabolism indicating similar
effects are likely in different species

↑/↑↑

Line of Evidence 4 – Evidence of adverse effects in companion
animalsKidney toxicity in cats with crystal formation resulting from
melamine adulterated pet food

↑/↑↑

CONCLUSION (by semi-formal expert judgement, see text) Based on the
consistency from the different lines of evidence

Very likely(90–100% probability)

See Table B.13 for key to symbols and Table B.14 for probability scale. Pairs of symbols separated by a slash (↑/↑↑) represent
variation of judgements between assessors.

Table B.13: Key to scale of symbols used to express the influence of lines of evidence on the
answer to the question in Table B.12

Symbol Influence on probability of positive answer to question

↑↑↑ Strong upward influence on probability

↑↑ Intermediate upward influence on probability
↑ Minor upward influence on probability

● No influence on probability
↓ Minor downward influence on probability

↓↓ Intermediate downward influence on probability
↓↓↓ Strong downward influence on probability

? Unable to evaluate influence on probability

Table B.14: Scale used for expressing the probability of a positive answer to the question
addressed in Table B.12, after Mastrandrea et al. (2010)

Term Probability of outcome

Virtually certain 99–100% probability

Very likely 90–100% probability
Likely 66–100% probability

As likely as not 33–66% probability
Unlikely 0–33% probability

Very unlikely 0–10% probability

Exceptionally unlikely 0–1% probability
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Weaknesses and possible approaches to address them

1) Tabular structure can become cumbersome if there are many lines of evidence and/or
extensive detail is included. This can be addressed by careful management of the quantity,
organisation (e.g. grouping similar studies) and format of table content, and by providing
necessary additional detail in accompanying text.

2) For some types of question, probabilities may be misinterpreted as frequencies or risks (e.g.
probability of chemical X having a carcinogenic mode of action may be misinterpreted as the
probability of an individual getting cancer). This should be avoided by good communication
practice.

3) Some assessors may be unwilling to give numerical probabilities. Can be addressed by using
a scale of likelihood terms (e.g. EFSA, 2014a,b), preferably with quantitative definitions.

4) This approach is best suited to questions with two categories, and becomes cumbersome
for questions with more categories.

Assessment against evaluation criteria

This method is assessed against the criteria in Table B.15.

Conclusions

1) This approach is potentially applicable to any type of binary question in all areas of EFSA’s
work, and to all types of uncertainty affecting those questions.

2) The approach is new and would benefit from further case studies to evaluate its usefulness
and identify improvements.
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Table B.15: Assessment of Uncertainty tables for questions of interest (when applied well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty &
variability

Meaning of
output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of
process and
reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread
in practice

Can be
used with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty &
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well
established
in practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

UNCERTAINTY &
VARIABILITY
DISTINGUISHED
QUALITATIVELY

Range of
answers but
no weighting

Process well
documented but
limited explanation
of reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
uncertainty &
variability

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.7. Interval analysis
Origin, purpose and principal features

Interval analysis is a method to obtain a range of values for the output of a calculation or
quantitative model based on specified ranges for the inputs to the calculation. If each input ranges
expresses uncertainty about the corresponding input value, the output range is an expression of
uncertainty about the output.

Interval analysis (also ‘interval arithmetic’, ‘interval mathematics’, ‘interval computation’) was
developed by mathematicians since the early 1950s (Dwyer, 1951, as one of the first authors) to
propagate errors or account for parameter variability. Modern interval analysis was introduced by Ramon
E. Moore in 1966. Ferson & Ginzburg, 1996 proposed interval analysis for the propagation of ignorance
(epistemic uncertainty) in conjunction with probabilistic evaluation of variability. The interval method is
also discussed in the WHO-harmonisation document, 2008, along the concept of Ferson (1996).

Interval analysis is characterised by the application of upper and lower bounds to each parameter,
instead of using a fixed mean or worst-case parameter (e.g. instead of the fixed value 1.8 for mean
body height of northern males one can use the interval 1.6–2.0 to account for the variability in the
population). To yield a lower bound of an estimate, all parameter values between the bounds are
combined in the model that result in the lowest estimate possible. To yield the upper bound of an
estimate analogously, the parameter values between the bounds are combined that yield the highest
estimate possible. The interval between the lower and the upper bound estimate is then considered to
characterise the uncertainty and variability around the estimate.

For uncertainty analysis, where the range for each input covers all values considered possible, the
range for the output then also covers all possible values. If it is desired to specify an input range
covering a subset of possible values and accompanied by a probability, the method of probability
bounds analysis (Annex B.13) is more likely to be useful.

Applicability in areas relevant for EFSA

Within EFSA, the method is often used for the treatment of left-censored data (e.g. in the exposure
analysis for chemical risk assessment, EFSA, 2010a,b). If samples are included in a statistical analysis that
have concentrations below the limit of detection (LOD), a lower bound estimate can be constructed by
assuming that all sample concentrations < LOD are 0, and a higher bound by assuming that all sample
concentrations are equal to the LOD. The true value will lie in between those values (e.g. EFSA, 2015).

Potential contribution to major elements of uncertainty analysis

Elements in uncertainty
analysis

Potential contribution of this approach

Identifying uncertainties Not applicable
Characterising uncertainties Yes, the uncertainty is expressed for each individual uncertainty as a lower and

as an upper bound

Combining uncertainties Yes, range of output values, taking into account the range of all input
parameters at the same time and making no assumptions about dependencies

Prioritising uncertainties Not applicable

Melamine example

As described in more detail in Annex C, exposure e is calculated according to

e ¼ c �w � q
bw

where
c: concentration of melamine in adulterated milk powder (mg/kg)
w: weight fraction of milk powder in chocolate
q: consumption of chocolate in a day (kg/day)
bw: body weight of consumer (kg)

The variables q and bw are both expected to be positively correlated with the age of the child and
as a result to be correlated with each other. As a simple example of an approach to address
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dependencies in an interval analysis, the method was applied to two subpopulations of children that
might be expected to have higher exposure: children aged 1 and children aged 6. These groups two
were selected for illustration because of the low body weight of the younger group and a judgement
that the older age group might consume as much as older children but have lower body weight. A full
assessment would in principle apply the method separately to each age from 1 to 10.

For the concentration c, the highest observed level in the data used in the melamine statement was
2,563 mg/kg. This value however will not be the highest of the whole ensemble of possible values,
because only a subsample has been analysed and not all samples in the ensemble. Knowing that
melamine is used to mimic the N-content of milk that should be contained in the samples, but is not, it
can be assumed that the higher bound for the melamine content is the amount needed to mimic
100% milk that should be contained in the sample. Multiplying the ratio between the N-content of milk
protein and melamine (0.13/0.67 = 0.22) and the protein content in dry milk (3.4 g protein in cow
milk/130 g dry matter = 26 g/kg) the maximal content of melamine in dry milk yields a higher bound
of 6,100 mg/kg melamine in adulterated milk powder. The lower bound for melamine will be 0 mg/kg,
because it is not naturally occurring, but the result of adulteration.

For the weight fraction of milk powder in milk chocolate w, the legally required minimum of 0.14 is
chosen as the lower bound, and the highest value found in an internet search (0.28) as the higher
bound.

For q, no data were available for high chocolate consumption. The assessors made informal
judgements of 50 g and 300 g, for a 1-year-old and a 10-year-old child, respectively. In a real
situation, expert knowledge elicitation (Annexes B.8 and B.9) would be used to obtain these numbers.

For the lower and higher bound for body weight (bw) in both age groups, the assessors used low
and high percentiles from WHO growth charts as a starting point for choosing more the more extreme
values in the tables below to be absolute lower and upper bounds. Again, in a real situation, expert
knowledge elicitation would be used to obtain these numbers.

Child 1 year old

Parameter/Estimate Value Lower bound Higher bound

c (mg/kg) 29 0 5,289 (highest observed level: 2,563)
w (-) 0.25 0.14 0.28

q (kg/d) 0.042 0 0.05
bw (kg) 20 6 13

e (mg/d kg-bw) 0.015225 0 14.2

Child 6 years

Parameter/Estimate Value Lower bound Higher bound

c (mg/kg) 29 0 6,100 (highest observed level: 2,563)
w (-) 0.25 0.14 0.28

q (kg/d) 0.042 0 0.3
bw (kg) 20 12 34

e (mg/d kg-bw) 0.015225 0 42.7

In the tables above, the intervals cover both uncertainty and variability in the parameters. Below,
we aim to demonstrate how also within the interval method uncertainty and variability might be
treated separately (example for the 1-year-old child).
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Child 1 year old, mainly variability

Parameter/Estimate Value* Lower bound Higher bound**

c (mg/kg) 29 0 2,563
w (-) 0.25 0.14 0.28

q (kg/d) 0.042 0 0.05
bw (kg) 20 6 13

e (mg/d kg-bw) 0.015 0 6.0

*: These values are not part of the interval analysis, only demonstrate the values around which the variability/uncertainty
analysis is constructed.

**: The higher bound exposure is calculated by using the higher bound for the first three parameters and the lower bound for
the body weight, denoted in bold.

Child 1 year old, uncertainty about the worst-case (wc) values for parameters

Parameter/Estimate
Favoured value*

for wc
Lower bound
for wc value

Higher bound
for wc value

c (mg/kg) 2,563 2,563 6,100
w (-) 0.28 0.28 0.30

q (kg/d) 0.05 0.05 0.1
bw (kg) 6 5.5 6.5

e (mg/d kg-bw) 6.0 5.5 33.3

*: These values are not part of the interval analysis, only demonstrate the values around which the variability/uncertainty
analysis is constructed.

Strengths

1) The method is relatively easy to perform and straightforward. It is particularly useful as a
screening method to quickly assess whether more sophisticated quantitative uncertainty
analysis is needed or whether, even for an upper bound, for example, of an exposure, no
concern exists. Ferson and Ginzburg, 1996 recommend it as an alternative method to
probabilistic uncertainty analysis when the shape of the distribution is not known (e.g. for
assessing uncertainty due to ignorance, see above).

2) When used with real upper and lower limits the method covers all possible scenarios.

Weaknesses and possible approaches to reduce them

1) Only quantifies range not probabilities within range. Therefore, useful as initial screen to
determine whether probabilistic assessment is needed.

2) Most of the time it is not made clear what the ranges really are meant to represent
(minimum/maximum, certain percentiles, etc.). This can be cured by transparent
communication in the text and by attempting to be as consistent as possible.

3) The method does not incorporate dependencies between variables, so that the interval of
the final estimate will be larger than the range of the true variability and uncertainty, if
dependencies between variables occur. This limitation can be partly addressed by using
scenarios representing different combinations of input variables to explore the potential
impact of dependencies, as illustrated in the example above.

4) The more parameters are involved the larger will become the uncertainty range, and the
more likely it is that a probabilistic assessment taking account of dependencies will be
required for decision-making. Nevertheless, since interval analysis is much simpler to
perform, it is still useful as a screening method to determine whether more sophisticated
analysis is needed.

5) Variability and uncertainty are not separated by the concept behind this method and it is
easy to forget that both uncertainty and variability are included in the range when it is
applied to uncertain variability. However, because the interval method is a special case of
probability bounds analysis, the method described in Annex B.13 for addressing problems
with uncertain variability could be used in conjunction with interval analysis.
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Assessment against evaluation criteria

This method is assessed against the criteria in Table B.16.

Conclusions

1) Interval analysis provides a simple and rigorous calculation of bounds for the output.
However, it provides only extreme upper and lower values for the output resulting from
combinations of inputs and gives no information on probability of values within the output
range.

2) It has the potential to be very useful because it can be used to check quickly whether the
output range includes both acceptable and unacceptable consequences. If it does, a more
sophisticated analysis of uncertainty is needed.
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Table B.16: Assessment of Interval analysis (when applied well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and variability

Meaning of
output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of
process and
reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread in
practice

Can be
used with
guidelines or
literature

Days Most but not
all aspects
supported
by theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty &
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and most
of process
understandable

National
guidelines, or
well
established in
practice or
literature

Training
course
needed

Weeks Some
aspects
supported
by theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty &
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited explanation
of reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
uncertainty &
variability

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.8. Semi-formal Expert Knowledge Elicitation applied to uncertainty
in risk assessments

This section describes the essential elements of an Expert Knowledge Elicitation (EKE) which are
necessary in applications judging any uncertainties in risk assessments. The full process, so called
formal EKE, is described in Annex B.9. Between the semi-formal and formal EKE is a continuum of
alternatives, which could be used to fit the process to the specific needs of the problem, e.g. reframe
the problem into the language of practitioners – as described in the formal EKE – but using an existing
network of experts – as described in the semi-formal EKE.

In many assessments, there will be too many parameters for all to be subjected to fully formal EKE.
This is recognised in EFSA (2014a,b) guidance on expert elicitation, which proposes a methodology of
‘minimal assessment’ and simple sensitivity analysis to prioritise the uncertainties. Those parameters
which contribute most uncertainty may be subjected to formal EKE (Annex B.9), those of intermediate
importance may be assessed by semi-formal EKE (this Annex B.8), and the remainder may be
represented using distributions derived from the minimal assessment procedure as described by EFSA
(2014a,b).

Purpose, origin and principal features

Scientific evidence generated from appropriate empirical data or extracted from systematically
reviewed literature should be the source of information to use in risk assessments. However, in
practice, empirical evidence is often limited and main uncertainties may not be quantified in the data
analysis or literature. In such cases, it is necessary to turn to expert judgements. Psychological
research has shown that unaided expert judgement of the quantities required for risk modelling – and
particularly the uncertainty associated with such judgements – is often biased, thus limiting its value.
Examples of these biases are given in Section 5.9 and discussed in more detail in EFSA (2014a,b).

To address these issues, EFSA developed Guidance on Expert Knowledge Elicitation (EFSA, 2014a,b)
which recommends a formal process to elicit expert judgements for use in quantitative risk assessments
in the remit of EFSA. The Guidance document focusses on judgements about parameters in quantitative
risk models.

Judgements on qualitative aspects in the uncertainty analysis, e.g. the selection of the risk model/
assessment method, or the complete identification of inherent sources of uncertainties, are not
covered by EFSA (2014a,b). These qualitative questions often arise at the beginning of a risk
assessment when decisions have to be taken on the assessment method, e.g. the interpretation of the
mandate, the definition of the scenario, the risk model, the granularity of the risk assessment, or the
identification of influencing factors for use in the model. They further appear during the uncertainty
analysis when the sources of uncertainties have to be identified. Expert judgement is used to develop
a complete set of appropriate, alternative approaches, or a description of possible sources of
uncertainties. The result is often a pure list which could be enriched by a ranking and/or judgements
on the relevance for answering the mandate.

Another typical judgement is about the unknown existence of specific circumstances, e.g. causal
relationships between an agent and a disease. Here, the expert elicitation will result in a single
subjective probability that the circumstance exist.

There is no sharp difference between categorical and quantitative questions, as subjective
probabilities could be used to express the appropriateness of different alternatives (categorical
questions) in a quantitative way. In addition, what-if scenarios could be used to give quantitative
judgements on the influence of factors or sources on a question or quantity of interest and express
their relevance.
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The following are minimal requirements needed for this semi-formal procedure:

1) Predefined question guaranteeing an unambiguous framing of the problem with regard to
the intended expert board. Questions for expert elicitation have ‘to be framed in such a
manner that the expert is able to think about it. Regional or temporal conditions have to be
specified. The wording has to be adapted to the expert’s language. The quantity should be
asked for in a way that it is in principle observable and, preferably, familiar to the expert.
(. . .) The metrics, scales and units in which the parameter is usually measured have to be
defined’ (EFSA, 2014a,b).

2) Clearly defined board of appropriate number and types of experts. The elicitation of the
question may need involvement of experts with different expertise profiles. To enable a
review on the quality of the elicitation the appropriate constitution and equal involvement of
all experts of the board should be documented.

3) Experts should receive at least basic training in making probability judgements, similar to
that described by EFSA (2014a,b).

4) Available evidence relevant to the questions to be elicited should be provided to the experts
in convenient form with sufficient time for them to review it before entering the elicitation
process.

5) Appropriate elicitation method guaranteeing as much as possible an unbiased and balanced
elicitation of the expert board (e.g. eliciting ranges before quantiles, and eliciting individual
judgements before group judgements). Different types of analysis can be used to aggregate
the answers of the experts within the board expressing the individual uncertainty as well as
variation of opinion within the board (EFSA, 2014a,b). To enable a review on the quality of
the elicitation the elicitation and aggregation method should be documented.

6) The elicitation process for each question should be facilitated by an identified, neutral
individual who is not contributing to the judgements on that question. Consideration should be
given to whether to use a specialised facilitator from outside the group conducting the
assessment.

7) Clearly expressed result of the elicitation to the question guaranteeing a description of
uncertainties and summarising the reasoning.

8) Each expert elicitation should result in an explicit statement on the question or quantity of
interest. This includes an expression of the inherent uncertainties, in a quantitative or
qualitative way, and a summary of the reasoning. Further conversions of the results should
be visible for later review.

Applicability in areas relevant for EFSA

Performing semi-formal EKE within an EFSA Working Group will already result in some short-cuts
compared to the formal process.

Table B.17: Types Expert Knowledge Elicitations

Method Topic to elicit

Qualitative, e.g. the selection of a risk
model/assessment method, identification
of sources of uncertainty

Quantitative, e.g. parameters in the risk
assessment, the resulting risk, and the
magnitude of uncertainties

Semi-
formal
(cp. this
section)

Expert elicitation following the minimal
requirements (predefined question and expert
board, fully documented) resulting in a verbal
reasoning, scoring or ranking on a list of
identified alternatives, influencing factors or
sources

Expert elicitation following the minimal
requirements (predefined question and expert
board, fully documented) resulting in a
description of uncertainties in form of subjective
probabilities, probability bounds, or subjective
probability distributions

Formal (cp.
Annex B.9)

Elicitation following a predefined protocol with
essential steps: initiation, pre-elicitation,
elicitation and documentation, resulting in a
verbal reasoning, scoring or ranking on a list of
identified alternatives, influencing factors or
sources

Elicitation following a predefined protocol with
essential steps: initiation, pre-elicitation,
elicitation and documentation, resulting in a
description of uncertainties in form of a
subjective probabilities, or subjective probability
distributions
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The Working Group is already aware about the context and background of the problem. Therefore,
the question for the elicitation has not to be reframed in such a manner that the experts are able to
think about it. However, questions should be asked in way that avoids ambiguity about the objective,
that the answer would be in principle observable/measurable, and that the expert is familiar with
metrics and scales of the answer.

The Working Group is selected in order to answer the EFSA mandate. Therefore, a general
expertise is available to judge on the risk assessment question. Nevertheless it should be guaranteed
that all experts are equally involved in the semi-formal elicitation and all relevant aspects of the
mandate are covered by the Working Group.

Members of the Working Group should already have been trained in steering an expert elicitation
according to EFSA (2014a,b) Guidance, and experienced in judging scientific uncertainties. Following
the elicitation protocols and aggregation methods discussed in the guidance will ensure unbiased and
accurate judgements as far as possible. During a regular Working Group meeting, the application of,
e.g. the Sheffield protocol (EFSA, 2014a,b) could result in a consensual judgement, so called
behavioural aggregation method.

Nevertheless also the semi-formal EKE should be completely documented in accordance with the
Guidance to allow a review of the method by the corresponding EFSA panel, selected external
reviewers or through the public after publication. The internal review of the elicitation via steering and
Working Group will be omitted.

In summary, semi-formal expert elicitation has a high applicability in EFSA’s risk assessments,
especially when empirical evidence is limited or not retrievable due to constraints in time and
resources.

Potential contribution to major elements of uncertainty analysis

Elements in uncertainty analysis Potential contribution of this approach

Identifying uncertainties Maybe, when discussing the question
Characterising uncertainties Yes

Combining uncertainties Yes

Prioritising uncertainties Yes

Melamine example

A hypothetical example has been constructed to illustrate this method. To answer the question:

‘What is the maximum fraction of milk power [dry milk solids in %], which have to be used to
produce saleable milk chocolate?’

the (hypothetical) Working Group calculated the sensitivity of this parameter in the risk assessment
model. It was concluded that the influence on the uncertainty of the final conclusion is minor and does
not justify a formal EKE. Instead, the full Working Group was discussing the available evidence and
performed a semi-formal Sheffield-type approach (EFSA, 2014a,b). Each member was asked to
individually judge on the uncertainty distribution of the parameter using the quartile method (compare
with Annex B.9). The individual results were reviewed and discussed. Finally, the Working Group
agreed on a common uncertainty distribution:

Input judgements for maximum fraction of milk powder (% dry weight):

Lower limit: 20%, upper limit 30%
Median: 27.5%
1st quartile: 27%, 3rd quartile: 28%

Best fitting distribution: Log-normal (l = 3.314, r = 0.02804) with 90% uncertainty bounds (5th
and 95th percentile): 26.3–28.8
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(Calculated with the MATCH elicitation tool, ref: David E. Morris, Jeremy E. Oakley, John A. Crowe, A web-based tool for eliciting
probability distributions from experts, Environmental Modelling and Software, Volume 52, February 2014, Pages 1–4)

Strengths

1) This approach of uncertainty analysis could be used in situations where other methods are
not applicable due to restricted empirical data, literature, other evidence, or due to limited
resources.

2) The essential elements of the EKE reduce the impact of known psychological problems in
eliciting expert judgements and ensure a transparent documentation and complete
reasoning.

3) Using semi-formal EKE will it be possible to express uncertainties in a quantitative manner,
e.g. by probability distributions, in almost all situations.

Weaknesses and possible approaches to reduce them

1) Even when this approach is able to identify and quantify uncertainties, it is not able to
increase the evidence from data, e.g. experiments/surveys and literature.

2) EKE is not a substitute for data. Rather, it provides a rigorous and transparent way to
express what is known about a parameter from existing evidence, and can provide a good
basis for deciding whether to request additional data.

3) In comparison to the formal EKE, the definition of the question, the selection of the expert
board and the performance of the elicitation protocol are restricted to the competencies in
the Working Group.

4) No internal, independent review is foreseen to validate the quality of the elicitation, and
finally the result.

Assessment against evaluation criteria

This method is assessed against the criteria in Table B.18.

Conclusions

1) The method has a high applicability in Working Groups and boards of EFSA and should be
applied to quantify uncertainties in all situations:

a) where empirical data from experiments/surveys, literature are limited;
b) where the purpose of the risk assessment does not require the performance of a full

formal EKE;
c) or where restrictions in the resources (e.g. in urgent situations) forces EFSA to apply a

simplified procedure.
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2) The method is applicable in all steps of the risk assessment, esp. to summarise the overall
uncertainty of the conclusion. Decisions on the risk assessment methods (e.g. risk models,
factors, sources of uncertainties) could be judged qualitatively with quantitative elements
(e.g. subjective probabilities on appropriateness, what-if scenarios).

3) The method should not substitute the use of empirical data, experiments, surveys or
literature, when these are already available or could be retrieved with corresponding
resources.

4) In order to enable an EFSA Working Group to perform expert elicitations, all experts should
have basic knowledge in probabilistic judgements and some experts of the Working Group
should be trained in steering expert elicitations according to the EFSA Guidance.

5) Detailed guidance for semi-formal EKE should be developed to complement the existing
guidance for formal EKE (EFSA, 2014a,b), applicable to a range of judgement types
(quantitative and categorical questions, approximate probabilities, probability bounds, etc.).
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Table B.18: Assessment of Semi-formal expert knowledge elicitation (when applied well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty and
variability

Meaning of
output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types of
uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of
process and
reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread in
practice

Can be
used with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty and
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well
established in
practice or
literature

Training
course
needed

Weeks Some
aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty and
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited explanation
of reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.9. Formal process on Expert Knowledge Elicitation (EKE) as
described in the corresponding EFSA Guidance

This section summarises the process on Expert Knowledge Elicitation (EKE) which is fully described
and discussed in the corresponding EFSA Guidance (EFSA, 2014a,b). Because the Guidance focusses
mainly on fully formal elicitation of important quantitative parameters in EFSA’s risk assessments, a
semi-formal approach is described in Annex B.8. The EFSA (2014a,b) Guidance also describes a
process of ‘minimal assessment’, which can be used to prioritise parameters for formal or semi-formal
EKE. Between the semi-formal and formal EKE is a continuum of alternatives, which could be used to
fit the process to the specific needs of the problem, e.g. reframe the problem into the language of
practitioners – as described in the formal EKE – but using an existing network of experts – as
described in the semi-formal EKE.

Purpose, origin and principal features

Formal techniques for eliciting knowledge from specialised persons were introduced in the first half
of the 20th century (e.g. Delphi method in 1946 or Focus groups in 1930 – Ayyub Bilal, 2001) and
after the sixties they became popular in risk assessments in engineering (EFSA, 2014a,b).

Since then, several approaches were further developed and optimised. Regarding the individual
expert judgement on uncertainties of a quantitative parameter, the use of subjective probabilities is
common.

Nevertheless, alternatives exist like fuzzy logic (Zimmermann, 2001), belief functions (Shafer,
1976), imprecise probabilities (Walley, 1991) and prospect theory (Kahneman and Tversky, 1979). The
authors claim that these concepts better represent the way experts think about uncertainties than the
formal concept of probabilities. On the other hand, probabilities have a clear and consistent
interpretation. They are therefore proposed in the EFSA Guidance on EKE (EFSA, 2014a,b).

Formal techniques describe the full process of EKE beginning with its initiation (problem definition)
done by the Working Group, the pre-elicitation phase (protocol definition: framing the problem,
selecting the experts and method) done by a steering group, the main elicitation phase (training and
elicitation) done by the elicitation group and the post-elicitation phase (documentation) as common
task.

Each phase has a clearly defined output which will be internally reviewed and passed to the next
phase. The Working Group is responsible to define the problem to be elicited, summarise the risk
assessment context and the existing evidence from empirical data and literature. The steering group
will develop the elicitation protocol from the question by framing the problem according to the
intended expert board, selecting the experts for the elicitation and the elicitation method to be
applied. Finally, the elicitation group will perform the elicitation and analyse the results. The separation
of the elicitation from the Working Group allows EFSA to outsource the elicitation to an external
contractor with professional experience in the selected elicitation method, to guarantee full
confidentiality to the board of external experts, and third to enable the Working Group to perform an
independent review of the results.

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 153 EFSA Journal 2018;16(1):5122



The elicitation methods differ in the way the judgements of several experts are aggregated. In
general three types of methods can be distinguished:

1) Behavioural aggregation: Individual judgements will be aggregated by group interaction of
the experts, e.g. using the Sheffield method (O’Hagan et al., 2006).

2) Mathematical aggregation: Individual judgements will be aggregated by a weighted average
using, e.g. seed questions to calibrate the experts, e.g. the Cooke method (Cooke, 1991).

3) Mixed methods: Individual judgements will be aggregated by moderated feedback loops avoiding
direct interactions in the group, e.g. the Delphi protocol as described in EFSA (2014a,b).

The result is in all methods a probability distribution describing the uncertainty of a quantitative
parameter in risk assessment, like an influencing factor or the final risk estimate.

Detailed discussion of the principles of EKE and step-by-step guidance and examples for the three
methods mentioned above are provided by EFSA (2014a,b). The protocols in EFSA (2014a) can be
applied to judgements about uncertain variables, as well as parameters, if the questions are framed
appropriately (e.g. eliciting judgements on the median and the ratio of a higher quantile to the
median). EFSA (2014a,b) does not address other types of judgements needed in EFSA assessments,
including prioritising uncertainties and judgements about dependencies, model uncertainty, categorical
questions, approximate probabilities and probability bounds. More guidance on these topics, and on
the elicitation of uncertain variables, would be desirable in future.

Applicability in areas relevant for EFSA

Formal EKE is applicable in all areas where empirical data from experiments/surveys or literature
are limited or missing, and theoretical reasoning is not available, e.g. on future, emerging risks. It is
an additional alternative to involve a broad range of stakeholders. In complex, ambiguous risk
assessments it is also a possibility to pass the elicitation of detailed questions to independent
institutions to gather evidence in broader communities of expertise.

Potential contribution to major elements of uncertainty analysis

Elements in uncertainty analysis Potential contribution of this approach

Identifying uncertainties No, question must be defined beforehand
Characterising uncertainties Yes, by a clearly defined process

Combining uncertainties Yes, by a clearly defined process

Prioritising uncertainties No

Working group: Problem definition .

RA model Limited evidence EKE decision

Steering group: Pre-elicitation phase

Selecting the method Selecting the experts Framing the problem

Elicitation group: Elicitation phase
Sheffield method

Cooke‘smethod

Delphi method

Documentation

Post-elicitation
phase

Training

Figure B.6: The process of expert knowledge elicitation (EFSA, 2014a)
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Melamine example

The following hypothetical example was constructed to illustrate the approach. The problem was
divided into two parts: The determination of upper and lower limits for the fraction of milk power [dry
milk solids in %], which can be used to produce saleable milk chocolate (without unacceptable
changes in taste, consistence or other features of the chocolate). These are handled in questions 1
and 2. And finally the variation in the fraction of milk powder [dry milk solids in %] in chocolate
imported from China. For the final third question a different board of experts was defined.

Question 1: What is the maximum fraction of milk power [dry milk solids in %], which can
be used to produce saleable milk chocolate (without unacceptable changes in taste, consistence or
other features of the chocolate)?

Question 2: What is the minimum fraction of milk power [dry milk solids in %], which have
to be used to produce saleable milk chocolate (without unacceptable changes in taste, consistence or
other features of the chocolate)?

Experts to ask:

Profile: Product developers in big chocolate production companies (including milk chocolate
products)

Number of experts: 2–3, because of standardised production processes.
Elicitation methods: Written procedure using the adapted Delphi approach. This approach is asking

the experts to describe their uncertainty by five numbers:

Steps Parameter Explanation

Procedure To avoid psychological biases in estimating quantitative parameters please give
the requested numbers in the right queueing:

1st step: Upper (U) Upper limit of uncertainty of the maximum fraction of milk powder in saleable
chocolate:
‘You should be really surprised, when you would identify a chocolate with a
fraction of milk powder above the upper limit on the market’.

2nd step: Lower (L) Lower limit of uncertainty of the maximum fraction of milk powder in saleable
chocolate:
‘You should be really surprised, when a person is claiming that a chocolate with a
fraction of milk powder below the lower limit is not saleable because of too high
milk powder content’.

3rd step: Median (M) Median (or second quartile of uncertainty) of the maximum fraction of milk
powder in saleable chocolate:
‘Regarding your uncertainty about the true answer this is your best estimate of
the maximum fraction of milk powder in saleable chocolate: in the sense that if
you would get the true answer (by a full study/experiment) it is equal likely that
the true value is above the median (M ≤ true value ≤ U) as it is below the median
(L ≤ true value ≤ M)’.

4th step: 3rd quartile (Q3) Third quartile of uncertainty of the maximum fraction of milk powder in
saleable chocolate:
‘Assuming that the true answer is above the median this is the division of the
upper interval (between median and the upper limit: [M, U]) into two parts which
are again equal likely:
1) between the median and the third quartile: [M, Q3]
2) between the third quartile and the upper limit: [Q3, U]’

5th step: 1st quartile (Q1) First quartile of uncertainty of the maximum fraction of milk powder in
saleable chocolate:
‘Assuming that the true answer is below the median this is the division of the
upper interval (between lower limit and the median: [L, M]) into two parts which
are again equal likely:
1) between the lower limit and the first quartile: [L, Q1]
2) between the first quartile and the median: [Q1, M]’

Restrictions: The five numbers are ordered from low to high as: L ≤ Q1 ≤ M ≤ Q3 ≤ U
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Steps Parameter Explanation

Consistency check: Finally, please check if the following four intervals will have equal probability (of
25% or one quarter) to include the true maximum fraction of milk powder in
saleable chocolate:
1) between the lower limit and the first quartile: [L, Q1]
2) between the first quartile and the median: [Q1, M]
3) between the median and the third quartile: [M, Q3]
4) between the third quartile and the upper limit: [Q3, U]
This can be visualised by a bar chart on the four intervals, where each bar
contains the same area of 25%, which is an expression of the subjective
distribution of uncertainty.

First round with initial answers and reasoning (asked with a specific EXCEL file giving more
explanations and setting restrictions to the answers) was performed during the first week involving
three experts (hypothetical example for illustration):

• Mrs. White, Chocolate Research Inc. (UK);
• Mrs. Argent, Chocolatiers Unis (France);
• and Mr. Rosso, Dolce International (Italy).

Lower 1st Quart Median 3rd Quart Upper Reasoning

Expert no 1 24.5% 24.8% 25% 25.5% 26.5% Variation in our production line
of the product with highest content
of milk power

Expert no 2 20% 24% 26% 27% 30% Depending on the sugar content
there will be an aftertaste of the milk
powder

Expert no 3 27% 27.5% 28% 28.5% 29% We recognised problems in the
production line when higher the
milk powder content

After feedback of the answers to the experts they revised in the second week their answers:

Lower 1st Quart Median 3rd Quart Upper Reasoning

Expert no 1 27.5% 27.8% 28% 28.5% 29.5% Higher contents are possible,
but not used by my company

Expert no 2 20% 24% 26% 27% 30%

Expert no 3 27% 27.5% 28% 28.5% 29%

As result of the procedure, the judgements of all three experts were combined by using equal
weights to each expert.
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15.0% 20.0% 25.0% 30.0% 35.0%

Expert no. 1

15.0% 20.0% 25.0% 30.0% 35.0%

Expert no.2

15.0% 20.0% 25.0% 30.0% 35.0%

Expert no. 3

15.0% 20.0% 25.0% 30.0% 35.0%

Combination of all

At the same time, the expert board was asked about the minimum content of milk powder in milk
chocolate. The experts concluded that milk chocolate needs by legal requirements a minimum of 14%
milk powder (dry milk solids obtained by partly or wholly dehydrating whole milk, semi- or full-
skimmed milk, cream, or from partly or wholly dehydrated cream, butter or milk fat; EC Directive
2000/36/EC, Annex 1, A4 of 23 June 2000). The risk assessment is therefore restricted to the
consumption of chocolate following the legal requirements. Illegal trade (in this sense) is not included.
The minimum was set to 14%.

To assess the variability of melamine content in chocolate imported from China, an additional
Question 3 was asked to another board of experts:

Question 3: Assuming that milk chocolate was produced in and imported from China.

Part 3A: Consider a producer using a high content of milk powder in the chocolate that only in 5%
(one of twenty) of the products from China will be with a higher content. What is the fraction of
milk power [in %] contained in this chocolate? (Please specify your uncertainty)

Part 3B: Consider a producer using a low content of milk powder in the chocolate that only in 5%
(one of twenty) of the products from China will be with a lower content. What is the fraction of milk
power [in %] contained in this chocolate? (Please specify your uncertainty)

Part 3C: Consider a producer using an average content of milk powder in the chocolate that half of
the products from China will be with higher and half with lower content. What is the fraction of milk
power [in %] contained in this chocolate? (Please specify your uncertainty)

Experts to ask:

Profile: Quality controller (laboratory) of food importing companies/food control in importing
regions with relevant import of chocolate or similar products (containing milk powder) from China.

Number of experts: 4, because of the limited number of experts with this profile.

Elicitation methods (hypothetical example): The expert board was invited to a one-day physical
meeting, summarising the identified evidence on the topic. After a training session on the elicitation
method, the Sheffield protocol was performed on Question 3, parts A–C.

Strengths

1) Applicable in the absence of empirical data or theoretical reasoning.
2) Reproducible with regard to the predefined protocol.
3) Transparent in the documentation.
4) Applicable for emerging (future) risks/participation of stakeholders in complex, ambiguous RA.

Weaknesses and possible approaches to reduce them

1) Time and resource intensive, should be primarily used for the most sensitive parameters in
a risk assessment.
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2) Little previous experience of this approach in EFSA’s areas of risk assessment. However,
there is a substantial literature by expert practitioners, and it is better established in other
areas (e.g. nuclear engineering, climate change).

Assessment against evaluation criteria

This method is assessed against the criteria in Table B.19.

Conclusions

1) The method has a high applicability in Working Groups and boards of EFSA and should be
applied to quantify uncertainties in situations where empirical data from
experiments/surveys, literature are limited and the purpose of the risk assessment is
sensitive and need the performance of a full formal EKE.

2) The method is applicable in steps of the risk assessment, where quantitative parameters
have to be obtained.

3) The method should not substitute the use of empirical data, experiments, surveys or
literature, when these are already available or could be retrieved with corresponding
resources.

4) In order to initiate a formal EKE, some experts of the Working Group should be trained in
steering expert elicitations according to the EFSA Guidance. In case of complex or sensitive
questions, the elicitation should be performed by professional elicitation groups.

5) Further guidance is needed on formal methods for types of expert elicitation not covered by
EFSA (2014a,b) (e.g. for variables, dependencies, qualitative questions, approximate
probabilities and probability bounds), as well as on semi-formal methods.
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Table B.19: Assessment of Formal expert knowledge elicitation (EKE) (when applied well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and variability

Meaning
of output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of process
and reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread
in practice

Can be
used with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty and
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines,
or well
established
in practice
or literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty and
variability
distinguished
qualitatively

Range of
answers
but no
weighting

Process well
documented but
limited explanation
of reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.10. Confidence intervals

This section is only concerned with standard calculations for confidence intervals. The bootstrap is
discussed in a separate section of this annex (Annex B.11).

Purpose, origin and principal features

A confidence interval is the conventional expression of uncertainty, based on data, about a
parameter in a statistical model. The basic theory (Cox, 2006) and methodology was developed by
statisticians during the first half of the 20th century. Confidence intervals are used by the majority of
scientists as a way of summarising inferences from experimental data and the training of most
scientists includes some knowledge of the underlying principles and methods of application. See, for
example, Moore (2009).

A confidence interval provides a range of values for the parameter together with a level of
confidence in that range (commonly 95% or 99%). Formally, the confidence level indicates the success
rate of the procedure under repeated sampling and assuming that the statistical model is correct.
However, the confidence level is often interpreted for a specific data set, as the probability that the
calculated range actually includes the true value of the parameter, i.e. a 95% confidence interval
becomes a 95% credible interval for the parameter. That interpretation is reasonable in many cases
but requires for each specific instance that the user of the confidence interval make a judgement that
it is a reasonable interpretation. This is in contrast to Bayesian inference (Annex B.9) which sets out to
produce credible intervals from the outset. The judgement the user needs to make is that they do not
have additional information which would make them want to alter the probability to be ascribed to the
interval (see Section 11.2.1 for more detail on this issue).

To use this method, one requires a suitable statistical model linking available data to parameters of
interest and an appropriate procedure for calculating the confidence interval. For many standard
statistical models, such procedures exist and are often widely known and used by scientists.
Developing new confidence interval calculations is generally a task for theoretical statisticians.

Many standard confidence interval procedures deliver only an approximation to the stated level of
confidence and the accuracy of the approximation is often not known explicitly although it usually
improves as the sample size increases. When the statistical model does not correctly describe the data,
the confidence level is affected, usually by an unknown amount.

Most statistical models have more than one parameter and in most cases the resulting uncertainty
about the parameters will involve dependence. Unless there is very little dependence, it is
inappropriate to express the uncertainty as a separate confidence interval for each parameter. Instead,
the uncertainty should be expressed as a simultaneous confidence region for all the parameters. An
example of such a method, which achieves the stated confidence level exactly, is the rarely used joint
confidence region for the mean and standard deviation of a normally distributed population based on
random sample. Approximate methods exist for confidence regions for a wide variety of statistical
models, based on large sample behaviour of maximum likelihood estimation. Such methods are often
technically challenging for non-statisticians and it may be preferable in practice to use another
statistical approach to representing uncertainty, especially one which can represent uncertainty as a
Monte Carlo sample, each realisation of which provides a value for each of the parameters.

Applicability in areas relevant for EFSA

The methodology is applicable in principle to all areas where data from experiments or surveys are
used in risk assessment.

However, unless data are being used to make inference about a single parameter of interest in
statistical model, addressing dependence between parameters is likely to be challenging and this may
reduce the usefulness of confidence intervals as an expression of uncertainty.

Standard confidence interval procedures, such as those for means of populations, regression
coefficients and dose–response estimates, are used throughout EFSA’s work.
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Potential contribution to major elements of uncertainty analysis

Elements in uncertainty
analysis

Potential contribution of this approach

Identifying uncertainties Not applicable
Characterising uncertainties Yes/No. Limited to uncertainties relating to parameters in statistical models. For

many statistical models, there is a clear procedure based on empirical data

Combining uncertainties Not applicable

Prioritising uncertainties Not applicable

Melamine example

Confidence intervals and regions will be illustrated by application to uncertainty about two of the
sources of variability considered in the version of the melamine example which considers uncertainty
about variability of exposure. Further supporting details about both versions of the melamine example
may be found in Annex C. The variables considered here are body weight and consumption in a day.

Data for both variables for children aged from 1 up to 2 years old were obtained from EFSA.
Annex C gives details of the data and some data analysis supporting the choice of distribution family
for each variable. The variables are treated as independent in what follows and the reasoning for
doing so is included in Annex C.

Both variables are considered in detail below because there are important differences between the
statistical models used. The normal distribution used for log body weight is the most commonly used
model for continuous variability and the confidence interval procedures are well known. The gamma
distribution used for consumption requires more advanced statistical calculations and also shows the
importance of addressing dependence between distribution parameters.

Body weight (bw)

For bw, the statistical model is that: (i) bw follows a log-normal distribution, so that log bw follows
a normal distribution; (ii) the uncertain distribution parameters are the mean llog bw and standard
deviation rlogbw of the distribution of log bw (base 10); (iii) the data are a random sample from the
distribution of bw for the population represented by the data.

For the mean and standard deviation of a normal distribution, there are standard confidence
interval procedures which assume that the data are a random sample.

For the mean the confidence interval is �x� t� s=
ffiffiffi
n

p
where bx denotes the sample mean, s is the

sample standard deviation and n is the sample size. t* is a percentile of the t-distribution having n�1
degrees of freedom. The percentile to be chosen depends on the confidence level: for example, for
95% confidence, it is the 97.5th percentile; for 99% confidence, the 99.5th percentile. For the

standard deviation, the confidence interval is ðs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2uðn� 1Þ

p
; s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2l =ðn� 1Þ

q
Þ where again s is the

sample standard deviation and n is the sample size. v2l and v2u are lower and upper percentiles of

the chi-squared distribution having n�1 degrees of freedom. The percentiles to be used depend on the
required confidence level: for example, for 95% confidence, they are the 2.5th and 97.5th percentiles.
Values for t�; v2l and v2u are easily obtained from tables or using standard statistical software.

For the body weight data used in the example, nlobbw = 171, �xlobbw ¼ 1:037; and slobbw = 0.060.
Taking 95% as the confidence level, t* = 1.974, v2l ¼ 135:79 and v2u ¼ 208:00: Consequently, the
confidence interval for llogbw is 1:037 � 1:974 � 0:060=

ffiffiffiffiffiffiffiffi
171

p
¼ 1:037� 0:009 ¼ ð1:028; 1:046Þ and the

confidence interval for rlogbw is ð0:060= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
208:00=170

p
; 0:060

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
135:79=170

p Þ ¼ ð0:054; 0:067Þ:
Because the mean of the underlying normal distribution is the logarithm of the geometric mean

(and median) of a log-normal, we can convert the confidence interval for llogbw into a 95% confidence
interval for the geometric mean of body weight: (101.028, 101.046) = (10.67, 11.12) kg. Similarly, the
standard deviation of the underlying normal is the logarithm of the geometric standard deviation of the
log-normal and so a 95% confidence interval for the geometric standard deviation of body weight is
(100.054, 100.067) = (1.13, 1.17).

Each of these confidence intervals is an expression of uncertainty about the corresponding
uncertain parameter for variability of body weight. However, they do not express that uncertainty in a
form which is directly suitable for use in a probability bounds analysis or Monte Carlo uncertainty
analysis. In the absence of further information about body weight, experts may be willing to make a
probabilistic interpretation of the confidence level, as explained in the opening section of this annex.
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In principle, given data, there is dependence in the uncertainty about the two parameters of a
normal distribution. That dependence may be substantial when the sample size is small but decreases
for larger samples.

Consumption (q)

For q, the statistical model is that: (i) q follows a gamma distribution with uncertain distribution
parameters being the shape aq and rate bq; (ii) the data are a random sample from the distribution of q.

Like the normal and log-normal distributions, the gamma family of distributions has two distribution
parameters. The most common choice of how to parameterise the distribution is the mathematically
convenient one of a shape parameter a and a rate parameter b so that the probability density for q is
pðqÞ1 ba

sðaÞ q
a�1e�bq:

There are a number of ways to get approximate confidence intervals for both distribution
parameters. Of those, the one which has the best performance is maximum likelihood estimation
(Whitlock and Schluter, 2014) combined with large sample approximation confidence interval
calculations. However, the main practical difficulty is that the sampling distributions of estimates of the
parameters are strongly correlated and so it is not very useful to consider uncertainty about each
parameter on its own. The large sample theory for maximum likelihood estimation shows how to
compute a simultaneous confidence region for both parameters. Figure B.7 shows the maximum
likelihood estimate and 95% and 99% confidence regions for a and b based the consumption data
used in the example; the dotted vertical and horizontal lines show, respectively, the ends of the 95%
confidence intervals for a and b.

Strengths

1) For many survey designs or study designs and corresponding statistical models, there is
familiar methodology to obtain confidence intervals for individual statistical model
parameters.

2) Widely available software for computing confidence intervals (Minitab, R, Systat, Stata, SAS,
etc.)

3) Computations are based on the generally accepted mathematical theory of probability
although probability is only used directly to quantify variability.

Weaknesses and possible approaches to reduce them

1) Confidence intervals only address uncertainties relating to parameters in statistical models.
2) Requires specification of a statistical model for data, the model depending on parameters

which be estimated. Specifying and fitting non-standard models can be time-consuming and
difficult for experts and may often require the involvement of a professional statistician.

3) Results are expressed in the language of confidence rather than of probability. Uncertainties
expressed in this form can only be combined in limited ways. They can only be combined

Figure B.7: Confidence regions for distribution parameters for gamma distribution used to model
variability of consumption by 1-year-old children
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with probabilistic information if experts are willing to make probability statements on the
basis of their knowledge of one or more confidence intervals.

4) Dependence in the uncertainties about statistical model parameters is usual when a
statistical model having more than one parameter is fitted to data. This can be addressed in
principle by making a simultaneous confidence statement about multiple parameters.
However, such methods are much less familiar to most scientists and generally require
substantial statistical expertise.

Assessment against evaluation criteria

This method is assessed against the criteria in Table B.20.

Conclusions

1) Confidence intervals are suitable for application across EFSA in situations where standard
statistical models are used in order to quantify uncertainty separately about individual
statistical model parameters using intervals.

2) The quantification provided is not directly suitable for combining with other uncertainties in
probabilistic calculations although expert judgement may be applied in order to support
such uses.
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Table B.20: Assessment of Confidence intervals (when well applied) against evaluation criteria

Criteria
Evidence of
current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and
variability

Meaning of
output

Transparency
and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty
& variability.
quantified
separately

Range and
probability of
possible
answers

All aspects of
process and
reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread in
practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty
and variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well established
in practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty
and variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited
explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited
explanation of
process and/or
basis for
conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis
for conclusions

Process and
outputs only
understandable
for specialists
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B.11. The bootstrap
Purpose, origin and principal features

The bootstrap is a tool for quantifying uncertainty due to sampling variability. It is both a basic
sensitivity analysis tool and a method for producing approximate confidence intervals. It has the
advantage that it is often easy to implement using Monte Carlo (see Annex B.14).

The bootstrap was originally proposed by Efron (1981). Davison and Hinkley (1997) give an
account of theory and practice aimed at statisticians while Manly (2006) is aimed more at biologists
and other scientists.

The problem it addresses is that it is usually uncertain how much the result of a calculation based
on a sample of data might differ from the result which would be obtained by applying the calculation
to the statistical population from which the data were drawn. For some statistical models, there is a
well-known mathematical solution to that problem. For others, there is not. The bootstrap provides an
approximate answer which is often relatively easily calculated. The underlying principle is that, for
many situations, sampling variability when sampling from the statistical population is similar to
sampling variability when resampling from the data. It is often easy to resample from the data and
repeat the calculation. By repeating the resampling process many times, it is possible to quantify the
uncertainty attached to the original calculation.

The bootstrap can be applied in many ways and to a wide variety of parametric and non-parametric
statistical models. However, it is most easily applied to situations where data are a random sample or
considered to be equivalent to a random sample. In such situations, the uncertainty attached to any
statistical estimator(s) calculated from the data can be examined by repeatedly resampling from the
data and repeating the calculation of the estimator(s) for each new sample. The estimator may be
something simple like the sample mean or median or might be something much more complicated
such as a percentile of exposure from estimated from data on consumption and concentrations. The
resampling procedure is to take a random sample from the data, with replacement and of the same
size as the data. Although from a theoretical viewpoint it is not always necessary, in practice the
bootstrap is nearly always implemented using Monte Carlo sampling.

When applying an estimator to a particular data set, one is usually trying to estimate the population
value: the value which would have been obtained by applying the estimator to the statistical
population from which the data were drawn. There are many approaches to obtaining an approximate
confidence interval, quantifying uncertainty about the population value, based on bootstrap output.
The differences originate in differing assumptions about the relationship between resampling variability
and sampling variability, some attempting to correct for potential systematic differences between
sampling and resampling. All the approaches assume that the sample size is large. Further details are
provided by Davison and Hinkley (1997).

The bootstrap can be used in relation to either a parametric or non-parametric statistical model of
variability. The advantage of the latter is that no parametric distribution family need be assumed but it
has the potential disadvantage that, if the whole distribution is being used in any subsequent
calculation, the only values which will be generated for the variable are those in the original data
sample. The advantage of working with a parametric statistical model is that, if one bootstraps
estimates of all the parameters, one obtains an indication of uncertainty about all aspects of the
distribution.

The bootstrap will not perform well when the sample size is low or is effectively low. One example
of an effectively low sample size would be when estimating non-parametrically a percentile near the
limit of what could be estimated from a given sample size. Another would be when a large percentage
of the data take the same value, perhaps as values below a limit of detection or limit of quantification.

One very attractive feature of the bootstrap is that it can readily be applied to situations where
there is no standard confidence interval procedure for the statistical estimator being used. Another is
that it is possible to bootstrap more than one variable at the same time: if the data for two variables
were obtained independently, then one takes a resample from each data set in each resampling
iteration. The frequency property of any resulting confidence interval is then with respect to repetition
not of a single survey/experiment but is with respect to repeating all of them.

Because the output of the bootstrap is a sample of values for parameters, it is computationally
straightforward to use the output as part of a 2D Monte Carlo analysis (Annex B.14) of uncertainty.
Such an analysis could use bootstrap output for some uncertainties and distributions obtained by EKE
and/or Bayesian inference for other uncertainties. However, the meaning of the output of the Monte
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Carlo calculation is unclear unless an expert judgement has been made that the bootstrap output is a
satisfactory probabilistic representation of uncertainty for the parameters on the basis of the data to
which the bootstrap has been applied.

Applicability in areas relevant for EFSA

The bootstrap is a convenient way to make an assessment of uncertainty due to sampling
variability in situations which involve a random sample of data and where it is difficult to calculate a
standard confidence interval or make a Bayesian inference. As such, it has particular applicability to
data obtained from random surveys which are used in complex statistical calculations, for example,
estimation of percentiles of exposure using probabilistic modelling.

The bootstrap has been recommended as part of the EFSA (2012a,b,c) guidance on the use of
probabilistic methodology for modelling dietary exposure to pesticide residues. However, that guidance
recognises the limitations of the bootstrap and recommends that it be used alongside other methods.
Bootstrapping was used frequently in microbial dose–response assessment but it has now largely been
replaced by Bayesian inference (e.g. Medema et al., 1996; Teunis PFM et al., 1996).

Potential contribution to major elements of uncertainty analysis

Elements in uncertainty
analysis

Potential contribution of this approach

Identifying uncertainties Not applicable
Characterising uncertainties Yes/No. Quantifies sampling variability but not other types of uncertainty

Combining uncertainties No/Yes. Can be used to address multiple sources of uncertainty due to sampling
variability in a single Monte Carlo calculation, thereby providing the combined
impact of those, but not other, sources of uncertainty

Prioritising uncertainties Not applicable

Melamine example

The bootstrap will be illustrated by application to uncertainty about one of the sources of variability
considered in the version of the melamine example which considers uncertainty about variability of
exposure. Further supporting details about both versions of the melamine example may be found in
Annex C. The variable considered here is body weight. The body weight example is followed by a
short discussion of the potential to apply the bootstrap to consumption: the other variable for which
sample data were available.

Body weight (bw)

Data for body weight for children aged from 1 up to 2 years old were obtained from EFSA. Annex C
gives details of the data and some data analysis supporting the choice of distribution family.

For bw, the statistical model is that: (i) bw follows a log-normal distribution, so that log bw follows
a normal distribution; (ii) the uncertain distribution parameters are the mean llogbw and standard
deviation rlogbw of the distribution of log bw (base 10); (iii) the data are a random sample from the
distribution of bw for the population represented by the data.

First, consider uncertainty attached to the estimates of parameters for the log-normal statistical
model of variation in body weight. These parameters are the mean llogbw and standard deviation
rlogbw of log10bw. They are estimated simply by calculating the sample mean and sample standard
deviation of the observed data for log10bw. Figure B.8 plots the values of these estimates for the
original data and for 999 data sets resampled from the original data:
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The most commonly used methods for deriving a confidence interval from bootstrap output all give
very similar answers for this example: an approximate 95% confidence interval for llogbw is (1.028,
1.046) and for rlogbw the approximate 95% confidence interval using the ‘percentile’ method is
(0.0540, 0.0652) while other methods give (0.0548, 0.0659). There are two reasons why different
methods give very similar answers here: the original sample size is large and the mean and standard
deviation are both estimators for which the bootstrap performs reasonable well.

If a specific percentile, say the 99th, of variability of body weight was of interest, there are two
quite different approaches:

• For each bootstrap resample, the estimates of llogbw and rlogbw can be calculated and then
the estimated 99th percentile then llogbw + 2.33 * rlogbw using the log-normal model. Doing
so provides 999 bootstrap values for the 99th percentile to which a bootstrap confidence
interval calculation can be applied: the percentile method gives (1.158, 1.192) for 99th
percentile of log10bw which becomes (14.38, 15.56) as a CI for the 99th percentile of bw.

• Alternatively, the assumption of the log-normal parametric statistical model can be dropped
and a non-parametric model for variability of body weight used instead. For each resampled
data set, a non-parametric estimate of the 99th percentile is computed and a bootstrap
confidence interval calculation is then applied to the 999 values of the 99th percentile: the
percentile method gives (14.00, 15.42) and other methods give somewhat slightly lower values
for both ends of the confidence interval.

Other variables

The bootstrap cannot be applied to variability of concentration (c) or weight fraction (w) because
no sample of data is available for either source of variability.

For consumption (q), the bootstrap could be applied. If uncertainty about the parameters alpha and
beta of the gamma distribution model was required, it would be necessary to estimate the distribution
parameters aq and bq for each resampled data set. This could be done by maximum likelihood
estimation or, less optimally, by estimation using the method of moments.

Note that it would not be appropriate to carry out independent resampling of q and bw in this
example. In the surveys from which the data were obtained, values for both variables come from the
same individuals. The appropriate way to implement the bootstrap, to simultaneously address
uncertainty about both q and bw, would be to resample entire records from the surveys. Doing so
would also address dependence between q and bw.

Strengths

1) Computations are based on the generally accepted mathematical theory of probability
although probability is only used directly to quantify variability.

2) Often does not require a lot of mathematical sophistication to implement.
3) Allows the user to decide what statistical estimator(s) to use.
4) Easily applied using Monte Carlo.

Figure B.8: Estimates of parameters of log-normal distribution fitted to data sets obtained by
resampling the body weight data. The red point shows the estimates for the original data
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5) Specialist software exists for a number of contexts (CrystalBall, MCRA, Creme, etc.) as well
as the possibility to use some general purpose statistical software, e.g. R.

Weaknesses and possible approaches to reduce them

1) The bootstrap only addresses random sampling uncertainty whereas other statistical
inference methods can address a wider range of uncertainties affecting statistical models.

2) The performance of the bootstrap is affected both by the original sample size and by the
estimator used. Larger samples generally improve the performance. Estimators which are
not carefully designed may be badly biased or inefficient. This can be avoided by consulting
a professional statistician.

3) The non-parametric bootstrap never produces values in a resample which were not present
in the data and consequently the tails of the distribution will be under-represented.

4) Bootstrap confidence interval procedures are only approximate and in some situations the
actual confidence may differ greatly from the claimed level. This can sometimes be
ameliorated by carrying out a suitable simulation study.

5) Deciding when the method works well or badly often requires sophisticated mathematical
analysis.

Assessment against evaluation criteria

This method is assessed against the criteria in Table B.21. The two extremes of the ‘Method of
propagation’ column have both been selected because the method can combine uncertainties due to
sampling variability for multiple variables but cannot combine those uncertainties with other kinds of
uncertainty.

Conclusions

1) The bootstrap is suitable for application across EFSA in situations where data are randomly
sampled and it is difficult to apply other methods of statistical inference.

2) It provides an approximate quantification of uncertainty in such situations and is often easy
to apply using Monte Carlo.

3) The results of the bootstrap need to be evaluated carefully, especially when the data sample
size is not large or when using an estimator for which the performance of the bootstrap has
not been previously considered in detail.
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Table B.21: Assessment of The bootstrap (when applied well) against evaluation criteria

Criteria
Evidence of
current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment
of
uncertainty
and
variability

Meaning of
output

Transparency
and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement used
only to choose
method of
analysis

Calculation
based on
appropriate
theory

Different
types of
uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of
process and
reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread in
practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination of
data and expert
judgement

Formal expert
judgement

Uncertainty
and variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines,
or well
established in
practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty
and variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited
explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined ordinal
scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited
explanation of
process and/or
basis for
conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description, no
defined scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation
of process or
basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.12. Bayesian inference
Purpose, origin and principal features

Bayesian inference is a methodology for expressing and calculating uncertainty about parameters in
statistical models, based on a combination of expert judgements and data. The resulting uncertainty is
expressed as a probability distribution for the statistical model parameters and is therefore well-suited
for combining with other uncertainties using the mathematics of probability.

The principle underlying Bayesian inference has a long history in the theoretical development of
statistical inference. However, it was not until the advent of modern computing that it started to be
widely applied and new methodology developed. Since around 1990, there has been an explosion in
Bayesian research and in application to all areas of natural and social sciences and to quantification of
uncertainty in various financial sectors of business. Between them, Berry (1995), Kruschke (2010) and
Gelman et al. (2013) cover a wide range from elementary Bayesian principles to advanced techniques.

It differs in two key features from other methods of statistical inference considered in this
document. First, with Bayesian approaches, uncertainty about the parameter(s) in a statistical model is
expressed in the form of a probability distribution so that not only a range of values is specified but
also the probabilities of values. Second, the judgements of experts based on other information can be
combined with the information provided by the data. In the language of Bayesian inference, those
expert judgements must be represented as a prior distribution for the parameter(s). As for other
expert judgements, they should be based on evidence and the experience of the expert (Section 5.9).
The statistical model applied to the observed data provides the likelihood function for the parameter
(s). The likelihood function encapsulates the information provided by the data. The prior distribution
and likelihood function are then combined mathematically to calculate the posterior distribution for the
parameter(s). The posterior distribution is the probabilistic representation of the uncertainty about the
parameter(s), obtained by combining the two sources of information.

The prior distribution represents uncertainty about the values of the parameters in the model prior
to observing the data. The prior distribution should preferably be obtained by expert knowledge
elicitation (see Section 11.3 and Annexes B.8 and B.9). For some models, there exist standard choices
of prior distribution which are intended to represent lack of knowledge. If such a prior is used, it
should be verified that the statements it makes about the relative likelihood of different parameter
values are acceptable to relevant experts for the parameter in question. It is a good idea in general to
assess the sensitivity of the posterior distribution to the choice of prior distribution. If the output of the
assessment is found to be sensitive to this choice, extra attention needs to be given to ensuring that
the prior distribution represents the judgements of the expert(s). This is particularly important if a
standard prior distribution was used.

The concept of credible interval (also sometimes known as a probability interval), an interval of
values having a specified probability, based on the posterior distribution is sometimes seen as
analogous to the concept of confidence interval in non-Bayesian statistics. However, for a specified
probability, there are many different ways to determine a credible interval from a posterior distribution
and it is often better not to summarise the posterior in this way but to carry the full posterior
distribution forward into subsequent probability calculations.

As with other methods of statistical inference, calculations are straightforward for some statistical
models and more challenging for others. A common way of obtaining a practically useful representation
of uncertainty is by a large random sample from the distribution, i.e. Monte Carlo (see Annex B.14). For
some models, there is a simple way to perform Monte Carlo to sample from the posterior distribution;
for others, it may be necessary to use some form of Markov Chain Monte Carlo. Markov Chain Monte
Carlo is more complex to implement but has the same fundamental benefit that uncertainty can be
represented by a large sample of possible values for the statistical model parameter(s).

If data are not available in raw form but only summaries are presented it may possible in some
situations still to carry out a full Bayesian analysis. Exactly what is possible will depend on the model
and on the detail of what summary information is provided. The same applies if only the results of a
non-Bayesian statistical analysis of the data are available.

Applicability in areas relevant for EFSA

It is applicable to any area where a statistical model with uncertain parameters is used as a model
of variability. However, training in Bayesian statistics is not yet part of the standard training of
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scientists and so it will often be the case that some specialist assistance will be needed, for example,
from a statistician.

EFSA Scientific Opinion and guidance documents have proposed the use of Bayesian methods for
specific problems (EFSA, 2006; EFSA, 2012; EFSA, 2015a,b,c). They have also been applied in EFSA
internal and external scientific reports (EFSA, 2009; Hald et al., 2012). However, at present, they are
not widely used by EFSA.

The use of Bayesian methods has been proposed in many scientific articles concerning risk
assessment in general and also those addressing particular applications. They have been adopted by
some organisations for particular applications. For example, Bayesian methods have been used in
microbial risk assessment by RIVM (Netherlands), USDA (USA) and IFR (UK) (Teunis and Havelaar,
2000). Bayesian methods are also widely used in epidemiology and clinical studies which are fields
with close links to risk assessment (e.g. Teunis et al., 2008).

Potential contribution to major elements of uncertainty analysis

Elements in uncertainty
analysis

Potential contribution of this approach

Identifying uncertainties Not applicable
Characterising uncertainties Yes. For each source, uncertainty is expressed as a probability distribution. Where

there is dependence between uncertainties about two or more parameters, the
joint uncertainty is expressed using a multivariate probability distribution

Combining uncertainties Not applicable. However, the results of EKE and/or Bayesian inferences for multiple
uncertainties may be combined using the mathematics of probability. This is seen
by some as being part of an overarching Bayesian approach to uncertainty

Prioritising uncertainties Not applicable. However, there exist methods of sensitivity analysis which are
proposed from a Bayesian perspective and which are seen by some as being
particularly appropriate for use in conjunction with Bayesian inference

Melamine example

Bayesian inference will be illustrated by application to uncertainty about two of the sources of
variability considered in the version of the melamine example which considers uncertainty about
variability of exposure. Further supporting details about both versions of the melamine example may
be found in Annex C. The variables considered here are body weight and consumption in a day.

Data for both variables for children aged from 1 up to 2 years old were obtained from EFSA.
Annex C gives details of the data and some data analysis supporting the choice of distribution family
for each variable. The variables are treated as independent in what follows and the reasoning for
doing so is included in Annex C.

Both variables are considered in detail below because there are important differences between the
models used. For body weight, the model is mathematically tractable and it is straightforward to use
ordinary Monte Carlo to obtain a sample from the posterior distribution of the distribution parameters
whereas for consumption it is necessary to use Markov Chain Monte Carlo for the same purpose.
Moreover, for body weight, the posterior uncertainty involves very little dependence between the
distribution parameters whereas for consumption there is strong dependence.

The prior distributions used in both examples are standard prior distributions proposed in the
statistical literature for use when a prior distribution has not been obtained by expert elicitation. The
large sample size of data means that the posterior distribution will not be very sensitive to the choice
of prior distribution. However, if possible, in a real assessment the prior distribution should be obtained
by expert elicitation or the expert(s) should be asked to verify that the standard prior is acceptable.

Body weight (bw)

For bw, the statistical model is that: (i) bw follows a log-normal distribution, so that log bw follows
a normal distribution; (ii) the uncertain distribution parameters are the mean llogbw and standard
deviation rlogbw of the distribution of log bw (base 10); (iii) the data are a random sample from the
distribution of bw for the population represented by the data.

In the absence of expert input, the widely accepted prior distribution, proposed by Jeffreys,
representing prior lack of knowledge is used. That prior distribution has probability density function
p(rlogbw, llogbw) ∞ 1/rlogbw (O’Hagan and Forster, 2004).
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For this choice of statistical model and prior distribution, the posterior distribution is known exactly
and depends only on the sample size nlogbw, sample mean �xlogbw and sample standard deviation slogbw
of the log bw data. Let slogbw ¼ 1=r2

logbw: Then the posterior distribution of slogbw is a Gamma
distribution. The Gamma distribution has two parameters: a shape parameter which here takes the
value 1

2 ðnlogbw � 1Þ and a rate parameter which here takes the value 1
2 ðnlogbw � 1Þs2logbw: Conditional on

a given value for rlogbw, the posterior distribution of llogbw is normal with mean �xlogbw and standard
deviation rlogbw=

ffiffiffiffiffiffiffiffiffiffiffiffi
nlogbw

p
: Note that the distribution of llogbw depends on the value of rlogbw, i.e.

uncertainty about the two distribution parameters includes some dependence so that the values which
are most likely for one of the parameters depend on what value is being considered for the other
parameter.

For the data being used, nlogbw = 171, �xlogbw = 1.037 and slogbw = 0.060. The posterior probability
density of rlogbw, is shown in Figure B.9a and the conditional probability density of llogbw given rlogbw,
is shown in Figure B.9b. The dependence between the parameters cannot be observed here.

However, when using these distributions in the exposure assessment, it is convenient to take a
Monte Carlo sample from the posterior distribution to represent the uncertainty about llogbw and
rlogbw. This can be done as follows:

• Sample the required number of values of slogbw from the gamma distribution with
shape = (171�1)/2 = 85 and rate = 85 * 0.0602 = 0.306.

• For each value of slogbw in the previous step, calculate the corresponding value for
rlogbw ¼ 1= ffiffiffiffiffiffiffiffiffiffiffiffi

slogbw
p

• For each value of rlogbw, sample a single value of llogbw from the normal distribution with
mean 1.037 and standard deviation rlogbw=

ffiffiffiffiffiffiffiffi
171

p
:

The result of taking such a Monte Carlo sample is shown in Figure B.10 with the original sample
mean and standard deviation for log bw shown, respectively, as dashed grey vertical and horizontal
lines. The dependence between the two parameters is just visible in Figure B.10 (the mean is more
uncertain when the standard deviation is high) but is not strong because the number of data nlogbw is
large. Note that this particular Monte Carlo sampling process can easily be carried out in any standard
spreadsheet software, for example, Microsoft Excel or LibreOffice Calc. In general, however, Bayesian
analyses are better implemented using specialist software.

a) b)

Figure B.9: Posterior distributions of parameters of log-normal distribution for body weight of 1-year-
old children. The left panel shows the probability density for rlogbw, the standard
deviation of log bw. The panel on the right shows the conditional probability density for
llogbw, the mean of log bw, given a value for the standard deviation rlogbw
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Consumption (q)

For q, the statistical model is that: (i) q follows a gamma distribution with uncertain distribution
parameters being the shape aq and rate bq; (ii) the data are a random sample from the distribution of q.

Again, no expert judgements were provided with which to inform the choice of prior distribution for
the parameters. Instead, Jeffreys’ general prior is used (O’Hagan and Forster, 2004) which for this
model has probability density function pðaq; bqÞ1ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aqwðaqÞ � 1
p Þ=bq:

For this model and choice of prior distribution, there is no simple mathematical representation of
the posterior distribution. However, it is still quite possible to obtain a Monte Carlo sample from the
posterior distribution by various methods. The results below were obtained using the Metropolis
random walk version of Markov Chain Monte Carlo (Gelman et al., 2015) to sample from the posterior
distribution of aq. Values for the rate parameter bq were directly sampled from the conditional
distribution of bq given aq, for which there is a simple mathematical representation. Markov Chain
Monte Carlo sampling of this kind is not easy to implement in a spreadsheet but takes only a few lines
of code in software such as Matlab or R. This model is also easy to implement in software specialising
in Bayesian inference, for example, WinBUGS, OpenBUGS or JAGS.

The results of taking a Monte Carlo sample representing uncertainty about the parameters are shown
in Figure B.11a. This figure clearly shows the dependence between aq and bq. Figure B.11b shows the
same uncertainty for the mean and coefficient of variation of the consumption distribution. The mean is
aq/bq and the coefficient of variation is 1= ffiffiffiffiffi

aq
p . Values for these alternative parameters can be computed

directly from the values of aq and bq in the Monte Carlo sample. In Figure B.11b, the mean and
coefficient of variation of the data are shown, respectively, as dashed grey vertical and horizontal lines.

Figure B.10: Monte Carlo sample of 1,000 values representing posterior uncertainty about rlogbw and
llogbw, given the data

Figure B.11: Monte Carlo sample representing posterior uncertainty about parameters for the gamma
distribution describing variability of consumption. The left panel shows uncertainty
about the shape and rate parameters. The panel on the right shows uncertainty about
the mean (kg/day) and coefficient of variation of the consumption distribution
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Strengths

1) Uncertainty about each parameter in a statistical model is quantified as a probability
distribution for the possible values of the parameter. Therefore, the probability of different
values of the parameter is quantified and this information can be taken into consideration
by decision-makers. Probability distributions for multiple uncertainties may be combined
using the laws of probability.

2) Dependence of uncertainty for one or more parameters is expressed using a multivariate
probability distribution. This is the most complete and theoretically based treatment of
dependence that is possible with methods available today.

3) The statistical uncertainty due to having a limited amount of data is fully quantified.
4) Knowledge/information about parameter values from sources other than the data being

modelled can be incorporated in the prior distribution by using expert knowledge elicitation
(EKE).

5) The output of a Bayesian inference is usually most easily obtained as a Monte Carlo sample
of possible parameter values and is ideally suited as an input to a 2D Monte Carlo analysis
of uncertainty.

6) Bayesian inference can be used with all parametric statistical models.

Weaknesses and possible approaches to reduce them

1) Bayesian inference is an unfamiliar form of statistical inference in the EFSA community and
may require the assistance of a statistician. By introducing this method in training courses
for statistical staff at EFSA this weakness can effectively be remediated.

2) When it is required to do so, obtaining a prior distribution by EKE (see Section 11.3 and
Annexes B.8 and B.9) can require significant time and resources.

3) When the prior distribution is not obtained by EKE, one must find another way to choose it
and for most models there is not a consensus about the best choice. However, there is a
substantial literature and one can also investigate the sensitivity of the posterior distribution
to the choice of prior distribution. Moreover, the influence of the choice of prior on the
posterior distribution diminishes at larger sample sizes.

4) There is less software available than for other methods of statistical inference and there is
less familiarity with the available software. Training in the use of software could be included
in training on Bayesian inference.

5) As with other methodologies for statistical inference, an inappropriate choice of statistical
model can undermine the resulting inferences. It is important to consider carefully the
(sampling) process by which the data were obtained and to carry traditional statistical
model validation activities such as investigation of goodness of fit and looking for influential
data values.

6) The need to use Markov chain Monte Carlo for more complex models introduces a further
technical difficulty and potential source of uncertainty: the need to ensure that the Markov
chain has reached equilibrium.

Assessment against evaluation criteria

This method is assessed against the criteria in Table B.22. All entries in the ‘Time Needed’ column
have been highlighted because the time required for Bayesian inference is highly dependent on the
complexity of the model. Overall, the ease or difficulty of applying Bayesian methods is strongly
context dependent.

Conclusions

1) The method is suitable for application across EFSA, subject only to availability of the
necessary statistical expertise.

2) It can be used for quantification of parameter uncertainty in all parametric statistical
models.

3) For all except the simplest models, incorporating expert judgements in prior distributions is
likely to require the development of further guidance on EKE.

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 174 EFSA Journal 2018;16(1):5122



References

Berry DA, 1995. Statistics: a Bayesian Perspective. Brooks/Cole.
EFSA PLH, PPR Panels, (Panel on Plant Health, Panel on Plant Protection Products and their Residues), 2006.

Opinion of the Scientific Panel on Plant health, Plant protection products and their Residues on a request from
EFSA related to the assessment of the acute and chronic risk to aquatic organisms with regard to the
possibility of lowering the uncertainty factor if additional species were tested. The EFSA Journal (2005) 301, 1-
45.

EFSA (European Food Safety Authority), 2009. Meta-analysis of Dose-Effect Relationship of Cadmium for
Benchmark Dose Evaluation. EFSA Scientific Report 254, 1-62 http://www.efsa.europa.eu/sites/default/files/scie
ntific_output/files/main_documents/254r.pdf

EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), 2012. Guidance on the Use of
Probabilistic Methodology for Modelling Dietary Exposure to Pesticide Residues. EFSA Journal 2012;10
(10):2839, 95 pp. https://doi.org/10.2903/j.efsa.2012.2839

EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), 2015. Scientific Opinion addressing
the state of the science on risk assessment of plant protection products for non-target arthropods. EFSA
Journal 2015;13(2):3996, 212 pp. https://doi.org/10.2903/j.efsa.2015.3996

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A and Rubin DB, 2013. Bayesian Data Analysis, 3rd ed.
Chapman & Hall/CRC.

Hald T, Pires SM and de Knegt L, 2012. Development of a Salmonella source attribution model for evaluating
targets in the turkey meat production. EFSA Supporting Publications 2012:EN-259.

Kruschke JK, 2010. Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press.
O’Hagan A and Forster JJ, 2004. Kendall’s advanced theory of statistics, volume 2B: Bayesian inference (Vol. 2).

Arnold.
Teunis PFN and Havelaar AH, 2000. The beta poisson dose-response model is not a single-hit model. Risk Analysis

20(3): 513-520.
Teunis PF, Ogden ID and Strachan NJ. Hierarchical dose response of E. coli O157:H7 from human outbreaks

incorporating heterogeneity in exposure. Epidemiol Infect. 2008;136:761-70.

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 175 EFSA Journal 2018;16(1):5122

http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/254r.pdf
http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/254r.pdf
https://doi.org/10.2903/%3fj.efsa.2012.2839
https://doi.org/10.2903/j.efsa.2015.3996


Table B.22: Assessment of Bayesian inference (when applied well) against evaluation criteria

Criteria
Evidence of
current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment
of
uncertainty
and
variability

Meaning of
output

Transparency
and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement used
only to choose
method of
analysis

Calculation
based on
appropriate
theory

Different
types of
uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of
process and
reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread in
practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination of
data and expert
judgement

Formal expert
judgement

Uncertainty
and variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines,
or well
established in
practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty
and variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited
explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined ordinal
scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited
explanation of
process and/or
basis for
conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description, no
defined scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation
of process or
basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.13. Probability bounds analysis
Purpose, origin and principal features

Probability bounds analysis provides a way of computing a probability bound relating to a
combination of uncertainties based on probability bounds relating to individual uncertainties. This
allows the use of probability to quantify uncertainty while at the same time allowing assessors to
specify probability bounds rather than having to specify full probability distributions. A probability
bound is an approximate probability for a specified range of possible values for a non-variable quantity
(parameter). The simplest useful form of probability bound is to specify an upper or lower limit on the
probability that a parameter exceeds some specified level. Starting from probability bounds for
individual inputs to a calculation (or a deterministic model), probability bounds analysis applies the
laws of probability to deduce a probability bound for the output of the calculation, thereby quantifying
combined uncertainty.

There is a long history in the theory of probability concerning methods for this kind of problem. It
first appears in Boole (1854) and the simple methods presented here are based on Frechet (1935,
1951). A modern account of more complex approaches in the context of risk assessment is given by
Tucker and Ferson (2003).

It is a generalisation of the interval analysis method (Annex B.7) but has the specific advantage
that it incorporates some probability judgements and produces a partial expression of uncertainty
using probability. The key advantage compared to Monte Carlo (Annex B.14) is that experts do not
have to specify complete probability judgements; the least they must provide is an upper bound on
the probability of exceeding (or falling below) some threshold for each source of uncertainty. A second
advantage is that no assumptions are made about dependencies unless statements about dependence
are specifically included in the calculation.

There are many possible ways in which it might be applied. The examples below show minimalist
versions, based on the Frechet (1935, 1951) inequalities, for problems involving only uncertainty and
problems involving both uncertainty and variability.

The two simplest versions are:

• Specify a probability bound for each of n inputs to a calculation: each probability bound
consists of a range of values for the corresponding input and an approximate probability that
the range contains the true value of the input. Probability bounds then provides a probability
bound for the output value which would be obtained by using the true values of all the inputs
in the calculation. The range for the output is obtained by applying interval analysis to the
calculation using the input ranges specified in their probability bounds. The lower limit of the
approximate probability for the output is then 1 � [(1 � p1) + (1 � p2) + . . . + (1 � pn)]
where pi is the lower limit of the approximate probability attached to the range for the i th
input. The upper limit of the approximate probability for the output may be in principle be less
than 1 but this is difficult to determine without specialist expertise.

• For calculations which are monotonic increasing with respect to each input, i.e. increasing any
single input always increases the output, a simple calculation yields a probability bound for the
output. For each input, a probability bound of the following form must be specified: a value of
interest for the input, together with an upper limit on the probability that the true value of the
input exceeds the value specified. Then probability bounds analysis determines an upper limit
for the probability that the output value corresponding to the true values of the inputs exceeds
the output value corresponding to the values of interest specified for the inputs. The upper
limit for the probability is obtained by summing the upper limits for the probabilities in the
probability bounds specified for the inputs.

The first version is completely general and in fact the second version can be deduced
straightforwardly from the first version. The second version is somewhat more generally applicable
than it might appear. If a calculation is monotonic increasing with respect to some inputs and
monotonic decreasing with respect to others, each input in the latter group can always be
reparameterised so that the calculation becomes monotonic increasing with respect to all inputs;
replace an input by its negation or a positive input by its reciprocal as in the example below.

By applying the probability bounds calculation twice, it is possible to obtain a probability bound for
a percentile of the variable output of a monotonic calculation which has variable inputs. For details,
see the example below.

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 177 EFSA Journal 2018;16(1):5122



Applicability in areas relevant for EFSA

Potentially applicable to all areas of EFSA’s work but most obviously advantageous for assessments
(or parts of assessments) for which probabilistic methods are considered to be too challenging.

Probability bounds analysis was used by EFSA (2017). Examples of use outside EFSA in risk
assessment include Dixon (2007) and Regan et al. (2002).

Potential contribution to major elements of uncertainty analysis

Elements in uncertainty analysis Potential contribution of this approach

Identifying uncertainties Not applicable
Characterising uncertainties Not applicable (required as input)

Combining uncertainties Yes. However, simple versions do not involve quantification of
dependencies but do allow for their possible existence in computing the
bound on the combined impact

Prioritising uncertainties Not applicable

Melamine example

In normal practice, the probability bounds on inputs required for probability bounds analysis would
be obtained in most cases by expert knowledge elicitation (Sections B.8 and B.9). However, for the
purpose of illustrating calculations based on probability bounds in the examples which follow, values
specified for parameters, and bounds on probabilities of exceeding those values, were deduced from
probability distributions used for Monte Carlo analyses (Annex B.14).

The melamine example (details in Annex C) has two versions: a worst-case assessment and an
assessment of uncertainty about variability. Both are considered below but require different
approaches as only the second version directly involves variability.

Worst-case exposure

The focus of this example is to make a partial probability statement about worst-case exposure for
children aged 1 up to 2 years, based on partial probability statements about individual parameters.

When increased, each of the following parameters increases the worst-case exposure:
cmax, wmax, qmax. When decreased, bwmin increases the worst-case exposure and so increasing 1/bwmin

increases the worst-case exposure.
The following table shows a partial probability statement for each of the input parameters. The

statements were derived from distributions used in Sections B.8 and B.9 but it is likely that expert
knowledge elicitation would be used in many cases in real assessments.

Parameter Specified value
Probability parameter exceeds

specified value

cmax 3,750 mg/kg ≤ 3.5%
wmax 0.295 ≤ 2%

qmax 0.095 kg ≤ 2.5%

1/bwmin 1/(5.6 kg) ≤ 2%

Note that the judgement for 1/bwmin was actually arrived by considering the probability that
bwmin ≤ 5.6 kg.

The value being considered for emax can then simply be calculated from the specified values for
individual parameters which increase exposure: 3750 * 0.295 * 0.095/5.6 = 18.8

Based on the judgements in the preceding table, the laws of probability then imply that the
probability that emax exceeds 18.8 is less than (3.5 + 2 + 2.5 + 2)% = 10%. This is the simplest form
of probability bounds analysis. No simulations are required.

As indicated earlier, the values specified for parameters and bounds on probabilities of exceeding
those were obtained for illustrative purposes from the distributions used to represent in Sections B.8
and B.9. If the method were being applied using expert judgements about the parameters, we would
be likely to end up with simpler probability values such as <=10%, <=5% or <=1% and the values
specified for parameters would also be different having been specified directly by the experts. The
method of computation would remain the same.
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Uncertainty about variability of exposure

When variability is involved, the simplest approach to applying probability bounds analysis is to
decide which percentile of the output variable will be of interest. The probability bounds method can
then be applied twice in order to make an assessment of uncertainty about variability: once to
variability and then a second time to uncertainty about particular percentiles.

For illustrative purposes, assessment will be made of uncertainty about the 95th percentile of
exposure: e95. In order to apply probability bounds analysis, for each input parameter a percentile
needs to be chosen on which to focus. For illustrative purposes, it was decided to focus on the 98th
percentile of variability of concentration, denoted c98, and the 99th percentile of variability of each of
the other input parameters which increase the exposure when increased: w99, q99 and (1/bw)99. Note
that (1/bw)99 = bw01.

Applying probability analysis first to variability, the mathematics of probability implies that
e95 � c98 �w99 � ð1=bwÞ99 ¼ c98 � w99 � q99=bw01

where 95% is obtained as

95% ¼ 100% � ½ð100% � 98%Þ þ ð100%� 99%Þ þ ð100% � 99%Þ þ ð100% � 99%Þ�

The following table shows a partial probability statement of uncertainty about the chosen percentile
for each of the input variables. As before, the statements were derived from distributions used in
Sections B.8 and B.9 but it is likely that expert knowledge elicitation would be used in many cases in
real assessments.

Parameter Specified value
Probability parameter exceeds

value specified

c98 4,400 mg/kg ≤ 2.5%
w99 0.295 ≤ 2.5%

q99 0.075 kg ≤ 2.5%

(1/bw)99 1/(7 kg) ≤ 2.5%

Computing exposure using the values specified for the input parameters s leads to the following
value to be considered for exposure: 4400 * 0.295 * 0.075/7 = 13.9. From this, by the same
calculation as for worst-case example, the laws of probability imply that the probability that
c98 9 w99 9 q99/bw01 exceeds 13.9 is less than 2.5% + 2.5% + 2.5% + 2.5% = 10%.

Since e95 ≥ c98 9 w99 9 q99/bw01, the probability that e95 exceeds 13.9 is also less than 10%.
Various choices were made here:

• The choice of percentiles could have been made differently. It was assumed for illustrative
purposes that the 95th percentile of exposure is of interest, although other percentiles could
equally be considered. Given the focus on the 95th percentile, percentiles for the individual
components were chosen so that the total variability not covered by them was less than or equal
to 5%. Because there is reason to believe that the greatest source of variability is concentration,
a lower percentile was chosen for concentration than for the other three parameters.

• Values specified for the percentiles of input parameters and probabilities of exceeding those
values were obtained from the distributions used for the 2D Monte Carlo example in
Sections B.8 and B.9. The total limit of the exceedance probability was chosen to be 10% and
this was divided equally between the four parameters to illustrate the calculation. Any other
division would have been valid and would have led to different values for the parameters.

• If expert knowledge elicitation were used instead to make a partial probability statement about
each of the four percentiles, it is likely that simpler probability values such as ≤ 10%, ≤ 5% or
≤ 1% would have resulted, and the values specified for the percentiles would therefore also be
different having been specified directly by the experts. The method of computation would
remain the same.

Strengths

1) Simplest version provides an easily calculated bound on the probability that a calculated
parameter exceeds a specified value. The method applies when a partial probability
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statement has been made about each input parameter and the calculation is monotonic with
respect to each input.

2) Requires only probability bounds for inputs from experts. This greatly reduces the burden of
elicitation compared to fully probabilistic methods.

3) Simple version makes no assumption about dependence between components of either
uncertainty or variability.

4) More complex versions, based on the general theory of imprecise probability
(Section 11.5.1) can in principle exploit more detailed probability judgements and/or
statements about dependence of judgements.

Weaknesses and possible approaches to reduce them

1) For the simplest version, the calculated upper limit for the probability will be larger, and may
be much larger, than would be obtained by a more refined probabilistic assessment.
Nevertheless, it may sometimes be sufficient for decision-making, and can indicate whether
a more refined probabilistic assessment is needed.

2) Provides only a limited quantification of uncertainty about the calculated value.
Nevertheless, that may sometimes be sufficient for decision-making,

3) More complex versions involve more complex calculations and it is likely that professional
mathematical/statistical advice would be needed.

Assessment against evaluation criteria

This method is assessed against the criteria in Table B.23. In evaluating time needed, only the
simple form of probability bounds analysis was considered, as used in the two examples for melamine.
Time needed to conduct EKE is not included.

Conclusions

1) This is potentially an important tool for EFSA as it provides a way to incorporate probabilistic
judgements without requiring the specification of full probability distributions and without
making assumptions about dependence. In so doing, it provides a bridge between interval
analysis and Monte Carlo. It allows the consideration of less extreme cases than interval
analysis and involves less work than full EKE for distributions followed by Monte Carlo.

2) Judgements and concept are rather similar to what EFSA experts do already when using
assessment factors and conservative assumptions. Probability bounds analysis provides a
transparent and mathematically rigorous calculation which results in an unambiguous
quantitative probability statement for the output.
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Table B.23: Assessment of Probability bound analysis (when applied well) against evaluation criteria

Criteria
Evidence of
current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and
variability

Meaning of
output

Transparency
and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose method
of analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty
& variability
quantified
separately

Range and
probability of
possible
answers

All aspects of
process and
reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread in
practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty
and variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well
established in
practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty
and variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited
explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined ordinal
scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited
explanation of
process and/or
basis for
conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description, no
defined scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation
of process or
basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.14. Monte Carlo simulation for uncertainty analysis (1D-MC and
2D-MC)

Purpose, origin and principal features

In the context of analysing uncertainty, Monte Carlo (MC) is primarily a computational tool for (i)
calculations with probability distributions representing uncertainty and/or variability and (ii) those
methods of sensitivity analysis (Annex B.17) which require sampling random values for parameters. In
the case of (i), it provides a means to compute the combined effect of several sources of uncertainty,
each expressed as a probability distribution, providing a probability distribution representing
uncertainty about an assessment output. MC software often also provides modelling tools.

Monte Carlo simulation was developed in the 1940s, primarily by Stanislav Ulam in collaboration
with Nicholas Metropolis and John von Neumann in the context of the Manhattan project to develop
atomic bombs, and first published in 1949 (Ferson, 1996). Currently, the method is widely applied in
science, finance, engineering, economics, decision analysis and other fields where random processes
need to be evaluated. Many papers have been written about the history of MC simulation, the reader
is referred to Bier and Lin (2013) and Burmaster and Anderson (1994).

In MC simulation for a quantitative model, uncertain parameters are represented by probability
distributions expressing the uncertainty. Those probability distributions are the ‘inputs’ to the MC
calculation. The model is recalculated many times, each time sampling a random value for each
parameter from its distribution, to produce numerous scenarios or iterations. Each set of model results
or ‘outputs’ from a single iteration represents a scenario that could occur. The joint distribution of
outputs, across all the iterations, is a representation of the uncertainty in the outputs due to the
uncertainty about the model parameters. Where the model also includes variable components, multiple
values also need to be sampled for variables in each iteration of sampling values for uncertain
parameters (the so-called 2D Monte Carlo approach).

Risk assessment models may include variables that are correlated in some way. For example, the
food consumption of a child will typically be less than that of an adult. Therefore, food consumption
estimates are correlated with age and body weight. A cardinal rule to constructing a valid MC
simulation is that ‘Each iteration of a risk analysis model must be a scenario that can physically occur’
(Vose, 2008, p. 63). There can also be dependence between uncertainties about parameters (see
Section 5.4). If samples are drawn independently for two or more parameters or variables in an MC
simulation, when in fact there should be dependence, this may result in selecting combinations that
are not plausible. Ferson (1996) argues that the risk to exceed a particular threshold concentration
depends strongly on the presence or absence of dependencies between model parameters and/or
variables. Depending on whether correlations are positive or negative and the structure of the model,
the exceedance risk may be underestimated or overestimated. A simple approach to addressing
dependence between variables is to stratify the population into subgroups within which the inputs can
be assumed not to be strongly correlated, but this may result in ad hoc solutions and tedious
calculations. Different software packages offer different approaches to including correlations such as
by specifying a correlation coefficient. However, even then only a small space of possible dependencies
between the two variables may be sampled (US EPA, 1997). More advanced approaches include the
use of copulas to specify the joint probability distribution of model inputs.

For assessments in which variability is not considered directly, for example, worst-case
assessments, MC can be used with all input distributions being representations of uncertainty. The MC
output distribution will then also be a representation of uncertainty. However, for assessments
involving variability and uncertainty about variability (see Section 5.3), it is important to differentiate
between variable and uncertain factors when building MC simulations, in order to allow a more
informative interpretation of the output distributions. Two-dimensional Monte Carlo (2D-MC) simulation
was proposed by Frey (1992) as a way to construct MC simulations taking this separation into account.
First, model inputs are classified to be either variable or uncertain. Uncertainty about variability can
then be represented using a nested approach in which the distribution parameters, of probability
distributions representing variability, are themselves assigned probability distributions representing
uncertainty. For example, a dose–response model may be fitted to a data set involving a limited
number of individuals, and the uncertainty of the fitted dose–response model might be represented by
a sample from the joint distribution representing uncertainty about the dose–response parameters.
The MC simulation is then constructed in two loops. In each iteration of the outer loop, a value is
sampled for each uncertain model parameter, including distribution parameters. The inner loop
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samples a value for each variable component of the model and is evaluated as a 1D-MC simulation,
using the values sampled for distribution parameters in the outer loop to determine the probability
distribution to use for each variable. This process will generate one possible realisation of all output
values. The simulation is then repeated numerous times, usually repeating the inner loop many times
per outer loop iteration. The outer loop iterations provide a sample of values for all uncertain
parameters. For each outer loop iteration, the inner loop iterations provide a sample of values for
variable components. In combination, they generate numerous possible realisations of distributions
representing variability of outputs.

The results of a 2D-MC simulation can be shown graphically as ‘spaghetti plots’, in which probability
density functions (PDFs) or cumulative density functions (CDFs) of all simulated distributions of
variability of inputs or outputs are plotted together. The spread in these distributions demonstrates the
impact of uncertainty on the model output. Other commonly used graphics are probability bands (e.g.
the median CDF and surrounding uncertainty intervals, see melamine example) or a combination of
line- and box-plots.

Software for MC simulation is commercially available as add-ins to Excel such as @RISK, Crystal Ball
and ModelRisk; and dedicated software such as Analytica. MC calculations can also be done in
statistical software such as R, especially the distrfit and mc2d packages which support 2D-MC (Pouillot
and Delignette-Muller, 2010), or SAS or mathematical software such as Mathematica or Matlab.

Applicability in areas relevant for EFSA

MC simulations are used in many domains of risk assessment including food safety. In EFSA, they
are widely used in the area of microbial risk assessment and there is an EFSA guidance document on
their application to pesticide exposure assessment, which includes use of 2D-MC (EFSA, 2012).

Specific software applications are available to support MC simulations in different domains relevant
for EFSA. These include FDA-iRISK, sQMRA and MicroHibro for microbial risk assessment (reviewed in
EFSA, 2015a,b,c), MCRA and Creme for human dietary exposure to chemicals, and Webfram for some
aspects of environmental risk of pesticides.

The BIOHAZ Panel has commissioned several outsourced projects to develop complex models
including Salmonella in pork (Hill et al., 2011) and BSE prions in bovine intestines and mesentery
(EFSA, 2014a,b). The importance of 2D simulation was underlined, for example, by Nauta (2011) who
demonstrated that a simple model for the growth of Bacillus cereus in pasteurised milk without
separation of uncertainty and variability may predict the (average) risk to a random individual in an
exposed population. By separating variability and uncertainty, the risk of an outbreak can also be
identified, as cases do not occur randomly in the population but are clustered because growth will be
particularly high in certain containers of milk.

Pesticide intake rate for certain bee species was modelled by EFSA’s PRAS Unit using MC simulation
techniques. The 90th percentile of the residue intake rate and its 95% confidence interval were
derived from the empirical joint distribution of the feed consumption and residue level in pollen and
nectar.

Trudel et al. (2011) developed a 2D-MC simulation to investigate whether enhancing the data sets
for chemical concentrations would reduce uncertainty in the exposure assessment for the Irish
population to polybrominated diphenyl ethers and concluded that ‘by considering uncertainty and
variability in concentration data, margins of safety (MOS) were derived that were lower by a factor of
2 compared to MOS based on dose estimates that only consider variability’. Based on the simulation
results, they also suggested that ‘the datasets contained little uncertainty, and additional
measurements would not significantly improve the quality of the dose estimates’.

MC simulations are used by FAO/WHO committees supporting the work of the Codex Alimentarius
Commission (JECFA, JMPR, JEMRA), as well as by national risk assessment agencies (RIVM, BfR,
ANSES, and others). They are commonly used for exposure assessment in chemical risk assessment
(US FDA), but not yet common in toxicology. In the USA, an interagency guideline document (USDA/
FDIS and US EPA, 2012) for microbial risk assessment features MC simulations prominently for
exposure assessment and risk characterisation.

There are many guidelines and books that provide detailed instructions on how to set up MC
simulations. Burmaster and Anderson (1994), Cullen and Frey (1999) and Vose (2008) all have an
emphasis on the risk assessment domain. USEPA (1997) have published Guiding Principles on the use
of MC analysis, which are very relevant to applications in EFSA.
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Potential contribution to major elements of uncertainty analysis

Elements in uncertainty analysis Potential contribution of this approach

Identifying uncertainties Not applicable
Characterising uncertainties Not applicable (required as input)

Combining uncertainties Yes, rigorous quantification of the impact of quantified input uncertainties
on the output uncertainty, subject to model assumptions

Prioritising uncertainties Yes, rigorous quantification of the contribution of input uncertainties to
combined uncertainty

Melamine example

Two examples are presented of the use of MC for assessment of uncertainty. The first illustrates
how ordinary (1D) MC may be used, for assessments where variability is not modelled, to calculate
uncertainty about assessment outputs based on probability distributions representing uncertainty about
input parameters. It assesses uncertainty about the worst-case exposure for children aged from 1 up
to 2 years. The second example illustrates how 2D-MC may be used as a tool in assessing uncertainty
about variability in assessments where that is an issue. It considers uncertainty about variability of
exposure for those children in the same age group who consume contaminated chocolate from China.

Details of the models used may be found in Annex C together with details and some analysis of
data which were the basis for some distributions used in the 2D example.

Worst-case assessment

For simplicity, this example focuses only on selected uncertainties affecting the estimate of worst-
case exposure for children aged from 1 up to 2 years. In particular, any uncertainties affecting the TDI
are not considered. A combined characterisation of uncertainty would need to include these and
additional uncertainties affecting exposure. Distributions used to represent uncertainty about
parameters were not obtained by careful elicitation of judgements from relevant experts. Rather, they
are provided so that the MC calculations and output can be illustrated. Consequently, only a limited
amount of reasoning is provided as it is likely that a real assessment would make different choices.

The worst-case exposure is obtained by

emax ¼ cmax � wmax � qmax

bwmin

and the worst-case risk ratio is then rmax = emax/TDI.
To build a MC simulation, a distribution must be provided for each uncertain input parameter. The

distributions used for this example are shown in Figure B.13. For each parameter, the distribution is
over the range of values used for the parameter in the final table of the interval analysis (Annex B.7)
example.

The triangular distribution with 5.5 and 6.5 as endpoints and peak at 6 was selected to represent
uncertainty about bwmin.

The triangular distribution with 0.05 and 0.10 as the endpoints and with peak at 0.075 was
selected to represent uncertainty about qmax.

For uncertainty about wmax, the distribution obtained in the hypothetical example of expert
knowledge elicitation example (Sections B.8 and B.9) was used.

For uncertainty about cmax, a PERT distribution (Vose, 2008) was selected: the PERT distribution is
a beta distribution rescaled to have a specified minimum and maximum. The beta distribution with
parameters 3.224 and 16.776 was rescaled to the range from 2,563 to 6,100 mg/kg and the mode of
the resulting distribution is at 3,100 mg/kg was selected. Like the triangular distribution family, the
beta PERT distribution family only assigns non-zero probability to a finite range of values. However, it
has the additional possibility for the probability density function to descend more quickly to zero near
the endpoints. This was felt to be particularly desirable for the upper endpoint since there would
actually be no milk in the dried matter at that endpoint and so such values would be very unlikely.
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The MC simulation was built in R version 3.1.2 (R Core team, 2014), using the package mc2d
(Pouillot and Delignette-Muller, 2010).

The output of the MC simulation is a distribution, shown in Figure B.13, representing uncertainty
about emax. The output is calculated from the distributions selected to represent uncertainty about
input parameters. Table B.24 summarises the output and compares it to the TDI. The benefit of
carrying out a MC analysis is that there is a full distribution representing uncertainty. This provides
greater detail than other methods.

Figure B.12: Distributions used to represent uncertainty about input parameters in worst-case
exposure assessment for children aged from 1 up to 2 years

Table B.24: Uncertainty, calculated by MC, about the worst-case exposure and ratio to TDI for
children aged from 1 up to 2 years

Worst–case exposure (emax) Risk ratio (r) (emax/TDI)

Summary of uncertainty
distribution

Median 10.6 21.2

Mean 10.7 21.4
2.5%-ile 7.7 14.3

97.5%-ile 14.8 29.5
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Uncertainty about variability of exposure

For simplicity, this example focuses only on selected uncertainties affecting the estimate of worst-
case exposure for children aged from 1 up to 2 years who consume contaminated chocolate from
China. In particular, no consideration is given to (i) uncertainties affecting the TDI; (ii) uncertainties
about the relevance of data used; (iii) uncertainties about distribution family choices. A combined
characterisation of uncertainty would need to include these and any other additional uncertainties.
Distributions used to represent uncertainty about parameters are not considered to be the best
possible choices. Rather, they are provided so that the MC calculations and output can be illustrated.
Consequently, only a limited amount of reasoning is provided as it is likely that a real assessment
would make different choices.

The assessment model (further details in Annex C), in which all inputs are variable, is

e ¼ c� w� q
bw

To carry out a 2D-MC simulation for this model, it is necessary first, for each input, to choose a
suitable distribution to model variability. The approach taken here is to choose a parametric
distribution family for each input. It would also be possible to proceed non-parametrically if suitable
data were to be available for a variable; in that situation, uncertainty about variability might be
addressed by using the bootstrap (Annex B.11).

Figure B.13: Uncertainty, calculated by MC, about worst-case exposure for children aged from 1 up
to 2 years

Table B.25: Summary of distribution families used to model variability of input parameters and of
distributions used to represent uncertainty about variability distribution parameters.

Parameter
Model for variability
(distribution family)

Uncertainty about variability distribution parameters

Body weight
(bw, kg)

Log-normal (restricted to a
minimum of 5.5 kg)

Posterior distribution from Bayesian inference (Annex B.12) applied
to data described in Annex C. Figure B.10 shows a sample from the
posterior distribution

Consumption
(q, kg/day)

Gamma (restricted to a
maximum of 0.1 kg/day)

Posterior distribution from Bayesian inference (Annex B.12) applied
to data described in Annex C. Figure B.11 shows a sample from the
posterior distribution

Concentration
(c, mg/kg)

Log-normal (restricted to a
maximum of 6,100 mg/kg)

Median fixed at 29 mg/kg. Beta(22,1) distribution used to represent
uncertainty about percentile to which maximum data value
2,563 mg/kg corresponds

Weight-
fraction (w, -)

Uniform Lower end of uniform distribution fixed at 0.14. Uncertainty about
upper end represented by distribution for wmax used in the worst-
case example above
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The distribution family choices are shown in the second column of Table B.25. For body weight (bw)
and consumption (q), they were based on analysis of data described in Annex C. For concentration (c)
and weight-fraction (w), they are purely illustrative. The restrictions applied to the range of variability of
bw, q and c derive from the worst-case limits used in the interval analysis example (Annex B.7).

Having chosen distribution families to represent variability, the next step is to specify distributions
representing uncertainty about distribution parameters and to decide how to sample from them. The
choices made are summarised in the third column of Table B.25 and some further details follow.

1) The EFSA statement refers to data on concentrations in infant formula. Those data were not
obtained by random sampling and only summaries are available. The median of those data
was 29 mg/kg and the maximum value observed was 2,563 mg/kg. In the 2D-MC
simulation, the median of the log-normal distribution for concentrations was taken to be 29
mg/kg. In reality, the median concentration is uncertain and so this choice introduces an
additional uncertainty which is not addressed by the MC analysis. The percentile of the
concentration distribution corresponding to the maximum data value of 2,563 mg/kg is
considered to be uncertain. Treating the maximum data value as having arisen from a
random sample of size 22, both Bayesian and non-Bayesian arguments lead to a beta(22, 1)
distribution for the percentile to which 2,563 corresponds. When implementing 2D-MC, a
value is sampled from the beta distribution in each iteration of the outer loop; from that
value, it is possible to calculate the standard deviation for the underlying normal distribution
which would place 2,563 at the specified percentile.

2) Sampling from the posterior distribution for the parameters of the log-normal distribution for
body weight was carried out by the MC method described in the example in Annex B.12.

3) Sampling from the posterior distribution for the parameters of the gamma distribution for
consumption was carried out by Markov Chain MC as described in the example in
Annex B.12.

4) Sampling from the distribution for wmax could be carried out several ways. The method used
in producing the results shown below was to treat the distribution as a 12 component
mixture of uniform distributions and to sample accordingly.

A by-product of the 2D-MC calculation is that the samples can be used to summarise the input
variables in various ways. For each variable, Table B.26 summarises uncertainty about five variability
statistics: mean, standard deviation and three percentiles of variability. Uncertainty is summarised by
showing the median estimate, the mean estimate and upper and lower 2.5th and 97.5th percentiles of
uncertainty for each variability statistic. The two percentiles of uncertainty together make up a 95%
uncertainty interval. For example, if one is interested in the mean body weight of children aged 1 up
to 2 years, the median estimate is 11.0 kg and the 95% uncertainty interval is (10.8, 11.2)kg.

Table B.26: Summaries, based on 2D-MC output, of uncertainty about variability for each of the
assessment inputs

Variable Uncertainty
Variability

Mean St. dev. 2.5% 50% 97.5%

c (mg/kg) 50% 225.2 617 0.262 27.8 2059

2.5% 83.7 198 0.002 14.9 509
97.5% 377.3 947 1.629 29.9 3791

w (-) 50% 0.209 0.039 0.143 0.209 0.275
2.5% 0.176 0.021 0.142 0.176 0.211

97.5% 0.217 0.044 0.144 0.217 0.290
q (kg/day) 50% 0.014 0.013 0.00042 0.010 0.050

2.5% 0.013 0.012 0.00031 0.0091 0.045
97.5% 0.016 0.015 0.00069 0.0114 0.056

bw (kg) 50% 11.0 1.53 8.30 10.9 14.3
2.5% 10.8 1.37 7.98 10.7 13.8

97.5% 11.2 1.72 8.59 11.1 14.8
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Turning to uncertainty about assessment outputs, the results of the 2D-MC simulation are shown in
Tables B.27 and B.28. Table B.27 shows summaries of uncertainty about four exposure variability
statistics: the mean and three percentiles. For each variability statistic, the median estimate is shown
along with two percentiles which together make up a 95% uncertainty interval. For example, for mean
exposure, the median estimate is 0.0605 mg/kg bw per day and the 95% uncertainty interval ranges
between 0.022 and 0.105 mg/kg bw per day. Table B.28 summarises uncertainty about the percentage
of person-days for which exposure exceeds the TDI of 0.5 mg/kg bw.

The results can also be presented graphically as a series of cumulative distribution functions.
Figures B.14 and B.15 show uncertainty about variability of the risk ratio r. In these figures, the spread
of the curve along the y-axis (the grey-shaded areas) represents uncertainty about the fraction of
child-days where the risk ratio exceeds the value on the x-axis. From these graphs, it is clear that,
subject to the assumptions made in building the 2D-MC simulation, there is major variability in the
exposure to melamine, and hence in the risk ratio. The majority of 1 year old children consuming
chocolate from China contaminated with melamine will be exposed to low levels but it is estimated
that 2.7% (95% CI 0.4–5.5%) of those child-days have melamine exposure above TDI.

Table B.28: Uncertainty, based on 2D-MC output, about the percentage of child-days (1 year olds
consuming contaminated chocolate from China) exceeding the TDI of 0.5 mg/kg per
day

Percentage of child-days exceeding TDI

Median estimate 2.7%

95% uncertainty interval (0.4, 5.5)%

Table B.27: Summaries of uncertainty, based on 2D-MC output, of uncertainty about variability of
exposure for children aged from 1 up to 2 years

Uncertainty
Variability

Mean 2.5%-ile Median 97.5%-ile

Median 0.0605 2.0e-5 0.0045 0.527

2.5%-ile 0.0224 3.7e-7 0.0023 0.154

97.5%-ile 0.1052 9.0e-5 0.0054 1.037

Figure B.14: Plot of estimated cumulative distribution of ratio of exposure to the TDI for melamine,
for 1-year-olds consuming contaminated chocolate from China. Uncertainty about the
cumulative distribution is indicated: the light grey band corresponds to 95% uncertainty
range, and dark grey band corresponds to 50% uncertainty range
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Strengths

1) Provides a fully quantitative method for propagating uncertainties, which is more reliable
than semi-quantitative or qualitative approaches or expert judgement.

2) Is a valid mathematical technique, subject to the validity of the model and inputs.
3) Can simulate complex models and changes to a model can be made quickly and results

compared with previous models.
4) Level of mathematics required is quite basic, but complex mathematics can be included.
5) Two-dimensional MC is capable of quantifying uncertainty about variability.
6) Model behaviour can be investigated relatively easily.
7) Time to results is reasonably short with modern computers.
8) Correlations and other dependencies can be addressed (but it can be difficult in some

software, and is often not done).

Weaknesses and possible approaches to reduce them

1) If the input distributions are uncertain MC needs to be combined with sensitivity analysis
(Annex B.17).

2) Obtaining appropriate data to define input distributions may be data-intensive (but
structured expert elicitation is an alternative).

3) MC requires estimates or assumptions for the statistical dependencies among the variables.
Uncertainty affecting these may be substantial and, if not quantified within the model, must
be taken into account when characterising combined uncertainty. Sensitivity analysis may
help.

4) One-dimensional MC does not distinguish between variability and uncertainty. Two-
dimensional MC addresses this.

The relationship between inputs and outputs is unidirectional. New data can only be used to update
the probability distribution of one input factor but not the joint distribution of all input factors.
However, this is possible using more advanced forms of Bayesian modelling and inference such as
Bayesian graphical models.

Assessment against evaluation criteria

This method is assessed against the criteria in Table B.29.

Figure B.15: Plot, as in Figure B.14 but with logarithmic scale for r, of cumulative distribution of ratio
of exposure to the TDI for melamine, for 1-year-olds consuming contaminated
chocolate from China. Uncertainty about the cumulative distribution is indicated: the
light grey band corresponds to 95% uncertainty range, and dark grey band corresponds
to 50% uncertainty range
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Conclusions

1) MC is the most practical way to carry fully probabilistic assessments of uncertainty and
uncertainty about variability and is therefore a very important tool.

2) Application of MC is demanding because it requires full probability distributions. Two-
dimensional MC is particularly demanding because it requires modelling choices (distribution
families) and quantification of uncertainty about distribution parameters using statistical
inference from data and/or expert knowledge elicitation.

3) It is likely that MC will be used to quantify key uncertainties in some assessments, especially
in assessments where variability is modelled, with other methods being used to address
other uncertainties.

4) MC output can be used to make partial probability statements concerning selected
parameters which can then be combined with other partial probability statements using
probability bounds analysis.
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Table B.29: Assessment of 1D-MC (grey) and 2D-MC (dark grey, where different from 1D-MC), when applied well against evaluation criteria

Criteria
Evidence of
current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
& variability

Meaning of
output

Transparency
and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines
available

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Fully data based Calculation
based on
appropriate
theory

Different types
of uncertainty
& variability
quantified
separately

Range and
probability of
possible
answers

All aspects of
process and
reasoning fully
documented

All aspects fully
understandable

EU level
guidelines
available

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination of
data and expert
judgement

Formal expert
judgement

Uncertainty
and variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well
established in
practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty
and variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited
explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined ordinal
scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited
explanation of
process and/or
basis for
conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description, no
defined scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation
of process or
basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.15. Approximate probability calculations
Purpose, origin and principal features

The purpose of this method is to provide simple calculations to find an approximation to the
probability distribution which represents the combination of a number of uncertain components. Two
versions are provided: one suitable for situations where uncertain components are being added and
the other for situations where components are being multiplied. Both versions are based on using
normal distributions to approximate other distributions.

Like probability bounds analysis (Annex B.13) and Monte Carlo (Annex B.14), this method uses the
mathematics of probability. The method is fully probabilistic but calculates an approximate distribution
representing the combination of uncertain components whereas Monte Carlo computes the distribution
correctly provided that the Monte Carlo sample size is large enough and probability bounds analysis
does not compute the full distribution but provides only one or more partial probability statements.

The usefulness of normal distributions in many ways, including easy calculations for adding
independent normal distributions, is a core part of the development of the theories of probability and
statistics (for example, Rice, 2006). A calculation of the kind described here was proposed by Gaylor
and Kodell (2000) for determining assessment factors in the context of risk assessment for humans
exposed to non-carcinogens. IPCS (2014) proposed using this kind of approximation to a more
complex model to be used for hazard characterisation for chemicals.

Version A (adding m uncertain components):

Ucombined ¼ U1 � U2 � . . .þ Um

The probability distribution representing uncertainty about each individual component Ui is
approximated by a normal distribution. In making the approximation for each individual component, a
mean li and standard deviation ri have to be chosen for each component. The approximate
distribution representing uncertainty about the sum of the components Ucombined is then also a normal
distribution. The mean of that distribution is lcombined = l1 + . . . + lm and the standard deviation is

rcombined ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
1 þ . . .þ r2

m

q
:

Version B (multiplying m uncertain components):

Ucombined ¼ U1 � U2 � . . .� Um

The probability distribution representing uncertainty about each individual component Ui is
approximated by a log-normal distribution. The approximate distribution representing uncertainty
about the product of the components is then also a log-normal distribution. This is really version A
applied to

log Ucombined ¼ log U1 þ log U2 þ . . .þ log Um

The distribution approximating each logUi is normal and the mean li and standard deviation ri

have to be specified for each logUi. These are then combined as in version A to obtain lcombined and
rcombined which are the mean and standard deviation for logUcombined.

For both versions, a way has to be found to determine li and ri for each component. In version A,
if the mean and standard deviation of the distribution of Ui are known, these can be used.
Alternatively, if any two percentiles are known, these can be used to determine li and standard
deviation ri by assuming that the approximating distribution should have the same percentiles. For
version B, if the geometric mean and geometric standard deviation of Ui are known, the logarithms of
these values are the mean and standard deviation of logUi and can be used as li and ri. Alternatively,
if any two percentiles of Ui are known, their logarithms are the corresponding percentiles of logUi and
can then be used as in version A to determine li and ri.

The method will be exact (no approximation) in two situations: when the original distribution for
each Ui is normal in version A and when the original distribution for each Ui is log-normal in version B.
In all other situations, the distribution obtained for Ucombined will be an approximation. There is no easy
way to determine how accurate the approximation will be. The central limit theorem (for example,
Rice, 2006) gives some grounds for expecting the approximation to improve as m gets larger, provided
that the standard deviations r1, . . ., rm are similar.
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The approximate distribution obtained for the combined uncertainty will generally depend on how
the individual li and ri are obtained. Using percentiles will generally give a different result to using
means and standard deviations; using different percentiles will also usually give different results. It is
not possible to say in general what would be the best percentiles to use.

It is in principle possible to include dependencies by specifying correlations between pairs of
individual uncertainties in version A (between logUi in version B). This requires a more complicated
calculation based on the multivariate normal distribution to find the distribution of Ucombined

(logUcombined in version B). Details of how to work with the multivariate normal distribution may be
found in, for example, Krzanowski (2000).

It is theoretically possible that there may be other versions of this kind of calculation but there are
no others which are clearly useful now for EFSA assessments. It does not seem likely that it can easily
be applied to situations involving uncertainty about variability.

Applicability in areas relevant for EFSA

In principle, the method is applicable to any area of EFSA’s work. It is restricted to situations where
the model or part of the model involves adding or multiplying, but not both adding and multiplying,
independent uncertain components. In such situations, distributions representing individual uncertainties
can be approximated using distributions from the relevant family. The latter are then combined to
provide a distribution from the same family which approximately represents the combined uncertainty.

Gaylor and Kodell (2000) proposed using this approach to derive assessment factors to apply to
animal data in the context of toxicity to humans of non-carcinogenic chemicals. For the same context,
IPCS (2014) developed a more sophisticated multiplicative model for determining a chemical specific
assessment factor subject to assumptions about suitability of underlying databases. Full
implementation of the IPCS (2014) model needs Monte Carlo calculations. The approach described in
this appendix was applied by IPCS (2014) to their model and the resulting calculation was made
available in the APROBA tool implemented in Excel.

Potential contribution to the main elements of uncertainty analysis

Elements in uncertainty analysis Potential contribution of this approach

Identifying uncertainties Not applicable
Characterising uncertainties Not applicable (required as input)

Combining uncertainties Yes. However, dependencies are not straightforward to address

Prioritising uncertainties Not applicable

Melamine example

The focus of this example is to derive a probability distribution which approximately represents
uncertainty about worst-case exposure for children aged 1 up to 2 years. The exposure calculation
involves only multiplication and division. It is therefore suitable for application of the approximate
probability calculation method using log-normal distributions to approximately represent individual
uncertainties. The starting point is to determine a log-normal distribution approximately representing
uncertainty for each of cmax;wmax; qmax and bwmin.

The most straightforward way to find a log-normal distribution approximately representing
uncertainty about a positive parameter is to specify two percentiles of uncertainty about the parameter
and use those to determine the mean and standard deviation of the logarithm of each parameter. The
following table shows the percentiles used in the example.

Parameter Median
Tail
percentile
used

Tail percentile
value

Logarithm (base 10)
of median

Logarithm (base 10)
of tail percentile

cmax (mg/kg) 3,093 96.5th %ile 3728 log10 3093 = 3.490 log10 3728 = 3.571
wmax (-) 0.278 98th %ile 0.294 log10 0.278 = –0.556 log10 0.294 = –0.532

qmax (kg/day) 0.075 97.5th %ile 0.094 log10 0.075 = –1.125 log10 0.094 = –1.027

bwmin (kg) 6.00 2nd %ile 5.60 log10 6.00 = 0.778 log10 5.60 = 0.748

The next table shows how these values are used to obtain the mean and standard deviation for the
logarithm of each parameter:
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Parameter
Mean of log-
parameter

Tail
percentile

used

z-value (percentile of
standard normal)

SD of log-parameter

cmax 3.490 96.5th 1.812 (3.571–3.490)/1.812 = 0.045
wmax –0.556 98th 2.054 (�0.352–(�0.556))/2.054 = 0.012

qmax –1.125 97.5th 1.960 (�1.027–(�1.125))/1.960 = 0.050

bwmin 0.778 2nd –2.054 (0.748–0.778)/(�2.054) = 0.015

The mean of the approximate normal distribution for the logarithm of emax is then obtained by
adding the means for the logarithm of each of cmax, wmax, qmax and subtracting the mean for the
logarithm of bwmin: 3.490 – 0.556 – 1.125 – 0.778 = 1.031.

The standard deviation of the approximate normal distribution for the logarithm of emax is obtained
by adding the squares of the standard deviations (for the logarithms of the parameters) and then
taking the square-root:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0452 þ 0:0122 þ 0:0502 þ 0:0152

p
¼ 0:070.

From this distribution approximately representing uncertainty about the logarithm of emax, we can
then obtain an approximate value for any percentile of emax or calculate an approximate probability
for exceeding any specified value for emax. For example, the median of uncertainty about log10emax

is approximately 1.031 and so the median of uncertainty about emax is approximately 101.031 = 10.74
mg/kg bw per day. The 90th percentile of uncertainty about log10emax is 1.031 + 1.282 9 0.070 = 1.121
and so the 90th percentile of uncertainty about emax is approximately 101.121 = 13.24 mg/kg bw per day.

The medians and percentiles used above were obtained from the distributions used to represent
uncertainty about each of cmax, wmax, qmax, and bwmin in the 1D Monte Carlo example in Annex B.14.
The following figure shows each of those distributions as a probability density function drawn in black
with the probability density function of the approximating log-normal distribution overlaid as a red
curve.

The following figure shows, as a black curve, the probability density function of the distribution
representing uncertainty about emax which was computed, effectively without approximation, by Monte
Carlo from the distributions used in Annex B.14. Overlaid in red is the probability density function for
the log-normal distribution calculated above as an approximate representation of uncertainty.
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In this example, the approximate probability calculation has resulted in an approximation which
performs very well for moderately high percentiles. The figure shows that the approximation performs
much less well at lower percentiles and does not reveal the fact that the approximation would lead to
much higher estimates of extreme high percentiles than should be obtained from the distributions
used in Annex B.14. The approximation might have performed very differently had different choices
been made about which percentiles to use as the basis for the original approximations to
cmax, wmax, qmax and bwmin or had the shapes of the distributions specified in Annex B.14 been
different.

Strengths

1) Simplicity of application.
2) Provides full probability distribution for a combination of uncertainties.

Weaknesses and possible approaches to reduce them

1) Only provides an approximation to the distribution representing combined uncertainty and
the accuracy of approximation is difficult to judge and is percentile dependent.

2) Restricted to certain simple models: addition of uncertain components or multiplication of
uncertain components but not both at the same time.

3) Distributions, for the individual certainties to be combined, need to be suitable for
approximation by normal distributions for uncertain components being added or by log-
normal distributions for components being multiplied.

Assessment against evaluation criteria

This method is assessed against the criteria in Table B.30.

Conclusions

The method is potentially useful, especially as a quick way to approximately combine uncertainties.
However, the fact that the accuracy of the method is generally unknown may limit its usefulness.
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Table B.30: Assessment of Approximate calculations (when applied well) against evaluation criteria

Criteria
Evidence of
current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and
variability

Meaning of
output

Transparency
and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement used
only to choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty
& variability
quantified
separately

Range and
probability of
possible
answers

All aspects of
process and
reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread in
practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination of
data and expert
judgement

Formal expert
judgement

Uncertainty
and variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well
established in
practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty
and variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited
explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined ordinal
scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited
explanation of
process and/or
basis for
conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description, no
defined scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation
of process or
basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.16. Deterministic calculations with conservative assumptions
Purpose, origin and principal features

This section addresses a set of related approaches to dealing with uncertainty that involve
deterministic calculations using assumptions that aim to be conservative, in the sense of tending to
overestimate risk (see also Section 5.8 of Guidance).

A deterministic calculation uses fixed numbers as input and will always give the same answer, in
contrast to a probabilistic calculation where one or more inputs are distributions and repeated
calculations give different answers.

In deterministic calculation, uncertain elements are represented by single numbers, some or all of
which may be conservative. Various types of these can be distinguished:

• default assessment factors such as those used for inter- and intraspecies extrapolation in
toxicology

• chemical-specific adjustment factors used for inter- or intraspecies differences when suitable
data are available

• default values for various parameters (e.g. body weight), including those reviewed by the
Scientific Committee (EFSA, 2012)

• conservative assumptions specific to particular assessments, e.g. for various parameters in the
exposure assessment for BPA (EFSA, 2015a,b,c)

• decision criteria with which the result of a deterministic calculation is compared to determine
whether refined assessment is required, such as the Toxicity Exposure Ratio in environmental
risk assessment for pesticides (e.g. EFSA, 2009).

Those described as default are intended for use as a standard tool in many assessments in the
absence of specific relevant data. Those described as specific are applied within a particular
assessment and are based on data or other information specific to that case. Default factors may be
replaced by specific factors in cases where suitable case-specific data exist.

These are among the most common approaches to uncertainty in EFSA’s work. They have diverse
origins, some dating back several decades (see EFSA, 2012). What they have in common is that they use a
single number to represent something that could in reality take a range of values, and that at least some
of the numbers are chosen in a one-sided way that is intended to make the assessment conservative.

Deterministic calculations generally involve a combination of several default and specific values,
each of which may be more or less conservative in themselves. Assessors need to use a combination
of values that results in an appropriate degree of conservatism for the assessment as a whole, since
that is what matters for decision-making.

The remainder of this section introduces the principles of this class of approaches, in four steps. The
first two parts introduce the logic of default and specific values, using inter- and intraspecies
extrapolation of chemical toxicity as an example. The third part shows how similar principles apply to
other types of default factors, assumptions and decision criteria, and the fourth part discusses the
conservatism of the output from deterministic calculations. The subsequent section then provides an
overview of how these approaches are applied within EFSA’s human and environmental risk assessments.

Default factors for inter- and intraspecies differences in toxicity

Default factors for inter- and intraspecies differences are used to allow for the possible difference
between a specified point of departure from an animal toxicity study and the dose for a corresponding
effect in a sensitive human. The size of this difference (expressed as a ratio) varies between
chemicals, as illustrated by the distribution in Figure B.16. If there are no specific data on the size of
the ratio for a particular chemical, then the size of the ratio for that chemical is uncertain and a default
factor is required. The default factor is intended to be high enough that the proportion of chemicals
with higher values is small, as illustrated by the grey shaded area in Figure B.16. This default factor is
conservative in the sense that, for most chemicals, the true ratio will be lower than the default (white
area of distribution in Figure B.16). If the default factor is applied to a particular chemical, there is a
high probability that the true ratio for that chemical is lower than the default (i.e. high coverage, see
Section 5.8 and IPCS (2014)). Thus, the distribution in Figure B.16 represents variability of the ratio in
the population of chemicals, but uncertainty for a single chemical.

The same default value is used for different chemicals in the population because, in the absence of
specific data, the same distribution applies to them all. If their true ratios became known, it would be found
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that the default factor was conservative for some and unconservative for others. However, in the absence of
chemical-specific data, the ratios could lie anywhere in the distribution. Therefore, the same default factor
is therefore equally conservative for all chemicals that lack specific data at the time they are assessed.

In order to specify the distribution in Figure B.16, it is necessary to define the starting and ending
points for extrapolation. The starting point is generally a NOAEL or BMDL, which are intended to
under-estimate the dose causing effects in animals and thus contribute to making the assessment
conservative (see Section 4.2 of IPCS (2014) for discussion of these and also the LOAEL). The ending
point for extrapolation is a ‘sensitive human’. This could be defined as a specified percentile of the
human population, as in the ‘HDMI’, the human dose at which a fraction I of the population shows an
effect of magnitude M or greater, an effects metric proposed by IPCS (2014).

In practice, the distribution for variability between chemicals is not known perfectly: there is at
least some uncertainty about its shape and parameters (e.g. mean and variance) which could
quantified in various ways (e.g. Bayesian inference, sensitivity analysis or expert judgement, see
Sections B.9 and B.16). This uncertainty about the distribution for the population of chemicals adds to
the uncertainty for an individual chemical. This can be taken into account by basing the default factor
on a single distribution that includes both sources of uncertainty (uncertainty about the shape of the
distribution, and about where a given chemical lies within it). In general, this will be wider than the
estimated distribution for variability between chemicals, and consequently a larger default factor will be
needed to cover the same proportion of cases, i.e. to achieve the same degree of coverage or
conservatism. This is illustrated graphically in Figure B.17. If the uncertainty about the distribution is
not taken into account within the default factor, then it should either be quantified separately or taken
into account in the combined characterisation of identified uncertainties for the assessment as a whole
(see Section 14 of main document).
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Figure B.16: Graphical representation of the general concept for default assessment factors for inter-
and intraspecies differences in toxicity
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Figure B.17: Graphical representation of how uncertainty about the distribution for variability
between chemicals can be taken into account when setting a default assessment factor
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Specific factors for inter- and intraspecies differences in toxicity

When chemical-specific data are available to reduce uncertainty about part of the extrapolation for
inter- and intraspecies differences, this can be used to replace the corresponding part of the default
assessment factor, as summarised by EFSA (2012a,b,c). The default factor of 100 was introduced in
the 1950s and later interpreted as reflecting extrapolation from experimental animals to humans
(factor 10 for interspecies variability) and a factor of 10 to cover inter-individual human variability. A
further division of these inter- and intraspecies factors into 4 subfactors based on specific quantitative
information on toxicokinetics and toxicodynamics was proposed by IPCS (2005). If specific data on
toxicokinetics or toxicodynamics are available for a particular chemical, this can be used to derive
chemical-specific adjustment factors (CSAF), which can then be used to replace the relevant subfactor
within the overall default factor of 100.

IPCS (2005) provides detailed guidance on the type and quality of data required to derive CSAFs.
For the interspecies differences, this includes guidance that the standard error of the mean of the data
supporting the CSAF should be less than approximately 20% of the mean. The guidance is designed to
limit the sampling and measurement uncertainty affecting the data to a level that is small enough that
the mean can be used as the basis for the CSAF.

The treatment of uncertainty for the CSAF is illustrated graphically in Figure B.18. The distribution
represents all the uncertainty in deriving the CSAF. The value taken as the CSAF is the mean of the
data. If this is near the median of the distribution, as illustrated in Figure B.18, then there is about a
50% chance that the true CSAF is higher. However, the criteria recommended in the guidance to
reduce uncertainty mean that the true value is unlikely to be much higher than the mean of the data.

This illustrates an important general point, which is that the choice of an appropriately conservative
value to represent an uncertain or variable quantity depends not only on the chance that the true
value is higher, but also on how much higher it could be.

Default and specific values for other issues

The principles and logic that are involved when using default or specific factors for inter- and
intraspecies differences, as illustrated in Figures B.16, B.17 and B.18, apply equally to other types of
default and specific values used in risk assessment. This includes default values recommended by the
Scientific Committee (EFSA, 2012), some of which refer to toxicity (including inter- and intraspecies
differences and extrapolation from subchronic to chronic endpoints) while others refer to exposure
assessment (e.g. default values for consumption and body weight). For several other issues, EFSA
(2012a,b,c) does not propose a default factor but instead states that specific assessment factors
should be derived case-by-case.

The same principles and logic also apply to all other values used in deterministic assessment,
including conservative assumptions (which may be defaults applied to many assessments, or specific to
a particular assessment) and decision criteria (which are usually defaults applied to many
assessments). For example, in the melamine statement (EFSA, 2008), variability and uncertainty are
addressed by repeating the assessment calculation with both central and high estimates for several
parameters (described in more detail in the example at the end of this section).
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Figure B.18: Graphical illustration of treatment of uncertainty for a chemical-specific adjustment
factor for inter- or intraspecies differences in toxicokinetics or toxicodynamics

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 199 EFSA Journal 2018;16(1):5122



What all of these situations have in common is that, in each assessment calculation, single values –
either default or specific or a mixture of both – are used to represent quantities that are uncertain,
and in many cases also variable. For each default or specific value, there is in reality a single true value
that would allow for the uncertainty and variability that is being addressed. However, this true value is
unknown. The degree to which each default or specific value is conservative depends on the
probability that the true value would lead to a higher estimate of risk, and how much higher it could
be. Figures B.16, B.17 and B.18 illustrate this for the case of parameters that are positively related to
risk; for parameters that are negatively related to risk, the grey areas would be on the left side of the
distribution instead of the right.

There are two main ways by which default and specific values can be established. Where suitable
data are available to estimate distributions quantifying the uncertainty and variability they are intended
to address, it is preferable to do this by statistical analysis and then choose an appropriately
conservative value from the distribution. Where this is not possible or such data are not available, it is
necessary to use expert judgement. In the latter case, the distribution should be elicited by formal or
semi-formal EKE, depending on the importance of the choice and the time and resources available
(see Sections B.8 and B.9). Alternatively, if the required degree of conservatism were known in
advance, that percentile of the distribution could be elicited directly, without eliciting the full
distribution.

It is especially important to ensure the appropriateness of default factors, assumptions and decision
criteria, as they are intended for repeated use in many assessments. The context for which they are
appropriate must be defined, that is, for what types of assessment problem, with which types and
quality of data. When using them in a particular assessment, users must check whether the problem
and data are consistent with the context for which the defaults are valid. If the assessment in hand
differs, e.g. if the data available differ from those for which the defaults were designed, then the
assessors need to consider adjusting the defaults or adding specific factors to adjust the assessment
appropriately (e.g. an additional factor allowing for non-standard data). The need to ensure default
procedures for screening assessments are appropriately conservative, and to adjust them for non-
standard cases, was recognised previously in the Scientific Committee’s guidance on uncertainty in
exposure assessment (EFSA, 2006, 2007).

Combined conservatism of deterministic calculations

Most deterministic assessments involve a combination of default and specific values, each of which
may be more or less conservative in themselves. Ultimately, it is the combined conservatism of the
assessment as a whole that matters for decision-making, not the conservatism of individual elements
within it. This is why assessors often combine some conservative elements with others that are less
conservative, aiming to arrive at an appropriate degree of conservatism overall.

Conservative is a relative term, and can only be assessed relative to a specified objective or target
value. Combined conservatism needs to be assessed relative to the quantity the assessment output is
intended to estimate, i.e. the measure of risk or other consequence that is of interest to decision-
makers. When the measure of interest is a variable quantity (e.g. exposure), the percentile of interest
must also be defined. The combined conservatism of a point estimate produced by deterministic
assessment can then be quantified in relation to that target value, as illustrated in Figure B.19.
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Assessing combined conservatism is very hard to do by expert judgement. Although assessors may not
think in terms of distributions, judgement of combined conservatism implies considering first what
distribution would represent each element, then how those distributions would combine if they were
propagated through the assessment – taking account of any dependencies between them – and then what
value should be taken from the combined distribution to achieve an appropriate degree of conservatism
overall. Finally, the assessors have to choose values for all the individual elements such that, when used
together, they produce a result equal to the appropriately conservative point in the combined distribution.

It is much more reliable to assess combined conservatism using probabilistic calculations, when
time and resources permit. If it is done by expert judgement, this will introduce additional uncertainty,
which the assessors should try to take into account by increasing one or more of the factors involved
(in a manner resembling the concept depicted in Figure B.17), or by adding an additional assessment
factor at the end.

It is important that the combined degree of conservatism is appropriate: high enough to provide
adequate protection against risk, but not so high that the assessment uses clearly impossible values or
scenarios or leads to excessively precautionary decision-making. In terms of Figure B.19, the vertical
dashed line should be placed neither too far to the left, nor too far to the right. Achieving this for the
final assessment output requires using appropriate values for each default and specific value in the
assessment, as explained in the preceding section.

Quantifying the degree of conservatism requires scientific assessment, but deciding what degree of
conservatism is required or acceptable is a value judgement which should be made by decision-makers
(see Section 3 of main document). In terms of Figure B.19, characterising the distribution requires
scientific consideration, while placing the dashed line requires a value judgement: what probability of
acceptable consequences is required? If decision-makers were able to specify this in advance,
assessors could then place the dashed line in Figure B.19 accordingly. Otherwise, assessors will have
to choose what level of conservatism to apply when conducting the assessment, and seek confirmation
from decision-makers at the end. In order for decision-makers to understand the choice they are
making, they need information on the probability that the true risk exceeds the estimate produced by
the assessment, and on how much higher the true risk might be. In other words, they need
information on the uncertainty of the assessment. One of the benefits of establishing defaults is that
once approved by decision-makers, they can be used repeatedly in multiple assessments without
requiring confirmation on each occasion.

In refined assessments, default factors or values may be replaced by specific values. This often
changes the combined conservatism of the assessment, because that depends on the combined effect
of all elements of the assessment (as explained above). Therefore, whenever a default value is
replaced by a specific value, the conservatism of the overall assessment needs to be reviewed to
confirm it is still appropriate. This issue was recognised previously in EFSA’s guidance on risk
assessment for birds and mammals (EFSA, 2009).
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Figure B.19: Graphical illustration of assessing the combined conservatism of the output of a
deterministic assessment, relative to a specified measure of risk. The distribution is not
quantified by the deterministic assessment, so conservatism of the point estimate has
to be assessed either by expert judgement, by probabilistic modelling, or by comparison
with measured data on risk
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Applicability in areas relevant for EFSA

Human risk assessment

Default factors, assumptions and decision criteria are, together with descriptive expression, the
most common approaches to addressing uncertainty in EFSA and other regulatory agencies, and are
used in many areas of EFSA’s work. A comprehensive review is outside the scope of this document,
but the following examples illustrate the range of applications involved.

Default assessment factors (AFs) and chemical-specific adjustment factors for inter- and
intraspecies extrapolation of chemical toxicity are described earlier in this section, and are key tools in
setting health-based guidance values for human health (e.g. TDI and ADI). In recent years, efforts
have been made to evaluate the conservatism of the default factors based on analysis, for suitable
data sets, of interchemical variability for particular extrapolation steps (e.g. Dourson and Stara, 1983,
Vermeire et al. 1999). More recently, it has been proposed (e.g. Cooke, 2010) to do a fully
probabilistic analysis of uncertainty about such variability in order to derive default assessment factors.
IPCS (2014) have developed a probabilistic approach to inter- and intraspecies extrapolation that
quantifies the conservatism of the default factors, and includes options for chemical-specific
adjustments. The Scientific Committee has recommended that probabilistic approaches to assessment
factors for toxicity are further investigated before harmonisation is proposed within EFSA (2012a,b,c).

Factors and assumptions for other aspects of human health assessment, including exposure, are
reviewed by EFSA (2012a,b,c). Topics considered include body weight, food and liquid intake,
conversion of concentrations in food or water in animal experiments to daily doses, deficiencies in data
and study design, extrapolation for duration of exposure, the absence of a NOAEL, the severity and
nature of observed effects and the interpretation of Margins of Exposure for genotoxic carcinogens.
EFSA (2012a,b,c) recommends the use of defaults for some of these issues, and case-by-case
assignment of specific factors for others.

An example of an exposure assessment where the combined conservatism of case-specific
assumptions was explicitly assessed is provided by the 2015 opinion on bisphenol A. Deterministic
calculations were aimed at estimating an approximate 95th percentile for each source of exposure by
combining conservative estimates for some parameters with average estimates for others. The
uncertainty of these, and their combined impact on the combined conservatism of the resulting
estimate, was assessed by expert judgement using uncertainty tables (EFSA, 2015a).

An example of probabilistic analysis being used to evaluate the conservatism of default assumptions
in human exposure assessment is provided by EFSA (2007). This used probabilistic exposure estimates
for multiple pesticides and commodities to evaluate what proportion of the population are protected by
the deterministic ‘IESTI’ equations used in routine exposure assessment.

Environmental risk assessment

Default factors for interspecies differences, similar to those used for human risk, have been used
for some time in setting environmental standards for ecosystems such as the predicted no effect
concentration (PNEC). In some guidance documents for environmental risk assessment, a reference
point from toxicity testing is divided by a default assessment factor and the result compared to the
predicted exposure by computing their ratio, which is known as the risk quotient (RQ) (European
Commission, 2003). In others the reference point is first divided by the predicted exposure to find the
toxicity–exposure ratio (TER) and the result is then compared to a decision criterion, which is
equivalent to an assessment factor (91/414/EWG). Although the calculations appear different, they
lead to the same result and it is clear from the reasoning in the respective guidance documents that
the assessment factors are intended to address variability and uncertainties relating to toxicity.

Most environmental exposure assessments are deterministic, using a combination of conservative
factors and assumptions, some of which are defaults and some specific. Examples of these include the
Tier 1 procedures for assessing acute and reproductive risks from pesticides to birds and mammals,
which define different combinations of default assumptions to be used for different species that may
be exposed, depending on the type of pesticide use involved. The guidance includes the option to
replace the defaults with specific assumptions in refined assessment, where justified (EFSA, 2009). In
assessing exposure of aquatic organisms to pesticides, a range of ‘FOCUS’ scenarios with differing
defaults are used, representing different combinations of environmental conditions found in different
parts of the EU (FOCUS, 2001).

As for human risk, some quantitative analyses have been conducted to justify or calibrate the
defaults used in environmental risk. When developing the current guidance on pesticide risk assessment
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for birds and mammals, the procedure for acute risk to birds was calibrated by comparison with data on
bird mortality in field experiments and history of use, as well as assessing its conservatism by expert
judgement. For acute risk to mammals and reproductive risks, field data were lacking and it was
necessary to rely on expert judgement alone (EFSA, 2008). For aquatic organisms, factors for
extrapolating from laboratory toxicity studies with individual species to effects on communities of
multiple species have been calibrated by comparing results from single species tests with semi-field
experiments (Maltby et al., 2009; Wijngaarden et al., 2014). As for human risk, it has been proposed
that, in future, default factors used in environmental risk assessment should be derived from a fully
probabilistic analysis taking both variability and uncertainty into account (EFSA, 2015a,b,c).

Potential contribution to major elements of uncertainty analysis

Elements in uncertainty
analysis

Potential contribution of this approach

Identifying uncertainties Not applicable. However, by discussing the need for assessment factor(s) you also
identify some uncertainties

Characterising uncertainties Yes, for uncertainties represented by assessment factors

Combining uncertainties Yes. Decision criteria, some assessment factors, and the results of calculations
with conservative assumptions are designed to address the combined effect of
multiple uncertainties. The way they are used implies that they account for
dependencies, though this is rarely explicit

Prioritising uncertainties In assessments that include multiple assessment factors, their magnitudes should
reflect the assessors’ evaluation of their relative importance

Melamine example

In this document, the case study of melamine as described in EFSA (2008) is used to illustrate the
different approaches to assessing uncertainty. In EFSA (2008), a TDI set by the SCF (European
Commission, 1986) was used. Since that document does not describe the RP and the AFs used for
deriving the TDI, an example of the use of assessment factors for toxicity is taken from an assessment
made by the US-FDA (FDA, 2007), which is also referenced by EFSA (2008). The following quote from
FDA (2007) explains how the TDI was derived from combining a point of departure based on a
detailed evaluation of toxicity studies with default assessment factors for inter- and intraspecies
extrapolation:

‘The NOAEL for stone formation of melamine toxicity is 63 mg/kg bw per day in a 13-week rat
study. This value is the lowest NOAEL noted in the published literature and is used with human
exposure assessments below to provide an estimate of human safety/risk. . . This PoD was then divided
by two 10-fold safety/uncertainty factors (SF/UF) to account for inter- and intra-species sensitivity, for
a total SF/UF of 100. The resulting Tolerable Daily Intake (TDI) is 0.63 mg/kg bw per day. The TDI is
defined as the estimated maximum amount of an agent to which individuals in a population may be
exposed daily over their lifetimes without an appreciable health risk with respect to the endpoint from
which the NOAEL is calculated’.

The exposure assessment in the EFSA (2008) statement addressed variability and uncertainty by
estimating exposure for a range of scenarios using different combinations of assumptions, with varying
degrees of conservatism. The factors that were varied included age and body weight (60-kg adult or
20-kg child), diet (plain biscuit, filled biscuit, quality filled biscuit, milk toffee, chocolate; plus two
combinations of biscuit and chocolate), assumptions regarding the proportion of milk powder used in
producing each food, and the concentration of melamine in milk powder (median or maximum of
reported values). An estimate of exposure was calculated for each scenario, and expressed as a
percentage of the TDI of 0.5 mg/kg taken from the SCF assessment (European Commission, 1986).
The results are reproduced in Table B.31.
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The estimates in Table B.31 involve additional assumptions and uncertainties, some of which are
likely to be conservative. For example, EFSA (2008) notes that the calculation involving quality filled
biscuits might be a gross overestimation since there was no indication that China exported such
products to Europe at that time, though it could not be completely excluded. The chocolate scenario
was considered more realistic.

For adults, EFSA (2008) concluded that:

‘Based on these scenarios, estimated exposure does not raise concerns for the health of adults in
Europe should they consume chocolates and biscuits containing contaminated milk powder’.

This implies a judgement by the assessors that, although the estimated adult exposures exceeded
the TDI in one scenario (mean consumption of biscuit combined with high level consumption of
chocolate), overall – considering the probability of this scenario, the combined conservatism of the
assumptions made, and the impact of other uncertainties identified in the text – the probability of
adverse effects was sufficiently low not to ‘raise concerns’. This could be made more transparent by
specifying the assessors’ judgement of level of probability.

For children, EFSA (2008) concluded that:

‘Children with a mean consumption of biscuits, milk toffee and chocolate made with such milk
powder would not exceed the tolerable daily intake (TDI). However, in worst case scenarios with the
highest level of contamination, children with high daily consumption of milk toffee, chocolate or
biscuits containing high levels of milk powder would exceed the TDI. Children who consume both such
biscuits and chocolate could potentially exceed the TDI by more than threefold. However, EFSA noted
that it is presently unknown whether such high level exposure scenarios may occur in Europe’.

The conclusion for children is more uncertain than for adults. The assessors state that the exposure
could ‘potentially’ exceed the TDI by more than threefold in one scenario, but do not express a
judgement on how likely that is to occur.

Strengths

1) Conservative assessment factors, assumptions and decision criteria address uncertainty
using a one-sided approach that aims to be conservative but not over-conservative.

2) The methodology is widely adopted, well accepted by authorities, and easy to communicate.
3) It can be used in any type of quantitative assessment.
4) Once established, default factors are straightforward to apply and do not require any special

mathematical or statistical skills.

Table B.31: Exposure estimates for different combinations of assumptions, expressed as a
percentage of the TDI of 0.5 mg/kg (reproduced from EFSA, 2008)
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5) Some default factors and criteria are supported by quantitative analysis of data that
supports their appropriateness for their intended use. Similar analyses could be attempted
for others, where suitable data exist.

Weaknesses and possible approaches to reduce them

1) While some default assessment factors are generally well-accepted and research has
provided quantitative support, the use of other default factors and most specific factors is
based mainly on expert judgement without quantitative detail and it can be difficult to
establish either the reasoning that led to a particular value or exactly what sources of
uncertainty are included.

2) Generation of specific factors, and providing quantitative support for default factors where
this is currently lacking, require relevant expertise to evaluate the available evidence and
statistical expertise for analysis.

3) Assessment factors which are based on analysis of data without quantification of uncertainty
about variability may be less conservative than intended (as illustrated in Figure B.17).

4) It is often unclear how conservative the result is intended to be. This could be addressed by
defining more precisely what extrapolation or adjustment is being made and what level of
confidence is required, in consultation with decision-makers.

5) There is little theoretical basis for assuming that assessment factors should be multiplied
together, as is often done. However such multiplication tends to contribute to the conservatism
of the approach (Gaylor and Kodell, 2000). Annex B.13 of this annex on probability bounds
provides a rationale for multiplication if a probability is attached to each individual AF.

6) Division of AFs into subfactors could lead to reduced conservatism if, for example, a CSAF
greater than the default subfactor is needed to cover a particular source of variability. The
reduction of conservatism could be quantified by a probabilistic analysis.

7) As a consequence of the above issues, different hazard characterisations (related to
different chemicals) may differ widely in the level of conservatism, depending on the
number of assessment factors used and the values used for them.

8) AFs do not provide a range for the quantity of interest, based on the propagation of the
uncertainty around the various input factors, but only a conservative estimate of the
quantity of interest.

9) Risk management decisions, about the level of conservatism required, are embedded in the
AF. For the process to be transparent, such decisions need to be made explicit.

10) Assessment factors do not generally provide a mechanism to assess the relative contribution
of different sources of uncertainty to overall uncertainty or to distinguish contributions of
variability and uncertainty. A probabilistic analysis can provide a general indication of relative
contributions for the selected group of chemicals.

Assessment against evaluation criteria

This method is assessed against the criteria in Table B.32.

Conclusions

Assessment factors, conservative assumptions and decision criteria are widely used to account for
uncertainty, variability and extrapolation in many areas of EFSA assessment. Some are defaults that
can be used in many assessments, while others are specific to particular assessments. They are simple
to use and communicate. When well specified and justified they are a valuable tool, providing an
appropriate degree of conservatism for the issues they address. They are more reliable when it is
possible to calibrate them by statistical analysis of relevant data.

Most assessments involve a combination of multiple factors and assumptions, some default and
some specific. Conservatism needs to be evaluated for the assessment as a whole, taking account of
all the elements involved. Assessing the combined effect of multiple factors and assumptions is much
more reliable when done by probabilistic analysis than by expert judgement.

In order to be transparent and avoid implying risk management judgements, the degree of
conservatism needs to be quantified and agreed with decision-makers. This can be done by providing
a probability or approximate probability that the result of the calculation is conservative relative to the
quantity of interest. For deterministic calculations that are part of a standardised procedure, this
should be done when calibrating the procedure (Section 7.1.3). Where deterministic calculations are
used in case-specific or urgent assessments, their conservatism could be quantified by expert
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judgement when characterising overall uncertainty, or the deterministic calculation could be replaced
by a probability bounds analysis.

References

Cooke R, 2010. Conundrums with Uncertainty Factor (with discussion), Risk Analysis, 30, 330–338.
Dourson ML and Stara JF, 1983. Regulatory History and Experimental Support of Uncertainty (Safety) Factors,

Regulatory Toxicology and Pharmacology, 3, 224–238.
European Commission, 1986. Report of the Scientific Committee for Food on certain monomers of other starting

substances to be used in the manufacture of plastic materials and articles intended to come into contact with
foodstuffs. Seventeenth series. Opinion expressed on 14 December 1984. Available online: http://ec.europa.e
u/food/fs/sc/scf/reports/scf_reports_17.pdf

European Commission, 2003. Technical Guidance Document on Risk Assessment. In support of Commission
Directive 93/67/EEC on Risk Assessment for new notified substances Commission Regulation (EC) No 1488/94
on Risk Assessment for existing substances Directive 98/8/EC of the European Parliament and of the Council
concerning the placing of biocidal products on the market. Part II, Chapter 3 Environmental Risk Assessment.

EFSA (European Food Safety Authority), 2005. Scientific opinion on a request from EFSA related to a harmonised
approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA Journal 2005;
282, 1–31. http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/282.pdf

EFSA PPR Panel (Panel on Plant protection products and their Residues), 2008. Scientific Opinion on the Science
behind the Guidance Document on Risk Assessment for birds and mammals. EFSA Journal 2008; 734, 1–181.

EFSA, (European Food Safety Authority), 2009. Guidance Document on Risk Assessment for Birds and Mammals.
EFSA Journal 2009; 7(12):1438. https://doi.org/10.2903/j.efsa.2009.1438

EFSA Scientific Committee, 2012. Guidance on selected default values to be used by the EFSA Scientific
Committee, Scientific Panels and Units in the absence of actual measured data. EFSA Journal 2012;10(3):2579.
[32 pp.] https://doi.org/10.2903/j.efsa.2012.2579

EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015a.
Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: Part I
– Exposure assessment. EFSA Journal 2015;13(1):3978, 396 pp. https://doi.org/10.2903/j.efsa.2015.3978
http://www.efsa.europa.eu/sites/default/files/scientific_output/files/
main_documents/3978part1.pdf

EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), 2015. Scientific Opinion addressing
the state of the science on risk assessment of plant protection products for non-target arthropods. EFSA
Journal 2015;13(2):3996, 212 pp. https://doi.org/10.2903/j.efsa.2015.3996

FDA (United States Food and Drug Administration), 2007. Interim Safety and Risk Assessment of Melamine and its
Analogues in Food for Humans. Available online: http://www.fda.gov/food/foodborneillnesscontaminants/che
micalcontaminants/ucm164658.htm [Accessed: 13 March 2015].

FOCUS (2001). “FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC”. Report of the
FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.2. 245 pp.

Gaylor DW and Kodell R, 2000. Percentiles of the Product of Uncertainty Factors for Establishing Probabilistic
Reference Doses, Risk Analysis, 20, 245–250.

IPCS, 2005. Chemical-specific adjustment factors for interspecies differences and human variability: guidance
document for use of data in dose/concentration–response assessment. IPCS Harmonization Project Document
No. 2. World Health Organisation, Geneva.

IPCS, 2014. Guidance document on evaluating and expressing uncertainty in hazard characterization. Harmonization
Project Document No. 11. International Programme on Chemical Safety. WHO, Geneva.

Maltby L, Brock TCM and Brink PJ, 2009. Fungicide risk assessment for aquatic ecosystems: importance of
interspecific variation, toxic mode of action, and exposure regime. Environmental Science Technology, 43,
7556–7563.

Vermeire T, Stevenson H, Pieters M., Rennen M, Slob W and Hakkert BC, 1999. Assessment factors for human
health risk assessment: a discussion paper, Critical Reviews in Toxicology, 29, 439–490.

van Wijngaarden RPA, Maltby L and Brock TCM 2014. Acute tier-1 and tier-2 effect assessment approaches in the
EFSA Aquatic Guidance Document: are they sufficiently protective for insecticides? In press. https://doi.org/10.
1002/ps.3937

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 206 EFSA Journal 2018;16(1):5122

http://ec.europa.eu/food/fs/sc/scf/reports/scf_reports_17.pdf
http://ec.europa.eu/food/fs/sc/scf/reports/scf_reports_17.pdf
http://www.efsa.europa.eu%3f/sites/default/files/scientific_output/files/main_documents/282.pdf
https://doi.org/10.2903/j.efsa.2009.1438
https://doi.org/10.2903/j.efsa.2012.2579
https://doi.org/10.2903/j.efsa.2015.3978
http://www.efsa.europa.eu/sites/%3fdefault/files/scientific_output/files/main_documents/3978part1.pdf
http://www.efsa.europa.eu/sites/%3fdefault/files/scientific_output/files/main_documents/3978part1.pdf
https://doi.org/10.2903/j.efsa.2015.3996
http://www.fda.gov/food/foodborneillnesscontaminants/chemicalcontaminants/ucm164658.htm
http://www.fda.gov/food/foodborneillnesscontaminants/chemicalcontaminants/ucm164658.htm
https://doi.org/10.1002/ps.3937
https://doi.org/10.1002/ps.3937


Table B.32: Assessment of Deterministic calculations with conservative assumptions (when applied well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and variability

Meaning of
output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of process
and reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread in
practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty and
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well
established in
practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty and
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.17. Sensitivity analysis
Purpose, origin, and principal features

In the context of uncertainty analysis, sensitivity analysis aims to identify both the magnitude of the
contributions of individual sources of uncertainty to uncertainty about the assessment output(s) and
the relative contributions of different sources. The purpose of doing so is (i) to help prioritise
uncertainties for quantification: (ii) to help prioritise uncertainties for collecting additional data; (iii) to
investigate sensitivity of final output to assumptions made; (iv) to investigate robustness of final
results to assumptions made.

Saltelli et al. (2004) defines sensitivity analysis of a model as ‘the study of how uncertainty in the
output of a model (numerical or otherwise) can be apportioned to different sources of uncertainty in
the model input’. A broader definition of Sensitivity Analysis is given in the Oxford business dictionary
where it is described as ‘Simulation analysis in which key quantitative assumptions and computations
(underlying a decision, estimate, or project) are changed systematically to assess their effect on the
final outcome. Employed commonly in evaluation of the overall risk or in identification of critical
factors, it attempts to predict alternative outcomes of the same course of action’. According to Saltelli,
desirable properties of a sensitivity analysis method for models include the ability to cope with
influence of scale and shape; the allowance for multidimensional averaging (all factors should be able
to vary at the same time); model independence (i.e. the method should work regardless of additively
or linearity of the model); ability to treat grouped factors as if they were single factors.

There is a very large and diverse literature on sensitivity analysis reflecting the fact that historically
sensitivity analysis methods have been widely used across various disciplines including engineering
systems, economics, physics, social sciences and decision making. Saltelli et al. (2004, 2008) provide
an overview of the various methods available and Frey and Patil (2002) and Patil and Frey (2004)
review and compare methods in the context of food-safety risk assessment. Most of the literature
deals with the use of sensitivity analysis methods in the presence of a model.

Two general approaches to sensitivity analysis have been developed. The first approach looks at
the effects on the output of infinitesimal changes to the default values of the inputs (local) while the
second one investigates the influence on the output of changes of the inputs over their whole range of
values (global). In the following, the discussion will focus only on methods for global sensitivity
analysis since local analysis is considered of limited relevance in the uncertainty analysis context
because it does not provide for an exploration of the whole space of the input factors that is necessary
when dealing with uncertainty. Whatever the context, it is important that the purpose of sensitivity
analysis is clearly defined after consideration and, when needed, prioritisation of the inputs to be
included in the sensitivity analysis.

One special type of sensitivity analysis is conditional sensitivity analysis which is sometimes
considered to be a form of scenario analysis. It is generally helpful when there is a dependency in the
inputs and it is difficult to assess the sensitivity of the output to changes in a single input without
fixing some prespecified values of the other inputs. Conditional sensitivity analysis expresses the
sensitivity of the output to one input, with other inputs kept constant at prespecified values (values
considered more likely or of special interest). The most common approach in conditional sensitivity
analysis is to combine key variables making reference to three possible cases: (a) worst-case or
conservative scenario; (b) most likely or base scenario; (c) best-case or optimistic scenario.

Frey and Patil (2002) suggest grouping methodologies for sensitivity analysis in three categories:
mathematical methods, statistical methods, graphical methods. These categories could be further
classified according to other important aspects such as the kind of input effects that they are able to
capture (individual or joint) and the form of the relationship between inputs and output (linear or non-
linear). A comparison of the main methodologies and their most appropriate use in relation to the
objective of the sensitivity analysis is provided by the same authors. Only those methods that are
deemed to be relevant in the framework of uncertainty analysis and applicable to the risk assessment
context are described in this section. Therefore, the list of methods that follows is not comprehensive.
Different methods and sensitivity indexes can provide a range of different factor rankings. Where this
happens, the assessors need to consider the cause of the differences and their implications for
interpretation of the results.

A summary of the methods considered in this document for sensitivity analysis are provided in
Table B.33.
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Graphical methods

These are normally used to complement mathematical or statistical methodologies especially to
represent complex dependency and facilitate their interpretation. They are also used in the early stage
to help prioritising among sources of uncertainty. Graphical methods include: scatterplot, tornado
plots, box plots, spider plots and pie charts (Patil and Fray, 2004). In the context of this document,
they are considered only as supporting methods to help interpretation of the sensitivity analysis
results. Examples of graphical methods for sensitivity analysis are provided in Figure B.20.

Table B.33: Summary table of methods to perform sensitivity analysis

Group Method Acronym Characteristics

Graphical Tornado plot Input factors sorted by their influence on the output in a
decreasing order

Scatter plot Highlight relationship between output and each input
factor. No interaction among factors

Spider plot Plot all the input factors as lines crossing at the nominal
value of the output. The inputs with the highest slope are
those with highest influence on the output

Box plot Range of variation of the output with respect to each
input

Pie chart Split of the pie in slices whose size is proportional to the
influence of each input

Mathematical/
deterministic

Nominal Range
Sensitivity Analysis

NRSA No interaction among input factors, monotonic relationship

Difference of log
odds ratio

DLOR Special case of NRSA when output is a probability

Break-even analysis BEA Output is a dichotomous variable
Probabilistic Morris Morris Qualitative screening of inputs

Monte Carlo
filtering

MCF Analogous of BEA with probabilistic approach

Linear rank
regression analysis

SRC, SRRC,
PCC, PRCC.

Strong assumptions: normality residuals, uncorrelation
among inputs, linear relationship

Analysis of Variance ANOVA Non parametric method
Fourier Amplitude
Sensitivity Test and
Extended version

FAST, E-FAST Variance-base method. No assumptions required.

Sobol index S Widely applicable
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Deterministic (named ‘mathematical’ by Patil & Frey) methods

These methods involve evaluating the variability of the output with respect to a range of variation
of the input with no further consideration of the probability of occurrence of its values. For this reason
and to keep the symmetry with the classification adopted for the uncertainty analysis approaches, they
are referred to as ‘deterministic’ instead of mathematical methods. In case of monotonic relationship,

DRAFT

Tornado Plot Scatterplot

Spider Plot Boxplot 

Pie chart 

Figure B.20: Examples of graphical methods for sensitivity analysis
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these methods can be useful for a first screening of the most influential inputs. Graphical methods and
the revised Morris method are suitable alternatives when monotonicity is not met.

1) Nominal range sensitivity analysis (NRSA)

This method is normally applied to deterministic models (Cullen and Frey 1999). It assesses the
effect on the output of moving one input from its nominal (often most-likely) value to its upper and
lower most extreme plausible values while keeping all the other inputs fixed at their nominal values.
The resulting sensitivity measure is the difference in the output variable due to the change in the input
(expressed sometimes as percentage). The method of ‘minimal assessment’, proposed by EFSA
(2014a,b) for prioritising parameters for formal expert elicitation, is an example of nominal range
sensitivity analysis.

This approach to sensitivity analysis is closely related to interval analysis (see Annex B.7).
Interactions among factors are not accounted for by this method which limits its capacity to

estimate true sensitivity. Although simple to implement, it fails in case of non monotonic relationships
because it does not examine behaviour in for input values between the extremes.

A specific case of the nominal range is the difference of log odds ratio which can be used in case of
an output expressed as probability. It is based on the computation of the log-odds or log-odds-ratio of
an event.

2) Break-even analysis (BEA)

The purpose of this method is to identify a set of values of inputs (break-even values) that provide
an output for which decision-makers would be indifferent among the various risk management options
(Patil and Fray, 2004). This method is useful to assess the robustness of a decision to change in inputs
(i.e. whether a management option still remains optimal or suboptimal also in case the values of inputs
change with respect to the current levels). It is commonly used when the output is expressed as
dichotomous variable indicating two possible options such as whether a tolerable daily intake is
exceeded or not. It represents a useful tool for evaluating the impact of uncertainty on different
possible choices of policy maker (e.g. what level of use to permit for a food additive).

The BEA has a probabilistic counterpart in Monte Carlo filtering which partitions the outputs in two
sets based on compliance/non-compliance with some criterion (see later).

Statistical methods

In statistical methods of sensitivity analysis, the input range of variation is addressed
probabilistically so that not only different values of the inputs but also the probability that they occur
are considered in the sensitivity analysis. This approach to the sensitivity analysis is naturally linked to
the investigation of the uncertainty based on probabilistic methods.

Most of the methods belonging to this group are based on the decomposition of the output
variance with respect to the variability of the inputs. They generally allow the assessors to identify the
effect of interactions among multiple inputs. Frequently statistical sensitivity analysis is performed
using Monte Carlo techniques (sometimes combined with bootstrapping techniques),although this
approach is not strictly necessary and sometimes not preferable if it is too computationally intensive.

Identification of the separated influence of variability and uncertainty in the input on the
uncertainty in the output is not a trivial issue in sensitivity analysis. Recently, Busschaert et al. (2011)
proposed an advanced sensitivity analysis to address this issue. This analysis is sometimes referred to
as two-dimensional sensitivity analysis. It is not described in detail in this document. A simple, limited,
approach to sensitivity analysis in assessments which involve uncertainty about variability is to identify
a percentile of variability which is of interest and to make an analysis of the sensitivity of the estimate
of that percentile to uncertainty about input parameters.

1) Morris method

The Morris method provides a qualitative measure of the importance of each uncertain input factor
for the outputs of a model at a very low computational cost, determining factors that have: (i)
negligible effects; (ii) linear and additive effects (iii) non-linear and/or non-additive effects (Saltelli
et al., 2005). The methods can be used as a qualitative screening procedure to select the most
important input factors for computationally more demanding variance-based methods for sensitivity
analysis. The Morris method varies one factor at a time across a certain number of levels selected in
the space of the input factors. For each variation, the factor’s elementary effect is computed, which
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measures, relative to the size of the change, how much the output changed when the factor value was
changed.

The number of computations required is N = T (k + 1), where k is the number of model input
factors and the number of sampling trajectories T is a number generally ranging between 10 and 20
depending on the required accuracy. Ten trajectories are usually considered sufficient (Saltelli et al.,
2004). Different sampling methods are available. Khare et al. (2015) describe a new sampling strategy
(sampling for uniformity (SU)), which was found to perform better than existing strategies using a
number of criteria including: generated input factor distributions’ uniformity, time efficiency, trajectory
spread, and screening efficiency. We use the SU method in the example that follows on melamine.

The mean of the elementary effects for a factor estimates the factor’s overall effect (li). A high
value suggests a strong linear effect of that factor, whereas a high value of the standard deviation of
the elementary effects (ri) indicates a non-linear or non-additive effect. For non-monotonic effects, the
mean of the absolute values of the elementary effects can also be computed to avoid cancelling out of
opposing signals (Saltelli et al., 2005). When using absolute values the method is known as revised
Morris. Visualisation is possible by plotting the mean elementary effect for each factor versus the
standard deviation. Input factors which have large mean or standard deviation of the elementary
effects (or moderately large values of both) are most influential on the model output.

2) Monte Carlo filtering (MCF)

The goal of MCF is to identify the ranges of these input factors which result in model output which
is considered acceptable by decision-makers (Chu-Agor et al., 2012). In MCF, a set of constraints has
to be defined that targets the desired characteristics of the model realisation (e.g. a threshold value
for the risk ratio, set by risk managers or stakeholders). Based on the results of the uncertainty
analysis, model results (for example, output values of r) are then classified as being ‘favourable’ or
‘unfavourable’. The values of the input factors are then divided into two groups: those which produce
favourable output and those which produce unfavourable output. In order to check what drives the
difference between a favourable output and an unfavourable output, a two-sided Smirnov test is
performed for each factor to test if the distribution of the factor is different in the favourable output
group than in the unfavourable output group. If the null hypothesis is rejected, this indicates that the
input factor is a key factor in driving the model towards favourable outputs, and is a good candidate
for risk management intervention. If the null-hypothesis is accepted, this indicates that at any value of
the input factor can result in either a favourable or an unfavourable result, and intervening on that
factor is not likely to result in changes in the output of the system represented by the model. In
addition to the statistical significance, it is important to evaluate the ranges of input factors that
produce differential outputs to explore the biological significance of the findings.

3) Linear rank regression analysis

The linear regression analysis can be used as a statistical method for investigating sensitivity when
it is reasonable to assume that the relationship between inputs and output is linear (Saltelli et al.,
2008). A variety of indicators can be computed using this broad approach. The magnitude of the
regression coefficients, standardised by the ratio of the standard deviations of model independent and
dependent variables (SRC: standardised regression coefficient) is commonly used as a measure of
sensitivity as well as the rank assigned to the inputs once sorted by their SRC (SRRC: standardised
rank regression coefficient).

SRC ¼ bi � stddevðXiÞ
stddevðYÞ

The partial correlation coefficient (PCC) and the partial rank correlation coefficient (PRCC) can be
used alternatively.

The square of the multiple correlation coefficient (R2) is an indicator of goodness of fit of a linear
model. Its incremental change, when performing a multivariate stepwise regression analysis, expresses
the additional component of variation of the dependent variable explained by the newly introduced
input. In the phase of setting up a model, it can be used as a measure of sensitivity to screen factors
most influential on the dependent variables.

Possible drawbacks of this class of indicators are the low robustness of the results of regression
analysis when key assumptions are not met (e.g. independence of inputs, normality of residuals). In
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addition these methods are dependent on the functional form (underlying model) explaining the
relationship between output and inputs and the range of variation considered for each input.

4) Analysis of variance

The ANOVA is a sensitivity analysis method that does not require specification of a functional form
for the relationship between the output and a set of inputs (non parametric method). The ANOVA aims
at investigating whether the variation of the values of the output is significantly associated with the
variation of one or more inputs.

5) Fourier amplitude sensitivity test (FAST)

The FAST method belongs to the class of variance-based global sensitivity analysis methods. The
effect of the uncertain inputs on the output is computed as the ratio of the conditional variance (variance
of the conditional distribution of the output having fixed the value of one input or of a combination of
inputs) to the total variance of the output. It takes his name from the multiple Fourier series expansion
that is used as a tool for computing the conditional variance. The method has a wide applicability since it
does not require any assumptions on the model structure nor on monotonicity. In its original form the
FAST method (Cukier et al., 1973) required the assumption of no interaction among inputs. Saltelli et al.
(1999) developed an extended FAST method that allows accounting for multiple interactions.

Based on Fourier expansion, the total variance of the output can be expressed as the sum of all
conditional variances of various orders (from the 1st to the nth):

V ¼
Xn

j¼1

Vj þ
Xn�1

j¼1

Xn

k¼jþ1

Vjk þ . . .þ V12...n

The first order sensitivity index is computed as the ratio of a single input conditional variance and
the total variance whereas the multiple effect sensitivity index is a similar ratio obtained using the
multiple factors conditional variance in the numerator.

Sj1j2...jr ¼
Vj1j2...jr

V

Higher values of the index indicate a great influence of the factor/s on the output.

6) Sobol Index

Sobol’s index (Sobol, 1990) is based on the idea of decomposing the output variance into the
contributions associated with each input factor. It expresses the reduction in the output variability that
could be achieved if value of an input factor was fixed.

The first-order Sobol index for an input factor is defined as the ratio of the variance of the
conditional means of the output (given all possible values of a single input) over the total variance of
the output. It indicates the rate of the total output’s variance exclusively attributable to a specific
input. It does not account for the interaction with other factors.

Sj ¼
VbE (Y/XjÞc

V(Y)

In a perfectly additive model the sum of first order sensitivity indices over all the input factors
equals 1. Models with a sum greater than 0.6 are considered mostly additive (Saltelli et al., 2004).

The higher order interaction terms express the amount of variance of the output explained by the
interaction among factors not already accounted for by lower interaction terms (including first order). It
is computed as the ratio of the higher order conditional variance over the total variance of the output.

The total sensitivity index (Homma and Saltelli 1996) of an input is obtained as the sum of the first-
order index and all the higher order interaction terms involving that specific input.

Traditionally the computation of the Sobol indexes is performed running simulations with the Monte
Carlo algorithm. The computational requirements of the method are N = M(2k + 2), with M the Monte
Carlo over-sampling rate, 512 < M < 1,024 and k the number of input factors.
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Various software applications have been developed to carry out sensitivity analysis. JRC developed
a free license tool named SimLab8 that provides a reference implementation of the most recent global
sensitivity analysis techniques. Various packages have been developed to support performance of
sensitivity analysis in mathematical and statistical softwares that are commonly used (e.g. R and
Matlab). Tools have been included in @Risk and Sensit Excel adds-in allowing computation of some
sensitivity indices and their graphical plotting. The EIKOS Simulation Toolbox has been developed by
Uppsala University (Ekstrom, 2005). A non-comprehensive list of software is given in Table B.34.

Applicability in areas relevant for EFSA

The value of sensitivity analysis in the regulatory context and risk assessment is highlighted by
Pannell (1997). It opens the possibility for the assessors to provide decision-makers with important
information related to the robustness of the assessment conclusions with respect to the various
sources of uncertainty. This information includes: (a) the identification of break-even input values
where the conclusions would change; (b) the provision of flexible recommendations which depend on
circumstances; (c) the characterisation of a strategy or scenario in terms of riskiness allowing
development of priorities for risk mitigations; (d) the identification of important sources of uncertainty
for prioritising additional research/data collection.

Despite its informative value, the performance of sensitivity analysis poses some critical challenges
in EFSA’s assessment models mainly because, when models are used, they are frequently non-linear,
contain thresholds and deal with discrete inputs and/or outputs. Non-linearity and the presence of
thresholds generally imply that interactions among input factors cannot be ignored and sensitivity
measures accounting for input dependency need to be considered.

A review of the sensitivity analysis methods that deserve consideration in the risk assessment
context is provided by Frey and Patil (2002) and Patil and Frey (2004). An example of the
implementation of the global sensitivity analysis developed by Saltelli in the context of contamination
assessment of Listeria monocytogenes in smoked salmon is given by Augustin (2011).

Some examples of applications of sensitivity analysis are available in EFSA risk assessment. The
opinion of the AHAW Panel on Framework for EFSA AHAW Risk Assessments (2007) advises to perform a
sensitivity analysis ‘to determine to what extent various uncertainties affect the conclusions and
recommendations’. The PPR Panel Guidance on the Use of Probabilistic Methodology for Modelling
Dietary Exposure to Pesticide Residues (2012) suggests the use of sensitivity analysis in probabilistic
assessment in order to investigate the impact of model assumptions and other decisions based on expert
judgement (e.g. exclusion of extreme values) on the final results. In the EFSA opinion on prevalence of
L. monocytogenes (2014), the association between the prevalence of L. monocytogenes in EU and some
potentially associated factors related to fish and meat dishes consumption was investigated using
multiple-factor regression models. To get further insight into the stability of the final models, a sensitivity
analysis was performed with respect to some methodological changes in the setting up of the model.

Other institutions perform or advise to use sensitivity analysis as part of their assessments. The
European Chemical Agency mentions sensitivity analysis in its Guidance on information requirements
and chemical safety assessment (ECHA, 2012). The Joint Research Centre of the European
Commission has a long history of application of sensitivity analysis in various fields including transport,
emission modelling, fish population dynamics, composite indicators, hydrocarbon exploration models,
macroeconomic modelling, and radioactive waste management. US Nuclear Regulatory Commission

Table B.34: Main software and packages including tools to perform sensitivity analysis

Package Method

@Risk (Excel adds-in) Scatter plot, tornado plot multivariate stepwise regression and PRCC

CrystalBall
ModelRisk

Simlab software (JRC) Morris, SRC, SRRC, FAST, E-FAST, Sobol
Matlab Scatter plot, 3D plot, PCC, SRC, Morris

EIKOS SRC, SRRC, PCC, PRCC Sobol, FAST, extended FAST
Sensit (Excel adds-in) Spider charts, and tornado charts

R packages – Sensitivity SRC, SRRC, PCC, PRCC, Morris, FAST, Sobol

8 http://ipsc.jrc.ec.europa.eu/?id=756
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(2013) regularly performs uncertainty and sensitivity analyses in its assessments (http://sesitivity-ana
lysis.ec.europa.eu). The European Safety and Reliability Association (ESRA) has established a Technical
Committee on Uncertainty Analysis (http://www.esrahomepage.org/uncertainty.aspx) whose aim is to
foster research on new methodologies and innovative applications of Uncertainty and Sensitivity
Analysis of simulation models.

Potential contribution to major elements of uncertainty analysis

Elements in uncertainty analysis Potential contribution of this approach

Identifying uncertainties Not applicable
Assessing the magnitude of individual
uncertainties

Not applicable

Assessing the combined impact of multiple
uncertainties on the assessment output

Not applicable

Prioritising uncertainties Yes. Sensitivity Analysis methods allow investigating input factors
in order to identify those that are more influential on the output.
Some methods are not able to quantify the joint effects of all the
inputs when evaluating the sensitivity of a single one (i.e. they do
not account for higher order interactions among inputs).
Sometimes methods are used to screen the inputs in a very
preliminary stage in order to prioritise a subsequent more refined
analysis of the uncertainty (e.g. scatter plots, mathematical
methods)

Melamine example

The melamine risk assessment as published by EFSA (2008) compares calculated exposure to
melamine in different scenarios with a previously established tolerable daily intake (TDI) and presents
the ratio of exposure to TDI as the decision variable. Calculations are deterministic and based on
different point estimates, including medians, means and 95th percentiles.

In this example, different possible approaches for the risk assessment and the uncertainty analysis
are considered, in order to present various methods for the sensitivity analysis.

The risk assessment model includes two calculation steps, to calculate exposure (e) and to
calculate the risk ratio (r):

e ¼ c * w * q/bw

r = e/tdi

with
c: concentration of melamine in milk powder (mg/kg)
w: weight fraction of milk powder in chocolate (–)
q: consumption of chocolate (kg/day)
bw: body weight of children (kg)
tdi: Tolerable Daily Intake (mg/kg per day)
e: exposure (mg/kg per day)
r: risk ratio (–)

When assessing uncertainty, the computation can be performed using a deterministic or
probabilistic approach. The same approaches can be adopted to perform a sensitivity analysis.

For the purpose of uncertainty analysis, all types of information and assumptions fed into the
assessment could potentially cause variation in the output and therefore should be assessed for their
influence. However, in this section and the example on melamine, because of the illustrative purpose,
we consider as relevant inputs only parameters and variables used in the risk assessment models used
to calculate exposure and risk ratio.

Example based on NRSA method

The basis for this example is given by assessment of uncertainty done in Annex B.7 using interval
analysis method. In that section, interval values for the uncertain worst case of the input factors were
provided as in Table B.35.
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The nominal range sensitivity analysis method (Table B.36) provides an index to identify input
factors that are more influential on the estimated exposure of melamine and on the relative risk (not
computed since would provide same results in a different scale).

The ranking of the input factors in terms of their influence on the output is as follows: (1) melamine
concentration in adulterated milk powder; (2) consumption of chocolate on an extreme day; (3) body
weight; (4) weight fraction of milk powder in chocolate. Consequently, the first two variables are those
for which a reduction in the uncertainty should be achieved in order to reduce uncertainty in the output.

Example based on BEA

The example on the use of a BEA for sensitivity analysis is based on the uncertainty intervals
previously established for the worst case of the concentration of melamine in adulterated milk powder
and consumption of chocolate on an extreme day input factors. No uncertainty is assumed for the
worst case of the other two factors (weight fraction of milk powder in chocolate and body weight) that
are kept at their nominal values due to their reduced influence on the model output (Table B.37).

Therefore, the BEA focuses only on the most influential factors previously identified (Table B.38).

Table B.35: Child 1 year old, uncertainty about the worst-case (wc) values for parameters

Parameter/estimate
Favoured value
for worst case

Lower bound
for wc value

Higher bound
for wc value

Cmel (mg/kg) 2,563 2,563 5,289

wmilk-powder (–) 0.28 0.28 0.30
qchocolate (kg/day) 0.05 0.05 0.1

body weight (kg-bw) 6 5.5 6.5

Table B.36: Nominal range sensitivity analysis index for the model input factors

Parameter/
estimate

Emelamine at
nominal

value of Xi

(a)

Emelamine at minimum value
of Xi and nominal value of

the other inputs
(b)

Emelamine at maximum value
of Xi and nominal value of

the other inputs
(c)

NRSA
(c�b)/a

Cmel (mg/kg) 6 6 12.34 1.06

wmilk-powder (–) 6 6 6.40 0.07
qchocolate (kg/day) 6 6 12 1

body weight (kg-bw) 6 5.52 6.52 0.17

Table B.37: Child 1 year old, uncertainty about the worst-case (wc) values for parameters

Parameter/estimate
Favoured value
for worst case

Lower bound
for wc value

Higher bound
for wc value

c (mg/kg) 2,563 2,563 5,289

q (kg/d) 0.05 0.05 0.1
bw (kg/bw) 6 6 6

w (–) 0.28 0.28 0.28

Table B.38: Break-even analysis for uncertain worst-case chocolate consumption and melamine
concentration in milk powder - Child 1 year old

Chocolate consumption (q)

0.05 0.06 0.07 0.08 0.09 0.1

Melamine
Concentration (c)

2,563 5.98 7.18 8.37 9.57 10.76 11.96
3,108.2 7.25 8.70 10.15 11.60 13.05 14.50

3,653.4 8.52 10.23 11.93 13.64 15.34 17.05
4,198.6 9.80 11.76 13.72 15.67 17.63 19.59

4,743.8 11.07 13.28 15.50 17.71 19.92 22.14

5,289 12.34 14.81 17.28 19.75 22.21 24.68
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The result of the BEA is trivial for this example since clearly in the worst-case scenario for chocolate
consumption and melamine concentration, the exposure exceeds the TDI by various folds. The results
of the analysis would have been informative in case the TDI was, for instance, equal to 10 mg/kg.

In this case, it would be possible to indicate to policy makers which maximum level should be fixed
by regulation for melamine concentration to avoid exceeding the TDI given a specific worst-case
scenario for chocolate consumption. In case, for instance, of a worst-case consumption of 0.07 kg/day,
a level of 3,108 mg/kg melamine should be indicated to regulators as the highest possible level to
avoid safety concern in 1-year-old children eating very high quantity of chocolate. The same approach
could be used to identify a possible target of reduction of the amount of chocolate consumed by
children with high intake, in case the melamine concentration is kept fixed at the current use level.

This example shows the potential value of sensitivity analysis to inform decisions of risk managers.

Example based on the Morris method for sensitivity analysis

Table B.39 presents the input distributions, used for the Morris and Sobol methods. These are
based on the outputs of the 2D Monte Carlo simulation, by taking the medians of the uncertainty
distributions of the mean and standard deviation of the variability distributions for 1-year-old children.
These were then converted in parameters for the distributions used in the global sensitivity analysis.
As in other examples, uncertainty in the TDI was not considered. For both methods, the distributions
were truncated at the 0.1 and 99.9 percentiles to prevent a strong influence of extreme values.

Results of the Morris method are given in table B40 and figure B22 below. For this linear model, the
mean of the elementary effects (li) and the mean of the absolute values of the elementary effects
(l*i) are the same for all input factors except body weight. All input factors have (almost) linear
effects and there are limited interactions among factors (measured by the standard error of the
elementary effects – ri), as expected from the simplicity of the model structure. The risk ratio r is
most sensitive to variations in c and q and least sensitive to variations in bw. The blue and red lines in
the Morris graph (Figure B.22) indicate proposed qualitative thresholds where factors’ main influence is
in the form of direct effects (below the line) or higher order/interactions (above the line). The red line
was proposed originally by Morris (1991) for li and the blue line by Mu~noz-Carpena et al. (2007) and
Chu-Agor et al. (2012)for l*i. The results indicate that there are non-linear effects for all factors.

TDI in mg/kg of 
BW

Figure B.21: Results of break-even sensitivity analysis

Table B.39: Distribution of input factors for computation of exposure distribution

Input
factor

Description Unit Mean SD Range Distribution

C Concentration of
melamine in milk powder

mg/kg 232 627 – LN(4.34, 1.46)

W Weight fraction of milk
powder in chocolate

– – (0.14, 0.30) U(0.14, 0.30)

Q Consumption of chocolate kg/day 0.0142 0.0134 Γ(1.12, 79.1, 0]

Bw Body weight of children Kg 11.00 1.53 – LN(2.39, 0.138]

Tdi Tolerable Daily Intake mg/kg/day 0.50 – Constant Constant
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Example based on Monte Carlo filtering

For the melamine example, a natural threshold value for the risk ratio, set by risk managers or
stakeholders would be r = 1 but, since only few realisations of such values were observed, we chose a
threshold of r = 0.1. Figure B.23 shows the MCF results for q and c, the two input factors with the
greatest influence on the model output variance, as identified by the Sobol method. According to
the Smirnov test, c and q distributions are significantly different and the figure demonstrates that the
probability density functions (pdfs) of c are more separated than those of q, indicating that a
management intervention to reduce the concentration of melamine in chocolate might be more
effective than reducing chocolate consumption. The intersection of the two distributions for c is at
~ 100 mg/kg, hence above the median but below the mean of the input distribution. The intersection
of the two distributions for q is at 0.009 g/day, somewhat lower than the mean consumption. This implies
that an intervention (policy, regulation) to limit values of c and q at the threshold identified (c < 100 mg/kg
and q < 0.009 g/day) would result in the reduction of the risk of children being exposed to more than
10% of the TDI. This illustrates the opportunities of this analysis to transfer the results to risk
managers. This result must be considered within the ranges specified for these input factors.

Table B.40: Mean and standard deviation of elementary effects of input factors in the melamine
model on the risk ratio r, according to the method of Morris (60 samples)

Input factor li* li ri

C 0.20 0.20 0.19

W 0.05 0.05 0.08
Q 0.14 0.14 0.17

Bw 0.02 �0.02 0.02

Figure B.22: Elementary effects of input factors in the melamine model on the risk ratio r, according
to the method of Morris (160 samples). See text for explanation of red and blue lines

Figure B.23: Monte Carlo filtering for melamine example: pdf’s of c and q producing favourable
(r ≤ 0.1) or unfavourable (r > 0.1) results
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Example using Sobol Index

For the melamine example, the variance decomposition is shown in Table B.41. The sum of the first-
order indices is ∑Si = 0.74 > 0.6, indicating the model behaves as a mostly additive model for this simple
application. Again, the model outputs are most sensitive to variations in c (54% of the total model
variance) and to a lesser extent to q (19%). Variations in w and bw hardly affect the model results.

The Sobol method is based on an efficient Monte Carlo sampling algorithm, exploring the joint
parameter space instead of the marginal distributions. Therefore, even though the number of samples
is limited, the results can directly be used for uncertainty analysis by reading the Cumulative Density
Function (CDF) from the samples of the model Y = f(X1, X2, . . ., Xk). In the melamine example, the
uncertainty in r is graphically represented as in Figure B.24. In this example, the uncertainty should be
interpreted as due to variability in the input factors. To include uncertainty in the variability
distributions of the input factors, their parameters should be described by probability distributions as in
a 2D Monte Carlo simulation. Based on the results of the analysis of variability, parameter uncertainties
would only need to be specified for q and c.

Example of sensitivity analysis for a percentile of variability

The approach is illustrated by application to the 95th percentile of variability of the risk ratio r.
Figure B.25 shows a Sobol–Owen analysis of sensitivity of the estimate of the percentile to the
parameters of distributions for variability in the 2D Monte Carlo analysis provided in Annex B.14. It
shows very clearly that uncertainty about the parameter rlogc (standard deviation of log concentration)
is the biggest contributor to uncertainty about the 95th percentile of r. Figure B.26 explores the nature
of the influence of rlogc on uncertainty about the 95th percentile of r. It shows that higher values of
rlogc lead to a distribution for which is concentrated on higher values for the 95th percentile of r.

Table B.41: Variance decomposition of input factors in the melamine model in relation to the risk
ratio r, according to the method of Sobol (5,120 samples, M = 512)

Input First-order index Total order index Interaction index

c 0.54 0.82 0.28

w 0.01 0.03 0.02
q 0.19 0.46 0.27

bw 0.00 0.00 0.00

Figure B.24: Model output uncertainty pdf for risk ratio r (x-axis) (N = 5,120 samples)
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Sensitivity analysis in the melamine example: general considerations

Irrespective of the method used to perform sensitivity analysis, the ranking of the input factors
according to their influence on the output of the model is extremely robust. Melamine concentration
and chocolate consumption are the variables largely explaining the variability/uncertainty of the
exposure and the risk ratio. In a real assessment this result could be communicated to risk managers
and support an informed decision about actions to reduce exposure and risk.

Methodology for full separation of variability and uncertainty in sensitivity analysis is not yet well
established. Therefore, it has not been considered in this example. Further research is needed in this
direction.

Figure B.25: Sobo–Owen analysis of sensitivity of the 95th percentile of the risk-ratio r to
uncertainties about statistical parameters

Figure B.26: Uncertainty about the 95th percentile of the risk-ratio r in four scenarios for the
parameter rlogc which is the standard deviation of log concentration. Three scenarios
show the consequences of fixing the parameter at different percentiles of uncertainty
and the fourth shows the consequence of using the full distribution of uncertainty for
the parameter
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Strengths

1) Provide extremely valuable information for making recommendations to policy makers (e.g.
identifying factors on which it is more effective to concentrate resources and actions in
order to reduce risk).

2) Allows prioritisation of parameters for uncertainty analysis and/or further research.
3) Some methods are very easy to implement and understand (e.g. nominal range methods).

Weaknesses and possible approaches to reduce them

1) When risk assessment involves many model parameters, sensitivity analysis can be quite
computationally intense. Screening of input factors (e.g. using graphical methods or method
of Morris) can be used to reduce dimensionality.

2) Some methodologies rely on assumptions related to relationship between inputs and output
(e.g. linearity) and among inputs (e.g. independence). When these assumptions do not
hold, conclusions of the SA can be misleading; methods that are able to address non
linearity and dependency should be preferred in these cases.

3) It is necessary to clarify prior to start the sensitivity analysis which question it is intended to
answer, otherwise its value could be limited and not addressing the informative needs.

4) Generally, it is not possible to separate influence of each input on the output in terms of
variability and uncertainty of the input separately. Only methods recently developed allow so
(Busschaert et al. 2011).

5) The sensitivity analysis has been already occasionally applied in EFSA. Still a regular
application (especially when models are used as a basis for the assessment) is not in place.
The application of scenario analysis (conditional sensitivity analysis) is more frequent but not
a common practice.

6) Training should be provided to staff and experts in order to facilitate the performance of
sensitivity analysis. This training should include guidance on preferable methods to be
included in different domains/scientific assessment types.

Assessment against evaluation criteria

There is a large variability in the nature and complexity of the methods that can be used to
perform a sensitivity analysis. Consequently it was decided to have two tables assessing deterministic
(Table B.42) and probabilistic methods (Table B.43) separately against evaluation criteria. The item
‘meaning of output’ was deliberately not filled in since sensitivity analysis complements uncertainty
analysis without providing a direct measure of it.

Conclusions

1) Sensitivity analysis can represent a valuable complement of uncertainty analysis in EFSA. It
helps assessors in providing risk managers with information about most influential factors on
which to focus actions and further research.

2) It has potential for applicability in any area of work in EFSA.
3) Obstacles to application of the method could be technical complexity and the need to

involve an experienced statistician in the computation and interpretation of some specific
methods. Training should be provided to staff and experts in order to facilitate the
performance of sensitivity analysis.

4) It is necessary to clarify prior to start the sensitivity analysis which question it is intended to
reply, otherwise its value could be limited and not addressing the informative needs.
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Table B.42: Assessment of Deterministic methods for sensitivity analysis (when applied well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and variability

Meaning of
output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of process
and reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread in
practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty and
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well
established in
practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty and
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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Table B.43: Assessment of Probabilistic methods for sensitivity analysis (when applied well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and variability

Meaning of
output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of process
and reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread
in practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty and
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well
established
in practice or
literature

Training
course
needed

Weeks Some
aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty and
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.18. Probability calculations for logic models
Purpose, origin and principal features

A logic model is a way to represent the structure of a logical deduction about a yes/no conclusion
based on the answers to a series of yes/no questions. The context needs to be such that the
conclusion is certain if there is no uncertainty about the answers to the questions. Situations where
there would be residual uncertainty about the conclusion are best addressed by another method:
Bayesian graphical modelling (see Section 11.5.2).

Logic models are based fundamentally on Boolean algebra (Boole, 1854) which is the generally
accepted mathematical formalism for describing logical relations and which underlies digital electronics
and computers. The diagrams for visualising logic models shown in the example are very similar in
spirit to standard digital logic gate diagrams used in electronics.

The simplest logic models are the primitive ‘and’ and ‘or’ models. In the ‘and’ model, the conclusion
is ‘yes’ if and only if the answer to each question is ‘yes’. In the ‘or’ model, the conclusion is ‘yes’
unless the answer to each question is ‘no’. By combining the primitive models hierarchically in a tree
where the root of the tree is the conclusion and the leaves are the individual questions, any logical
deduction can be modelled. The structure of the reasoning is made explicit by showing the model as a
diagram.

A logic model provides a transparent basis for subsequent probability calculations leading to
quantifying combined uncertainty about the conclusion based on probabilities expressing uncertainty
about the answers to the questions. Calculations required to compute the probability that the
conclusion is ‘yes’ are standard elementary probability calculations: the diagram simply organises and
supports the calculations. The probabilities for the answers to the questions may be based on
statistical analysis of data (see Section 11.2) or may derive directly from expert knowledge elicitation
(see Section 11.3). Logic models used in this way have a similar function to network models used in
engineering reliability assessment (Billinton and Allan, 1992).

Calculating the probability for the conclusion from probabilities for the questions

If uncertainty is expressed for each question by specifying the probability of ‘yes’, the probability
that the conclusion is ‘yes’ can be calculated using the mathematics of probability. For the ‘and’ model,
the probability of ‘yes’ for the conclusion is obtained by multiplying the probabilities for the individual
questions. Denoting the probability of ‘yes’ for the conclusion by p and the probabilities of ‘yes’ for n
questions by p1, . . ., pn:

p ¼ p1 � . . .� pn

In order to describe the calculation for the ‘or’ model, first note that for any ‘yes’/’no’ outcome, the
probabilities for the two outcomes must sum to 100%. The probability of ‘no’ for the conclusion is
obtained by multiplying the probability of ‘no’ for each of the questions. Therefore, for the ‘or’ model:

p ¼ 1� ð1� p1Þ � . . .� ð1� pnÞ

For a logic model represented as a tree where the leaves correspond to the questions, the
calculation works by first finding a group of leaves connected in a primitive ‘and’ model or ‘or’ model.
Each of those leaves has an associated probability of ‘yes’. The calculation described above is then
carried out for the primitive model and the group of leaves is replaced by a single new leaf which has
the probability of ‘yes’ resulting from the calculation. By repeating the process until there is left only a
single leaf corresponding to the conclusion, the probability of ‘yes’ for the conclusion is calculated.

Calculations using approximate probabilities

The description above assumes that the probability of ‘yes’ for each question has been specified
precisely. If any of the probabilities has been specified approximately as a range (see Section 11.1),
interval analysis (Section 11.6.2, Annex B.7) can be used to compute the resulting approximate
probability relating to the conclusion. Any precise probability specified should first be converted to an
equivalent approximate probability for which both lower and upper bounds coincide with the
probability specified. For both primitive models, the lower bound for the probability for the conclusion
is obtained by applying the calculation described above to the lower bounds for the individual
probabilities and the upper bound obtained by applying the calculation to the individual upper bounds.
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For general models, the calculation of approximate probabilities for primitive models can be
propagated through the tree to the root, as described above for precise probabilities, in order to arrive
at an approximate probability for the conclusion.

Using negations

In principle, it is possible to express any logical deduction as a tree using only ‘and’ and ‘or’
combinations. To do so, it may be necessary to negate the framing of some questions, i.e. to reframe
a question to reverse the meaning of ‘yes’ and ‘no’ as answers. An alternative, which may feel more
natural in some situations, is to incorporate ‘not’ operations in the tree. A ‘not’ operation sits between
a question or intermediate deduction and the primitive model to which it contributes information. It
negates the answer to the question or intermediate deduction. The corresponding calculation for a
precise probability is to replace the probability by its complement, i.e. to subtract the probability from
100%. For an approximate probability, the upper and lower bounds are both subtracted from 100%
and in doing so the lower bound becomes the new upper bound and vice versa.

Dependence

If there is dependence between uncertainties which feed into different primitive models in the
original tree, it is still possible to do calculations. However, greater expertise is needed in carrying out
probability calculations and it would be sensible to seek advice.

It is more straightforward to address dependence between uncertainties about questions which
feed into the same primitive model in the original tree. The dependent questions need to be isolated
into a separate primitive model which then contributes to the original primitive model (this is always
possible). Then there are two approaches to establishing the probability of ‘yes’ for the new separate
primitive model: either specify directly the probability of ‘yes’ for the new primitive model or calculate
it using specified conditional probabilities. If taking the latter approach for an ‘and’ model, the
probability of ‘yes’ for the new model is obtained by first specifying the probability of ‘yes’ for one
question and then, in sequence for each of the other dependent questions, multiplying by the
conditional probability for that question of ‘yes’ given that the answer to each preceding question is
‘yes’. If the new model is an ‘or’ model, first reformulate it as an ‘and’ model followed by a ‘not’ and
then apply the conditional probability approach to the ‘and’ model.

Applicability in areas relevant for EFSA

Applicable to all areas of EFSA’s work but restricted to assessments or parts of assessments where
a yes/no conclusion can be represented as logical deductions from answers to a series of yes/no
questions.

Potential contribution to major steps of uncertainty analysis

Steps in uncertainty analysis Potential contribution of this approach

Identifying uncertainties Not applicable
Characterising uncertainties Not applicable

Combining uncertainties Yes (for yes/no questions)

Prioritising uncertainties Not applicable

Example

For illustrative purposes, consider a situation where it is judged that a hazard to humans exists for
a particular chemical if and only if it produces one of two possible toxic metabolites in humans and the
individual exposed belongs to a particular genetic subpopulation. This reasoning process can be
expressed as a diagram involving yes/no questions:

Uncertainty in Scientific Assessment

www.efsa.europa.eu/efsajournal 226 EFSA Journal 2018;16(1):5122



Metabolite A 
produced? 

Metabolite B 
produced?

OR In gene�c

AND

Hazard?

subpopula�on?

Note that the diagram and calculations below are specific to the situation where there are two toxic
metabolites and would need to be altered if there was a different or uncertain number of toxic
metabolites.

Suppose also that the following hypothetical judgements are made about uncertainties about the
answer to the three questions: they are judged to be independent, the probability that metabolite A is
produced is 30%, the probability that metabolite B is produced is 20% and the probability that an
individual belongs to the genetic subgroup is 5%. The calculation of the probability of hazard proceeds
hierarchically. First, the ‘or’ model is calculated, replacing the ‘OR’ box by an intermediate conclusion
having probability 1� ð1� :3Þð1� :2Þ ¼ 44%. Then the ‘and’ model is calculated to conclude that the
probability of hazard is :44� :05 ¼ 2:2%.

As an example of the use of ‘not’ operators, the following diagram represents the same logical
model and leads to the same probability of hazard:

NOT

Metabolite A 
produced? 

Metabolite B 
produced?

AND 

In genetic

OR

Hazard?

NOT NOT 

NOT

subpopulation?

As an example of how to address dependence, suppose that judgements of uncertainty about the
production of the two metabolites are considered to be dependent. As discussed above, there are two
possible approaches to addressing the dependence, based on the second diagram. The first approach
is to directly specify the probability that neither metabolite is produced. The second approach would
be to calculate the probability that neither metabolite is produced by (i) specifying the probability that
metabolite A is not produced; (ii) specifying the conditional probability, given that A is not produced,
that metabolite B is not produced; (iii) multiplying the numbers from steps (i) and (ii). Either way, the
resulting probability, that neither metabolite is produced, would then replace the ‘AND’ and the
branches and leaves from the ‘AND’.
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Strengths

1) Provides diagrams to represent the structure of logical deduction of a yes/no conclusion
from a series of yes/no questions.

2) Provides a probability for the conclusion calculated from probabilities for the answers to the
questions.

3) Relatively easy to apply if some or all probabilities are approximate.
4) It is possible to take account of dependence between uncertainties about answers to

questions.

Weaknesses and possible approaches to reduce them

1) Only applies to yes/no conclusions deduced from answers to yes/no questions.
2) Only applies to conclusions which would not be uncertain if there was no uncertainty about

the answers to the underlying questions. In other situations, Bayesian graphical modelling
(Section 11.5.2) should be used

3) Some forms of dependence require specialist expertise.

Assessment against evaluation criteria

This method is assessed against the criteria in Table B.44. In evaluating time needed, time needed
to conduct EKE or analyse data is not included.

Conclusions

1) This is potentially an important tool for EFSA as it provides a way to structure logical
arguments involving yes/no conclusions and to calculate the combined uncertainty about a
conclusion based on uncertainty about underlying yes/no questions expressed using
probability.
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Table B.44: Assessment of calculations using logic models (when used well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and variability

Meaning of
output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of process
and reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread in
practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty and
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well
established in
practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty and
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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B.19. Structured tools for evidence appraisal
Purpose, origin and principal features

Appraisal of the risk of bias in the individual studies used as evidence in an assessment is a
standard step when using data from literature (Higgins and Green, 2011, updated 2017). Risk of bias
can affect a study in terms of limitations in the internal and/or external validity. They both imply an
uncertainty: the first around the extent to which the findings of the study accurately estimate its own
target outcome, the second around the extent to which these findings can be extrapolated to the
outcome of an assessment. Examples of threats to internal validity are confounding factors in
observational studies and the use of unreliable measures of exposure. Risk of bias is different from
quality of a study in the sense that perfectly designed studies can still be affected by risk of bias.

Several structured frameworks have been developed for assessing risk of bias in an individual study,
sometimes referred to as Critical Appraisal Tools (CATs), that take the form of check lists and are
tailored by study design (e.g. randomised controlled trials). These include a standardised list of items
representing potential sources of uncertainty (e.g. lack of randomisation in a randomised controlled
trial) that need to be evaluated in the light of the potential bias they could have introduced in the
results. Originally developed in the context of clinical intervention, their use has rapidly spread to other
research questions and study design. Threats to internal validity are generally the only source of
uncertainty appraised at the level of an individual study. Other important sources such as external
validity and random error (i.e. sampling uncertainty) are normally considered when integrating the
evidence (e.g. in a meta-analysis) and appraising the certainty in the whole body of evidence.

Frameworks have been established also to assess the confidence or certainty in the whole body of
evidence (i.e. the set of studies used for the assessment). They generally refer to a set of criteria
known as Bradford-Hill criteria (Bradford-Hill 1965) that were established to assess whether a causal
relationship between a potential harm and a health effect can be concluded on the basis of the
available evidence. Original Bradford-Hill criteria include: strength/size of the effect; consistency of the
findings or reproducibility; specificity of the association (no other potential source of the effect are
identified); temporality (effect appears after the potential cause); biological gradient or dose response
(monotonic relationship is expected either increasing or decreasing); plausibility or biological relevance;
coherence among results from various sources of evidence; availability of experimental evidence
(considered the most credible source of evidence to establish causation); analogy (consideration of
effect of similar factors). Over the years, these criteria has been modified and adapted (Adami et al.
2011) and recently used to develop approaches to evaluate the confidence or certainty in a whole
body of evidence when used to support conclusion on causality (GRADE and modified GRADE
approaches, see Table B.46 for references).

Bias-adjusted meta-analysis may be an option to account quantitatively for risk of internal and
external bias when integrating evidence systematically retrieved in the literature (e.g. Turner et al.,
2009).

Tools to appraise the risk of bias in individual studies tailored to various different study designs are
listed in Table B.45, while approaches to evaluate the certainty in the whole body of evidence are
listed in Table B.46.

Table B.45: Tools and methods to evaluate the risk of bias in an individual study

Tool to assess
risk of bias at the
level of each
individual study

Study design/setting in
which the tools are
applicable

Institution Link/reference

Office of Health
Assessment and
Translation (OHAT)
RoB Tool

Experimental animal studies,
human RCT, human
observational

National Toxicology
Programme (NTP)

https://ntp.niehs.nih.gov/ntp/ohat/
pubs/riskofbiastool_508.pdf

Rob2.0 Risk of bias in randomized
trials

Cochrane
collaboration

https://sites.google.com/site/
riskofbiastool/welcome/rob-2-0-tool

Robins-I Risk of Bias in non-
randomized studies - of
interventions

Cochrane
collaboration

https://sites.google.com/site/
riskofbiastool/welcome/home
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Applicability in areas relevant for EFSA

Applicable to all areas of EFSA’s work but restricted to assessments or parts of assessments where
studies retrieved from the literature are used. It is applicable as well as to submitted studies for
regulated products.

Tool to assess
risk of bias at the
level of each
individual study

Study design/setting in
which the tools are
applicable

Institution Link/reference

RoB Diagnostic Test
Accuracy

Risk of bias in diagnostic test
accuracy

Cochrane Canada http://training.cochrane.org/resource/
primer-cochrane-diagnostic-test-
accuracy-reviews

QUADAS-2 Risk of bias in diagnostic test
accuracy

QUADAS-2 Group

SYRCLE RoB Tool Experimental animal study SYRCLE at Central
Animal Laboratory

EFSA SR CAT Risk of bias and imprecision
in randomised trials

EFSA http://onlinelibrary.wiley.com/
doi/10.2903/sp.efsa.2015.EN-836/epdf

EFSA SR CAT Appraisal of Systematic
Review process

EFSA http://onlinelibrary.wiley.com/
doi/10.2903/sp.efsa.2015.EN-836/epdf

EFSA ELS CAT Appraisal of the Extensive
Literature Review process

EFSA http://onlinelibrary.wiley.com/
doi/10.2903/sp.efsa.2015.EN-836/epdf

Tool to assess Risk
of Bias in cohort
studies

Risk of bias in cohort studies CLARITY Group https://www.evidencepartners.com/
resources/methodological-resources/

Tool to assess Risk
of Bias in case
control studies

Risk of bias in case control
studies

CLARITY Group https://www.evidencepartners.com/
resources/methodological-resources/

Tool to assess Risk
of Bias in
randomised
controlled trials

Risk of bias in RCT CLARITY Group https://www.evidencepartners.com/
resources/methodological-resources/

Tool to assess Risk
of Bias in case
control studies

Risk of bias in case control
studies

CLARITY Group https://www.evidencepartners.com/
resources/methodological-resources/

Table B.46: Approaches to evaluate the certainty in a body of evidence

Approaches to evaluate
overall certainty in the
body of evidence

Nature
of the
approach

Institution Link/reference

Grading of Recommendations
Assessment, Development
and Evaluation (short GRADE)

Qualitative GRADE working group http://www.gradeworkinggroup.org/

Office of Health Assessment
and Translation (OHAT) -
Approach for Systematic
Review and Evidence
Integration

Qualitative National Toxicology
Programme (NTP)

https://ntp.niehs.nih.gov/ntp/ohat/
pubs/handbookjan2015_508.pdf

Navigation Guide Qualitative University of California
San Francisco –
Programme on
reproductive health
and environment

https://prhe.ucsf.edu/navigation-guide

Systematic Review Centre
for Laboratory animal
Experimentation (in short
SYRCLE1)

Qualitative SYRCLE SR centre https://www.radboudumc.nl/en/research/
technology-centers/animal-research-
facility/systematic-review-center-for-
laboratory-animal-experimentation
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Potential contribution to major elements of uncertainty analysis

Elements in uncertainty analysis Potential contribution of this approach

Identifying uncertainties Yes
Characterising uncertainties Yes

Combining uncertainties Yes

Prioritising uncertainties Not applicable

Melamine example

Not done.

Strengths

1) Provide a structured approach for consistent identification, evaluation and combination of
uncertainties in multiple studies of the same type, or different studies comprising a body of
evidence.

2) Facilitate the process of uncertainty identification when uncertainty in the evidence is the
main objective.

3) Make the process of uncertainty identification and evaluation transparent and repeatable.

Weaknesses and possible approaches to reduce them

1) Do not express the impact of uncertainties in terms of how different the assessment
conclusion could be and how likely that is.

2) Specialist advice (which is available internally in EFSA) may be needed for choosing the
appropriate appraisal tool and framework and to adapt them to the domain at hand as
appropriate. Training and/or specialist support may be needed to properly apply the tools.

Assessment against evaluation criteria

The use of structured approaches for evidence appraisal is assessed against the criteria in
Table B.47.

Conclusions

Structured approaches for appraising the evidence are valuable methods that should be used in
EFSA when assessments include evidence retrieved from the literature and when evaluating studies
submitted for regulated products. Several critical appraisal tools are available and there is a need to
choose the one that is more appropriate to the study design and adapt it where needed to the specific
topic and domain. These approaches enhance consistency and transparency in the evaluation of the
risk of bias and other types of uncertainties across a body of evidence. However, they need to be used
in conjunction with other methods in the guidance to express the impact of the identified uncertainties
on assessment conclusions.
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Table B.47: Assessment of structured approaches for evidence appraisal (when used well) against evaluation criteria

Criteria
Evidence
of current
acceptance

Expertise
needed to
conduct

Time
needed

Theoretical
basis

Degree/
extent of
subjectivity

Method of
propagation

Treatment of
uncertainty
and variability

Meaning of
output

Transparency and
reproducibility

Ease of
understanding
for non-
specialist

Stronger
characteristics

International
guidelines or
standard
scientific
method

No specialist
knowledge
required

Hours Well
established,
coherent
basis for all
aspects

Judgement
used only to
choose
method of
analysis

Calculation
based on
appropriate
theory

Different types
of uncertainty &
variability
quantified
separately

Range and
probability of
possible
answers

All aspects of process
and reasoning fully
documented

All aspects fully
understandable

EU level
guidelines or
widespread
in practice

Can be used
with
guidelines or
literature

Days Most but not
all aspects
supported by
theory

Combination
of data and
expert
judgement

Formal expert
judgement

Uncertainty and
variability
quantified
separately

Range and
relative
possibility of
answers

Most aspects of
process and
reasoning well
documented

Outputs and
most of process
understandable

National
guidelines, or
well
established in
practice or
literature

Training
course
needed

Weeks Some aspects
supported by
theory

Expert
judgement on
defined
quantitative
scales

Informal
expert
judgement

Uncertainty and
variability
distinguished
qualitatively

Range of
answers but
no weighting

Process well
documented but
limited explanation of
reasoning

Outputs and
principles of
process
understandable

Some
publications
and/or
regulatory
practice

Substantial
expertise or
experience
needed

A few
months

Limited
theoretical
basis

Expert
judgement on
defined
ordinal scales

Calculation or
matrices
without
theoretical
basis

Quantitative
measure of
degree of
uncertainty

Limited explanation
of process and/or
basis for conclusions

Outputs
understandable
but not process

Weaker
characteristics

Newly
developed

Professional
statistician
needed

Many
months

Pragmatic
approach
without
theoretical
basis

Verbal
description,
no defined
scale

No
propagation

No distinction
between
variability and
uncertainty

Ordinal scale
or narrative
description
for degree of
uncertainty

No explanation of
process or basis for
conclusions

Process and
outputs only
understandable
for specialists
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Annex C – Further details for the melamine case study

C.1. Deterministic quantitative model

The basic risk assessment model for the case study includes two calculation steps, to calculate first
exposure (e):

e ¼ c� w� q
bw

and then the risk ratio (r): r = e/TDI. The quantities involved in these calculations are:

c Concentration of melamine
in milk powder

(mg/kg) Input variable (distribution uncertain)

w Weight fraction of milk powder
in chocolate

(–) Input variable (distribution uncertain)

q Consumption of chocolate (kg/day) Input variable (distribution uncertain)
bw Body weight of children (kg) Input variable (distribution uncertain)

TDI Tolerable Daily Intake (mg/kg per day) Specified value (but there is
uncertainty about whether
it is the correct value)

e Exposure (mg/kg per day) Output variable (distribution uncertain)

r Risk ratio (–) Output variable (distribution uncertain)

Two versions of the example are considered: uncertainty about the highest exposure occurring
(worst-case) and uncertainty about variability of exposure. For the first version, the issue of variability
has been removed by considering the worst case so that there is only uncertainty to be addressed. For
the second, both variability and uncertainty need to be addressed.

In the interval analysis example (Annex B.7), the worst-case assessment is considered for all
children before considering subgroups to address dependence between body weight and consumption.
In the other quantitative method examples, attention is restricted to children aged from 1 up to
2 years. An advantage of doing so is that very simple statistical models can be used to illustrate the
statistical methods of statistical inference.

C.2. Worst-case assessment (uncertainty but no variability)

The worst-case value for the risk-ratio is rmax = emax/TDI where

emax ¼ cmax � wmax � qmax

bwmin

The new quantities involved in these calculations are:

rmax Highest occurring value for the risk ratio (–) Output parameter (value uncertain)

emax Highest occurring exposure (mg/kg per day) Output parameter (value uncertain)
cmax Highest occurring concentration of

melamine in milk powder
(mg/kg) Input parameter (value uncertain)

wmax Highest occurring weight fraction of
milk powder in chocolate

(–) Input parameter (value uncertain)

qmax Highest occurring consumption
of chocolate

(kg/day) Input parameter (value uncertain)

bwmin Lowest occurring body weight of children (kg) Input parameter (value uncertain)

C.3. Uncertainty about variability of exposure

Attention was further restricted to children consuming contaminated chocolate from China.
For each of the input variables, a parametric family of distributions was chosen with which to model

the variability. In the cases of q and bw, the choice of distribution family was informed by analysis of
the data. For c and w, the choices were pragmatic ones made for illustrative purposes. Each of the
parameters introduced in this table is uncertain and uncertainty about the values of the parameters is
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the way in which we address uncertainty about the variability for each variable. Details are given in the
following table:

Variable Distribution family
Parameters
(statistical)

Meaning of parameters

c Log-normal distribution
(base 10)

llogc and rlogc Mean and standard deviation of log-concentration

w Uniform distribution aw and bw Lower and upper limit for weight-fraction
q Gamma distribution aq and bq Shape and rate parameters for gamma

distribution for q

bw Log-normal distribution
(base 10)

llogbw and rlogbw Mean and standard deviation of log-body weight

C.4. Data used for modelling variability of body weight and
consumption

For q and bw, consumption survey data were available, for 1-year-old children, from EFSA (http://
www.efsa.europa.eu/en/datexfoodcdb/datexfooddb.htm) and which existed in 2008. The data derive
from five surveys carried out in Finland, Germany, Italy, Poland and Spain. They record daily
consumption (weight) of ‘Chocolate (cocoa) products’. Restricting to records with positive consumption,
they provide 362 values of q for 171 children and the value of bw for each child.

Standard goodness-of-fit tests show that the log-normal family of distributions is a better fit to the
bw data than either the normal or gamma families. The log-normal fit is visually excellent although it
does formally fail the tests. For q, the gamma family fits better than normal, log-normal or Weibull and
the visual fit is again good.

The plot below shows the relationship between q and bw for the data used. The correlation is
statistically significant, with or without logarithmic transformation of variables, but nevertheless small:
0.13 for the raw data and 0.24 after logarithmic transformation of both variables. Since the examples
are intended primarily to illustrate the methods and not to be a complete assessment of uncertainty
for the melamine case study and incorporating dependence into the examples in Annex B would
involve considerable extra complexity, variability of b and q is treated as independent in the examples
of probability bounds analysis and Monte Carlo.
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